1
|
Wang Y, Bian X, Wan M, Dong W, Gao W, Yao Z, Guo C. Effects of riboflavin deficiency and high dietary fat on hepatic lipid accumulation: a synergetic action in the development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2024; 21:1. [PMID: 38169398 PMCID: PMC10763341 DOI: 10.1186/s12986-023-00775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Riboflavin, one of water soluble vitamins, plays a role in lipid metabolism and antioxidant function. However, the effects of riboflavin deficiency on NAFLD development have not yet to be fully explored. METHODS In the present study, an animal model of NAFLD was induced by high fat diet feeding in mice and a cellular model of NAFLD was developed in HepG2 cells by palmitic acid (PA) exposure. The effects of riboflavin deficiency on lipid metabolism and antioxidant function were investigated both in vivo and in vitro. In addition, the possible role of peroxisome proliferator-activated receptor gamma (PPARγ) was studied in HepG2 cells using gene silencing technique. RESULTS The results showed that riboflavin deficiency led to hepatic lipid accumulation in mice fed high fat diet. The expressions of fatty acid synthase (FAS) and carnitine palmitoyltransferase 1 (CPT1) were up-regulated, whereas that of adipose triglyceride lipase (ATGL) down-regulated. Similar changes in response to riboflavin deficiency were demonstrated in HepG2 cells treated with PA. Factorial analysis revealed a significant interaction between riboflavin deficiency and high dietary fat or PA load in the development of NAFLD. Hepatic PPARγ expression was significantly upregulated in mice fed riboflavin deficient and high fat diet or in HepG2 cells treated with riboflavin deficiency and PA load. Knockdown of PPARγ gene resulted in a significant reduction of lipid accumulation in HepG2 cells exposed to riboflavin deficiency and PA load. CONCLUSIONS There is a synergetic action between riboflavin deficiency and high dietary fat on the development of NAFLD, in which PPARγ may play an important role.
Collapse
Affiliation(s)
- Yanxian Wang
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Xiangyu Bian
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Min Wan
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Weiyun Dong
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Weina Gao
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Zhanxin Yao
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Changjiang Guo
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
2
|
Kondo Y, Aoki H, Masuda M, Nishi H, Noda Y, Hakuno F, Takahashi SI, Chiba T, Ishigami A. Moderate protein intake percentage in mice for maintaining metabolic health during approach to old age. GeroScience 2023; 45:2707-2726. [PMID: 37118349 PMCID: PMC10651611 DOI: 10.1007/s11357-023-00797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Nutritional requirements for maintaining metabolic health may vary with each life stage, such as young, middle, and old age. To investigate the appropriate ratio of nutrients, particularly proteins, for maintaining metabolic health while approaching old age, young (6-month-old) and middle-aged (16-month-old) mice were fed isocaloric diets with varying protein percentages (5%, 15%, 25%, 35%, and 45% by calorie ratio) for two months. The low-protein diet developed mild fatty liver, with middle-aged mice showing more lipids than young mice, whereas the moderate-protein diet suppressed lipid contents and lowered the levels of blood glucose and lipids. Self-organizing map (SOM) analysis revealed that plasma amino acid profiles differed depending on age and difference in protein diet and were associated with hepatic triglyceride and cholesterol levels. Results indicate that the moderate protein intake percentages (25% and 35%) are required for maintaining metabolic health in middle-aged mice, which is similar to that in young mice.
Collapse
Affiliation(s)
- Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Hitoshi Aoki
- Research and Development Division, Nichirei Foods Inc, Chiba, 261-0002, Japan
| | - Masato Masuda
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroki Nishi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Noda
- Department of Animal Facility, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
3
|
Alonso-Peña M, Del Barrio M, Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste MT, Iruzubieta P, Crespo J. Innovative Therapeutic Approaches in Non-Alcoholic Fatty Liver Disease: When Knowing Your Patient Is Key. Int J Mol Sci 2023; 24:10718. [PMID: 37445895 DOI: 10.3390/ijms241310718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of NASH entails the activation of inflammatory and fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic comorbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range of interventions and drugs, with little success. Here, we propose a narrative review of the different phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD patients and personalized treatment is an innovative therapeutic approach that may lead to better therapeutic outcomes.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Ana Peleteiro-Vigil
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Carolina Jimenez-Gonzalez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Alvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
4
|
Iruzubieta P, Bataller R, Arias-Loste MT, Arrese M, Calleja JL, Castro-Narro G, Cusi K, Dillon JF, Martínez-Chantar ML, Mateo M, Pérez A, Rinella ME, Romero-Gómez M, Schattenberg JM, Zelber-Sagi S, Crespo J, Lazarus JV. Research Priorities for Precision Medicine in NAFLD. Clin Liver Dis 2023; 27:535-551. [PMID: 37024222 DOI: 10.1016/j.cld.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
NAFLD is a multisystem condition and the leading cause of chronic liver disease globally. There are no approved NAFLD-specific dugs. To advance in the prevention and treatment of NAFLD, there is a clear need to better understand the pathophysiology and genetic and environmental risk factors, identify subphenotypes, and develop personalized and precision medicine. In this review, we discuss the main NAFLD research priorities, with a particular focus on socioeconomic factors, interindividual variations, limitations of current NAFLD clinical trials, multidisciplinary models of care, and novel approaches in the management of patients with NAFLD.
