1
|
Markovic J, Li R, Khanal R, Peng Q, Möbus S, Yuan Q, Engel B, Taubert R, Vondran FWR, Bantel H, Singh MK, Cantz T, Büning H, Wedemeyer H, Ott M, Balakrishnan A, Sharma AD. Identification and functional validation of miR-190b-5p and miR-296-3p as novel therapeutic attenuators of liver fibrosis. J Hepatol 2025; 82:301-314. [PMID: 39218230 DOI: 10.1016/j.jhep.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Liver fibrosis and its end-stage form cirrhosis contribute to millions of deaths annually. The lack of robust antifibrotic molecules is in part attributed to the absence of any functional screens to identify molecular regulators using patient-derived primary human hepatic myofibroblasts, which are key drivers of fibrosis. METHODS Here, to identify robust regulators of fibrosis, we performed functional microRNA screenings in primary human hepatic myofibroblasts followed by in vivo validation in three independent mouse models of fibrosis (toxin, cholestasis and MASH). RESULTS We identified miR-190b-5p and miR-296-3p as robust antifibrotic miRNAs that suppress liver fibrosis. Notably, the expression of miR-190b-5p and miR-296-3p was found to be significantly reduced in human livers with fibrosis. Mechanistically, we discovered hyaluronan synthase 2 (HAS2) and integrin alpha-6 (ITGA6) as novel targets of miR-190b-5p and miR-296-3p, respectively. Furthermore, we demonstrated that the antifibrotic properties of miR-190b-5p and miR-296-3p are, at least in part, dependent on HAS2 and ITGA6. Finally, we showed the antifibrotic function of both miRNAs in a human liver bud model, which mimics multiple features of the human liver. CONCLUSIONS Collectively, in our study we discovered miR-190b-5p and miR-296-3p as two novel antifibrotic miRNAs, and that HAS2 and ITGA6 contribute to miR-190b-5p- and miR-296-3p-mediated inhibition of liver fibrosis. These results provide a foundation for future research to explore the clinical utility of miR-190b-5p and miR-296-3p in fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis and cirrhosis contribute to millions of deaths worldwide and remain unmet medical needs. In this study, we discovered two microRNAs, miR-190b-5p and miR-296-3p, which suppress liver fibrosis in preclinical mouse models and a human liver bud model. Our promising results encourage further studies that aim to develop both miRNAs for the treatment of liver fibrosis in patients.
Collapse
Affiliation(s)
- Jovana Markovic
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ruomeng Li
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qi Peng
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Selina Möbus
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Office 08-15, Singapore 169857, Singapore
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Dong Z, Wang Y, Jin W. Liver cirrhosis: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e721. [PMID: 39290252 PMCID: PMC11406049 DOI: 10.1002/mco2.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cirrhosis is the end-stage of chronic liver disease, characterized by inflammation, necrosis, advanced fibrosis, and regenerative nodule formation. Long-term inflammation can cause continuous damage to liver tissues and hepatocytes, along with increased vascular tone and portal hypertension. Among them, fibrosis is the necessary stage and essential feature of liver cirrhosis, and effective antifibrosis strategies are commonly considered the key to treating liver cirrhosis. Although different therapeutic strategies aimed at reversing or preventing fibrosis have been developed, the effects have not be more satisfactory. In this review, we discussed abnormal changes in the liver microenvironment that contribute to the progression of liver cirrhosis and highlighted the importance of recent therapeutic strategies, including lifestyle improvement, small molecular agents, traditional Chinese medicine, stem cells, extracellular vesicles, and gut remediation, that regulate liver fibrosis and liver cirrhosis. Meanwhile, therapeutic strategies for nanoparticles are discussed, as are their possible underlying broad application and prospects for ameliorating liver cirrhosis. Finally, we also reviewed the major challenges and opportunities of nanomedicine‒biological environment interactions. We hope this review will provide insights into the pathogenesis and molecular mechanisms of liver cirrhosis, thus facilitating new methods, drug discovery, and better treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Yeying Wang
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Weilin Jin
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| |
Collapse
|
3
|
Sutradhar PR, Sultana N, Nessa A. miRNA-221: A Potential Biomarker of Progressive Liver Injury in Chronic Liver Disease (CLD) due to Hepatitis B Virus (HBV) and Nonalcoholic Fatty Liver Disease (NAFLD). Int J Hepatol 2024; 2024:4221368. [PMID: 39185365 PMCID: PMC11343628 DOI: 10.1155/2024/4221368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Background: Early detection of progressive liver damage in chronic liver disease (CLD) patients is crucial for better treatment response. Several studies have shown the association of microRNA (miRNA) in the progression of CLD in regulating cell proliferation, fibrosis, and apoptosis as well as in carcinogenesis. Objectives: The study was aimed at determining the expression of miRNA-221 among different stages of fibrosis in CLD patients due to hepatitis B virus (HBV) and nonalcoholic fatty liver disease (NAFLD) and thus evaluate its role as an early biomarker in CLD. Methods: A total of 100 participants (75 CLD patients and 25 healthy control) were recruited in this cross-sectional study and divided into four groups, of which 25 as healthy control, 25 in CLD without fibrosis, 25 were CLD with fibrosis, and 25 were CLD with cirrhosis. Total RNA was extracted from plasma followed by cDNA synthesis, and finally, the expression of miRNA-221 was analyzed for its diagnostic potential as a single biomarker using the qRT-PCR method. Results: The plasma level of miRNA-221 was significantly upregulated in different fibrosis stages of CLD (p < 0.05), and this upregulation was positively correlated with the progression of fibrosis (p < 0.05). Significantly increased expression of miRNA-221 was found in NAFLD patients compared to HBV patients in the CLD without fibrosis patient group (p < 0.05), while expression of miRNA-221 was significantly upregulated among HBV patients in the CLD with the fibrosis group. miRNA-221 showed high diagnostic accuracy in discriminating different stages of fibrosis from healthy control (p < 0.05). Conclusion: miRNA-221 may be used as a potential plasma biomarker for early prediction of fibrosis progression in CLD patients.
