1
|
Pontikoglou CG, Filippatos TD, Matheakakis A, Papadaki HA. Steatotic liver disease in the context of hematological malignancies and anti-neoplastic chemotherapy. Metabolism 2024; 160:156000. [PMID: 39142602 DOI: 10.1016/j.metabol.2024.156000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The rising prevalence of obesity-related illnesses, such as metabolic steatotic liver disease (MASLD), represents a significant global public health concern. This disease affects approximately 30 % of the adult population and is the result of metabolic abnormalities rather than alcohol consumption. Additionally, MASLD is associated with an increased risk of cardiovascular disease (CVD), chronic liver disease, and a variety of cancers, particularly gastrointestinal cancers. Clonal hematopoiesis (CH) is a biological state characterized by the expansion of a population of blood cells derived from a single mutated hematopoietic stem cell. The presence of CH in the absence of a diagnosed blood disorder or cytopenia is known as clonal hematopoiesis of indeterminate potential (CHIP), which itself increases the risk of hematological malignancies and CVD. Steatotic liver disease may also complicate the clinical course of cancer patients receiving antineoplastic agents, a condition referred to as chemotherapy induced steatohepatitis (CASH). This review will present an outline of the various aspects of MASLD, including complications. Furthermore, it will summarize the existing knowledge on the emerging association between CHIP and MASLD and present the available data on patient cases with concurrent MASLD and hematological neoplasms. Finally, it will provide a brief overview of the chemotherapeutic drugs associated with CASH, the underlying pathophysiologic mechanisms and their clinical implications.
Collapse
Affiliation(s)
- Charalampos G Pontikoglou
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Theodosios D Filippatos
- Department of Internal Medicine, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Angelos Matheakakis
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece.
| |
Collapse
|
2
|
Ktenopoulos N, Sagris M, Gerogianni M, Pamporis K, Apostolos A, Balampanis K, Tsioufis K, Toutouzas K, Tousoulis D. Non-Alcoholic Fatty Liver Disease and Coronary Artery Disease: A Bidirectional Association Based on Endothelial Dysfunction. Int J Mol Sci 2024; 25:10595. [PMID: 39408924 PMCID: PMC11477211 DOI: 10.3390/ijms251910595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is regarded as a liver manifestation of metabolic syndrome. It is linked to insulin resistance, obesity, and diabetes mellitus, all of which increase the risk of cardiovascular complications. Endothelial dysfunction (EnD) constitutes the main driver in the progression of atherosclerosis and coronary artery disease (CAD). Several pathophysiological alterations and molecular mechanisms are involved in the development of EnD in patients with NAFLD. Our aim is to examine the association of NAFLD and CAD with the parallel assessment of EnD, discussing the pathophysiological mechanisms and the genetic background that underpin this relationship. This review delves into the management of the condition, exploring potential clinical implications and available medical treatment options to facilitate the deployment of optimal treatment strategies for these patients.
Collapse
Affiliation(s)
- Nikolaos Ktenopoulos
- First Department of Cardiology, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (A.A.); (K.T.); (K.T.); (D.T.)
| | - Marios Sagris
- First Department of Cardiology, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (A.A.); (K.T.); (K.T.); (D.T.)
| | - Maria Gerogianni
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece;
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Konstantinos Pamporis
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, Medical School, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Anastasios Apostolos
- First Department of Cardiology, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (A.A.); (K.T.); (K.T.); (D.T.)
| | - Konstantinos Balampanis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Konstantinos Tsioufis
- First Department of Cardiology, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (A.A.); (K.T.); (K.T.); (D.T.)
| | - Konstantinos Toutouzas
- First Department of Cardiology, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (A.A.); (K.T.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- First Department of Cardiology, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (A.A.); (K.T.); (K.T.); (D.T.)
| |
Collapse
|
3
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Xu T, Li S, Wu S, Zhang S, Wang X. Non-alcoholic fatty liver disease: A new predictor of recurrent ischemic stroke and transient ischemic attack in patients with carotid atherosclerosis. Eur J Radiol 2024; 181:111754. [PMID: 39341166 DOI: 10.1016/j.ejrad.2024.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. This study focused on assessing the predictive significance of NAFLD for recurrent stroke and transient ischemic attack (TIA) risk to determine the value of NAFLD. METHOD This study included 742 participants (mean age: 64.26 ± 9.42 years, 497 males) with carotid atherosclerosis who underwent carotid CT angiography (CTA) between January 2013 and December 2021 in this retrospective study. NAFLD was diagnosed by non-enhanced abdominal CT. The clinical endpoint was a recurrent ischemic stroke or TIA. Cox proportional hazards and Kaplan-Meier analysis assessed whether NAFLD was associated with the endpoint. We accessed the predictive values of NAFLD, clinical, plaque characteristics, and combined model by the C statistics. The predictive performance of the combined model was assessed by receiver operating characteristic curve (ROC) analysis. RESULTS A total of 742 participants (mean age: 64.26 ± 9.42 years, 497 males) were included. During 2.9 years of follow-up (interquartile range, 2.1-3.9), 166 patients reached the clinical endpoint. Multivariable cox analyses showed NAFLD was associated with recurrent stroke or TIA in all groups (all P<0.05). Patients with NAFLD had a lower event-free survival (EFS) rate than those without NAFLD (P<0.05). The combined model, including NAFLD, clinical data and plaque features, showed the best performance in predicting the clinical endpoint (AUC=0.79). CONCLUSIONS NAFLD contributes to the prediction of recurrent ischemic stroke or TIA. NAFLD may be a novel imaging marker that offers a new perspective on preventing cardiovascular disease in the clinic.
Collapse
Affiliation(s)
- Tianqi Xu
- Cheeloo College of Medicine, Shandong University, No. 44, Wenhua West Road, Jinan 250012, Shandong, China; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Sha Li
- Cheeloo College of Medicine, Shandong University, No. 44, Wenhua West Road, Jinan 250012, Shandong, China; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Siyu Wu
- Cheeloo College of Medicine, Shandong University, No. 44, Wenhua West Road, Jinan 250012, Shandong, China; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Shuai Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China.
| |
Collapse
|
5
|
Chen LZ, Jing XB, Chen X, Xie YC, Chen Y, Cai XB. Non-Invasive Serum Markers of Non-Alcoholic Fatty Liver Disease Fibrosis: Potential Tools for Detecting Patients with Cardiovascular Disease. Rev Cardiovasc Med 2024; 25:344. [PMID: 39355605 PMCID: PMC11440407 DOI: 10.31083/j.rcm2509344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 10/03/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), one of the most common chronic liver diseases with a prevalence of 23%-25% globally, is an independent risk factor for cardiovascular diseases (CVDs). Growing evidence indicates that the development of NAFLD, ranging from non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), advanced fibrosis to cirrhosis, and even hepatocellular carcinoma, is at substantial risk for CVDs, which clinically contribute to increased cardiovascular morbidity and mortality. Non-invasive serum markers assessing liver fibrosis, such as fibrosis-4 (FIB-4) score, aspartate transaminase-to-platelet ratio index (APRI), and NAFLD fibrosis score (NFS), are expected to be useful tools for clinical management of patients with CVDs. This review aims to provide an overview of the evidence for the relationship between the progression of NAFLD and CVDs and the clinical application of non-invasive markers of liver fibrosis in managing patients with CVDs.
Collapse
Affiliation(s)
- Ling-Zi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Xu-Bin Jing
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Xiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Yan-Chun Xie
- Department of Endoscopy Center, Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Yun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Xian-Bin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| |
Collapse
|
6
|
Lara-Romero C, Romero-Gómez M. Treatment Options and Continuity of Care in Metabolic-associated Fatty Liver Disease: A Multidisciplinary Approach. Eur Cardiol 2024; 19:e06. [PMID: 38983581 PMCID: PMC11231815 DOI: 10.15420/ecr.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 07/11/2024] Open
Abstract
The terms non-alcoholic fatty liver disease and non-alcoholic steatohepatitis have some limitations as they use exclusionary confounder terms and the use of potentially stigmatising language. Recently, a study with content experts and patients has been set to change this nomenclature. The term chosen to replace non-alcoholic fatty liver disease was metabolic dysfunction-associated steatotic liver disease (MASLD), which avoids stigmatising and helps improve awareness and patient identification. MASLD is the most common cause of chronic liver disease with an increasing prevalence, accounting for 25% of the global population. It is considered the hepatic manifestation of the metabolic syndrome with lifestyle playing a fundamental role in its physiopathology. Diet change and physical activity are the cornerstones of treatment, encompassing weight loss and healthier behaviours and a holistic approach. In Europe, there is no approved drug for MASLD to date and there is a substantial unmet medical need for effective treatments for patients with MASLD. This review not only provides an update on advances in evidence for nutrition and physical activity interventions but also explores the different therapeutic options that are being investigated and whose development focuses on the restitution of metabolic derangements and halting inflammatory and fibrogenic pathways.
Collapse
Affiliation(s)
- Carmen Lara-Romero
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| | - Manuel Romero-Gómez
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| |
Collapse
|
7
|
Cai X, Su X, Zhang Y, Wang S, Pan Y, Jin A, Jing J, Sun J, Mei L, Meng X, Li S, Xia Z, Li Y, Liu Z, Wang Y, He Y, Wei T. Metabolic dysfunction-associated fatty liver disease is associated with the presence of coronary atherosclerotic plaques and plaque burden. Hellenic J Cardiol 2024:S1109-9666(24)00126-X. [PMID: 38871181 DOI: 10.1016/j.hjc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Atherosclerosis is closely related to cardiovascular disease risk. The present study aims to evaluate the association between metabolic dysfunction-associated fatty liver disease (MAFLD) and the presence of coronary atherosclerotic plaques and plaques burden, as detected by computed tomography angiography (CTA), and further test the screening value of MAFLD on the presence of coronary atherosclerotic plaques and plaques burden. METHODS We used data from the PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events study, a community-based cohort. Hepatic steatosis was assessed using the fatty liver index. Coronary atherosclerotic plaques and burden were detected by CTA. The association of MAFLD with the presence of coronary atherosclerotic plaques and burden was assessed by binary and ordinal logistic regression models, respectively. RESULTS Among the 3029 participants (mean age 61.2 ± 6.7 years), 47.9% (1452) presented with MAFLD. MAFLD was associated with an increased odds of the presence of coronary atherosclerotic plaques (OR, 1.27; 95% CI: 1.03-1.56), segment involvement score [cOR (common odds ratio), 1.25; 95% CI, 1.03-1.51], and segment stenosis score (cOR, 1.29; 95% CI, 1.06-1.57). Participants with severe fibrosis or diagnosed as DM-MAFLD subtypes had with higher odds for the presence of coronary atherosclerotic plaques and plaques burden. In addition, MAFLD demonstrated a higher sensitivity for detecting the presence of coronary atherosclerotic plaques and plaque burden (54%-64%) than conventional CVD risk factors (such as diabetes, obesity, and dyslipidemia). CONCLUSION MAFLD is associated with higher odds of having coronary atherosclerotic plaques and plaque burden. Moreover, MAFLD may offer better screening potential for coronary atherosclerosis than established CVD risk factors.
Collapse
Affiliation(s)
- Xueli Cai
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China; Lishui Clinical Research Center for Neurological Diseases, Lishui, Zhejiang, China
| | - Xin Su
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yanli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Suying Wang
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingping Sun
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China; Lishui Clinical Research Center for Neurological Diseases, Lishui, Zhejiang, China
| | - Lerong Mei
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Li
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Zhang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yuhao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zijun Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Tiemin Wei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China.
| |
Collapse
|
8
|
Yang W, Wen D, Li S, Zhao H, Xu J, Liu J, Chang Y, Xu J, Zheng M. Prognostic Value of Non-alcoholic Fatty Liver Disease and RCA Pericoronary Adipose Tissue CT Attenuation in Patients with Acute Chest Pain. Acad Radiol 2024; 31:1773-1783. [PMID: 38160090 DOI: 10.1016/j.acra.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE AND OBJECTIVES Pericoronary adipose tissue (PCAT) CT attenuation of right coronary artery (RCA) and non-alcoholic fatty liver disease (NAFLD) have prognostic value for major adverse cardiovascular events (MACE) in patients with coronary artery disease. However, the superior prognostic value between RCA PCAT CT attenuation and NAFLD remains unclear in patients with acute chest pain. This study is to evaluate the prognostic value of NAFLD for MACE, and further assess the incremental prognostic value of NAFLD over PCAT CT attenuation. MATERIALS AND METHODS Between January 2011 and December 2021, all consecutive emergency patients with acute chest pain referred for coronary CT angiography (CCTA) were retrospectively enrolled. MACE included unstable angina requiring hospitalization, coronary revascularization, non-fatal myocardial infarction, and all-cause death. Patients' baseline and CCTA characteristics, RCA PCAT CT attenuation, and the presence of NAFLD were used to evaluate risk factors of MACE using multivariable Cox regression analysis. The prognostic value of NAFLD compared to RCA PCAT CT attenuation was analyzed. RESULTS A total of 514 patients were enrolled (mean age, 58.36 ± 13.05 years; 310 men). During a median follow-up of 31 months, 60 patients (11.67%) experienced MACE. NAFLD (HR = 2.599, 95% CI: 1.207, 5.598, P = 0.015) and RCA PCAT CT attenuation (HR = 1.026, 95% CI: 1.001, 1.051, P = 0.038) were independent predictors of MACE. The global Chi-square analysis showed that NAFLD improved the risk of MACE more than that using clinical risk factors and CCTA metrics (59.51 vs 54.44, P = 0.024) or combined with RCA PCAT CT attenuation (63.75 vs 59.51, P = 0.040). CONCLUSION NAFLD and RCA PCAT CT attenuation were predictors of MACE. NAFLD had an incremental prognostic value beyond RCA PCAT CT attenuation for MACE in patients with acute chest pain. Adding CT-FFR into the risk prediction of patients with acute chest pain is worth considering.