Collapse
Affiliation(s)
- Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Avenida Valdecilla 25, 39008, Santander, Spain
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, PA, USA
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Avenida Valdecilla 25, 39008, Santander, Spain
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - José Luis Calleja
- Department of Gastroenterology and Hepatology, Puerta de Hierro University Hospital, Puerta de Hierro Health Research Institute (IDIPHIM), CIBERehd, Universidad Autonoma de Madrid, Calle Joaquín Rodrigo 1, 28222, Majadahonda, Spain
| | - Graciela Castro-Narro
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Department of Hepatology and Transplant, Hospital Médica Sur, Asociación Latinoamericana para el Estudio del Hígado (ALEH), Mexico City, Mexico
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John F Dillon
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Miguel Mateo
- Pharmacy Organisation and Inspection, Government of Cantabria, Santander, Spain
| | - Antonio Pérez
- Endocrinology and Nutrition Department, Santa Creu I Sant Pau Hospital, Universitat Autónoma de Barcelona, IIB-Sant Pau and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Mary E Rinella
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Manuel Romero-Gómez
- UCM Digestive Diseases and CIBERehd, Virgen Del Rocío University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre Mainz, Mainz, Germany
| | - Shira Zelber-Sagi
- University of Haifa, School of Public Health, Mount Carmel, Haifa, Israel; Department of Gastroenterology, Tel- Aviv Medical Centre, Tel- Aviv, Israel
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Avenida Valdecilla 25, 39008, Santander, Spain.
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Calle del Rossellón 171, ENT-2, Barcelona ES-08036, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, NY, USA.
| |
Collapse
|
5
|
Stefano JT, Duarte SMB, Ribeiro Leite Altikes RG, Oliveira CP. Non-pharmacological management options for MAFLD: a practical guide. Ther Adv Endocrinol Metab 2023; 14:20420188231160394. [PMID: 36968655 PMCID: PMC10031614 DOI: 10.1177/20420188231160394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Lifestyle changes should be the main basis for any treatment for metabolic dysfunction-associated fatty liver disease (MAFLD), aiming to increase energy expenditure, reduce energy intake and improve the quality of nutrients consumed. As it is a multifactorial disease, approaches such as physical exercise, a better dietary pattern, and possible pharmacological intervention are shown to be more efficient when used simultaneously to the detriment of their applications. The main treatment for MAFLD is a lifestyle change consisting of diet, activity, exercise, and weight loss. The variables for training prescription such as type of physical exercise (aerobic or strength training), the weekly frequency, and the intensity most indicated for the treatment of MAFLD remain uncertain, that is, the recommendations must be adapted to the clinical conditions comorbidities, and preferences of each subject in a way individual. This review addresses recent management options for MAFLD including diet, nutrients, gut microbiota, and physical exercise.
Collapse
Affiliation(s)
- José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sebastião Mauro Bezerra Duarte
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar no
255, Instituto Central, # 9159, Sao Paulo 05403-000, Brazil
- Departament of Gastroenterology, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Lai ML, Li AQ, Senior AM, Neely GG, Simpson SJ, Wang QP. Nutritional geometry framework of sleep. Life Sci 2023; 316:121381. [PMID: 36640899 DOI: 10.1016/j.lfs.2023.121381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
AIMS Sleep is a fundamental physiological function and is essential for all animals. Sleep is affected by diet compositions including protein (P) and carbohydrates (C), but there has not been a systematic investigation on the effect of dietary macronutrient balance on sleep. MAIN METHODS We used the nutritional geometry framework (NGF) to explore the interactive effects on sleep of protein (P) and carbohydrates (C) in the model organism Drosophila. Both female and male flies were fed various diets containing seven ratios of protein-to-carbohydrates at different energetic levels for 5 days and sleep was monitored by the Drosophila Activity Monitor (DAM) system. KEY FINDINGS Our results showed that the combination of low protein and high carbohydrates (LPHC) prolonged sleep time and sleep quality, with fewer sleep episodes and longer sleep duration. We further found that the effects of macronutrients on sleep mirrored levels of hemolymph glucose and whole-body glycogen. Moreover, transcriptomic analyses revealed that a high-protein, low-carbohydrate (HPLC) diet significantly elevated the gene expression of metabolic pathways when compared to the LPHC diet, with the glycine, serine, and threonine metabolism pathway being most strongly elevated. Further studies confirmed that the contents of glycine, serine, and threonine affected sleep. SIGNIFICANCE Our results demonstrate that sleep is affected by the dietary balance of protein and carbohydrates possibly mediated by the change in glucose, glycogen, glycine, serine, and threonine.