Collapse
Affiliation(s)
- Parthana Rani Sutradhar
- Department of MicrobiologySher-E-Bangla Medical College (SBMC), Barishal, Bangladesh
- Department of VirologyBangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Nahida Sultana
- Department of VirologyBangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Afzalun Nessa
- Department of VirologyBangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| |
Collapse
|
4
|
He L, Xu J, Huang P, Bai Y, Chen H, Xu X, Hu Y, Liu J, Zhang H. miR-9-5p and miR-221-3p Promote Human Mesenchymal Stem Cells to Alleviate Carbon Tetrachloride-Induced Liver Injury by Enhancing Human Mesenchymal Stem Cell Engraftment and Inhibiting Hepatic Stellate Cell Activation. Int J Mol Sci 2024; 25:7235. [PMID: 39000343 PMCID: PMC11241704 DOI: 10.3390/ijms25137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-β, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China; (L.H.); (J.X.)
| |
Collapse
|
5
|
El Hayek T, Alnaser-Almusa OA, Alsalameh SM, Alhalabi MT, Sabbah AN, Alshehri EA, Mir TA, Mani NK, Al-Kattan K, Chinnappan R, Yaqinuddin A. Emerging role of exosomal microRNA in liver cancer in the era of precision medicine; potential and challenges. Front Mol Biosci 2024; 11:1381789. [PMID: 38993840 PMCID: PMC11236732 DOI: 10.3389/fmolb.2024.1381789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomal microRNAs (miRNAs) have great potential in the fight against hepatocellular carcinoma (HCC), the fourth most common cause of cancer-related death worldwide. In this study, we explored the various applications of these small molecules while analyzing their complex roles in tumor development, metastasis, and changes in the tumor microenvironment. We also discussed the complex interactions that exist between exosomal miRNAs and other non-coding RNAs such as circular RNAs, and show how these interactions coordinate important biochemical pathways that propel the development of HCC. The possibility of targeting exosomal miRNAs for therapeutic intervention is paramount, even beyond their mechanistic significance. We also highlighted their growing potential as cutting-edge biomarkers that could lead to tailored treatment plans by enabling early identification, precise prognosis, and real-time treatment response monitoring. This thorough analysis revealed an intricate network of exosomal miRNAs lead to HCC progression. Finally, strategies for purification and isolation of exosomes and advanced biosensing techniques for detection of exosomal miRNAs are also discussed. Overall, this comprehensive review sheds light on the complex web of exosomal miRNAs in HCC, offering valuable insights for future advancements in diagnosis, prognosis, and ultimately, improved outcomes for patients battling this deadly disease.
Collapse
Affiliation(s)
- Tarek El Hayek
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | | | | | - Eman Abdullah Alshehri
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Naresh Kumar Mani
- Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Lung Health Center Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Chuecos MA, Lagor WR. Liver directed adeno-associated viral vectors to treat metabolic disease. J Inherit Metab Dis 2024; 47:22-40. [PMID: 37254440 PMCID: PMC10687323 DOI: 10.1002/jimd.12637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
The liver is the metabolic center of the body and an ideal target for gene therapy of inherited metabolic disorders (IMDs). Adeno-associated viral (AAV) vectors can deliver transgenes to the liver with high efficiency and specificity and a favorable safety profile. Recombinant AAV vectors contain only the transgene cassette, and their payload is converted to non-integrating circular double-stranded DNA episomes, which can provide stable expression from months to years. Insights from cellular studies and preclinical animal models have provided valuable information about AAV capsid serotypes with a high liver tropism. These vectors have been applied successfully in the clinic, particularly in trials for hemophilia, resulting in the first approved liver-directed gene therapy. Lessons from ongoing clinical trials have identified key factors affecting efficacy and safety that were not readily apparent in animal models. Circumventing pre-existing neutralizing antibodies to the AAV capsid, and mitigating adaptive immune responses to transduced cells are critical to achieving therapeutic benefit. Combining the high efficiency of AAV delivery with genome editing is a promising path to achieve more precise control of gene expression. The primary safety concern for liver gene therapy with AAV continues to be the small risk of tumorigenesis from rare vector integrations. Hepatotoxicity is a key consideration in the safety of neuromuscular gene therapies which are applied at substantially higher doses. The current knowledge base and toolkit for AAV is well developed, and poised to correct some of the most severe IMDs with liver-directed gene therapy.
Collapse
Affiliation(s)
- Marcel A. Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
7
|
Li X, Yu M, Zhao Q, Yu Y. Prospective therapeutics for intestinal and hepatic fibrosis. Bioeng Transl Med 2023; 8:e10579. [PMID: 38023697 PMCID: PMC10658571 DOI: 10.1002/btm2.10579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Currently, there are no effective therapies for intestinal and hepatic fibrosis representing a considerable unmet need. Breakthroughs in pathogenesis have accelerated the development of anti-fibrotic therapeutics in recent years. Particularly, with the development of nanotechnology, the harsh environment of the gastrointestinal tract and inaccessible microenvironment of fibrotic lesions seem to be no longer considered a great barrier to the use of anti-fibrotic drugs. In this review, we comprehensively summarize recent preclinical and clinical studies on intestinal and hepatic fibrosis. It is found that the targets for preclinical studies on intestinal fibrosis is varied, which could be divided into molecular, cellular, and tissues level, although little clinical trials are ongoing. Liver fibrosis clinical trials have focused on improving metabolic disorders, preventing the activation and proliferation of hepatic stellate cells, promoting the degradation of collagen, and reducing inflammation and cell death. At the preclinical stage, the therapeutic strategies have focused on drug targets and delivery systems. At last, promising remedies to the current challenges are based on multi-modal synergistic and targeted delivery therapies through mesenchymal stem cells, nanotechnology, and gut-liver axis providing useful insights into anti-fibrotic strategies for clinical use.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Mengli Yu
- Department of Gastroenterology, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Yu
- College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
8
|
Sani F, Sani M, Moayedfard Z, Darayee M, Tayebi L, Azarpira N. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases. Stem Cell Res Ther 2023; 14:138. [PMID: 37226279 DOI: 10.1186/s13287-023-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Liver damage caused by toxicity can lead to various severe conditions, such as acute liver failure (ALF), fibrogenesis, and cirrhosis. Among these, liver cirrhosis (LC) is recognized as the leading cause of liver-related deaths globally. Unfortunately, patients with progressive cirrhosis are often on a waiting list, with limited donor organs, postoperative complications, immune system side effects, and high financial costs being some of the factors restricting transplantation. Although the liver has some capacity for self-renewal due to the presence of stem cells, it is usually insufficient to prevent the progression of LC and ALF. One potential therapeutic approach to improving liver function is the transplantation of gene-engineered stem cells. Several types of mesenchymal stem cells from various sources have been suggested for stem cell therapy for liver disease. Genetic engineering is an effective strategy that enhances the regenerative potential of stem cells by releasing growth factors and cytokines. In this review, we primarily focus on the genetic engineering of stem cells to improve their ability to treat damaged liver function. We also recommend further research into accurate treatment methods that involve safe gene modification and long-term follow-up of patients to increase the effectiveness and reliability of these therapeutic strategies.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darayee
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
9
|
Efremova NA, Greshnyakova VA, Goryacheva LG. Modern concepts on pathogenetic mechanisms of liver fibrosis. JOURNAL INFECTOLOGY 2023; 15:16-24. [DOI: 10.22625/2072-6732-2023-15-1-16-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- N. A. Efremova
- Pediatric Research and Clinical Center for Infectious Diseases
| | | | | |
Collapse
|
10
|
Abdel Halim AS, Rudayni HA, Chaudhary AA, Ali MAM. MicroRNAs: Small molecules with big impacts in liver injury. J Cell Physiol 2023; 238:32-69. [PMID: 36317692 DOI: 10.1002/jcp.30908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
You Y, Gao C, Wu J, Qu H, Xiao Y, Kang Z, Li J, Hong J. Enhanced Expression of ARK5 in Hepatic Stellate Cell and Hepatocyte Synergistically Promote Liver Fibrosis. Int J Mol Sci 2022; 23:ijms232113084. [PMID: 36361872 PMCID: PMC9655442 DOI: 10.3390/ijms232113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
AMPK-related protein kinase 5 (ARK5) is involved in a broad spectrum of physiological and cell events, and aberrant expression of ARK5 has been observed in a wide variety of solid tumors, including liver cancer. However, the role of ARK5 in liver fibrosis remains largely unexplored. We found that ARK5 expression was elevated in mouse fibrotic livers, and showed a positive correlation with the progression of liver fibrosis. ARK5 was highly expressed not only in activated hepatic stellate cells (HSCs), but also in hepatocytes. In HSCs, ARK5 prevents the degradation of transforming growth factor β type I receptor (TβRI) and mothers against decapentaplegic homolog 4 (Smad4) proteins by inhibiting the expression of Smad ubiquitin regulatory factor 2 (Smurf2), thus maintaining the continuous transduction of the transforming growth factor β (TGF-β) signaling pathway, which is essential for cell activation, proliferation and survival. In hepatocytes, ARK5 induces the occurrence of epithelial-mesenchymal transition (EMT), and also promotes the secretion of inflammatory factors. Inflammatory factors, in turn, further enhance the activation of HSCs and deepen the degree of liver fibrosis. Notably, we demonstrated in a mouse model that targeting ARK5 with the selective inhibitor HTH-01-015 attenuates CCl4-induced liver fibrosis in mice. Taken together, the results indicate that ARK5 is a critical driver of liver fibrosis, and promotes liver fibrosis by synergy between HSCs and hepatocytes.