Collapse
Affiliation(s)
- Wenxuan Yang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.)
| | - Didi Wen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.)
| | - Shuangxin Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.)
| | - Hongliang Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.)
| | - Jingji Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.)
| | - Jiali Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.)
| | - Yingjuan Chang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.)
| | - Jian Xu
- Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (H.Z., J.X., J.L., Y.C., J.X.)
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, China (W.Y., D.W., S.L., M.Z.).
| |
Collapse
|
9
|
Wang L, He W, Wang X, Wang J, Wei X, Wu D, Wu Y. Potential diagnostic markers shared between non-alcoholic fatty liver disease and atherosclerosis determined by machine learning and bioinformatic analysis. Front Med (Lausanne) 2024; 11:1322102. [PMID: 38606153 PMCID: PMC11007109 DOI: 10.3389/fmed.2024.1322102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Background Evidence indicates that chronic non-alcoholic fatty liver disease (NAFLD) can increase the risk of atherosclerosis (AS), but the underlying mechanism remains unclear. Objective This study is intended for confirming key genes shared between NAFLD and AS, and their clinical diagnostic value to establish a foundation for searching novel therapeutic targets. Methods We downloaded the Gene Expression Omnibus (GEO) datasets, GSE48452 and GSE89632 for NAFLD and GSE100927, GSE40231 and GSE28829 for AS. The progression of NAFLD co-expression gene modules were recognized via weighted gene co-expression network analysis (WGCNA). We screened for differentially expressed genes (DEGs) associated with AS and identified common genes associated with NAFLD and AS using Venn diagrams. We investigated the most significant core genes between NAFLD and AS using machine learning algorithms. We then constructed a diagnostic model by creating a nomogram and evaluating its performance using ROC curves. Furthermore, the CIBERSORT algorithm was utilized to explore the immune cell infiltration between the two diseases, and evaluate the relationship between diagnostic genes and immune cells. Results The WGCNA findings associated 1,129 key genes with NAFLD, and the difference analysis results identified 625 DEGs in AS, and 47 genes that were common to both diseases. We screened the core RPS6KA1 and SERPINA3 genes associated with NAFLD and AS using three machine learning algorithms. A nomogram and ROC curves demonstrated that these genes had great clinical meaning. We found differential expression of RPS6KA1 in patients with steatosis and NASH, and of SERPINA3 only in those with NASH compared with normal individuals. Immune infiltration findings revealed that macrophage and mast cell infiltration play important roles in the development of NAFLD and AS. Notably, SERPINA3 correlated negatively, whereas RPS6KA1 correlated positively with macrophages and mast cells. Conclusion We identified RPS6KA1 and SERPINA3 as potential diagnostic markers for NAFLD and AS. The most promising marker for a diagnosis of NAFLD and AS might be RPS6KA1, whereas SERPINA3 is the most closely related gene for NASH and AS. We believe that further exploration of these core genes will reveal the etiology and a pathological relationship between NAFLD and AS.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Wenhui He
- Department of Orthopedic Research Institute, Fuzhou Second General Hospital, Fuzhou, China
| | - Xilin Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Jianrong Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Xiaojuan Wei
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Dongzhi Wu
- Department of Orthopedic Research Institute, Fuzhou Second General Hospital, Fuzhou, China
| | - Yundan Wu
- Department of Pharmacy, The Third Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
10
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
11
|
Kaneva AM, Bojko ER. Fatty liver index (FLI): more than a marker of hepatic steatosis. J Physiol Biochem 2024; 80:11-26. [PMID: 37875710 DOI: 10.1007/s13105-023-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Fatty liver index (FLI) was developed as a simple and accurate marker of hepatic steatosis. FLI is derived from an algorithm based on body mass index, waist circumference, and levels of triglycerides and gamma-glutamyltransferase, and it is widely used in clinical and epidemiological studies as a screening tool for discriminating between healthy and nonalcoholic fatty liver disease (NAFLD) subjects. However, a systematic review of the literature regarding FLI revealed that this index has more extensive relationships with biochemical and physiological parameters. FLI is associated with key parameters of lipid, protein and carbohydrate metabolism, hormones, vitamins and markers of inflammation, or oxidative stress. FLI can be a predictor or risk factor for a number of metabolic and nonmetabolic diseases and mortality. FLI is also used as an indicator for determining the effects of health-related prevention interventions, medications, and toxic substances on humans. Although in most cases, the exact mechanisms underlying these associations have not been fully elucidated, they are most often assumed to be mediated by insulin resistance, inflammation, and oxidative stress. Thus, FLI may be a promising marker of metabolic health due to its multiple associations with parameters of physiological and pathological processes. In this context, the present review summarizes the data from currently available literature on the associations between FLI and biochemical variables and physiological functions. We believe that this review will be of interest to researchers working in this area and can provide new perspectives and directions for future studies on FLI.
Collapse
Affiliation(s)
- Anastasiya M Kaneva
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya str., 167982, Syktyvkar, Russia.
| | - Evgeny R Bojko
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya str., 167982, Syktyvkar, Russia
| |
Collapse
|
12
|
Li W, Xu H. The differences between patients with nonalcoholic fatty liver disease (NAFLD) and those without NAFLD, as well as predictors of functional coronary artery ischemia in patients with NAFLD. Clin Cardiol 2024; 47:e24205. [PMID: 38108229 PMCID: PMC10823446 DOI: 10.1002/clc.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic syndrome. It is the most common cause of cryptogenic cirrhosis. The disease is also involved in the occurrence and development of type 2 diabetes and atherosclerosis and can directly affect the outcome of patients with coronary heart disease. Therefore, the focus of treatment of nonalcoholic fatty liver disease has also begun to focus on the treatment of risk factors for atherosclerotic heart disease. In this study, we investigated the difference between patients with coronary artery stenosis combined with NAFLD and those without NAFLD and evaluated the predictive factors and value of functional coronary artery ischemia in patients with NAFLD. HYPOTHESIS Many clinical factors (such as age, BMI, hyperglycemia) and imaging parameters (such as CACS grade) in the NAFLD group were different from those in the non-NAFLD group. The predictive model combined with multiple influencing factors has a good value in predicting coronary artery ischemia in patients with NAFLD. METHODS We collected the clinical and imaging data of patients who underwent coronary computed tomography angiography and coronary artery calcification score (CACS) scans between January and June 2023. A total of 392 patients were included and divided into the NAFLD group and the non-NAFLD group. Based on CT fractional flow reserve (CT-FFR), patients with NAFLD were divided into CT-FFR ≤ 0.08 group and CT-FFR > 0.08 group. RESULTS Significant differences were observed between the non-NAFLD and NAFLD groups in terms of age, body mass index, hyperglycemia, hyperlipidemia, triglyceride, high-density lipoprotein, coronary artery disease-reporting and data system (CAD-RADS) classification, CACS classification, number of diseased coronary arteries, and CT-FFR ≤ 0.80 ratio (p < .05). The CAD-RADS and CACS classifications can independently predict functional coronary artery ischemia in NAFLD patients. The combined use of CAD-RADS and CACS classifications resulted in an area under the curve of 0.819 (95% confidence interval: 0.761-0.876) for predicting coronary artery ischemia in NAFLD patients, which was higher than the individual classification methods (CAD-RADS: 0.762, CACS: 0.742) (p = .000). CONCLUSIONS There are differences between patients with coronary artery stenosis and NAFLD and those without NAFLD. The CAD-RADS classification and CACS classification can economically and efficiently predict functional coronary artery ischemia in patients with NAFLD, which has crucial value in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Wen‐Jing Li
- Department of Medical ImagingFifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong‐Wei Xu
- Department of Medical ImagingFifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
13
|
Dong T, Li J, Liu Y, Zhou S, Wei X, Hua H, Tang K, Zhang X, Wang Y, Wu Z, Gao C, Zhang H. Roles of immune dysregulation in MASLD. Biomed Pharmacother 2024; 170:116069. [PMID: 38147736 DOI: 10.1016/j.biopha.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide. Its occurrence and progression involve the process from simple hepatic steatosis to metabolic dysfunction associated steatohepatitis (MASH), which could develop into advanced liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Growing evidences support that the pathogenesis and progression of MASLD are closely related to immune system dysfunction. This review aims to summarize the association of MASLD with immune disorders and the prospect of using immunotherapy for MASLD.
Collapse
Affiliation(s)
- Tingyu Dong
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Jiajin Li
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuqing Liu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Shikai Zhou
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yiming Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhen Wu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Abosheaishaa H, Hussein M, Ghallab M, Abdelhamid M, Balassiano N, Ahammed MR, Baig MA, Khan J, Elshair M, Soliman MY, Abdelwahed M, Ali A, Alzamzamy A, Nassar M. Association between non-alcoholic fatty liver disease and coronary artery disease outcomes: A systematic review and meta-analysis. Diabetes Metab Syndr 2024; 18:102938. [PMID: 38194827 DOI: 10.1016/j.dsx.2023.102938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES To evaluate the association between non-alcoholic fatty liver disease (NAFLD) and cardiovascular outcomes, including angina, coronary artery disease (CAD), coronary artery calcification (CAC), myocardial infarction (MI), and calcified coronary plaques. METHODS A comprehensive search of databases, including PubMed, EMBASE, and Cochrane Library, was conducted up to January 2023. Studies were included investigating the relationship between NAFLD and cardiovascular outcomes in adult populations. Exclusion criteria were studies on animals, pediatric populations, and those not published in English. Two reviewers assessed the risk of bias in the included studies using the Newcastle-Ottawa Scale. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using random-effects models. RESULTS The meta-analysis included 32 studies with a total of 5,610,990 participants. NAFLD demonstrated significant associations with increased risks of angina (Relative Risk (RR): 1.45, 95% CI: 1.17, 1.79), CAD (RR: 1.21, 95% CI: 1.07, 1.38), CAC >0 (RR: 1.39, 95% CI: 1.15, 1.69), and calcified coronary plaques (RR: 1.55, 95% CI: 1.05, 2.27). However, no significant association was found between NAFLD and CAC >100 (RR: 1.16, 95% CI: 0.97, 1.38) or MI (RR: 1.70, 95% CI: 0.16, 18.32). CONCLUSION The meta-analysis demonstrated a significant association between NAFLD and cardiovascular outcomes independent of conventional cardiovascular disease (CVD) risk factors. These findings emphasize the importance of prevention, early detection, and proper management of NAFLD.