Collapse
Affiliation(s)
- Mei-Ling Lai
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - An-Qi Li
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Alistair M Senior
- Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Li AQ, Li SS, Zhang RX, Zhao XY, Liu ZY, Hu Y, Wang B, Neely GG, Simpson SJ, Wang QP. Nutritional geometry framework of sucrose taste in Drosophila. J Genet Genomics 2023; 50:233-240. [PMID: 36773723 DOI: 10.1016/j.jgg.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Dietary protein (P) and carbohydrate (C) have a major impact on sweet taste sensation. However, it remains unclear whether the balance of P and C influences sweet taste sensitivity. Here, we use the nutritional geometry framework (NGF) to address the interaction of protein and carbohydrates and on sweet taste using Drosophila as a model. Our results reveal that high-protein, low-carbohydrate (HPLC) diets sensitize to sweet taste and low-protein, high-carbohydrate (LPHC) diets desensitize sweet taste in both male and female flies. We further investigate the underlying mechanisms of these two diets' effect on sweet taste using RNA sequencing. When compared to the LPHC diet, the mRNA expression of genes involved in the metabolism of glycine, serine, and threonine is significantly upregulated in the HPLC diet, suggesting these amino acids may mediate sweet taste perception. We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine. Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.
Collapse
Affiliation(s)
- An-Qi Li
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Sha-Sha Li
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ruo-Xin Zhang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Ying Liu
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yun Hu
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bei Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
8
|
Zhao L, Jin L, Petrick JL, Zeng H, Wang F, Tang L, Smith-Warner SA, Eliassen AH, Zhang FF, Campbell PT, Giovannucci E, Liao LM, McGlynn KA, Steck SE, Zhang X. Specific botanical groups of fruit and vegetable consumption and liver cancer and chronic liver disease mortality: a prospective cohort study. Am J Clin Nutr 2023; 117:278-285. [PMID: 36811575 PMCID: PMC10131619 DOI: 10.1016/j.ajcnut.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Beyond alcohol and coffee, the relationship between other dietary factors, including specific vegetables and fruits, and liver outcomes remains poorly understood. OBJECTIVE To evaluate the associations between fruit and vegetable intake with the risk of liver cancer and chronic liver disease (CLD) mortality. METHODS This study was based on the National Institutes of Health-American Association of Retired Persons Diet and Health Study, including 485,403 participants aged 50-71 y from 1995 to 1996. Fruit and vegetable intake was estimated using a validated food frequency questionnaire. Cox proportional hazards regression was used to estimate the multivariable hazard ratios (HR) and 95% confidence intervals (CI) for liver cancer incidence and CLD mortality. RESULTS During a median follow-up of 15.5 y, 947 incident liver cancers and 986 CLD deaths (other than liver cancer) were confirmed. A higher intake of total vegetables was associated with a lower risk of liver cancer (HRQuintile 5 vs. Quintile 1 = 0.72, 95% CI: 0.59, 0.89; Ptrend < 0.001). When further subclassified into botanical groups, the observed inverse association was mainly driven by lettuce and the cruciferous family (broccoli, cauliflower, cabbage, etc.) (Ptrend < 0.005). Additionally, higher total vegetable intake was associated with a lower risk of CLD mortality (HRQuintile5 vs. Quintile1 = 0.61, 95% CI: 0.50, 0.76; Ptrend < 0.001). Inverse associations were observed for lettuce, sweet potatoes, cruciferous vegetables, legumes, and carrots with CLD mortality (all Ptrend < 0.005). In contrast, total fruit intake was not associated with liver cancer or CLD mortality. CONCLUSIONS Higher intakes of total vegetables, especially lettuce and cruciferous vegetables, were associated with lower liver cancer risk. Higher intakes of lettuce, sweet potatoes, cruciferous vegetables, legumes, and carrots were associated with a lower risk of CLD mortality.
Collapse
Affiliation(s)
- Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Lina Jin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Hongmei Zeng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stephanie A Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fang Fang Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Susan E Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Romero-Gómez M, Aller R, Martín-Bermudo F. Dietary Recommendations for the Management of Non-alcoholic Fatty Liver Disease (NAFLD): A Nutritional Geometry Perspective. Semin Liver Dis 2022; 42:434-445. [PMID: 36307105 DOI: 10.1055/s-0042-1757711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diet could be both culprit and solution of NAFLD. Dietary modifications have been associated with histological features improvement in NAFLD. The Western diet was related to a greater risk of disease progression while the Mediterranean diet (MD) could promote regression of histological lesions. Modifications in the nutrient composition seems to have lesser impact on NAFLD than dietary modifications. An intrinsic interaction between nutrients in the diet support a specific effect not seen when added separately. Dietary modifications should focus on promoting weight loss but also look for patterns that are able to promote histological improvement. Although several micronutrients' deficit has been related to NAFLD progression, prescribing these micronutrients' supplementation did not reach a positive impact. However, an enriching diet with specific nutrients could be useful, like olive oil supplemented in MD. Geometry of nutrition defines a framework to better understand the interaction between nutrients, foods, and dietetic pattern in the model of diseases and how we could approach taking into consideration the interaction between meals and disease features. After analyzing baseline diet and histological lesions, we could calculate the distance to optimal diet and to promote changes in lifestyle to reach all these goals. A standard MD menu would be recommended.