Collapse
Affiliation(s)
- Yang You
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Junru Wu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Hengdong Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ziwei Kang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Correspondence: ; Tel.: +86-20-8522-0253
| |
Collapse
|
12
|
Bu FT, Jia PC, Zhu Y, Yang YR, Meng HW, Bi YH, Huang C, Li J. Emerging therapeutic potential of adeno-associated virus-mediated gene therapy in liver fibrosis. Mol Ther Methods Clin Dev 2022; 26:191-206. [PMID: 35859692 PMCID: PMC9271983 DOI: 10.1016/j.omtm.2022.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Liver fibrosis is a wound-healing response that results from various chronic damages. If the causes of damage are not removed or effective treatments are not given in a timely manner, it will progress to cirrhosis, even liver cancer. Currently, there are no specific medical therapies for liver fibrosis. Adeno-associated virus (AAV)-mediated gene therapy, one of the frontiers of modern medicine, has gained more attention in many fields due to its high safety profile, low immunogenicity, long-term efficacy in mediating gene expression, and increasingly known tropism. Notably, increasing evidence suggests a promising therapeutic potential for AAV-mediated gene therapy in different liver fibrosis models, which helps to correct abnormally changed target genes in the process of fibrosis and improve liver fibrosis at the molecular level. Moreover, the addition of cell-specific promoters to the genome of recombinant AAV helps to limit gene expression in specific cells, thereby producing better therapeutic efficacy in liver fibrosis. However, animal models are considered to be powerless predictive of tissue tropism, immunogenicity, and genotoxic risks in humans. Thus, AAV-mediated gene therapy will face many challenges. This review systemically summarizes the recent advances of AAV-mediated gene therapy in liver fibrosis, especially focusing on cellular and molecular mechanisms of transferred genes, and presents prospective challenges.
Collapse
Affiliation(s)
- Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya-Ru Yang
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Wu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yi-Hui Bi
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui Province 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Interplays of liver fibrosis-associated microRNAs: Molecular mechanisms and implications in diagnosis and therapy. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Feng Y, Li Y, Xu M, Meng H, Dai C, Yao Z, Lin N. Bone marrow mesenchymal stem cells inhibit hepatic fibrosis via the AABR07028795.2/rno-miR-667-5p axis. Stem Cell Res Ther 2022; 13:375. [PMID: 35902883 PMCID: PMC9331515 DOI: 10.1186/s13287-022-03069-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background The mechanism of bone marrow mesenchymal stem cells (BMSCs) in treating hepatic fibrosis remains unclear. Methods TGF-β1-induced hepatic stellate cell (HSC)-T6 and CCl4-induced hepatic fibrosis rats were treated with BMSCs. HSC-T6 cell activity was determined using the cell counting kit-8 assay, and the histology change was evaluated using hematoxylin and eosin and Masson staining. The expression of fibrosis markers was determined using real-time quantitative PCR, Western blotting, and immunocytochemistry. RNA sequencing (RNA-seq) was used to screen the lncRNAs involved in the effect of BMSCs in fibrosis, and the function of fibrosis-associated lncRNA in fibrosis histology change and fibrosis marker expression was investigated. The potential miRNA target of lncRNA was predicted using R software. The interaction between lncRNA and miRNA was verified using luciferase report system and RNA immunoprecipitation (RIP) in 293T and HSC-T6 cells. Results BMSC attenuated TGF-β1-induced HSC-T6 activation and suppressed the expression of fibrosis-associated gene (MMP2, Collagen I, and αSMA) expression at the transcription and translation levels. BMSC treatment also improves hepatic fibrosis in rats with CCl4-induced fibrosis by decreasing the expression of fibrosis-associated genes and suppressing collagen deposition in the liver. RNA-seq revealed that AABR07028795.2 (lnc-BIHAA1) was downregulated in the TGF-β1-induced HSC-T6 after treatment with BMSCs as compared with those in TGF-β1-induced HSC-T6, and subsequently, functional analysis showed that lnc-BIHAA1 plays a beneficial role in suppressing hepatic fibrosis. Luciferase activity assay and RIP revealed that lnc-BIHAA1 interacted with the miRNA, rno-miR-667-5p, functioning as a fibrosis phenotype suppressor in TGF-β1-induced HSC-T6. Moreover, overexpression of rno-miR-667-5p significantly reverses the effect of lnc-BIHAA1 on HSC-T6. Conclusions BMSC treatment suppresses hepatic fibrosis by downregulating the lnc-BIHAA1/rno-miR-667-5p signaling pathway in HSCs. Our results provide a scientific basis for establishing BMSCs as a biological treatment method for liver fibrosis.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Cao Dai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
15
|
Gao TH, Liao W, Lin LT, Zhu ZP, Lu MG, Fu CM, Xie T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154090. [PMID: 35580439 DOI: 10.1016/j.phymed.2022.154090] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatobiliary disease currently serves as an urgent health issue in public due to health-modulating factors such as extension of life expectancy, increasingly sedentary lifestyles and over-nutrition. A definite treatment remains lacking owing to different stages of the disease itself and its intricate pathogenesis. Traditional Chinese medicine (TCM) has been gradually popularized in clinic with the satisfactory efficacy and good safety. Curcumae Rhizoma (called E Zhu, EZ in Chinese) is a representative herb, which has been used to treat hepatobiliary disease for thousands of years. PURPOSE To systematically summarize the recent research advances on the pharmacological activities of EZ and its constituents, explain the underlying mechanisms of preventing and treating hepatobiliary diseases, and assess the shortcomings of existing work. Besides, ethnopharmacology, phytochemicals, and toxicology of EZ have been researched. METHODS The information about EZ was collected from various sources including classic books about Chinese herbal medicine, and scientific databases including Web of Science, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, CSTJ, and WANFANG using keywords given below and terms like pharmacological and phytochemical details of this plant. RESULTS The chemical constituents isolated and identified from EZ, such as terpenoids including β-elemene, furanodiene, germacrone, etc. and curcuminoids including curcumin, demethoxycurcumin, bisdemethoxycurcumin, etc. prove to have hepatoprotective effect, anti-liver fibrotic effect, anti-fatty liver effect, anti-liver neoplastic effect, and cholagogic effect through TGF-β1/Smad, JNK1/2-ROS, NF-κB and other anti-inflammatory and antioxidant signaling pathways. Also, EZ is often combined with other Chinese herbs in the treatment of hepatobiliary diseases with good clinical efficacy and no obvious adverse reactions. CONCLUSION It provides a preclinical basis for the efficacy of EZ as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases. Even so, the further studies still needed to alleviate hepatotoxicity and expand clinical application.