Collapse
Affiliation(s)
- Hazem Abosheaishaa
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai / NYC Health + Hospitals Queens, New York, USA
| | - Mai Hussein
- Clinical Research Administration, Alexandria Directorate of Health Affairs, Alexandria, Egypt
| | - Muhammad Ghallab
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai / NYC Health + Hospitals Queens, New York, USA
| | - Magdy Abdelhamid
- Department of Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Natalie Balassiano
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai / NYC Health + Hospitals Queens, New York, USA
| | - Md Ripon Ahammed
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai / NYC Health + Hospitals Queens, New York, USA
| | - Muhammad Almas Baig
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai / NYC Health + Hospitals Queens, New York, USA
| | - Jawad Khan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai / NYC Health + Hospitals Queens, New York, USA
| | - Moaz Elshair
- Hepatology, Gastroenterology, and Infectious Disease Department, Al-Azhar University, Cairo, Egypt
| | - Moataz Yousry Soliman
- Hepatology, Gastroenterology, and Infectious Disease Department, Al-Azhar University, Cairo, Egypt
| | - Mohammed Abdelwahed
- Department of Pathology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
| | - Amr Ali
- Department of Pathology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
| | - Ahmed Alzamzamy
- Department of Gastroenterology and Hepatology, Maadi Armed Forces Medical Complex, Military Medical Academy, Cairo, Egypt
| | - Mahmoud Nassar
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, New York, USA.
| |
Collapse
|
15
|
Park J, Lee H, Jeon Y, Park EJ, Park S, Ann SH, Kim Y, Lee Y, Park G, Choi SH. Depression and Subclinical Coronary Atherosclerosis in Adults Without Clinical Coronary Artery Disease. J Am Heart Assoc 2023; 12:e030315. [PMID: 38063186 PMCID: PMC10863772 DOI: 10.1161/jaha.123.030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The relationship between depression and subclinical coronary atherosclerosis in asymptomatic individuals is not clear. We evaluated this relationship in a Korean population. METHODS AND RESULTS We analyzed 3920 individuals (mean age 54.7±7.9 years and 2603 men [66.4%]) with no history of coronary artery disease who voluntarily underwent coronary computed tomographic angiography and screening for depression using the Beck Depression Inventory as part of a general health examination. The degree and extent of subclinical coronary atherosclerosis were evaluated by coronary computed tomographic angiography, and ≥50% diameter stenosis was defined as significant. Participants were categorized into groups of those with or without depression using the Beck Depression Inventory scores ≥16 as a cutoff value. Of the study participants, 272 (6.9%) had a Beck Depression Inventory score of 16 or higher. After adjustment for cardiovascular risk factors, depression was not significantly associated with any coronary plaque (adjusted odds ratio [OR], 1.05 [95% CI, 0.78-1.41]; P=0.746), calcified plaque (OR, 0.95 [95% CI, 0.71-1.29]; P=0.758), noncalcified plaque (OR, 1.31 [95% CI, 0.79-2.17]; P=0.305), mixed plaque (OR, 1.16 [95% CI, 0.60-2.23]; P=0.659), or significant coronary artery stenosis (OR, 1.22 [95% CI, 0.73-2.03]; P=0.450). In the propensity score-matched population (n=1318) as well, none of the coronary artery disease measures of subclinical coronary atherosclerosis were statistically significantly associated with depression (all P>0.05). CONCLUSIONS In this large cross-sectional study with asymptomatic individuals undergoing coronary computed tomographic angiography and Beck Depression Inventory evaluation, depression was not associated with an increased risk of subclinical coronary atherosclerosis.
Collapse
Affiliation(s)
- Jangho Park
- Department of PsychiatryUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Hyeji Lee
- Department of Emergency MedicineUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Young‐Jee Jeon
- Department of Family MedicineUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Eun Ji Park
- Big Data CenterUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Sangwoo Park
- Department of CardiologyUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Soe Hee Ann
- Department of CardiologyUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Yong‐Giun Kim
- Department of CardiologyUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Yongjik Lee
- Department of Thoracic and Cardiovascular SurgeryUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Gyung‐Min Park
- Department of CardiologyUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| | - Seong Hoon Choi
- Department of RadiologyUlsan University Hospital, University of Ulsan College of MedicineUlsanRepublic of Korea
| |
Collapse
|
16
|
Ni D, Zhou H, Wang P, Xu F, Li C. Visualizing Macrophage Phenotypes and Polarization in Diseases: From Biomarkers to Molecular Probes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:613-638. [PMID: 38223685 PMCID: PMC10781933 DOI: 10.1007/s43657-023-00129-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024]
Abstract
Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis, antigen presentation and tissue remodeling. To fulfill their functionally distinct roles, macrophages undergo polarization towards a spectrum of phenotypes, particularly the classically activated (M1) and alternatively activated (M2) subtypes. However, the binary M1/M2 phenotype fails to capture the complexity of macrophages subpopulations in vivo. Hence, it is crucial to employ spatiotemporal imaging techniques to visualize macrophage phenotypes and polarization, enabling the monitoring of disease progression and assessment of therapeutic responses to drug candidates. This review begins by discussing the origin, function and diversity of macrophage under physiological and pathological conditions. Subsequently, we summarize the identified macrophage phenotypes and their specific biomarkers. In addition, we present the imaging probes locating the lesions by visualizing macrophages with specific phenotype in vivo. Finally, we discuss the challenges and prospects associated with monitoring immune microenvironment and disease progression through imaging of macrophage phenotypes.
Collapse
Affiliation(s)
- Dan Ni
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Heqing Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Fulin Xu
- Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203 China
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, 201203 China
| |
Collapse
|
17
|
Huang Y, Wang Y, Xiao Z, Yao S, Tang Y, Zhou L, Wang Q, Xie Y, Zhang L, Zhou Y, Lu Y, Zhu W, Chen M. The association between metabolic dysfunction-associated steatotic liver disease, cardiovascular and cerebrovascular diseases and the thickness of carotid plaque. BMC Cardiovasc Disord 2023; 23:554. [PMID: 37951879 PMCID: PMC10640732 DOI: 10.1186/s12872-023-03580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and atherosclerosis has been controversial, which has become a hit of recent research. The study aimed to explore the association between MASLD, cardiovascular and cerebrovascular diseases (CCVD), and the thickness of carotid plaque which was assessed by ultrasound. METHODS From September 2018 to June 2019, 3543 patients were enrolled. We asked participants to complete questionnaires to obtain information. All patients underwent liver ultrasound and bilateral carotid ultrasound to obtain carotid intima-media thickness (IMT) and maximum carotid plaque thickness (CPT). Hepatic steatosis was quantified during examination according to Hamaguchi's ultrasonographic score, from 0 to 6 points. A score < 2 was defined as without fatty liver, and a score ≥ 2 was defined as fatty liver. Information about blood lipids was collected based on the medical records. RESULTS We found common risk factors for CCVD events, MASLD, and atherosclerosis. There was a significant correlation between MASLD and carotid plaque, but not with CPT. No association was found between MASLD and CCVD events. CPT and IMT were thicker in CCVD patients than in non-CCVD patients. No significant difference was found between IMT and CPT in MASLD patients and non-MASLD patients. CCVD was independently and consistently associated with higher IMT, and free fatty acid (FFA). CONCLUSIONS According to our results, we recommend carotid ultrasound examination of the patients when FFA is increased, regardless of the presence of risk factors and MASLD. Due to the distribution of CPT of both CCVD and MASLD patients in the CPT 2-4 mm group, contrast-enhanced ultrasound is necessary to assess the vulnerability of the plaque when CPT ≥ 2 mm. Timely treatment of vulnerable plaques may reduce the incidence of future CCVD events.
Collapse
Affiliation(s)
- Yunqian Huang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqun Wang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengguang Xiao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqi Yao
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Tang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linjun Zhou
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Wang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanchun Xie
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Zhang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Zhu
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Chen
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Tan SH, Zhou XL. Early-stage non-alcoholic fatty liver disease in relation to atherosclerosis and inflammation. Clinics (Sao Paulo) 2023; 78:100301. [PMID: 37952443 PMCID: PMC10681951 DOI: 10.1016/j.clinsp.2023.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is a multisystem disease closely linked to cardiovascular disease (CVD). This study aims to investigate the connection between early-stage NAFLD and atherosclerosis, as well as the correlation between liver fibrosis and coronary heart disease while exploring underlying inflammatory mechanisms. METHODS In this retrospective study, the authors analyzed data from 607 patients who underwent both coronary computed tomography angiography (CCTA) and abdominal ultrasonography (US). Logistic regression was utilized to examine the association between NAFLD and atherosclerosis, while mediation analysis was conducted to explore whether inflammatory markers mediate the link between liver fibrosis and coronary artery disease. RESULTS Among the 607 patients included, 237 (39.0 %) were diagnosed with NAFLD through ultrasonography. After adjusting for traditional cardiovascular risk factors, ALT, and AST, NAFLD demonstrated a significant correlation with carotid intimal thickening (1.58, 95 % CI 1.04‒2.40; p = 0.034) and non-calcified plaque (1.56, 95 % CI 1.03‒2.37; p = 0.038). Additionally, fibrosis predictive markers, including FIB-4 > 1.3 (1.06, 95 % CI 2.30‒5.00; p = 0.035) and APRI (6.26, 95 % CI 1.03‒37.05; p = 0.046), independently correlated with coronary heart disease after adjusting for cardiovascular risk factors. Conversely, among systemic inflammatory markers, only the neutrophil-to-lymphocyte ratio (NLR) and systemic inflammatory response index (SIRI) are independently associated with coronary heart disease. ROC curve analysis indicated that combining predictive fibrosis markers or inflammatory markers with traditional cardiovascular risk factors enhanced the predictive accuracy for coronary heart disease. Mediation analysis revealed that NLR fully mediated the effect of liver fibrosis on coronary heart disease. CONCLUSION NAFLD is associated with carotid intimal thickening and non-calcified plaque, suggesting an increased cardiovascular risk. Furthermore, liver fibrosis independently increases the risk of coronary heart disease in the early-stage NAFLD population, and inflammation may play a fully mediating role in the effect of liver fibrosis on coronary heart disease. Early intervention is crucial for NAFLD patients to mitigate future major adverse cardiovascular events.
Collapse
Affiliation(s)
- Si-Hua Tan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.
| | - Xiao-Li Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
19
|
Shi SY, Jia F, Wang MF, Zhou YF, Li JJ. Impacts of Non-alcoholic Fatty Liver Disease on Acute Coronary Syndrome: Evidence and Controversies. Curr Atheroscler Rep 2023; 25:751-768. [PMID: 37768409 PMCID: PMC10564833 DOI: 10.1007/s11883-023-01146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Acute coronary syndrome (ACS) and non-alcoholic fatty liver disease (NAFLD) are two clinically common disease entities that share numerous risk factors. This review aimed to discuss the impacts of NAFLD on ACS. RECENT FINDINGS In an era of improved control of traditional risk factors, the substantial burden of cardiometabolic abnormalities has caused widespread concern. NAFLD is considered the hepatic component of metabolic syndrome, which can exert an impact on human health beyond the liver. Accumulating studies have demonstrated that NAFLD is closely related to cardiovascular disease, especially coronary artery disease. Interestingly, although recent data have suggested an association between NAFLD and the incidence and outcomes of ACS, the results are not consistent. In this review, we comprehensively summarized evidence and controversies regarding whether NAFLD is a contributor to either the development of ACS or worse outcomes in patients with ACS. The potential pathophysiological and molecular mechanisms involved in the impacts of NAFLD on ACS were also elucidated.
Collapse
Affiliation(s)
- Shun-Yi Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fang Jia
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Meng-Fei Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ya-Feng Zhou
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Jian-Jun Li
- Cardio-Metabolism Center, Fu Wai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 10037, China.
| |
Collapse
|
20
|
Yang K, Song M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023; 15:3970. [PMID: 37764755 PMCID: PMC10534946 DOI: 10.3390/nu15183970] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD) is a multifaceted disease that involves complex interactions between various organs, including the gut and heart. It is defined by hepatic lipid accumulation and is related to metabolic dysfunction, obesity, and diabetes. Understanding the intricate interplay of the gut-liver-heart crosstalk is crucial for unraveling the complexities of MAFLD and developing effective treatment and prevention strategies. The gut-liver crosstalk participates in the regulation of the metabolic and inflammatory processes through host-microbiome interactions. Gut microbiota have been associated with the development and progression of MAFLD, and its dysbiosis contributes to insulin resistance, inflammation, and oxidative stress. Metabolites derived from the gut microbiota enter the systemic circulation and influence both the liver and heart, resulting in the gut-liver-heart axis playing an important role in MAFLD. Furthermore, growing evidence suggests that insulin resistance, endothelial dysfunction, and systemic inflammation in MAFLD may contribute to an increased risk of cardiovascular disease (CVD). Additionally, the dysregulation of lipid metabolism in MAFLD may also lead to cardiac dysfunction and heart failure. Overall, the crosstalk between the liver and heart involves a complex interplay of molecular pathways that contribute to the development of CVD in patients with MAFLD. This review emphasizes the current understanding of the gut-liver-heart crosstalk as a foundation for optimizing patient outcomes with MAFLD.