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- Digestive Diseases Unit, Department of Medicine, SeLiver Group, Institute of Biomedicine of Sevilla (HUVR/CSIC/US), University of Seville, Hospital Universitario Virgen del Rocío, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Aller
- Gastroenterology Department, Centro de Investigación de Endocrinología y Nutrición, Centro de Investigación Biomédoca en Red de Enfermedades Infecciosas (CIBERINF), Facultad de Medicina, University of Valladolid, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Franz Martín-Bermudo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
10
|
Senior AM, Legault V, Lavoie FB, Presse N, Gaudreau P, Turcot V, Raubenheimer D, Le Couteur DG, Simpson SJ, Cohen AA. Multidimensional associations between nutrient intake and healthy ageing in humans. BMC Biol 2022; 20:196. [PMID: 36050730 PMCID: PMC9438070 DOI: 10.1186/s12915-022-01395-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about how normal variation in dietary patterns in humans affects the ageing process. To date, most analyses of the problem have used a unidimensional paradigm, being concerned with the effects of a single nutrient on a single outcome. Perhaps then, our ability to understand the problem has been complicated by the fact that both nutrition and the physiology of ageing are highly complex and multidimensional, involving a high number of functional interactions. Here we apply the multidimensional geometric framework for nutrition to data on biological ageing from 1560 older adults followed over four years to assess on a large-scale how nutrient intake associates with the ageing process. RESULTS Ageing and age-related loss of homeostasis (physiological dysregulation) were quantified via the integration of blood biomarkers. The effects of diet were modelled using the geometric framework for nutrition, applied to macronutrients and 19 micronutrients/nutrient subclasses. We observed four broad patterns: (1) The optimal level of nutrient intake was dependent on the ageing metric used. Elevated protein intake improved/depressed some ageing parameters, whereas elevated carbohydrate levels improved/depressed others; (2) There were non-linearities where intermediate levels of nutrients performed well for many outcomes (i.e. arguing against a simple more/less is better perspective); (3) There is broad tolerance for nutrient intake patterns that don't deviate too much from norms ('homeostatic plateaus'). (4) Optimal levels of one nutrient often depend on levels of another (e.g. vitamin E and vitamin C). Simpler linear/univariate analytical approaches are insufficient to capture such associations. We present an interactive tool to explore the results in the high-dimensional nutritional space. CONCLUSION Using multidimensional modelling techniques to test the effects of nutrient intake on physiological dysregulation in an aged population, we identified key patterns of specific nutrients associated with minimal biological ageing. Our approach presents a roadmap for future studies to explore the full complexity of the nutrition-ageing landscape.
Collapse
Affiliation(s)
- Alistair M Senior
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia. .,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia. .,University of Sydney, School of Mathematics and Statistics, Camperdown, New South Wales, 2006, Australia.
| | - Véronique Legault
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Francis B Lavoie
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Presse
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada.,Department of Community Health Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierrette Gaudreau
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Centre de recherche du centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Valérie Turcot
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - David Raubenheimer
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia
| | - David G Le Couteur
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Medicine, Camperdown, New South Wales, 2006, Australia.,Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, New South Wales, 2139, Australia
| | - Stephen J Simpson
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia
| | - Alan A Cohen
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada.,Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada.,Centre de recherche du centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Schuldiner-Harpaz T, Coll M, Wajnberg E. Optimal foraging strategy to balance mixed diet by generalist consumers: a simulation model. BEHAVIOUR 2022. [DOI: 10.1163/1568539x-bja10178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Animals of a wide range of taxonomic groups mix various food sources to achieve a nutritionally balanced diet. The strategies they adopt to balance multiple nutrients depend on their availability in the environment. Behavioural and physiological adaptations to forage for nutrient-differing food sources have rarely been investigated in respect to nutrient availability in the environment. We developed a simulation model to explore the strategy consumers should adopt in response to the abundance of two nutritionally complementary food types. Results show that (1) consumers should invest more effort in detecting the scarce resource; (2) there is an optimized negative relationship between effort foragers should allocate to find the two types of food; (3) consumers should exhibit higher selectivity when the proportion of food types in the habitat deviates from their optimal ratio in the diet. These findings have important implications for pest control using predators that benefit from plant-based food supplements.
Collapse
Affiliation(s)
| | - Moshe Coll
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Eric Wajnberg
- INRAE, 400 Route des Chappes, BP 167, Sophia Antipolis Cedex 06903, France
- INRIA Sophia Antipolis, Project Hephaistos, 2004 Route des Lucioles, BP 93, Sophia Antipolis Cedex 06902, France
| |
Collapse
|
12
|
Goldsmith JA, Holman ME, Puri P, Khalil RE, Ennasr AN, Gorgey AS. The interaction of macronutrients and body composition among individuals with chronic spinal cord injury. Br J Nutr 2022; 129:1-12. [PMID: 35738897 PMCID: PMC9789189 DOI: 10.1017/s0007114522001830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Changes in body composition and dietary intake occur following spinal cord injury (SCI). The Geometric Framework for Nutrition (GFN) is a tool that allows the examination of the complex relationships between multiple nutrition factors and health parameters within a single model. This study aimed to utilize the GFN to examine the associations between self-reported macronutrient intakes and body composition in persons with chronic SCI. Forty-eight individuals with chronic SCI were recruited. Participants completed and returned 3- or 5-day self-reported dietary recall sheets. Dietary intake of macronutrients (fats, proteins, and carbohydrates) were analysed. Anthropometric measures (circumferences), dual-energy x-ray absorptiometry (DXA), and magnetic resonance imaging (MRI) were used to assess whlole-body composition. Associations between all circumference measures and carbohydrates were observed. Among MRI measures, only significant associations between subcutaneous adipose tissue and protein x carbohydrate as well as carbohydrates alone were identified. Carbohydrates were negatively associated with several measures of fat mass as measured by DXA. Overall, carbohydrates appear to play an important role in body composition among individuals with SCI. Higher carbohydrate intake was associated with lower fat mass. Additional research is needed to determine how carbohydrate intake influences body composition and cardiometabolic health after SCI.