Collapse
Affiliation(s)
- Tian-Hui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Ting Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei-Gui Lu
- Huachiew TCM Hospital, Bangkok 10100, Thailand
| | - Chao-Mei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
16
|
Zhou K, Yin F, Li Y, Ma C, Liu P, Xin Z, Ren R, Wei S, Khan M, Wang H, Zhang H. MicroRNA-29b ameliorates hepatic inflammation via suppression of STAT3 in alcohol-associated liver disease. Alcohol 2022; 99:9-22. [PMID: 34688828 DOI: 10.1016/j.alcohol.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Alcohol-associated liver disease (ALD) is induced by chronic excessive alcohol consumption resulting in the clinical manifestations of steatosis, inflammation, and cirrhosis. MicroRNA-29b (miR-29b) is mainly expressed in hepatic nonparenchymal cells, and its expression level varies in different diseases. In this study, we aimed to determine the role of miR-29b in a mouse model of alcohol-associated liver disease. Wild-type (WT) and miR-29b knockout (miR-29b-/-) mice were fed a Lieber-DeCarli liquid diet containing 5% alcohol for 10 days, followed by gavage of a single dose of ethanol (5 g/kg body weight). Histology, immunoblotting, and biochemical analyses were then conducted for comparison. miR-29b expression was decreased in the livers of chronic-plus-binge ethanol-fed mice. Further analysis revealed that alcohol exposure exacerbated hepatic injury by significantly increasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, with decreased survival rates for miR-29b-/- mice. Results from the luciferase assay indicated that miR-29b negatively regulated the signal transducer and activator of transcription 3 (STAT3). Depletion of miR-29b led to an increase in STAT3 and more noticeable inflammation in the liver, whereas overexpression of miR-29b downregulated STAT3 and proinflammatory cytokine expression in primary mouse peritoneal macrophages. Taken together, these results demonstrate a novel association between miR-29b and ALD. miR-29b plays a hepatoprotective role in alcohol-induced inflammation and liver injury by targeting STAT3.
Collapse
|
17
|
Song M, Yang C. MiRNAs in liver fibrosis: new targets and opportunities for therapy. Microrna 2022:363-372. [DOI: 10.1016/b978-0-323-89774-7.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Li Y, Liu P, Wei F. Long non‑coding RNA MBI‑52 inhibits the development of liver fibrosis by regulating the microRNA‑466g/SMAD4 signaling pathway. Mol Med Rep 2021; 25:33. [PMID: 34850963 PMCID: PMC8669687 DOI: 10.3892/mmr.2021.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis is a wound healing response triggered by liver injury. In severe cases, it may develop into liver cirrhosis, liver cancer and liver failure. Long non-coding RNAs (lncRNAs) play key roles in the development of liver fibrosis. The present study aimed to investigate the role of lncRNA-MBI-52 (lnc-MBI-52) in the progression of liver fibrosis. Carbon tetrachloride (CCl4)-induced injury was performed to establish a mouse liver fibrosis model, and exogenous transforming growth factor-β1 was used to establish a hepatic stellate cell (HSC) activation model. Reverse transcription-quantitative PCR and western blot analyses were performed to detect mRNA and protein expression, respectively. RNA pull-down assay was performed to assess the interaction between microRNA (miR)-466g and lnc-MBI-52 or SMAD4. Dual-luciferase reporter assay was performed to verify the target of miR-466g. lnc-MBI-52 was overexpressed in CCl4-induced mouse liver fibrosis models and activated HSCs. lnc-MBI-52 knockdown suppressed liver fibrosis in vitro. Moreover, knockdown of lnc-MBI-52 downregulated α-smooth muscle actin and collagen type I expression. In addition, lnc-MBI-52 and SMAD4 were identified as targets of miR-466g. The effects of lnc-MBI-52 on HSC activation were reversed following transfection with miR-466g mimics or SMAD4 knockdown. lnc-MBI-52 miR-466g significantly decreased lnc-MBI-52 expression, while overexpression of lnc-MBI-52 suppressed miR-466g expression. The results of the RNA pull-down assay confirmed the interaction between miR-466g and lnc-MBI-52. Taken together, lnc-MBI-52 induced liver fibrosis by regulating the miR-466g/SMAD4 axis, which may provide a new possible strategy for liver fibrosis.