Collapse
Affiliation(s)
| | - Myeongjun Song
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
21
|
Wegermann K, Fudim M, Henao R, Howe CF, McGarrah R, Guy C, Abdelmalek MF, Diehl AM, Moylan CA. Serum Metabolites Are Associated With HFpEF in Biopsy-Proven Nonalcoholic Fatty Liver Disease. J Am Heart Assoc 2023:e029873. [PMID: 37421270 PMCID: PMC10382080 DOI: 10.1161/jaha.123.029873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) and heart failure with preserved ejection fraction (HFpEF) share common risk factors, including obesity and diabetes. They are also thought to be mechanistically linked. The aim of this study was to define serum metabolites associated with HFpEF in a cohort of patients with biopsy-proven NAFLD to identify common mechanisms. Methods and Results We performed a retrospective, single-center study of 89 adult patients with biopsy-proven NAFLD who had transthoracic echocardiography performed for any indication. Metabolomic analysis was performed on serum using ultrahigh performance liquid and gas chromatography/tandem mass spectrometry. HFpEF was defined as ejection fraction >50% plus at least 1 echocardiographic feature of HFpEF (diastolic dysfunction, abnormal left atrial size) and at least 1 heart failure sign or symptom. We performed generalized linear models to evaluate associations between individual metabolites, NAFLD, and HFpEF. Thirty-seven out of 89 (41.6%) patients met criteria for HFpEF. A total of 1151 metabolites were detected; 656 were analyzed after exclusion of unnamed metabolites and those with >30% missing values. Fifty-three metabolites were associated with the presence of HFpEF with unadjusted P value <0.05; none met statistical significance after adjustment for multiple comparisons. The majority (39/53, 73.6%) were lipid metabolites, and levels were generally increased. Two cysteine metabolites (cysteine s-sulfate and s-methylcysteine) were present at significantly lower levels in patients with HFpEF. Conclusions We identified serum metabolites associated with HFpEF in patients with biopsy-proven NAFLD, with increased levels of multiple lipid metabolites. Lipid metabolism could be an important pathway linking HFpEF to NAFLD.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of Gastroenterology, Department of Medicine Duke University Health System Durham NC
| | - Marat Fudim
- Division of Cardiology, Department of Medicine Duke University Health System Durham NC
| | - Ricardo Henao
- Department of Biostatistics and Bioinformatics Duke University Durham NC
| | | | - Robert McGarrah
- Division of Cardiology, Department of Medicine Duke University Health System Durham NC
| | - Cynthia Guy
- Department of Pathology Duke University Hospital Durham NC
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic Rochester MN
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine Duke University Health System Durham NC
| | - Cynthia A Moylan
- Division of Gastroenterology, Department of Medicine Duke University Health System Durham NC
- Department of Medicine, Durham Veterans Affairs Medical Center Durham NC
| |
Collapse
|
22
|
Liu L, Wang C, Deng S, Yuan T, Zhu X, Deng Y, Qin Y, Wang Y, Yang P. Transition patterns of metabolic dysfunction-associated fatty liver disease status in relation to arterial stiffness progression: a health check-up cohort study. Sci Rep 2023; 13:9690. [PMID: 37322025 PMCID: PMC10272131 DOI: 10.1038/s41598-023-35733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a new diagnostic criterion based on hepatic steatosis and metabolic dysfunction. However, a comprehensive evaluation of the association of MAFLD dynamic transitions with arterial stiffness progression has yet to be conducted. This cohort study included 8807 Chinese health check-up participants (median follow-up = 50.2 months). Participants were categorized into four groups according to MAFLD status at baseline and follow-up (none, persistent, developed and regressed). Arterial stiffness progression was assessed by the annual brachial-ankle pulse wave velocity (ba-PWV) increase and arterial stiffness incidence. Compared with the non-MAFLD group, the annual increase in ba-PWV was highest in the persistent-MAFLD group [6.75 cm/s/year, (95% CI 4.03-9.33)], followed by the developed-[6.35 cm/s/year, (95% CI 3.80-8.91)] and the regressed-[1.27 cm/s/year, (95% CI - 2.18 to 4.72)] MAFLD groups. Similarly, compared with the non-MAFLD group, the persistent-MAFLD group had a 1.31-fold increased arterial stiffness risk [OR 1.31; 95% CI 1.03-1.66]. The associations of MAFLD transition patterns with arterial stiffness incidence did not differ across any clinically specific subgroups evaluated. Furthermore, the potential effect of dynamic changes in cardiometabolic risk factors on arterial stiffness incidence among persistent-MAFLD participants was mostly driven by annual fasting glucose and triglyceride increases. In conclusion, persistent MAFLD was associated with an increased risk of arterial stiffness development. Moreover, in persistent-MAFLD subjects, elevated blood glucose and triglyceride levels might facilitate the arterial stiffness incidence.
Collapse
Affiliation(s)
- Lei Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Changfa Wang
- General Surgery Department, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Shuwen Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Ting Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Xiaoling Zhu
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yuling Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yuexiang Qin
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yaqin Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| | - Pingting Yang
- Health Management Center, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
23
|
Castera L, Cusi K. Diabetes and cirrhosis: Current concepts on diagnosis and management. Hepatology 2023; 77:2128-2146. [PMID: 36631005 DOI: 10.1097/hep.0000000000000263] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023]
Abstract
Type 2 diabetes mellitus is often associated with cirrhosis as comorbidities, acute illness, medications, and other conditions profoundly alter glucose metabolism. Both conditions are closely related in NAFLD, the leading cause of chronic liver disease, and given its rising burden worldwide, management of type 2 diabetes mellitus in cirrhosis will be an increasingly common dilemma. Having diabetes increases cirrhosis-related complications, including HCC as well as overall mortality. In the absence of effective treatments for cirrhosis, patients with type 2 diabetes mellitus should be systematically screened as early as possible for NAFLD-related fibrosis/cirrhosis using noninvasive tools, starting with a FIB-4 index followed by transient elastography, if available. In people with cirrhosis, an early diagnosis of diabetes is critical for an optimal management strategy (ie, nutritional goals, and glycemic targets). Diagnosis of diabetes may be missed if based on A1C in patients with cirrhosis and impaired liver function (Child-Pugh B-C) as anemia may turn the test unreliable. Clinicians must also become aware of their high risk of hypoglycemia, especially in decompensated cirrhosis where insulin is the only therapy. Care should be within multidisciplinary teams (nutritionists, obesity management teams, endocrinologists, hepatologists, and others) and take advantage of novel glucose-monitoring devices. Clinicians should become familiar with the safety and efficacy of diabetes medications for patients with advanced fibrosis and compensated cirrhosis. Management is conditioned by whether the patient has either compensated or decompensated cirrhosis. This review gives an update on the complex relationship between cirrhosis and type 2 diabetes mellitus, with a focus on its diagnosis and treatment, and highlights knowledge gaps and future directions.
Collapse
Affiliation(s)
- Laurent Castera
- Departement of Hepatology, Hospital Beaujon, Assistance Publique-Hôpitaux de Paris, INSERM UMR 1149, Université Paris Cité, Clichy, France
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, The University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Saydam CD. Erratum: Addendum and Corrigendum to "Subclinical cardiovascular disease and utility of coronary artery calcium score" [IJC Heart Vasculat. 37 (2021) 100909]. IJC HEART & VASCULATURE 2023; 46:101208. [PMID: 37255860 PMCID: PMC10225660 DOI: 10.1016/j.ijcha.2023.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
[This corrects the article DOI: 10.1016/j.ijcha.2021.100909.].
Collapse
|
25
|
Zhang Z, Zheng M, Lei H, Jiang Z, Chen Y, He H, Zhao G, Huang H. A clinical study of the correlation between metabolic-associated fatty liver disease and coronary plaque pattern. Sci Rep 2023; 13:7224. [PMID: 37142746 PMCID: PMC10160090 DOI: 10.1038/s41598-023-34462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome (MetS) and has been correlated with coronary atherosclerosis (CAS). Since NAFLD was renamed metabolic-associated fatty liver disease(MAFLD) in 2020, no studies have evaluated the correlation between MAFLD and CAS. The aim of this study was to evaluate the relationship between MAFLD and CAS. A total of 1330 patients underwent continuous coronary computed tomography angiography (CCTA) and abdominal ultrasound as part of a routine physical examination. Ultrasonography was used to assess fatty liver, and CCTA was used to assess coronary artery plaques, degree of stenosis, and diseased blood vessels. Univariate and multivariate logistic regression analyses were performed with plaque type and degree of stenosis as dependent variables and MAFLD and traditional cardiovascular risk factors as independent variables to analyze the correlation between MAFLD and CAS. Among the 1164 patients, 680 (58.4%) were diagnosed with MAFLD through a combination of ultrasound and auxiliary examinations. Compared with the non-MAFLD group, the MAFLD group had more cardiovascular risk factors,and the MAFLD group had more likely to have coronary atherosclerosis, coronary stenosis and multiple coronary artery stenosis.In the univariate logistic regression, MAFLD was significantly correlated with overall plaque, calcified plaques, noncalcified plaques, mixed plaques,and significant stenosis in the coronary arteries.(p < 0.05). After adjusting for cardiovascular risk factors , MAFLD was correlated with noncalcified plaques (1.67; 95% confidence interval (CI) 1.15-2.43; p = 0.007) and mixed plaques (1.54; 95% CI 1.10-2.16; p = 0.011). In this study, MAFLD group had more cardiovascular risk factors, MAFLD was correlated with coronary atherosclerosis,and significant stenosis.Further study found independent associations between MAFLD and noncalcified plaques and mixed plaques, which suggest a clinically relevant link between MAFLD and coronary atherosclerosis.
Collapse
Affiliation(s)
- Zhijiao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China
| | - Mengyao Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China
| | - Hongtao Lei
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China
| | - Zimeng Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China
| | - Yuhang Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China
| | - Haiyu He
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China
| | - Gongfang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China.
| | - Hua Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming City, 650000, China
| |
Collapse
|
26
|
Zhang D, Mi Z, Peng J, Yang T, Han Y, Zhai Y, Song C, Teng X, Sun W, Guo J, Bilonda KP. Nonalcoholic Fatty Liver Disease as an Emerging Risk Factor and Potential Intervention Target for Atherosclerotic Cardiovascular Diseases. J Cardiovasc Pharmacol 2023; 81:327-335. [PMID: 36917556 PMCID: PMC10155697 DOI: 10.1097/fjc.0000000000001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is an underappreciated independent risk factor for atherosclerotic cardiovascular diseases (ASCVDs). In recent years, the risk of ASCVD has increased along with the prevalence of NAFLD. ASCVD events are highly prevalent and are the main contributor to death in patients with NAFLD. The association between NAFLD and ASCVD has been validated in numerous observational, cohort, and genetic studies. Most of these studies agree that NAFLD significantly increases the risk of developing atherosclerosis and ASCVD. In addition, the underlying proatherosclerotic mechanisms of NAFLD have been gradually revealed; both disorders share several common pathophysiologic mechanisms including insulin resistance, whereas systemic inflammation and dyslipidemia driven by NAFLD directly promote atherosclerosis. Recently, NAFLD, as an emerging risk enhancer for ASCVD, has attracted attention as a potential treatment target for ASCVD. This brief review aims to illustrate the potential mechanistic insights, present recent clinically relevant investigations, and further explore the emerging therapies such as novel antidiabetic and lipid-lowering agents that could improve NAFLD and reduce ASCVD risk.
Collapse
Affiliation(s)
- Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Zhen Mi
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Jiya Peng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Yuze Han
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
- Department of Cardiology, Dalian Friendship Hospital, Dalian City, PR China; and
| | - Yujia Zhai
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Chenliang Song
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Xianzhuo Teng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Wei Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
- Department of Cardiology, Dalian Third People's Hospital, Dalian City, PR China
| | - Jing Guo
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Kabeya Paulin Bilonda
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| |
Collapse
|
27
|
Armandi A, Bugianesi E. Extrahepatic Outcomes of Nonalcoholic Fatty Liver Disease: Cardiovascular Diseases. Clin Liver Dis 2023; 27:239-250. [PMID: 37024205 DOI: 10.1016/j.cld.2023.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) are at high risk of cardiovascular disease, including carotid atherosclerosis, coronary artery disease, heart failure, and arrhythmias. The risk is partially due to shared risk factors, but it may vary according to liver injury. A fatty liver may induce an atherogenic profile, the local necro-inflammatory changes of nonalcoholic steatohepatitis may enhance systemic metabolic inflammation, and fibrogenesis can run parallel in the liver and in the myocardium and precedes heart failure. The detrimental impact of a Western diet combines with polymorphisms in genes associated with atherogenic dyslipidemia. Shared clinical/diagnostic algorithms are needed to manage the cardiovascular risk in NAFLD.