Collapse
Affiliation(s)
- Jacob A. Goldsmith
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA 23249, USA
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA 23249, USA
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Puneet Puri
- Internal Medicine Hepatology, Hunter Holmes McGuire VAMC, Richmond, VA 23249, USA
| | - Refka E. Khalil
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA 23249, USA
| | - Areej N. Ennasr
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA 23249, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA 23249, USA
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
13
|
Raubenheimer D, Senior AM, Mirth C, Cui Z, Hou R, Le Couteur DG, Solon-Biet SM, Léopold P, Simpson SJ. An integrative approach to dietary balance across the life course. iScience 2022; 25:104315. [PMID: 35602946 PMCID: PMC9117877 DOI: 10.1016/j.isci.2022.104315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animals require specific blends of nutrients that vary across the life course and with circumstances, e.g., health and activity levels. Underpinning and complicating these requirements is that individual traits may be optimized on different dietary compositions leading to nutrition-mediated trade-offs among outcomes. Additionally, the food environment may constrain which nutrient mixtures are achievable. Natural selection has equipped animals for solving such multi-dimensional, dynamic challenges of nutrition, but little is understood about the details and their theoretical and practical implications. We present an integrative framework, nutritional geometry, which models complex nutritional interactions in the context of multiple nutrients and across levels of biological organization (e.g., cellular, individual, and population) and levels of analysis (e.g., mechanistic, developmental, ecological, and evolutionary). The framework is generalizable across different situations and taxa. We illustrate this using examples spanning insects to primates and settings (laboratory, and the wild), and demonstrate its relevance for human health.
Collapse
Affiliation(s)
- David Raubenheimer
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Alistair M. Senior
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, Australia
| | - Christen Mirth
- Monash University, School of Biological Science, Melbourne, Australia
| | - Zhenwei Cui
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Rong Hou
- Northwest University, Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Xi’an, China
| | - David G. Le Couteur
- The University of Sydney, Charles Perkins Centre and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute, Centre for Education and Research on Ageing, Sydney, Australia
| | - Samantha M. Solon-Biet
- The University of Sydney, Charles Perkins Centre and School of Medical Sciences, Sydney, Australia
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France
| | - Stephen J. Simpson
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
14
|
Smati S, Polizzi A, Fougerat A, Ellero-Simatos S, Blum Y, Lippi Y, Régnier M, Laroyenne A, Huillet M, Arif M, Zhang C, Lasserre F, Marrot A, Al Saati T, Wan J, Sommer C, Naylies C, Batut A, Lukowicz C, Fougeray T, Tramunt B, Dubot P, Smith L, Bertrand-Michel J, Hennuyer N, Pradere JP, Staels B, Burcelin R, Lenfant F, Arnal JF, Levade T, Gamet-Payrastre L, Lagarrigue S, Loiseau N, Lotersztajn S, Postic C, Wahli W, Bureau C, Guillaume M, Mardinoglu A, Montagner A, Gourdy P, Guillou H. Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target. Gut 2022; 71:807-821. [PMID: 33903148 DOI: 10.1136/gutjnl-2020-323323] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER NCT02390232.