Collapse
Affiliation(s)
- Yazhou Li
- Department of Pain Intervention, Baoji High‑tech People's Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Peixiao Liu
- Department of Cardiopulmonary Rehabilitation, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Feipeng Wei
- Department of Interventional Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
19
|
Zhang Z, Ji Z, He J, Lu Y, Tian W, Zheng C, Chen H, Zhang Q, Yang F, Zhang M, Yin Y, Jiang R, Chu WM, Zhang W, Sun B. Guanine Nucleotide-Binding Protein G(i) Subunit Alpha 2 Exacerbates NASH Progression by Regulating Peroxiredoxin 1-Related Inflammation and Lipophagy. Hepatology 2021; 74:3110-3126. [PMID: 34322898 DOI: 10.1002/hep.32078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS NASH is an advanced stage of liver disease accompanied by lipid accumulation, inflammation, and liver fibrosis. Guanine nucleotide-binding protein G(i) subunit alpha-2 (GNAI2) is a member of the "inhibitory" class of α-subunits, and recent studies showed that Gnai2 deficiency is known to cause reduced weight in mice. However, the role of GNAI2 in hepatocytes, particularly in the context of liver inflammation and lipid metabolism, remains to be elucidated. Herein, we aim to ascertain the function of GNAI2 in hepatocytes and its impact on the development of NASH. APPROACH AND RESULTS Human liver tissues were obtained from NASH patients and healthy persons to evaluate the expression and clinical relevance of GNAI2. In addition, hepatocyte-specific Gnai2-deficient mice (Gnai2hep-/- ) were fed either a Western diet supplemented with fructose in drinking water (WDF) for 16 weeks or a methionine/choline-deficient diet (MCD) for 6 weeks to investigate the regulatory role and underlying mechanism of Gnai2 in NASH. GNAI2 was significantly up-regulated in liver tissues of patients with NASH. Following feeding with WDF or MCD diets, livers from Gnai2hep-/- mice had reduced steatohepatitis with suppression of markers of inflammation and an increase in lipophagy compared to Gnai2flox/flox mice. Toll-like receptor 4 signals through nuclear factor kappa B to trigger p65-dependent transcription of Gnai2. Intriguingly, immunoprecipitation, immunofluorescence, and mass spectrometry identified peroxiredoxin 1 (PRDX1) as a binding partner of GNAI2. Moreover, the function of PRDX1 in the suppression of TNF receptor-associated factor 6 ubiquitin-ligase activity and glycerophosphodiester phosphodiesterase domain-containing 5-related phosphatidylcholine metabolism was inhibited by GNAI2. Suppression of GNAI2 combined with overexpression of PRDX1 reversed the development of steatosis and fibrosis in vivo. CONCLUSIONS GNAI2 is a major regulator that leads to the development of NASH. Thus, inhibition of GNAI2 could be an effective therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
- Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zetao Ji
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo He
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang Zheng
- Medical School of Nanjing University, Nanjing, China
| | - Huihui Chen
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Quan Zhang
- Medical School of Nanjing University, Nanjing, China
| | - Fei Yang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minglu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Wen-Ming Chu
- Manoa Institute for Life Science and Cancer, Honolulu, HI, USA
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
21
|
You H, Wang L, Bu F, Meng H, Pan X, Li J, Zhang Y, Wang A, Yin N, Huang C, Li J. The miR-455-3p/HDAC2 axis plays a pivotal role in the progression and reversal of liver fibrosis and is regulated by epigenetics. FASEB J 2021; 35:e21700. [PMID: 34105828 DOI: 10.1096/fj.202002319rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022]
Abstract
Histone deacetylases (HDACs), especially HDAC2, play a role in alleviating liver fibrosis; however, the specific upstream regulation mechanism is unknown. Herein, TargetScan was used to predict the potential upstream targets of HDAC2, and the role of miR-455-3p was explored. The dual luciferase reporter assay showed that miR-455-3p binds to the 3' UTR of HDAC2 mRNA. Additionally, miR-455-3p was downregulated in the liver tissues of patients with cirrhosis and mice with liver fibrosis, as well as in primary HSCs isolated from fibrotic mouse livers and TGF-β-treated LX-2 cells. In contrast, it is highly expressed in the reversal stage of hepatic fibrosis and MDI-cultured LX-2 cells. Our functional analyses showed that miR-455-3p overexpression facilitated apoptosis and reduced the expression of pro-fibrotic markers and the proliferation of activated LX-2 cells. On the contrary, miR-455-3p inhibition converted inactivated LX-2 cells into activated, proliferative, fibrogenic cells. Interestingly, restoration of HDAC2 expression partially blocked the function of miR-455-3p. Downregulated miR-455-3p expression can be restored by DNA methyltransferases in activated LX-2 cells. Methylation-specific PCR, bisulfite sequencing PCR, and chromatin immunoprecipitation assays indicated that the methylation level of miR-455-3p promoter CpG islands was elevated in TGF-β-treated LX-2 cells and that miR-455-3p was downregulated in activated LX-2 cells by DNA hypermethylation, which is mediated by DNMT3b and DNMT1. In conclusion, miR-455-3p acts as a liver fibrosis suppressor by targeting HDAC2, and its deficiency further aggravates the reversal phase of fibrosis. Thus, the epigenetics mediated miR-455-3p/HDAC2 axis may serve as a novel potential therapeutic target for clinical treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Hongmei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fangtian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xueyin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juanjuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yafei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Nana Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021; 17:1851-1863. [PMID: 33994867 PMCID: PMC8120467 DOI: 10.7150/ijbs.59588] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
23
|
Zhang B, Chen G, Yang X, Fan T, Chen X, Chen Z. Dysregulation of MicroRNAs in Hypertrophy and Ossification of Ligamentum Flavum: New Advances, Challenges, and Potential Directions. Front Genet 2021; 12:641575. [PMID: 33912216 PMCID: PMC8075056 DOI: 10.3389/fgene.2021.641575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pathological changes in the ligamentum flavum (LF) can be defined as a process of chronic progressive aberrations in the nature and structure of ligamentous tissues characterized by increased thickness, reduced elasticity, local calcification, or aggravated ossification, which may cause severe myelopathy, radiculopathy, or both. Hypertrophy of ligamentum flavum (HLF) and ossification of ligamentum flavum (OLF) are clinically common entities. Though accumulated evidence has indicated both genetic and environmental factors could contribute to the initiation and progression of HLF/OLF, the definite pathogenesis remains fully unclear. MicroRNAs (miRNAs), one of the important epigenetic modifications, are short single-stranded RNA molecules that regulate protein-coding gene expression at posttranscriptional level, which can disclose the mechanism underlying diseases, identify valuable biomarkers, and explore potential therapeutic targets. Considering that miRNAs play a central role in regulating gene expression, we summarized current studies from the point of view of miRNA-related molecular regulation networks in HLF/OLF. Exploratory studies revealed a variety of miRNA expression profiles and identified a battery of upregulated and downregulated miRNAs in OLF/HLF patients through microarray datasets or transcriptome sequencing. Experimental studies validated the roles of specific miRNAs (e.g., miR-132-3p, miR-199b-5p in OLF, miR-155, and miR-21 in HLF) in regulating fibrosis or osteogenesis differentiation of LF cells and related target genes or molecular signaling pathways. Finally, we discussed the perspectives and challenges of miRNA-based molecular mechanism, diagnostic biomarkers, and therapeutic targets of HLF/OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xiaoxi Yang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xi Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| |