Collapse
Affiliation(s)
- Angelo Armandi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Torino 10126, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Torino 10126, Italy.
| |
Collapse
|
28
|
Xin Z, Huang J, Cao Q, Wang J, He R, Hou T, Ding Y, Lu J, Wang T, Zhao Z, Wang W, Ning G, Xu M, Bi Y, Xu Y, Li M. Risk of subclinical atherosclerosis across metabolic transition in individuals with or without fatty liver disease: a prospective cohort study. Nutr Metab (Lond) 2023; 20:15. [PMID: 36899397 PMCID: PMC10007748 DOI: 10.1186/s12986-023-00734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Metabolic dysfunction is a major determinant in the progression of fatty liver disease. It is pivotal to evaluate the metabolic status and subsequent transition in fatty liver population and to identify the risk of subclinical atherosclerosis. METHODS The prospective cohort study included 6260 Chinese community residents during 2010-2015. Fatty liver was determined as hepatic steatosis (HS) by ultrasonography. Metabolic unhealthy (MU) status was defined as having diabetes and/or ≥ 2 metabolic risk factors. Participants were categorized into 4 groups according to the combination of metabolic healthy (MH)/MU and fatty liver status (MHNHS, MUNHS, MHHS and MUHS). Subclinical atherosclerosis was assessed by elevated brachial-ankle pulse wave velocity, pulse pressure and/or albuminuria. RESULTS 31.3% of the participants had fatty liver disease and 76.9% were in MU status. During a 4.3-year follow-up, 24.2% of participants developed composite subclinical atherosclerosis. Multivariable adjusted odds ratios for composite subclinical atherosclerosis risk were (1.66 [1.30-2.13]) in MUNHS group and (2.57 [1.90-3.48]) in MUHS group. It seemed that participants with fatty liver disease were more prone to be remained in MU status (90.7% vs.50.8%) and less likely to regress to MH status (4.0% vs. 8.9%). Fatty liver participants progressed to (3.11 [1.23-7.92]) or maintained MU status (4.87 [3.25-7.31]) significantly impelled the development of the composite risk, while regressing to MH status (0.15 [0.04-0.64]) were more intended to mitigate the risk. CONCLUSIONS The current study emphasized the importance of assessing metabolic status and its dynamic changes, especially in the fatty liver population. Regressing from MU to MH status not only benefited the systematic metabolic profile but also ameliorated future cardiometabolic complications.
Collapse
Affiliation(s)
- Zhuojun Xin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Jiaojiao Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Qiuyu Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Jialu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Ruixin He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Yi Ding
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsShanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
| |
Collapse
|
29
|
Kim DY, Chung KS, Park JY, Gee HY. Preventive effect of empagliflozin and ezetimibe on hepatic steatosis in adults and murine models. Biomed Pharmacother 2023; 161:114445. [PMID: 36842353 DOI: 10.1016/j.biopha.2023.114445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Even though many oral glucose-lowering or lipid-lowering agents have already been reported to improve hepatic steatosis to some degree, which drug had a more beneficial effect on hepatic steatosis among those drugs has not been precisely explored. We analysed the effect of empagliflozi, a selective sodium-glucose cotransporter 2 inhibitor, and ezetimibe on developing hepatic steatosis. METHODS AND RESULTS Using 4005,779 patients with type 2 diabetes mellitus (T2DM) or dyslipidemia provided by the Korean National Health Insurance Service (NHIS) between January 2015 and December 2015, we analyzed the odds ratio (OR) of fatty liver development (fatty liver index [FLI] >60). Additionally, we examined the metabolic effects of ezetimibe and empagliflozin in mice fed with a choline-deficient high-fat diet, mimicking the features of human NAFLD. The experiment for agents was performed for the non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) mouse models independently. In the NHIS data, ORs for the development of fatty liver were significantly lower in all treatment groups than in the reference group, which did not receive ezetimibe or empagliflozin. (Ezetimibe therapy; OR=0.962, empagliflozin therapy; OR=0.527, ezetimibe plus empagliflozin; OR=0.509 compared to reference therapy). Unlike non-alcoholic steatohepatitis mouse model, ezetimibe, empagliflozin, and combination therapy also reduced liver steatosis in the non-alcoholic fatty liver mouse model. CONCLUSIONS Compared with other agents, empagliflozin and/or ezetimibe treatment reduced the risk of developing hepatic steatosis. Our data suggest that empagliflozin or ezetimibe can be primarily considered in type 2 DM or dyslipidemia patients to prevent hepatic steatosis.
Collapse
Affiliation(s)
- Dong Yun Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Kyu Sik Chung
- Department of Medicine, Yonsei University Graduate School of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Han SK, Baik SK, Kim MY. Non-alcoholic fatty liver disease: Definition and subtypes. Clin Mol Hepatol 2023; 29:S5-S16. [PMID: 36577427 PMCID: PMC10029964 DOI: 10.3350/cmh.2022.0424] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide, with a global prevalence of approximately 30%. However, the prevalence of NAFLD has been variously reported depending on the comorbidities. The rising prevalence of obesity in both the adult and pediatric populations is projected to consequently continue increasing NAFLD prevalence. It is a major cause of chronic liver disease worldwide, including cirrhosis and hepatocellular carcinoma (HCC). NAFLD has a variety of clinical phenotypes and heterogeneity due to the complexity of pathogenesis and clinical conditions of its occurrence, resulting in various clinical prognoses. In this article, we briefly described the basic definition of NAFLD and classified the subtypes based on current knowledge in this field.
Collapse
Affiliation(s)
- Seul Ki Han
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Regenerative Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Regenerative Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Regenerative Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
31
|
Le MH, Yeo YH, Li X, Li J, Zou B, Wu Y, Ye Q, Huang DQ, Zhao C, Zhang J, Liu C, Chang N, Xing F, Yan S, Wan ZH, Tang NSY, Mayumi M, Liu X, Liu C, Rui F, Yang H, Yang Y, Jin R, Le RHX, Xu Y, Le DM, Barnett S, Stave CD, Cheung R, Zhu Q, Nguyen MH. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2022; 20:2809-2817.e28. [PMID: 34890795 DOI: 10.1016/j.cgh.2021.12.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The increasing rates of obesity and type 2 diabetes mellitus may lead to increased prevalence of nonalcoholic fatty liver disease (NAFLD). We aimed to determine the current and recent trends on the global and regional prevalence of NAFLD. METHODS Systematic search from inception to March 26, 2020 was performed without language restrictions. Two authors independently performed screening and data extraction. We performed meta-regression to determine trends in NAFLD prevalence. RESULTS We identified 17,244 articles from literature search and included 245 eligible studies involving 5,399,254 individuals. The pooled global prevalence of NAFLD was 29.8% (95% confidence interval [CI], 28.6%-31.1%); of these, 82.5% of included articles used ultrasound to diagnose NAFLD, with prevalence of 30.6% (95% CI, 29.2%-32.0%). South America (3 studies, 5716 individuals) and North America (4 studies, 18,236 individuals) had the highest NAFLD prevalence at 35.7% (95% CI, 34.0%-37.5%) and 35.3% (95% CI, 25.4%-45.9%), respectively. From 1991 to 2019, trend analysis showed NAFLD increased from 21.9% to 37.3% (yearly increase of 0.7%, P < .0001), with South America showing the most rapid change of 2.7% per year, followed by Europe at 1.1%. CONCLUSIONS Despite regional variation, the global prevalence of NAFLD is increasing overall. Policy makers must work toward reversing the current trends by increasing awareness of NAFLD and promoting healthy lifestyle environments.
Collapse
Affiliation(s)
- Michael H Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California
| | - Yee Hui Yeo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaohe Li
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California; Division of Infectious Disease, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jie Li
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Biyao Zou
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California; Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
| | - Yuankai Wu
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Ye
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California; The Third Central Clinical College of Tianjin Medical University, Tianjin; Department of Hepatology of The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cells, Tianjin, China
| | - Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine and Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
| | - Changqing Zhao
- Department of Cirrhosis, Institute of Liver Disease, Shuguang Hospital, Shanghai University of T.C.M., Shanghai, China
| | - Jie Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Chenxi Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Na Chang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Feng Xing
- Department of Cirrhosis, Institute of Liver Disease, Shuguang Hospital, Shanghai University of T.C.M., Shanghai, China
| | - Shiping Yan
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Zi Hui Wan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Sook Yee Tang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maeda Mayumi
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California
| | - Xinting Liu
- Medical School of Chinese People's Liberation Army, Beijing, and Department of Pediatrics, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chuanli Liu
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Fajuan Rui
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Hongli Yang
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Yao Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Ruichun Jin
- Jining Medical University, Jining, Shandong, China
| | - Richard H X Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California
| | - Yayun Xu
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - David M Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California
| | - Scott Barnett
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California
| | | | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California; Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California; Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
32
|
A Meta-Analysis on the Global Prevalence, Risk factors and Screening of Coronary Heart Disease in Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2022; 20:2462-2473.e10. [PMID: 34560278 DOI: 10.1016/j.cgh.2021.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cardiovascular disease remains the leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD). Studies examining the association of coronary heart disease (CHD) and NAFLD are cofounded by various cardiometabolic factors, particularly diabetes and body mass index. Hence, we seek to explore such association by investigating the global prevalence, independent risk factors, and influence of steatosis grade on manifestation of CHD among patients with NAFLD. METHODS Two databases, Embase and Medline, were utilized to search for articles relating to NAFLD and CHD. Data including, but not limited to, continent, diagnostic methods, baseline characteristics, prevalence of CHD, CHD severity, NAFLD severity, and risk factors were extracted. RESULTS Of the 38 articles included, 14 reported prevalence of clinical coronary artery disease (CAD) and 24 subclinical CAD. The pooled prevalence of CHD was 44.6% (95% confidence interval [CI], 36.0%-53.6%) among 67,070 patients with NAFLD with an odds ratio of 1.33 (95% CI, 1.21%-1.45%; P < .0001). The prevalence of CHD was higher in patients with moderate to severe steatosis (37.5%; 95% CI, 15.0%-67.2%) than those with mild steatosis (29.6%; 95% CI, 13.1%-54.0%). The pooled prevalence of subclinical and clinical CAD was 38.7% (95% CI, 29.8%-48.5%) and 55.4% (95% CI, 39.6%-70.1%), respectively. CONCLUSION Steatosis was found to be related with CHD involvement, with moderate to severe steatosis related to clinical CAD. Early screening and prompt intervention for CHD in NAFLD are warranted for holistic care in NAFLD.
Collapse
|
33
|
Zhou Z, Ong KL, Whelton SP, Allison MA, Curtis AJ, Blaha MJ, Breslin M, Tonkin A, Magnussen CG, Budoff M, Nelson MR. Impact of Blood Lipids on 10-Year Cardiovascular Risk in Individuals Without Dyslipidemia and With Low Risk Factor Burden. Mayo Clin Proc 2022; 97:1883-1893. [PMID: 35760597 DOI: 10.1016/j.mayocp.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine the association of plasma lipids with the prevalence of subclinical atherosclerosis and 10-year risk of incident cardiovascular (CV) events among healthy individuals without dyslipidemia and with low risk factor burden. PATIENTS AND METHODS The analysis (June 24, 2020, through June 12, 2021) included 1204 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) study who were current nonsmokers and did not have CV disease, hypertension (blood pressure ≥130/80 mm Hg or antihypertensive use), diabetes (fasting glucose ≥126 mg/dL or glucose-lowering medication use), and dyslipidemia (low-density-lipoprotein-cholesterol [LDL-C] ≥160 mg/dL, high-density-lipoprotein-cholesterol [HDL-C] <40 mg/dL, total cholesterol [TC] ≥240 mg/dL, triglycerides [TGs] ≥150 mg/dL, or lipid-lowering medication use) at baseline. Associations of lipids with baseline atherosclerosis (presence of carotid plaque and/or coronary calcification) and incident CV events over 10 years were examined using multivariable relative risk regression and Cox regression, respectively. RESULTS At baseline, participants' median age was 54 (IQR, 49 to 62) years, and 10-year CV risk was 2.7% (IQR, 1.0% to 6.6%); 43.4% had subclinical atherosclerosis. A 1-SD higher LDL-C (23.4 mg/dL), TC (24.7 mg/dL), non-HDL-C (25.3 mg/dL), TC/HDL-C (0.75), and LDL-C/HDL-C (0.66) was associated with a higher prevalence of atherosclerosis of between 6% and 9% (P<.05). For every 1-SD higher LDL-C, non-HDL-C, TC/HDL-C, LDL-C/HDL-C, and TG/HDL-C (0.49), the 10-year incidence of CV events was significantly increased by 40%, 44%, 51%, 49%, and 39%, respectively. For every 1-SD lower HDL-C (13.5 mg/dL), CV risk was increased by 37%. Triglycerides had no association with either outcome. CONCLUSION Except for TGs, all lipid variables were associated with atherosclerosis and future risk of CV disease among persons without dyslipidemia and with low risk factor burden.