Collapse
Affiliation(s)
- Sarra Smati
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Yuna Blum
- CIT, Ligue Nationale Contre Le Cancer, Paris, France.,IGDR UMR 6290, CNRS, Université de Rennes 1, Rennes, France
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Marion Régnier
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Alexia Laroyenne
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Marine Huillet
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Muhammad Arif
- Science for Life Laboratory, KTH-Royal Institute of Technology, Solna, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Solna, Sweden
| | - Frederic Lasserre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Alain Marrot
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Talal Al Saati
- Experimental Histopathology Department, INSERM US006-CREFRE, University Hospital of Toulouse, Toulouse, France
| | - JingHong Wan
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Caroline Sommer
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Aurelie Batut
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Celine Lukowicz
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Tiffany Fougeray
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Patricia Dubot
- Laboratoire de Biochimie Métabolique, CHU Toulouse, Toulouse, France.,INSERM U1037, CRCT, Université Paul Sabatier, Toulouse, France
| | - Lorraine Smith
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Justine Bertrand-Michel
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Nathalie Hennuyer
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Jean-Philippe Pradere
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Remy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse, Toulouse, France.,INSERM U1037, CRCT, Université Paul Sabatier, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | | | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Sophie Lotersztajn
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Center for Integrative Genomics, University of Lausanne, Le Génopode, Lausanne, Switzerland
| | - Christophe Bureau
- Hepatology Unit, Rangueil Hospital Toulouse, Paul Sabatier University Toulouse 3, Toulouse, France
| | - Maeva Guillaume
- Hepatology Unit, Rangueil Hospital Toulouse, Paul Sabatier University Toulouse 3, Toulouse, France
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Solna, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM/UPS, Université de Toulouse, Toulouse, France .,Endocrinology-Diabetology-Nutrition Department, Toulouse University Hospital, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
15
|
Gallego-Durán R, Albillos A, Ampuero J, Arechederra M, Bañares R, Blas-García A, Berná G, Caparrós E, Delgado TC, Falcón-Pérez JM, Francés R, Fernández-Barrena MG, Graupera I, Iruzubieta P, Nevzorova YA, Nogueiras R, Macías RIR, Marín F, Sabio G, Soriano G, Vaquero J, Cubero FJ, Gracia-Sancho J. Metabolic-associated fatty liver disease: from simple steatosis towards liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:724-734. [PMID: 35248669 DOI: 10.1016/j.gastrohep.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
16
|
Marin-Alejandre BA, Cantero I, Perez-Diaz-Del-Campo N, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Quiroga J, Martinez-Echeverria A, Uriz-Otano JI, Huarte-Muniesa MP, Tur JA, Martinez JA, Abete I, Zulet MA. Effects of two personalized dietary strategies during a 2-year intervention in subjects with nonalcoholic fatty liver disease: A randomized trial. Liver Int 2021; 41:1532-1544. [PMID: 33550706 DOI: 10.1111/liv.14818] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) management is focused on lifestyle modifications, but long-term maintenance is a challenge for many individuals. This study aimed to evaluate the long-term effects of two personalized energy-restricted dietary strategies on weight loss, metabolic and hepatic outcomes in overweight/obese subjects with NAFLD. METHODS Ninety-eight subjects from the Fatty Liver in Obesity (FLiO) study (NCT03183193) were randomly assigned to the American Heart Association (AHA) or the FLiO dietary group in a 2-year controlled trial. Anthropometry, body composition (DXA), biochemical parameters and hepatic status (ultrasonography, Magnetic Resonance Imaging, and elastography) were assessed at baseline, 6, 12 and 24 months. RESULTS Both the AHA and FLiO diets significantly reduced body weight at 6 (-9.7% vs -10.1%), 12 (-6.7% vs -9.6%), and 24 months (-4.8% vs -7.6%) with significant improvements in body composition, biochemical and liver determinations throughout the intervention. At the end of the follow-up, the FLiO group showed a greater decrease in ALT, liver stiffness and Fatty Liver Index, among others, compared to AHA group, although these differences were attenuated when the analyses were adjusted by weight loss percentage. The FLiO group also showed a greater increase in adiponectin compared to AHA group. CONCLUSIONS The AHA and FLiO diets were able to improve body weight and body composition, as well as metabolic and hepatic status of participants with overweight/obesity and NAFLD within a 2-year follow-up. These findings show that both strategies are suitable alternatives for NAFLD management. However, the FLiO strategy may provide more persistent benefits in metabolic and hepatic parameters.
Collapse
Affiliation(s)
- Bertha A Marin-Alejandre
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Irene Cantero
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Nuria Perez-Diaz-Del-Campo
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Jose I Monreal
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Chemistry Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Radiology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Jose I Herrero
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Radiology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Jorge Quiroga
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Department of Internal Medicine, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ana Martinez-Echeverria
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Juan I Uriz-Otano
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Maria P Huarte-Muniesa
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Department of Gastroenterology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Balearic Islands Institute for Health Research (IDISBA), Palma, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A Martinez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria A Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) was defined in 1980 and has the same histological characteristics as alcoholic liver disease except for alcohol consumption. After 40 years, the understanding of this disease is still imperfect. Without specific drugs available for treatment, the number of patients with NAFLD is increasing rapidly, and NAFLD currently affects more than one-quarter of the global population. NAFLD is mostly caused by a sedentary lifestyle and excessive energy intake of fat and sugar. To ameliorate or avoid NAFLD, people commonly replace high-fat foods with high-carbohydrate foods (especially starchy carbohydrates) as a way to reduce caloric intake and reach satiety. However, there are few studies that concentrate on the effect of carbohydrate intake on liver metabolism in patients with NAFLD, much fewer than the studies on fat intake. Besides, most of these studies are not systematic, which has made identification of the mechanism difficult. In this review, we collected and analysed data from studies on human and animal models and, surprisingly, found that carbohydrates and liver steatosis could be linked by inflammation. This review not only describes the effects of carbohydrates on NAFLD and body lipid metabolism but also analyses and predicts possible molecular pathways of carbohydrates in liver lipid synthesis that involve inflammation. Furthermore, the limitations of recent research and possible targets for regulating inflammation and lipogenesis are discussed. This review describes the effects of starchy carbohydrates, a nutrient signal, on NAFLD from the perspective of inflammation.