Collapse
|
24
|
Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021; 70:784-795. [PMID: 33127832 DOI: 10.1136/gutjnl-2020-322526] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding to specific mRNA targets and promoting their degradation and/or translational inhibition. miRNAs regulate both physiological and pathological liver functions. Altered expression of miRNAs is associated with liver metabolism dysregulation, liver injury, liver fibrosis and tumour development, making miRNAs attractive therapeutic strategies for the diagnosis and treatment of liver diseases. Here, we review recent advances regarding the regulation and function of miRNAs in liver diseases with a major focus on miRNAs that are specifically expressed or enriched in hepatocytes (miR-122, miR-194/192), neutrophils (miR-223), hepatic stellate cells (miR-29), immune cells (miR-155) and in circulation (miR-21). The functions and target genes of these miRNAs are emphasised in alcohol-associated liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis and hepatocellular carcinoma, as well liver fibrosis and liver failure. We touch on the roles of miRNAs in intercellular communication between hepatocytes and other types of cells via extracellular vesicles in the pathogenesis of liver diseases. We provide perspective on the application of miRNAs as biomarkers for early diagnosis, prognosis and assessment of liver diseases and discuss the challenges in miRNA-based therapy for liver diseases. Further investigation of miRNAs in the liver will help us better understand the pathogeneses of liver diseases and may identify biomarkers and therapeutic targets for liver diseases in the future.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Kiseleva YV, Zharikov YO, Maslennikov RV, Pavlov CS, Nikolenko VN. [Molecular factors associated with regression of liver fibrosis of alcoholic etiology]. TERAPEVT ARKH 2021; 93:204-208. [PMID: 36286638 DOI: 10.26442/00403660.2021.02.200617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Liver fibrosis develops as a result of chronic liver damage of various etiologies, is characterized by excessive synthesis of connective tissue by activated stellate liver cells. The toxic effect of alcohol is one of the most significant and common etiological factors worldwide. Stellate cell activation results from the interaction of multiple molecular fibrogenic pathways triggered by intracellular and extracellular, hepatic and extrahepatic stimuli. Data analysis showed that knowledge about these abnormal pathways and biomolecular processes may further contribute to the improvement of approaches to assessment of disease prognosis and treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Y V Kiseleva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - Y O Zharikov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - R V Maslennikov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - C S Pavlov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University)
- Lomonosov Moscow State University
| |
Collapse
|
26
|
Xue J, Xiao T, Wei S, Sun J, Zou Z, Shi M, Sun Q, Dai X, Wu L, Li J, Xia H, Tang H, Zhang A, Liu Q. miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells. J Cell Physiol 2021; 236:6025-6041. [PMID: 33481270 DOI: 10.1002/jcp.30288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Arsenicosis induced by chronic exposure to arsenic is recognized as one of the main damaging effects on public health. Exposure to arsenic can cause hepatic fibrosis, but the molecular mechanisms by which this occurs are complex and elusive. It is not known if miRNAs are involved in arsenic-induced liver fibrosis. We found that in the livers of mice exposed to arsenite, there were elevated levels of microRNA-21 (miR-21), phosphorylated mammalian target of rapamycin (p-mTOR), and arginase 1 (Arg1); low levels of phosphatase and tensin homolog (PTEN); and more extensive liver fibrosis. For cultured cells, arsenite-induced miR-21, p-mTOR, and Arg1; decreased PTEN; and promoted M2 polarization of macrophages derived from THP-1 monocytes (THP-M), which caused secretion of fibrogenic cytokines, including transforming growth factor-β1. Coculture of arsenite-treated, THP-M with LX-2 cells induced α-SMA and collagen I in the LX-2 cells and resulted in the activation of these cells. Downregulation of miR-21 in THP-M inhibited arsenite-induced M2 polarization and activation of LX-2 cells, but cotransfection with PTEN siRNA or a miR-21 inhibitor reversed this inhibition. Moreover, knockout of miR-21 in mice attenuated liver fibrosis and M2 polarization compared with WT mice exposed to arsenite. Additionally, LN, PCIII, and HA levels were higher in patients with higher hair arsenic levels, and levels of miR-21 were higher than controls and positively correlated with PCIII, LN, and HA levels. Thus, arsenite induces the M2 polarization of macrophages via miR-21 regulation of PTEN, which is involved in the activation of hepatic stellate cells and hepatic fibrosis. The results establish a previously unknown mechanism for arsenicosis-induced fibrosis.
Collapse
Affiliation(s)
- Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qian Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Elucidating the Mechanisms of Hugan Buzure Granule in the Treatment of Liver Fibrosis via Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020. [DOI: 10.1155/2020/8385706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective. To holistically explore the latent active ingredients, targets, and related mechanisms of Hugan buzure granule (HBG) in the treatment of liver fibrosis (LF) via network pharmacology. Methods. First, we collected the ingredients of HBG by referring the TCMSP server and literature and filtered the active ingredients though the criteria of oral bioavailability ≥30% and drug-likeness index ≥0.18. Second, herb-associated targets were predicted and screened based on the BATMAN-TCM and SwissTargetPrediction platforms. Candidate targets related to LF were collected from the GeneCards and OMIM databases. Furthermore, the overlapping target genes were used to construct the protein-protein interaction network and “drug-compound-target-disease” network. Third, GO and KEGG pathway analyses were carried out to illustrate the latent mechanisms of HBG in the treatment of LF. Finally, the combining activities of hub targets with active ingredients were further verified based on software AutoDock Vina. Results. A total of 25 active ingredients and 115 overlapping target genes of HBG and LF were collected. Besides, GO enrichment analysis exhibited that the overlapping target genes were involved in DNA-binding transcription activator activity, RNA polymerase II-specific, and oxidoreductase activity. Simultaneously, the key molecular mechanisms of HBG against LF were mainly involved in PI3K-AKT, MAPK, HIF-1, and NF-κB signaling pathways. Also, molecular docking simulation demonstrated that the key targets of HBG for antiliver fibrosis were IL6, CASP3, EGFR, VEGF, and MAPK. Conclusion. This work validated and predicted the underlying mechanisms of multicomponent and multitarget about HBG in treating LF and provided a scientific foundation for further research.