Collapse
Affiliation(s)
- Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Seamus P Whelton
- Division of Cardiology, Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Matthew A Allison
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Andrea J Curtis
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Michael J Blaha
- Division of Cardiology, Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew Tonkin
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Costan G Magnussen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Matthew Budoff
- Department of Medicine, Harbor UCLA Medical Center, Los Angeles, CA, USA
| | - Mark R Nelson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
34
|
Mascherbauer K, Donà C, Koschutnik M, Dannenberg V, Nitsche C, Duca F, Heitzinger G, Halavina K, Steinacher E, Kronberger C, Bardach C, Beitzke D, Loewe C, Waldmann E, Trauner M, Barkto P, Goliasch G, Mascherbauer J, Hengstenberg C, Kammerlander A. Hepatic T1-Time Predicts Cardiovascular Risk in All-Comers Referred for Cardiovascular Magnetic Resonance: A Post-Hoc Analysis. Circ Cardiovasc Imaging 2022; 15:e014716. [PMID: 36256728 DOI: 10.1161/circimaging.122.014716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Liver damage is frequently observed in patients with cardiovascular disease but infrequently quantified. We hypothesized that in patients with cardiovascular disease undergoing cardiac magnetic resonance, liver T1-times indicate liver damage and are associated with cardiovascular outcome. METHODS We measured hepatic T1-times, displayed on standard cardiac T1-maps, in an all-comer cardiac magnetic resonance-cohort. At the time of cardiac magnetic resonance, we assessed validated general liver fibrosis scores. Kaplan-Meier estimates and Cox-regression models were used to investigate the association between hepatic T1-times and a composite endpoint of non-fatal myocardial infarction, heart failure hospitalization, and death. RESULTS One thousand seventy-five participants (58±18 year old, 47% female) were included (972 patients, 50 controls, 53 participants with transient elastography). Hepatic T1-times were 590±89 ms in patients and 574±45 ms in controls (P=0.052). They were significantly correlated with cardiac size and function, presence of atrial fibrillation, NT-pro-BNP levels, and gamma-glutamyl-transferase levels (P<0.001 for all). During follow-up (58±31 months), a total of 280 (29%) events occurred. On Cox-regression, high hepatic T1-times yielded a significantly higher risk for events (adjusted hazard ratio, 1.66 [95% CI, 1.45-1.89] per 100 ms increase; P<0.001), even when adjusted for age, sex, left and right ventricular ejection fraction, NT-proBNP (N-terminal prohormone of brain natriuretic peptide), and myocardial T1-time. On receiver operating characteristic analysis and restricted cubic splines, we found that a hepatic T1-time exceeding 610 ms was associated with excessive risk. CONCLUSIONS Hepatic T1-times on standard cardiac magnetic resonance scans were significantly associated with cardiac size and function, comorbidities, natriuretic peptides, and independently predicted cardiovascular mortality and morbidity. A hepatic T1-time >610 ms seems to indicate excessive risk. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04220450.
Collapse
Affiliation(s)
- Katharina Mascherbauer
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Carolina Donà
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Matthias Koschutnik
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Varius Dannenberg
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Christian Nitsche
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Franz Duca
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Gregor Heitzinger
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Kseniya Halavina
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Eva Steinacher
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Christina Kronberger
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Constanze Bardach
- Division of Cardiovascular and Interventional Radiology (C.B., D.B., C.L.), Medical University of Vienna
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology (C.B., D.B., C.L.), Medical University of Vienna
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology (C.B., D.B., C.L.), Medical University of Vienna
| | - Elisabeth Waldmann
- Division of Gastroenterology and Hepatology (E.W., M.T.), Medical University of Vienna
| | - Michael Trauner
- Division of Gastroenterology and Hepatology (E.W., M.T.), Medical University of Vienna
| | - Philipp Barkto
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Georg Goliasch
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Julia Mascherbauer
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna.,Karl Landsteiner University of Health Sciences, Department of Internal Medicine 3, University Hospital St. Pölten, Krems, Austria (J.M.)
| | - Christian Hengstenberg
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| | - Andreas Kammerlander
- Division of Cardiology (K.M., C.D., M.K., V.D., C.N., F.D., G.H., K.H., E.S., C.K., P.B., G.G., J.M., C.H., A.K.), Medical University of Vienna
| |
Collapse
|
35
|
Cazac GD, Lăcătușu CM, Mihai C, Grigorescu ED, Onofriescu A, Mihai BM. New Insights into Non-Alcoholic Fatty Liver Disease and Coronary Artery Disease: The Liver-Heart Axis. Life (Basel) 2022; 12:1189. [PMID: 36013368 PMCID: PMC9410285 DOI: 10.3390/life12081189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the hepatic expression of the metabolic syndrome and is the most prevalent liver disease. NAFLD is associated with liver-related and extrahepatic morbi-mortality. Among extrahepatic complications, cardiovascular disease (CVD) is the primary cause of mortality in patients with NAFLD. The most frequent clinical expression of CVD is the coronary artery disease (CAD). Epidemiological data support a link between CAD and NAFLD, underlain by pathogenic factors, such as the exacerbation of insulin resistance, genetic phenotype, oxidative stress, atherogenic dyslipidemia, pro-inflammatory mediators, and gut microbiota. A thorough assessment of cardiovascular risk and identification of all forms of CVD, especially CAD, are needed in all patients with NAFLD regardless of their metabolic status. Therefore, this narrative review aims to examine the available data on CAD seen in patients with NAFLD, to outline the main directions undertaken by the CVD risk assessment and the multiple putative underlying mechanisms implicated in the relationship between CAD and NAFLD, and to raise awareness about this underestimated association between two major, frequent and severe diseases.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cătălina Mihai
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Emergency Hospital, 700111 Iași, Romania
- Unit of Medical Semiology and Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
36
|
Martin A, Lang S, Goeser T, Demir M, Steffen HM, Kasper P. Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Curr Atheroscler Rep 2022; 24:533-546. [PMID: 35507279 PMCID: PMC9236990 DOI: 10.1007/s11883-022-01028-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Patients with non-alcoholic fatty liver disease (NAFLD), often considered as the hepatic manifestation of the metabolic syndrome, represent a population at high cardiovascular risk and frequently suffer from atherogenic dyslipidemia. This article reviews the pathogenic interrelationship between NAFLD and dyslipidemia, elucidates underlying pathophysiological mechanisms and focuses on management approaches for dyslipidemic patients with NAFLD. RECENT FINDINGS Atherogenic dyslipidemia in patients with NAFLD results from hepatic and peripheral insulin resistance along with associated alterations of hepatic glucose and lipoprotein metabolism, gut dysbiosis, and genetic factors. Since atherogenic dyslipidemia and NAFLD share a bi-directional relationship and are both major driving forces of atherosclerotic cardiovascular disease (ASCVD) development, early detection and adequate treatment are warranted. Thus, integrative screening and management programs are urgently needed. A stepwise approach for dyslipidemic patients with NAFLD includes (i) characterization of dyslipidemia phenotype, (ii) individual risk stratification, (iii) definition of treatment targets, (iv) lifestyle modification, and (v) pharmacotherapy if indicated.
Collapse
Affiliation(s)
- Anna Martin
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Tobias Goeser
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Hypertension Center, Faculty of Medicine - University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
37
|
Yu MM, Tang XL, Zhao X, Chen YY, Xu ZH, Wang QB, Zeng MS. Plaque progression at coronary CT angiography links non-alcoholic fatty liver disease and cardiovascular events: a prospective single-center study. Eur Radiol 2022; 32:8111-8121. [PMID: 35727319 DOI: 10.1007/s00330-022-08904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The presence of non-alcoholic fatty liver disease (NAFLD) has been associated with major adverse cardiovascular events (MACEs); however, the mechanisms that initiate the risk for MACEs in patients with NAFLD remain unknown. We sought to investigate whether plaque progression (PP), determined by coronary CT angiography (CCTA), moderate the relationship between NAFLD and MACEs. METHODS A total of 1683 asymptomatic participants (mean age, 63.3 ± 9.4 [range, 38-85] years; 1117 men) who underwent baseline and follow-up CCTA examination were prospectively included in our study. All of the participants were divided into the NAFLD and non-NAFLD groups. PP was determined by follow-up CCTA. The primary endpoint was MACEs, defined as the composite of all-cause death, nonfatal myocardial infarction, and unplanned hospitalization for acute coronary syndrome leading to revascularization. RESULTS At follow-up CCTA, participants with NAFLD showed higher incidence of PP than those without [33.0% (248/752) vs. 16.6% (155/931), p < 0.001]. Compared with non-NAFLD participants, participants with NAFLD had a lower 9.7-year event-free survival rate (80.9 vs. 66.4%, log-rank p < 0.001). Cox regression analysis revealed NAFLD was significantly associated with MACEs (HR = 1.63, 95% CI: 1.28 to 2.06, p < 0.001) after adjusting for covariables. However, this association was no longer significant after adjustment for PP (HR = 1.10, 95% CI: 0.84 to 1.45, p = 0.496). The mediation analysis revealed that PP had a significant indirect effect (β = 0.0587, 95% CI: 0.0424 to 0.08, p < 0.001) and mediated 99.8% (p = 0.002) for the relationship between NAFLD and MACEs. CONCLUSIONS Plaque progression, identified by follow-up CCTA, mediates the relationship between NAFLD and MACEs. KEY POINTS The incidence of CCTA-identified PP was higher for participants with NAFLD than those without NAFLD (248/752 [33.0%] vs. 155/931 [16.6%], p < 0.001). Participants with NAFLD had a lower 9.7-year event-free survival rate than those without NAFLD (66.4% vs. 80.9%, log-rank p < 0.001). The mediation analysis revealed that PP had a significant indirect effect (β = 0.0587, 95% CI: 0.0424 to 0.08, p < 0.001) and mediated 99.8% (p = 0.002) for the relationship between NAFLD and MACEs.
Collapse
Affiliation(s)
| | | | | | - Yin-Yin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhi-Han Xu
- Siemens Healthineers CT Collaboration, No. 399, West Haiyang Road, Shanghai, 200126, China
| | - Qi-Bing Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases; National Clinical Research Center for Interventional Medicine, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
38
|
Comparison of Hepatic Tissue Characterization between T1-Mapping and Non-Contrast Computed Tomography. J Clin Med 2022; 11:jcm11102863. [PMID: 35628989 PMCID: PMC9144343 DOI: 10.3390/jcm11102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Non-contrast computed tomography (CT) is frequently used to assess non-alcoholic/metabolic fatty liver disease (NAFLD/MAFLD), which is associated with cardiovascular risk. Although liver biopsy is considered the gold standard for diagnosis, standardized scores and non-contrast computed tomography (CT) are used instead. On standard cardiac T1-maps on cardiovascular imaging (CMR) exams for myocardial tissue characterization hepatic tissue is also visible. We hypothesized that there is a significant correlation between hepatic tissue T1-times on CMR and Hounsfield units (HU) on non-contrast CT. Methods: We retrospectively identified patients undergoing a non-contrast CT including the abdomen, a CMR including T1-mapping, and laboratory assessment within 30 days. Patients with storage diseases were excluded. Results: We identified 271 patients (62 ± 15 y/o, 49% female) undergoing non-contrast CT and CMR T1-mapping within 30 days. Mean hepatic HU values were 54 ± 11 on CT and native T1-times were 598 ± 102 ms on CMR and there was a weak, but significant, correlation between these parameters (r = −0.136, p = 0.025). On age and sex adjusted regression analysis, lower liver HU values indicated a dismal cardiometabolic risk profile, including higher HbA1C (p = 0.005) and higher body mass index (p < 0.001). In contrast, native hepatic T1-times yielded a more pronounced cardiac risk profile, including impaired systolic function (p = 0.045) and higher NT-proBNP values (N-Terminal Brain Natriuretic Peptide) (p = 0.004). Conclusions: Hepatic T1-times are easy to assess on standard T1-maps on CMR but only weakly correlated with hepatic HU values on CT and clinical NAFLD/MAFLD scores. Liver T1-times, however, are linked to impaired systolic function and higher natriuretic peptide levels. The prognostic value and clinical usefulness of hepatic T1-times in CMR cohorts warrants further research.