Collapse
|
18
|
Wali JA, Raubenheimer D, Senior AM, Le Couteur DG, Simpson SJ. Cardio-metabolic consequences of dietary carbohydrates: reconciling contradictions using nutritional geometry. Cardiovasc Res 2020; 117:386-401. [PMID: 32386289 DOI: 10.1093/cvr/cvaa136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates are the major source of dietary energy, but their role in health and disease remains controversial. Recent epidemiological evidence suggests that the increased consumption of carbohydrates is associated with obesity and increased risk of mortality and dietary trials show that carbohydrate restriction leads to weight loss and improved glycaemic status in obese and diabetic subjects. In contrast, the diets of populations with long and healthy lifespans (e.g. traditional Okinawans from Japan) are high in carbohydrate and low in protein, and several clinical and preclinical studies have linked low-carbohydrate-high-protein diets with increased mortality risk. In this paper we attempt to reconcile these contradictory findings by moving beyond traditional single-nutrient analyses to consider the interactions between nutrients on health outcomes. We do so using the Geometric Framework (GF), a nutritional modelling platform that explicitly considers the main and interactive effects of multiple nutrients on phenotypic characteristics. Analysis of human data by GF shows that weight loss and improved cardio-metabolic outcomes under carbohydrate restriction derive at least in part from reduced caloric intake due to the concomitantly increased proportion of protein in the diet. This is because, as in many animals, a specific appetite for protein is a major driver of food intake in humans. Conversely, dilution of protein in the diet leverages excess food intake through compensatory feeding for protein ('protein leverage'). When protein is diluted in the diet by readily digestible carbohydrates and fats, as is the case in modern ultra-processed foods, protein leverage results in excess calorie intake, leading to rising levels of obesity and metabolic disease. However, when protein is diluted in the diet by increased quantities of less readily digestible forms of carbohydrate and fibre, energy balance is maintained and health benefits accrue, especially during middle age and early late-life. We argue that other controversies in carbohydrate research can be resolved using the GF methodology in dietary studies.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,ANZAC Research Institute, The University of Sydney, Concord, Sydney, New South Wales 2139, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| |
Collapse
|
19
|
Berná G, Romero-Gomez M. The role of nutrition in non-alcoholic fatty liver disease: Pathophysiology and management. Liver Int 2020; 40 Suppl 1:102-108. [PMID: 32077594 DOI: 10.1111/liv.14360] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 02/13/2023]
Abstract
A healthy diet together with physical activity could induce weight loss and control the progression of non-alcoholic fatty liver disease (NAFLD). However, the composition of diet has not been clearly established. Macronutrients such as saturated fatty acids (SFA), trans-fats, simple sugars and animal proteins have a harmful effect on the liver. On the other hand, monounsaturated fats (MUFAs), polyunsaturated (PUFAs) omega-3-fats, plant-based proteins and dietary fibres are considered to be beneficial to the liver. The impact of specific micronutrients is less well-known. Nutrients are part of the food we eat. Food makes up our meals, which compose our dietary patterns. Non-alcoholic fatty liver disease patients usually follow Western diets which are rich in soda, frozen junk food, juice, red meat, lard, processed meats, whole fat dairy foods, fatty snack foods, take-away foods, cakes and biscuits and poor in cereals, whole grains, fruit, vegetables, extra virgin olive oil (EVOO) and fish. On the other hand, the Mediterranean diet (MD) is beneficial for NAFLD even when it is iso-caloric or there are no changes in body weight. A new approach, called 'nutritional geometry' considers the importance of integrating nutrition, animals and the environment. The goal of this approach is to combine nutrients and foods in a model to understand how food components interact to regulate the properties of diets affecting health and disease. The use of algorithms developed by artificial intelligence (AI) to create a personalized diet for patients can provide customized nutritional counselling to prevent and treat NAFLD.
Collapse
Affiliation(s)
- Genoveva Berná
- CABIMER, University Pablo Olavide and CIBERDEM, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Romero-Gomez
- UCM Digestive Diseases and CIBERehd, Institute of Biomedicine of Seville (IBiS), SeLiver Group, Virgen del Rocío/CSIC/US, University of Seville, Seville, Spain
| |
Collapse
|
20
|
Zapata RC, Singh A, Pezeshki A, Avirineni BS, Patra S, Chelikani PK. Low-Protein Diets with Fixed Carbohydrate Content Promote Hyperphagia and Sympathetically Mediated Increase in Energy Expenditure. Mol Nutr Food Res 2019; 63:e1900088. [PMID: 31365786 DOI: 10.1002/mnfr.201900088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/17/2019] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary protein restriction elicits hyperphagia and increases energy expenditure; however, less is known of whether these responses are a consequence of increasing carbohydrate content. The effects of protein-diluted diets with fixed carbohydrate content on energy balance, hormones, and key markers of protein sensing and thermogenesis in tissues are determined. METHODS AND RESULTS Obesity-prone rats (n = 13-16 per group) are randomized to diets containing fixed carbohydrate (52% calories) and varying protein concentrations: 15% (control), 10% (mild protein restriction), 5% (moderate protein restriction) or 1% (severe protein restriction) protein calories, or protein-matched to 5% protein, for 21 days. Propranolol and ondansetron are administered to interrogate the roles of sympathetic and serotonergic systems, respectively, in diet-induced changes in energy expenditure. It is found that mild-to-moderate protein restriction promotes transient hyperphagia, whereas