Collapse
|
28
|
Zhu Y, Pan X, Du N, Li K, Hu Y, Wang L, Zhang J, Liu Y, Zuo L, Meng X, Hu C, Wu X, Jin J, Wu W, Chen X, Wu F, Huang Y. ASIC1a regulates miR‐350/SPRY2 by N
6
‐methyladenosine to promote liver fibrosis. FASEB J 2020; 34:14371-14388. [DOI: 10.1096/fj.202001337r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Yueqin Zhu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Xuesheng Pan
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Na Du
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Kuayue Li
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yamin Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Lili Wang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Jin Zhang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yanyi Liu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Longquan Zuo
- Department of Pharmacy Hospital of Armed Police of Anhui Province Hefei230041China
| | - Xiaoming Meng
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Chengmu Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - xian Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei230032China
| | - Wenyong Wu
- 4Department of General Surgery First Affiliated Hospital of Anhui Medical University Hefei230022China
| | - Xiangtao Chen
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Fanrong Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| |
Collapse
|
29
|
Ge S, Wu X, Xiong Y, Xie J, Liu F, Zhang W, Yang L, Zhang S, Lai L, Huang J, Li M, Yu YQ. HMGB1 Inhibits HNF1A to Modulate Liver Fibrogenesis via p65/miR-146b Signaling. DNA Cell Biol 2020; 39:1711-1722. [PMID: 32833553 DOI: 10.1089/dna.2019.5330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High mobility group box 1 (HMGB1) is essential for the pathogenesis of liver injury and liver fibrosis. We previously revealed that miR-146b promotes hepatic stellate cells (HSCs) activation and proliferation. Nevertheless, the potential mechanisms are still unknown. Herein, HMGB1 increased HSCs proliferation and COL1A1 and α-SMA protein levels. However, the knockdown of miR-146b inhibited HSCs proliferation and COL1A1 and α-SMA protein levels induced via HMGB1 treatment. miR-146b was upregulated by HMGB1 and miR-146b targeted hepatocyte nuclear factor 1A (HNF1A) 3'-untranslated region (3'UTR) to modulate its expression negatively. Further, we confirmed that HMGB1 might elicit miR-146b expression via p65 within HSCs. Knockdown or block of HMGB1 relieved the CCl4-induced liver fibrosis. In fibrotic liver tissues, miR-146b expression was positively correlated with p65 mRNA, but HNF1A mRNA was inversely correlated with p65, and miR-146b expression. In summary, our findings suggest that HMGB1/p65/miR-146b/HNF1A signaling exerts a crucial effect on liver fibrogenesis via the regulation of HSC function.
Collapse
Affiliation(s)
- Shanfei Ge
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Xiong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Xie
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Liu
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenfeng Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lixia Yang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Song Zhang
- Department of Infectious Disease, ShangRao People's Hospital, ShangRao, Jiangxi, China
| | - Lingling Lai
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiansheng Huang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ming Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan-Qing Yu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
MiR-126 Regulates Properties of SOX9 + Liver Progenitor Cells during Liver Repair by Targeting Hoxb6. Stem Cell Reports 2020; 15:706-720. [PMID: 32763157 PMCID: PMC7486193 DOI: 10.1016/j.stemcr.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Liver progenitor cells (LPCs) have a remarkable contribution to the hepatocytes and ductal cells when normal hepatocyte proliferation is severely impaired. As a biomarker for LPCs, Sry-box 9 (Sox9) plays critical roles in liver homeostasis and repair in response to injury. However, the regulation mechanism of Sox9 in liver physiological and pathological state remains unknown. In this study, we found that miR-126 positively regulated the expression of Sox9, the proliferation and differentiation of SOX9+ LPCs by suppressing the translation of homeobox b6 (Hoxb6). As a transcription factor, HOXB6 directly binds to the promoter of Sox9 to inhibit Sox9 expression, resulting in the destruction of the properties of SOX9+ LPCs in CCl4-induced liver injury. These findings revealed the role of miR-126 in regulating SOX9+ LPCs fate by targeting Hoxb6 in liver injury repair. Our findings suggest the potential role of miR-126 as a nucleic acid therapy drug target for liver failure. miR-126 promotes Sox9 expression and maintains SOX9+ LPCs in adult mouse livers HOXB6 suppresses properties of SOX9+ LPCs in chronic liver injury model HOXB6 negatively regulates Sox9 trans-activity miR-126 regulates properties of SOX9+ LPCs by targeting Hoxb6
Collapse
|
31
|
MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury. Cells 2020; 9:cells9081767. [PMID: 32717951 PMCID: PMC7464779 DOI: 10.3390/cells9081767] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed significant advancements in our understanding of how small noncoding RNAs, such as microRNAs (miRNAs), regulate disease progression. One such miRNA, miR-221, has been shown to play a key role in the progression of liver fibrosis, a common feature of most liver diseases. Many reports have demonstrated the upregulation of miR-221 in liver fibrosis caused by multiple etiologies such as viral infections and nonalcoholic steatohepatitis. Inhibition of miR-221 via different strategies has shown promising results in terms of the suppression of fibrogenic gene signatures in vitro, as well as in vivo, in independent mouse models of liver fibrosis. In addition, miR-221 has also been suggested as a noninvasive serum biomarker for liver fibrosis and cirrhosis. In this review, we discuss the biology of miR-221, its significance and use as a biomarker during progression of liver fibrosis, and finally, potential and robust approaches that can be utilized to suppress liver fibrosis via inhibition of miR-221.
Collapse
|
32
|
Yao QY, Feng YD, Han P, Yang F, Song GQ. Hepatic microenvironment underlies fibrosis in chronic hepatitis B patients. World J Gastroenterol 2020; 26:3917-3928. [PMID: 32774066 PMCID: PMC7385564 DOI: 10.3748/wjg.v26.i27.3917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a leading cause of liver morbidity and mortality worldwide. Liver fibrosis resulting from viral infection-associated inflammation and direct liver damage plays an important role in disease management and prognostication. The mechanisms underlying the contribution of the liver microenvironment to fibrosis in HBV patients are not fully understood. There is an absence of effective clinical treatments for liver fibrosis progression; thus, establishing a suitable in vitro microenvironment in order to design novel therapeutics and identify molecular biomarkers to stratify patients is urgently required.
AIM To examine a subset of pre-selected microenvironment factors of chronic HBV patients that may underlie fibrosis, with a focus on fibroblast activation.
METHODS We examined the gene expression of key microenvironment factors in liver samples from patients with more advanced fibrosis compared with those with less severe fibrosis. We also used the human stellate cell line LX-2 in the in vitro study. Using different recombinant cytokines and growth factors or their combination, we studied how these factors interacted with LX-2 cells and pinpointed the cross-talk between the aforementioned factors and screened the most important factors.
RESULTS Of the secreted factors examined, transforming growth factor (TGF)-β1, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were increased in patients with advanced fibrosis. We found that besides TGF-β1, IL-1β can also induce a profibrotic cascade by stimulating the expression of connective tissue growth factor and platelet-derived growth factor (PDGF) in LX-2 cells. Furthermore, the proinflammatory response can be elicited in LX-2 cells following treatment with IL-1β and TNF-α, suggesting that stellate cells can respond to proinflammatory stimuli. By combining IL-1β and TGF-β1, we observed not only fibroblast activation as shown by αlpha-smooth muscle actin and PDGF induction, but also the inflammatory response as shown by increased expression of IL-1β.
CONCLUSION Collectively, our data from HBV patients and in vitro studies demonstrate that the hepatic microenvironment plays an important role in mediating the crosstalk between profibrotic and proinflammatory responses and modulating fibrosis in chronic HBV patients. For the establishment of a suitable in vitro microenvironment for HBV-induced liver fibrosis, not only TGF-β1 but also IL-1β should be considered as a necessary environmental factor.