Collapse
|
39
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 377] [Impact Index Per Article: 188.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
40
|
Plochg BFJ, Englert H, Rangaswamy C, Konrath S, Malle M, Lampalzer S, Beisel C, Wollin S, Frye M, Aberle J, Kluwe J, Renné T, Mailer RK. Liver damage promotes pro-inflammatory T-cell responses against apolipoprotein B-100. J Intern Med 2022; 291:648-664. [PMID: 34914849 DOI: 10.1111/joim.13434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Liver-derived apolipoprotein B-100 (ApoB100) is an autoantigen that is recognized by atherogenic CD4+ T cells in cardiovascular disease (CVD). CVD is a major mortality risk for patients with chronic inflammatory liver diseases. However, the impact of liver damage for ApoB100-specific T-cell responses is unknown. METHODS We identified ApoB100-specific T cells in blood from healthy controls, nonalcoholic fatty liver disease (NAFLD) patients, and CVD patients by activation-induced marker expression and analyzed their differentiation pattern in correlation to the lipid profile and liver damage parameters in a cross-sectional study. To assess the induction of extrahepatic ApoB100-specific T cells upon transient liver damage in vivo, we performed hydrodynamic tail vein injections with diphtheria toxin A (DTA)-encoding plasmid in human ApoB100-transgenic mice. RESULTS Utilizing immunodominant ApoB100-derived peptides, we found increased ApoB100-specific T-cell populations in NAFLD and CVD patients compared to healthy controls. In a peptide-specific manner, ApoB100 reactivity in healthy controls was accompanied by expression of the regulatory T (Treg)-cell transcription factor FOXP3. In contrast, FOXP3 expression decreased, whereas expression of pro-inflammatory cytokine interleukin (IL)-17A increased in ApoB100-specific T cells from NAFLD and CVD patients. Dyslipidemia and liver damage parameters in blood correlated with reduced FOXP3 expression and elevated IL-17A production in ApoB100-specific T-cell populations, respectively. Moreover, DTA-mediated transient liver damage in human ApoB100-transgenic mice accumulated IL-17a-expressing ApoB100-specific T cells in the periphery. CONCLUSION Our results show that liver damage promotes pro-inflammatory ApoB100-specific T-cell populations, thereby providing a cellular mechanism for the increased CVD risk in liver disease patients.
Collapse
Affiliation(s)
- Bastian F J Plochg
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chandini Rangaswamy
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mandy Malle
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sibylle Lampalzer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Beisel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Salma Wollin
- Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Aberle
- Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Johannes Kluwe
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Sarmadi N, Poustchi H, Ali Yari F, Radmard AR, Karami S, Pakdel A, Shabani P, Khaleghian A. Anti-inflammatory function of apolipoprotein B-depleted plasma is impaired in non-alcoholic fatty liver disease. PLoS One 2022; 17:e0266227. [PMID: 35413066 PMCID: PMC9004768 DOI: 10.1371/journal.pone.0266227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is associated with an increased risk of cardiovascular events. HDL exerts various protective functions on the cardiovascular system including anti-inflammatory activity by suppressing adhesion molecules expression in inflammation-induced endothelial cells. This study was designed to search if the anti-inflammatory capacity of apolipoprotein B-depleted plasma (apoB-depleted plasma) is altered in NAFLD patients.
Methods
A total of 83 subjects including 42 NAFLD and 41 control subjects were included in this cross-sectional study. Anti-inflammatory function of HDL was determined as the ability of apoB-depleted plasma to inhibit tumor necrosis factor-α (TNF-α)-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs).
Results
Incubation of inflammation-stimulated HUVECs with the NAFLD patients’ apo-B depleted plasma led to higher levels of expression of adhesion molecules compared to the control subjects’ plasma samples, reflecting an impaired anti-inflammatory capacity of apoB-depleted plasma in the NAFLD patients. Impaired anti-inflammatory capacity of apoB-depleted plasma was correlated with fatty liver and obesity indices. After adjustment with obesity indices, the association of anti-inflammatory capacity of apoB-depleted plasma with NAFLD remained significant.
Conclusion
Impaired anti-inflammatory activity of apoB-depleted plasma was independently associated with NAFLD.
Collapse
Affiliation(s)
- Negar Sarmadi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ali Yari
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Reza Radmard
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karami
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Pakdel
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Shabani
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States of America
- * E-mail: (PS); (AK)
| | - Ali Khaleghian
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- * E-mail: (PS); (AK)
| |
Collapse
|
42
|
Carter J, Heseltine TD, Meah MN, Tzolos E, Kwiecinski J, Doris M, McElhinney P, Moss AJ, Adamson PD, Hunter A, Alam S, Shah ASV, Pawade T, Wang C, Weir-McCall JR, Roditi G, van Beek EJR, Nicol ED, Shaw LJ, Berman DS, Slomka PJ, Mills NL, Dweck MR, Newby DE, Murray SW, Dey D, Williams MC. Hepatosteatosis and Atherosclerotic Plaque at Coronary CT Angiography. Radiol Cardiothorac Imaging 2022; 4:e210260. [PMID: 35506136 PMCID: PMC9059242 DOI: 10.1148/ryct.210260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 01/22/2023]
Abstract
Purpose To assess the association between nonalcoholic fatty liver disease (NAFLD) and quantitative atherosclerotic plaque at CT. Materials and Methods In this post hoc analysis of the prospective Scottish Computed Tomography of the HEART trial (November 2010 to September 2014), hepatosteatosis and coronary artery calcium score were measured at noncontrast CT. Presence of stenoses, visually assessed high-risk plaque, and quantitative plaque burden were assessed at coronary CT angiography. Multivariable models were constructed to assess the impact of hepatosteatosis and cardiovascular risk factors on coronary artery disease. Results Images from 1726 participants (mean age, 58 years ± 9 [SD]; 974 men) were included. Participants with hepatosteatosis (155 of 1726, 9%) had a higher body mass index, more hypertension and diabetes mellitus, and higher cardiovascular risk scores (P < .001 for all) compared with those without hepatosteatosis. They had increased coronary artery calcium scores (median, 43 Agatston units [AU] [interquartile range, 0-273] vs 19 AU [0-225], P = .046), more nonobstructive disease (48% vs 37%, P = .02), and higher low-attenuation plaque burden (5.11% [0-7.16] vs 4.07% [0-6.84], P = .04). However, these associations were not independent of cardiovascular risk factors. Over a median of 4.7 years, there was no evidence of a difference in myocardial infarction between those with and without hepatosteatosis (1.9% vs 2.4%, P = .92). Conclusion Hepatosteatosis at CT was associated with an increased prevalence of coronary artery disease at CT, but this was not independent of the presence of cardiovascular risk factors.Keywords: CT, Cardiac, Nonalcoholic Fatty Liver Disease, Coronary Artery Disease, Hepatosteatosis, Plaque QuantificationClinical trial registration no. NCT01149590 Supplemental material is available for this article. © RSNA, 2022See also commentary by Abohashem and Blankstein in this issue.
Collapse
Affiliation(s)
- Jessica Carter
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Thomas D. Heseltine
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Mohammed N. Meah
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Evangelos Tzolos
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Jacek Kwiecinski
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Mhairi Doris
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Priscilla McElhinney
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Alastair J. Moss
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Philip D. Adamson
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Amanda Hunter
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Shirjel Alam
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Anoop S. V. Shah
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Tania Pawade
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Chengjia Wang
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Jonathan R. Weir-McCall
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Giles Roditi
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Edwin J. R. van Beek
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Edward D. Nicol
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Leslee J. Shaw
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Daniel S. Berman
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Piotr J. Slomka
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Nicholas L. Mills
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Marc R. Dweck
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - David E. Newby
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Scott W. Murray
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Damini Dey
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| | - Michelle C. Williams
- From the University/BHF Centre for Cardiovascular Science, University
of Edinburgh, Chancellor’s Building, 49 Little France Crescent,
Edinburgh, Scotland EH16 SUF, (J.C., M.N.M., E.T., J.K., M.D., A.J.M., P.D.A.,
A.H., S.A., A.S.V.S., T.P., C.W., N.L.M., M.R.D., D.E.N., M.C.W.); Liverpool
Centre for Cardiovascular Science, Liverpool, England (T.D.H., S.W.M.);
Department of Interventional Cardiology and Angiology, Institute of Cardiology,
Warsaw, Poland (J.K.); Biomedical Imaging Research Institute and Division of
Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles,
Calif (P.M., D.S.B., P.J.S., D.D.); Christchurch Heart Institute, University of
Otago, Christchurch, New Zealand (P.D.A.); Department of Radiology, University
of Cambridge, Cambridge, England (J.R.W.M.); Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, Scotland (G.R.); Edinburgh
Imaging Facility QMRI, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.,
M.R.D., D.E.N., M.C.W.); Royal Brompton and Harefield NHS Foundation Trust
Departments of Cardiology and Radiology, London, England and the National Heart
and Lung Institute, Faculty of Medicine, Imperial College, London, England
(E.D.N.); and Icahn School of Medicine, Weill Cornell Medical College, New York,
NY (L.J.S.)
| |
Collapse
|
43
|
Helicobacter pylori infection is not an independent risk factor of non-alcoholic fatty liver disease in China. BMC Gastroenterol 2022; 22:81. [PMID: 35209867 PMCID: PMC8867781 DOI: 10.1186/s12876-022-02148-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Background The role of Helicobacter pylori (H. pylori) infection in the development of non-alcoholic fatty liver disease (NAFLD) remains controversial. The exact relationship requires further investigation. This study aimed to determine the association between them in China. Methods A retrospective study was conducted on 71,633 participants who underwent physical examinations. 13C urea breath test (13C-UBT) was conducted to detect H. pylori infection, and ultrasonography was used to detect NAFLD. Results Body mass index (BMI), blood pressure (BP), and triglyceride (TG) levels were higher in participants with H. pylori infection than in those without H. pylori infection. While the levels of high-density lipoprotein cholesterol (HDL-C) for participants with H. pylori infection was lower than without H. pylori infection (P < 0.001). After adjusting for confounding factors (age, sex, BMI, BP, Scr, BUN, LDL-C, HDL-C, triglycerides, FBG and HbA1c), multivariate logistic regression analysis indicated that there was no independent relationship between them (P = 0.574). Subgroup analysis (stratified by sex, age, BMI, hypertension, diabetes and dyslipidemia) showed that H. pylori infection was not included as an independent risk factor for NAFLD. Moreover, the different grades of NAFLD were not related to H. pylori infection. Conclusions These results indicate that H. pylori infection is not an independent risk factor for NAFLD in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02148-6.
Collapse
|
44
|
Muthiah MD, Cheng Han N, Sanyal AJ. A clinical overview of non-alcoholic fatty liver disease: A guide to diagnosis, the clinical features, and complications-What the non-specialist needs to know. Diabetes Obes Metab 2022; 24 Suppl 2:3-14. [PMID: 34387409 DOI: 10.1111/dom.14521] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a rapidly rising prevalence worldwide and is the most common cause of liver disease in developed countries. In this article, we discuss the spectrum of disease of NAFLD with a focus on the earlier spectrum of the disease that is commonly encountered by non-specialists, as well as the hepatic and extra-hepatic associations of the disease. We discuss in detail the two common presentations of NAFLD, incidentally detected hepatic steatosis and asymptomatic raised liver enzymes, and provide an algorithm for management and continued to follow up for these patients. Considerations for the management of cardiovascular comorbidities in these patients are also discussed. Finally, we cover the topic of screening for NAFLD in high-risk populations.