severe protein restriction induces hypophagia, with alterations in meal patterns. Protein restriction enhances energy expenditure that is partly attenuated by propranolol, but not ondansetron. Moderate to severe protein restriction decreases gains in body weight, lean and fat mass, decreased postprandial glucose and leptin, but increased fibroblast growth factor-21 concentrations. Protein-matching retains lean mass suggesting that intake of dietary protein, but not calories, is important for preserving lean mass. Notably, protein restriction increases the protein and/or transcript abundance of key amino acid sensing molecules in liver and intestine (PERK, eIF2α, ATF2, CHOP, 4EBP1, FGF21), and upregulated thermogenic markers (β2AR, Klotho, HADH, UCP-1) in brown adipose tissue. CONCLUSION Low-protein diets promote hyperphagia and sympathetically mediated increase in energy expenditure, prevent gains in tissue reserves, and concurrently upregulate hepatic and intestinal amino acid sensing intermediaries and thermogenic markers in brown adipose tissue.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Adel Pezeshki
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Bharath S Avirineni
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Souvik Patra
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
21
|
Morimoto J, Lihoreau M. Quantifying Nutritional Trade-Offs across Multidimensional Performance Landscapes. Am Nat 2019; 193:E168-E181. [DOI: 10.1086/701898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr Rev 2019; 40:417-446. [PMID: 30500887 DOI: 10.1210/er.2018-00158] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone-binding globulin (SHBG). The liver senses the body's metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Peter Angus
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Heidelberg, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Zapata RC, Singh A, Pezeshki A, Chelikani PK. Tryptophan restriction partially recapitulates the age-dependent effects of total amino acid restriction on energy balance in diet-induced obese rats. J Nutr Biochem 2019; 65:115-127. [DOI: 10.1016/j.jnutbio.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022]
|
24
|
Cai CX, Carlos S, Solaimani P, Trivedi BJ, Tran C, Castelino-Prabhu S. Nutritional and Dietary Interventions for Nonalcoholic Fatty Liver Disease. DIETARY INTERVENTIONS IN LIVER DISEASE 2019:357-372. [DOI: 10.1016/b978-0-12-814466-4.00029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Yoo ER, Sallam S, Perumpail BJ, Iqbal U, Shah ND, Kwong W, Cholankeril G, Kim D, Ahmed A. When to Initiate Weight Loss Medications in the NAFLD Population. Diseases 2018; 6:E91. [PMID: 30274326 PMCID: PMC6313489 DOI: 10.3390/diseases6040091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by histological evidence of hepatic steatosis, lobular inflammation, ballooning degeneration and hepatic fibrosis in the absence of significant alcohol use and other known causes of chronic liver diseases. NAFLD is subdivided into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). NAFL is generally benign but can progress to NASH, which carries a higher risk of adverse outcomes including cirrhosis, end-stage liver disease, hepatocellular carcinoma and death if liver transplantation is not pursued in a timely fashion. Currently, lifestyle modifications including healthy diet and increased physical activity/exercise culminating in weight loss of 5% to >10% is the cornerstone of treatment intervention for patients with NAFLD. Patients with NAFLD who fail to obtain this goal despite the help of dietitians and regimented exercise programs are left in a purgatory state and remain at risk of developing NASH-related advance fibrosis. For such patients with NAFLD who are overweight and obese, healthcare providers should consider a trial of FDA-approved anti-obesity medications as adjunct therapy to provide further preventative and therapeutic options as an effort to reduce the risk of NAFLD-related disease progression.
Collapse
Affiliation(s)
- Eric R Yoo
- Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA 95128, USA.
| | - Sandy Sallam
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | - Umair Iqbal
- Department of Medicine, Mary Imogene Bassett Hospital, Cooperstown, NY 13326, USA.
| | - Neha D Shah
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Waiyee Kwong
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - George Cholankeril
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Hong M, Cai Z, Song L, Liu Y, Wang Q, Feng X. Gynostemma pentaphyllum Attenuates the Progression of Nonalcoholic Fatty Liver Disease in Mice: A Biomedical Investigation Integrated with In Silico Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8384631. [PMID: 29743925 PMCID: PMC5884411 DOI: 10.1155/2018/8384631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common type of liver disease in developed countries. Oxidative stress plays a critical role in the progression of NAFLD. Modern pharmacological study and clinical trials have demonstrated the remarkable antioxidant activity of Gynostemma pentaphyllum (GP) in chronic liver disease. One aim of this study was to explore the potential protective effects and mechanisms of action of GP extract on NAFLD. The in vivo results showed that GP extract could alleviate fatty degeneration and haptic fibrosis in NAFLD mice. For exploring the hepatoprotective mechanisms of GP, we used network pharmacology to predict the potential active components of GP and their intracellular targets in NAFLD. Based on the network pharmacology results, we further utilized biomedical assays to validate this in silico prediction. The results showed that Gypenoside XL could upregulate the protein level of PPARα in NAFLD; the transcription level of several PPARα downstream target genes such as acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase-1 (CPT-1) also increased after Gypenoside XL treatment. The overexpression of ACO and CPT-1 may involve the hepatoprotective effects of GP and Gypenoside XL on NAFLD by regulating mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Zhe Cai
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 665 Kongjiang Rd., Shanghai, China
| |
Collapse
|
27
|
|