Collapse
Affiliation(s)
- Qun-Yan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 201332, China
- Shanghai Institute of Liver Diseases, Shanghai 201332, China
| | - Ya-Dong Feng
- Otsuka Shanghai Research Institute, Shanghai 201318, China
| | - Pei Han
- Otsuka Shanghai Research Institute, Shanghai 201318, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Guang-Qi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 201332, China
- Shanghai Institute of Liver Diseases, Shanghai 201332, China
| |
Collapse
|
33
|
Mahdinloo S, Kiaie SH, Amiri A, Hemmati S, Valizadeh H, Zakeri-Milani P. Efficient drug and gene delivery to liver fibrosis: rationale, recent advances, and perspectives. Acta Pharm Sin B 2020; 10:1279-1293. [PMID: 32874828 PMCID: PMC7451940 DOI: 10.1016/j.apsb.2020.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis results from chronic damages together with an accumulation of extracellular matrix, and no specific medical therapy is approved for that until now. Due to liver metabolic capacity for drugs, the fragility of drugs, and the presence of insurmountable physiological obstacles in the way of targeting, the development of efficient drug delivery systems for anti-fibrotics seems vital. We have explored articles with a different perspective on liver fibrosis over the two decades, then collected and summarized the information by providing corresponding in vitro and in vivo cases. We have discussed the mechanism of hepatic fibrogenesis with different ways of fibrosis induction in animals. Furthermore, the critical chemical and herbal anti-fibrotics, biological molecules such as micro-RNAs, siRNAs, and growth factors, which can affect cell division and differentiation, are mentioned. Likewise, drug and gene delivery and therapeutic systems on in vitro and in vivo models are summarized in the data tables. This review article enlightens recent advances in emerging drugs and nanocarriers and represents perspectives on targeting strategies employed in liver fibrosis treatment.
Collapse
Affiliation(s)
- Somayeh Mahdinloo
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
| | - Seyed Hossein Kiaie
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Ala Amiri
- Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
34
|
Qiao M, Yang J, Zhao Y, Zhu Y, Wang X, Wang X, Hu J. Antiliver Fibrosis Screening of Active Ingredients from Apium graveolens L. Seeds via GC-TOF-MS and UHPLC-MS/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8321732. [PMID: 32148553 PMCID: PMC7049821 DOI: 10.1155/2020/8321732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Although several studies have been performed on Apium graveolens L.(celery) seeds, their antiliver fibrosis effects remain to be unexplored. Firstly, we detected the effects of celery seeds extracted with different concentrations of aqueous ethanol on the proliferation of HSC-LX2 cells. Then, we detected the effects of fractions of the optimal effect extract on the proliferation and apoptosis of HSC-LX2 cells. Finally, the compounds of petroleum ether (PP), ethyl acetate (PE), n-butyl alcohol (PB), and water fractions (PW) of the optimal effect extract were determined by GC-TOF-MS and UHPLC-MS/MS, to confirm the potentially antifibrotic compounds combined with pharmacodynamic experiment of monomer compounds in vitro. The results revealed that 60% ethanol extract of celery seeds (60-extract) exhibited remarkable inhibition effect on the proliferation of HSC-LX2 cells compared with 95% ethanol and aqueous extract. Besides, it validated that the inhibition rates of PP, PE, PB, and PW on the proliferation of HSC-LX2 cells were 75.14%, 73.52%, 54.09%, and 43.36%, and their percentage of apoptotic cells were 37.5%, 4.3%, 0.7%, and 0.1% at high doses, respectively. Additionally, it was manifested that apigenin, aesculetin, and butylphthalide have major contribution to the overall compounds of celery seeds, and the inhibition effects on the cell proliferation clearly elevated with increase in their contents. In essence, apigenin, aesculetin, and butylphthalide may hopefully become the natural products of antiliver fibrosis, which laid a foundation for the subsequent development of celery seeds as antiliver fibrosis drugs.
Collapse
Affiliation(s)
- Ming Qiao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Yao Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Zhu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Xiaomei Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Xinling Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
35
|
Chang N, Tian L, Ji X, Zhou X, Hou L, Zhao X, Yang Y, Yang L, Li L. Single-Cell Transcriptomes Reveal Characteristic Features of Mouse Hepatocytes with Liver Cholestatic Injury. Cells 2019; 8:cells8091069. [PMID: 31514486 PMCID: PMC6770527 DOI: 10.3390/cells8091069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes are the main parenchymal cells of the liver and play important roles in liver homeostasis and disease process. The heterogeneity of normal hepatocytes has been reported, but there is little knowledge about hepatocyte subtype and distinctive functions during liver cholestatic injury. Bile duct ligation (BDL)-induced mouse liver injury model was employed, and single-cell RNA sequencing was performed. Western blot and qPCR were used to study gene expression. Immunofluoresence was employed to detect the expressions of marker genes in hepatocytes. We detected a specific hepatocyte cluster (BDL-6) expressing extracellular matrix genes, indicating these hepatocytes might undergo epithelia-mesenchymal transition. Hepatocytes of BDL-6 also performed tissue repair functions (such as angiogenesis) during cholestatic injury. We also found that four clusters of cholestatic hepatocytes (BDL-2, BDL-3, BDL-4, and BDL-5) were involved in inflammatory process in different ways. To be specific, BDL-2/3/5 were inflammation-regulated hepatocytes, while BDL-4 played a role in cell chemotaxis. Among these four clusters, BDL-5 was special. because the hepatocytes of BDL-5 were proliferating hepatocytes. Our analysis provided more knowledge of hepatocyte distinctive functions in injured liver and gave rise to future treatment aiming at hepatocytes.
Collapse
Affiliation(s)
- Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Lei Tian
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Xiaofang Ji
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Xinhao Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
36
|
Li Q, Li Z, Lin Y, Che H, Hu Y, Kang X, Zhang Y, Wang L, Zhang Y. High glucose promotes hepatic fibrosis via miR‑32/MTA3‑mediated epithelial‑to‑mesenchymal transition. Mol Med Rep 2019; 19:3190-3200. [PMID: 30816482 PMCID: PMC6423609 DOI: 10.3892/mmr.2019.9986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is characterized by the aberrant production and deposition of extracellular matrix (ECM) proteins. Growing evidence indicates that the epithelial‑mesenchymal transition serves a crucial role in the progression of liver fibrogenesis. Although a subset of microRNAs (miRNAs or miRs) has recently been identified as essential regulators of the EMT gene expression, studies of the EMT in hyperglycemic‑induced liver fibrosis are limited. In the current study, it was observed that high glucose‑treated AML12 cells occurred EMT process, and miR‑32 expression was markedly increased in the liver tissue of streptozotocin‑induced diabetic rats and in high glucose‑treated AML12 cells. Additionally, the contribution of the EMT to liver fibrosis by targeting metastasis‑associated gene 3 (MTA3) under hyperglycemic conditions was suppressed by AMO‑32. The results indicated that miR‑32 and MTA3 may be considered as novel drug targets in the prevention and treatment of liver fibrosis under hyperglycemic conditions. These finding improves the understanding of the progression of liver fibrogenesis.
Collapse
Affiliation(s)
- Qiang Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150030, P.R. China
| | - Zhange Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuan Lin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xujuan Kang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|