Collapse
Affiliation(s)
- Mark D Muthiah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Ng Cheng Han
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
45
|
Sharma D, Gotlieb N, Farkouh ME, Patel K, Xu W, Bhat M. Machine Learning Approach to Classify Cardiovascular Disease in Patients With Nonalcoholic Fatty Liver Disease in the UK Biobank Cohort. J Am Heart Assoc 2022; 11:e022576. [PMID: 34927450 PMCID: PMC9075189 DOI: 10.1161/jaha.121.022576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. Cardiovascular disease (CVD) is the leading cause of mortality among patients with NAFLD. The aim of our study was to develop a machine learning algorithm integrating clinical, lifestyle, and genetic risk factors to identify CVD in patients with NAFLD. Methods and Results We created a cohort of patients with NAFLD from the UK Biobank, diagnosed according to proton density fat fraction from magnetic resonance imaging data sets. A total of 400 patients with NAFLD with subclinical atherosclerosis or clinical CVD, defined by disease codes, constituted cases and 446 NAFLD cases with no CVD constituted controls. We evaluated 7 different supervised machine learning approaches on clinical, lifestyle, and genetic variables for identifying CVD in patients with NAFLD. The most significant clinical and lifestyle variables observed by the predictive modeling were age (59 years [54.00-63.00 years]), hypertension (145 mm Hg [134.0-156.0 mm Hg] and 85 mm Hg [79.00-93.00 mm Hg]), waist circumference (98 cm [95.00-105.00 cm]), and sedentary lifestyle, defined as time spent watching TV >4 h/d. In the genetic data, single-nucleotide polymorphisms in IL16 and ANKLE1 gene were most significant. Our proposed ensemble-based integrative machine learning model achieved an area under the curve of 0.849 using the random forest modeling for CVD prediction. Conclusions We propose a machine learning algorithm that identifies CVD in patients with NAFLD through integration of significant clinical, lifestyle, and genetic risk factors. These patients with NAFLD at higher risk of CVD should be flagged for screening and aggressive treatment of their cardiometabolic risk factors to prevent cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Divya Sharma
- Department of BiostatisticsPrincess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Neta Gotlieb
- Division of Adult GastroenterologyUniversity Health NetworkToronto General HospitalTorontoOntarioCanada
| | - Michael E. Farkouh
- Peter Munk Cardiac Centre, Heart and Stroke Richard Lewar CentreUniversity of TorontoOntarioCanada
| | - Keyur Patel
- Division of GastroenterologyUniversity Health NetworkToronto General HospitalTorontoOntarioCanada
| | - Wei Xu
- Department of BiostatisticsPrincess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Biostatistics DivisionDalla Lana School of Public HealthUniversity of TorontoOntarioCanada
| | - Mamatha Bhat
- Department of MedicineMulti‐Organ Transplant ProgramToronto General HospitalTorontoOntarioCanada
| |
Collapse
|
46
|
Wang J, Sun H, Wang Y, An Y, Liu J, Wang G. Glucose metabolism status modifies the relationship between lipoprotein(a) and carotid plaques in individuals with fatty liver disease. Front Endocrinol (Lausanne) 2022; 13:947914. [PMID: 36465632 PMCID: PMC9709428 DOI: 10.3389/fendo.2022.947914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND AIMS Glucose and lipoprotein(a) [Lp(a)] have been recognized risk factors for atherosclerosis. The impact of both factors on fatty liver patients has not been studied. The aim of this study is to explore the role of high-level Lp(a) and different glucose metabolism statuses on carotid plaques in fatty liver patients. METHODS We selected 4,335 fatty liver patients in this cross-sectional study. The diagnosis of fatty liver disease and carotid plaques was made by ultrasound. Participants were divided into four groups based on glucose metabolism status (normal glucose regulation [NGR], lower bound of impaired fasting glucose [IFG-L], higher bound of impaired fasting glucose [IFG-H], diabetes mellitus [DM]) and then categorized into 12 subgroups according to Lp(a) concentrations. The association between variables was estimated by odds ratio (OR). RESULTS Carotid plaques were present in 1,613 (37.2%) fatty liver patients. Lp(a)≥30 mg/dL was associated with high risk of carotid plaques in those patients with IFG-L, IFG-H and DM (OR 1.934 [95% CI 1.033-3.618], 2.667 [1.378-5.162], 4.000 [2.219-7.210], respectively; p<0.05). Fatty liver patients with DM plus Lp(a)<10 mg/dL and 10≤Lp(a)<30 mg/dL were more vulnerable to carotid plaques (OR 1.563 [95% CI 1.090-2.241], 1.930 [1.279-2.914]), respectively, p<0.05). CONCLUSIONS Our study first suggested that high-level Lp(a) may raise the risk of carotid plaques in fatty liver patients with not only diabetes but also IFG, manifesting that Lp(a) may be helpful for the early discovery of subclinical atherosclerosis in fatty liver patients with impaired glucose metabolism.
Collapse
Affiliation(s)
- Jiaxuan Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Honglin Sun
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Physical Examination Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guang Wang,
| |
Collapse
|
47
|
Zhu RR, Gao XP, Liao MQ, Cui YF, Tan SX, Zeng FF, Lou YM, Wang CY, Xu S, Peng XL, Dai SH, Zhao D, Wang L, Ping Z, Dai XY, Feng PN, Han LY. Non-alcoholic Fatty Liver Disease Is Associated With Aortic Calcification: A Cohort Study With Propensity Score Matching. Front Endocrinol (Lausanne) 2022; 13:880683. [PMID: 35651978 PMCID: PMC9150367 DOI: 10.3389/fendo.2022.880683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) greatly affects cardiovascular disease, but evidence on the associations between NAFLD and markers of aortic calcification is limited. We aim to evaluate the association between NAFLD and aortic calcification in a cohort of Chinese adults using propensity score-matching (PSM) analysis. METHODS This prospective cohort study involved adults who underwent health-screening examinations from 2009 to 2016. NAFLD was diagnosed by abdominal ultrasonography at baseline, and aortic calcification was identified using a VCT LightSpeed 64 scanner. Analyses included Cox proportional-hazards regression analysis and PSM with predefined covariates (age, gender, marital and smoking status, and use of lipid-lowering drugs) to achieve a 1:1 balanced cohort. RESULTS Of the 6,047 eligible participants, 2,729 (45.13%) were diagnosed with NAFLD at baseline, with a median age of 49.0 years [interquartile range, 44.0-55.0]. We selected 2,339 pairs of participants with and without NAFLD at baseline for the PSM subpopulation. Compared with those without NAFLD, patients with NAFLD were at a higher risk of developing aortic calcification during follow-up; significant results were observed before and after matching, with the full-adjusted hazard ratios and corresponding 95% confidence intervals being 1.19 (1.02-1.38) and 1.18 (1.01-1.38), respectively (both p < 0.05). In subgroup analyses, no interaction was detected according to age, gender, smoking status, body mass index, total cholesterol, low-density lipoprotein cholesterol, use of lipid-lowering drugs, hypertension, or type 2 diabetes. CONCLUSIONS NAFLD may be independently associated with aortic calcification. Further studies are warranted to elucidate the possible underlying mechanisms.
Collapse
Affiliation(s)
- Rong-Rong Zhu
- Department of Pharmacy, Hua Mei Hospital, University of Chinese Academy of Sciences, Zhejiang, China
| | - Xu-Ping Gao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, China
- Department of Child & Adolescent Psychiatry, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Beijing, China
| | - Min-Qi Liao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, China
| | - Yun-Feng Cui
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, China
| | - Si-Xian Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, China
| | - Yan-Mei Lou
- Department of Health Management, Beijing Xiao Tang Shan Hospital, Beijing, China
| | - Chang-Yi Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Shan Xu
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xiao-Lin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Shu-Hong Dai
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Dan Zhao
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Li Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Zhao Ping
- Department of Health Management, Beijing Xiao Tang Shan Hospital, Beijing, China
| | - Xiao-Yu Dai
- Department of Anus & Intestine Surgery, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hua Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Xiao-Yu Dai, ; Pin-Ning Feng, ; Li-Yuan Han,
| | - Pin-Ning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Xiao-Yu Dai, ; Pin-Ning Feng, ; Li-Yuan Han,
| | - Li-Yuan Han
- Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Xiao-Yu Dai, ; Pin-Ning Feng, ; Li-Yuan Han,
| |
Collapse
|
48
|
Du YJ, Liu NN, Zhong X, Pan TR. Risk Factors for Nonalcoholic Fatty Liver Disease in Postmenopausal Women with Type 2 Diabetes Mellitus and the Correlation with Bone Mineral Density at Different Locations. Diabetes Metab Syndr Obes 2022; 15:1925-1934. [PMID: 35761888 PMCID: PMC9233539 DOI: 10.2147/dmso.s364804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To explore the risk factors for nonalcoholic fatty liver disease (NAFLD) in postmenopausal women with type 2 diabetes mellitus (T2DM) and the correlation with bone mineral density (BMD) in different areas of the body. METHODS A total of 434 postmenopausal women with T2DM were enrolled and categorized as 198 patients in the NAFLD group and 236 patients in the non-NAFLD group based on color Doppler ultrasound of the liver. The BMD of the lumbar spine, femoral neck, and total hip were measured by dual-energy X-ray absorptiometry. RESULTS In postmenopausal women with T2DM, the prevalence of NAFLD was 45.6%. The body mass index (BMI), systolic blood pressure (SBP), glycosylated hemoglobin (HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), triacylglycerol (TG), uric acid (UA), and homeostatic model assessment for insulin resistance (HOMA-IR) C-peptide (CP) were significantly higher in the NAFLD group than in the non-NFALD group, and the duration of diabetes, and high-density lipoprotein cholesterol (HDL-C) were lower than in the non-NAFLD group (P < 0.05). Logistic regression analysis revealed that BMI (odds ratio [OR] = 1.303, 95% confidence interval [CI]: 1.152-1.346), HbA1c (OR = 1.263, 95% CI: 1.095-1.392), TG (OR = 1.263, 95% CI: 1.031-1.601), and SUA (OR = 1.005, 95% CI: 1.001-1.007) were correlated with NAFLD (P < 0.05). The BMD of the total hip and femoral neck in the NAFLD group was higher than in the non-NAFLD group (P < 0.05). CONCLUSION Complicated NAFLD in postmenopausal women with T2DM is associated with weight gain, poor blood glucose control, abnormal lipid metabolism, and elevated UA levels. In addition, the NAFLD group had higher femoral neck and total hip BMD than the non-NAFLD group, suggesting NAFLD in postmenopausal women with T2DM may reduce the risk of osteoporosis.
Collapse
Affiliation(s)
- Yi-Jun Du
- Department of Endocrinology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Ni-Na Liu
- Department of Endocrinology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xing Zhong
- Department of Endocrinology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Tian-Rong Pan
- Department of Endocrinology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Tian-Rong Pan, Department of Endocrinology, The Second Hospital of Anhui Medical University, No. 678 of Furong Road, Jingkai District, Hefei, 230601, People’s Republic of China, Tel +86 15305609568, Email
| |
Collapse
|
49
|
Wong MYZ, Yap JJL, Sultana R, Cheah M, Goh GBB, Yeo KK. Association between non-alcoholic fatty liver disease and subclinical atherosclerosis in Western and Asian cohorts: an updated meta-analysis. Open Heart 2021; 8:openhrt-2021-001850. [PMID: 34933963 PMCID: PMC8693165 DOI: 10.1136/openhrt-2021-001850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a well-established risk factor for cardiovascular disease, with ethnic and regional differences noted. With the recent surge of research within this field, we re-examine the evidence associating NAFLD with subclinical atherosclerosis, and investigate potential regional differences. Methods This is a systematic review and meta-analysis. PubMed and EMBASE were systematically searched for publications from January 1967 to July 2020 using standardised criteria. Original, observational studies investigating the association between NAFLD and either carotid intima-media thickness (CIMT) and/or coronary artery calcification (CAC) were included. Key outcomes included differences in mean CIMT, the presence of increased CIMT, the presence of CAC and the development/progression of CAC. Pooled ORs and pooled standard differences in means were calculated using random-effects models. Between-study heterogeneity was quantified using the Q statistic and I². Subgroup analyses stratified by region of study (Asian vs Western) were also conducted. Results 64 studies involving a total of 172 385 participants (67 404 with NAFLD) were included. 44 studies assessed the effect of NAFLD on CIMT, with the presence of NAFLD associated with increased CIMT (OR 2.00, 95% CI 1.56 to 2.56). 22 studies assessed the effects of NAFLD on CAC score, with the presence of NAFLD associated with the presence of any coronary calcification (OR 1.21, 95% CI 1.12 to 1.32), and the development/progression of CAC (OR 1.26, 95% CI 1.04 to 1.52). When stratified by region, these associations remained consistent across both Asian and Western populations (p>0.05). The majority (n=39) of studies were classified as ‘high quality’, with the remaining 25 of ‘moderate quality’. Conclusions There is a significant positive association between various measures of subclinical atherosclerosis and NAFLD, seen across both Western and Asian populations. These results re-emphasise the importance of early risk evaluation and prophylactic intervention measures to preclude progression to clinical cardiovascular disease in patients with NAFLD.
Collapse
Affiliation(s)
| | - Jonathan Jiunn Liang Yap
- Department of Cardiology, National Heart Center Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | | | - Mark Cheah
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore
| | - George Boon Bee Goh
- Duke-NUS Medical School, Singapore.,Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore
| | - Khung Keong Yeo
- Department of Cardiology, National Heart Center Singapore, Singapore .,Duke-NUS Medical School, Singapore
| |
Collapse
|
50
|
Garbuzenko DV, Belov DV. Non-alcoholic fatty liver disease as an independent factor of cardiometabolic risk of cardiovascular diseases. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021. [DOI: 10.31146/1682-8658-ecg-194-10-22-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a pressing public health problem affecting up to a third of the world's adult population. The main reasons for its high mortality rate are cardiovascular diseases. They are caused by subclinical atherosclerosis characteristic of NAFLD, venous thromboembolic complications, functional and structural myocardial disorders, calcification of heart valves, heart rhythm and conduction disturbances. At the same time, NAFLD can serve as an independent factor of the cardiometabolic risk of their development, which is associated with atherogenic dyslipidemia, as well as the release of numerous pro-inflammatory mediators both from the pathologically altered liver and as a result of systemic endotoxemia, which is the result of disturbance of the intestinal microbiota, accompanied by a decrease in intestinal microbial gene richness., a change in its composition and function, followed by bacterial translocation. Considering that most patients with NAFLD die from cardiovascular complications, it becomes obvious that exclusively “liver-oriented” principles of their treatment cannot be sufficient, but require a multidisciplinary team approach involving cardiologists, cardiac surgeons and doctors of other related specialties.
Collapse
|