1
|
Sun M, Li M, Hu M, Fan Y, Liu Y, Sun J, Zhang J. Fully Bioactive Nanodrugs: Stem Cell-Derived Exosomes Engineered with Biomacromolecules to Treat CCl 4- and Extreme Hepatectomy-Induced Acute Liver Failure. ACS NANO 2024; 18:33907-33921. [PMID: 39626080 DOI: 10.1021/acsnano.4c07408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Acute liver failure (ALF) is a serious global disease characterized by rapid onset and high mortality. Currently, the clinical treatment of ALF faces considerable hurdles due to limited medication options and the scarcity of liver transplants. Despite biomacromolecules such as hepatocyte growth factor (HGF) and glutathione (GSH) having been applied for ALF symptom relief in the clinic, they still face substantial challenges including poor stability, difficulty in acting on intracellular targets, and inadequate therapeutic outcome. In this work, by taking advantage of the innate targeting and regenerative capabilities of mesenchymal stem cells (MSCs), we harnessed MSC-derived exosomes as natural bioactive carriers for the simultaneous delivery of HGF and GSH, forming a fully bioactive nanodrug termed HG@Exo. Impressively, the HG@Exo demonstrated potent therapeutic effects against both carbon tetrachloride (CCl4)- and extreme hepatectomy-induced ALF through multiple mechanisms, including regulation of oxidative stress, reduction of inflammation, and promotion of hepatocyte regeneration, which were facilitated by its inflammation-targeting to damaged liver tissues. Furthermore, an FDA-approved near-infrared fluorescent dye, indocyanine green (ICG), has been incorporated into the exosomes (HGI@Exo) to endow them with real-time in vivo tracking capability, which showed favorable liver accumulation of the HGI@Exo in both CCl4- and surgery-induced ALF animal models, providing crucial insights into their biodistribution and therapeutic efficacy. Overall, the presented fully bioactive nanodrugs with targeting and theranostic abilities hold significant promise for potentiating the therapeutic efficacy of biomacromolecules for the improved treatment of ALF and other inflammatory diseases.
Collapse
Affiliation(s)
- Meng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, P. R. China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, P. R. China
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yanhong Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Zhang D, Shi C, Wang Y, Guo J, Gong Z. Metabolic Dysregulation and Metabolite Imbalances in Acute-on-chronic Liver Failure: Impact on Immune Status. J Clin Transl Hepatol 2024; 12:865-877. [PMID: 39440217 PMCID: PMC11491507 DOI: 10.14218/jcth.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Liver failure encompasses a range of severe clinical syndromes resulting from the deterioration of liver function, triggered by factors both within and outside the liver. While the definition of acute-on-chronic liver failure (ACLF) may vary by region, it is universally recognized for its association with multiorgan failure, a robust inflammatory response, and high short-term mortality rates. Recent advances in metabolomics have provided insights into energy metabolism and metabolite alterations specific to ACLF. Additionally, immunometabolism is increasingly acknowledged as a pivotal mechanism in regulating immune cell functions. Therefore, understanding the energy metabolism pathways involved in ACLF and investigating how metabolite imbalances affect immune cell functionality are crucial for developing effective treatment strategies for ACLF. This review methodically examined the immune and metabolic states of ACLF patients and elucidated how alterations in metabolites impact immune functions, offering novel perspectives for immune regulation and therapeutic management of liver failure.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Li X, Xie J, Li Y, Cui W, Zhang T, Li Q, Bi K, Liu R. A comprehensive strategy of lipidomics and pharmacokinetics based on ultra-high-performance liquid chromatography-mass spectrometry of Shaoyao Gancao Decoction. J Sep Sci 2024; 47:e2400421. [PMID: 39215583 DOI: 10.1002/jssc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Shaoyao Gancao Decoction (SGD), a traditional Chinese medicine, has been proven to have a good liver protection effect, but the mechanism and pharmacodynamic substances of SGD in the treatment of acute liver injury are still unclear. In this study, an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was established to characterize 107 chemical components of SGD and 12 compounds absorbed in rat plasma samples after oral administration of SGD. Network pharmacology was applied to construct a component-target-pathway network to screen the possible effective components of SGD in acute liver injury. Using lipidomics based on UHPLC-Q-TOF-MS coupled with a variety of statistical analyses, 20 lipid biomarkers were screened and identified, suggesting that the improvement of acute liver injury by SGD was involved in cholesterol metabolism, glycerol-phospholipid metabolism, sphingolipid signaling pathways and fatty acid biosynthesis. In addition, the UHPLC-tandem MS method was established for pharmacokinetics analysis, and 10 potential active components were determined simultaneously within 12 min through the optimization of 0.1% formic acid water and acetonitrile as a mobile phase system. A Pharmacokinetics study showed that paeoniflorin, albiflorin, oxypaeoniflorin, liquiritigenin, isoliquiritigenin, liquiritin, ononin, formononetin, glycyrrhizic acid, and glycyrrhetinic acid as the potential active compounds of SGD curing acute liver injury.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Juan Xie
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Yuhan Li
- School of Pharmacy, Macau University of Science and Technology, Macau, P. R. China
| | - Wenxuan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Tongrui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Kaishun Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ran Liu
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, P. R. China
| |
Collapse
|
4
|
Zhao L, Duan Y, Li Z, Li J, Li S. Unearthing the Potential Therapeutic Effects of Oxyresveratrol Based on Intrinsic Links between Pharmacological Effects: Implications for the Gut-Liver-Brain Axis. Pharmaceuticals (Basel) 2024; 17:1063. [PMID: 39204169 PMCID: PMC11359039 DOI: 10.3390/ph17081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Oxyresveratrol is a stilbene compound with a simple chemical structure and various therapeutic potentials. This study summarized and analyzed the multiple pharmacological effects and mechanisms of oxyresveratrol, identifying its prominent performance in neuroprotection, hepatoprotection, and anti-inflammatory activities in the intestines. By integrating the pharmacological effects of oxyresveratrol with insights from the network pharmacology and molecular docking of its interactions with targets linked to gut-liver-brain axis disorders, it has been shown that oxyresveratrol may hold promise for the treatment of gut-liver-brain axis-related disorders. The synergistic effect between various mechanisms has inspired further research and the development of oxyresveratrol's application value.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Zhaoxing Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| |
Collapse
|
5
|
Cavazza A, Triantafyllou E, Savoldelli R, Mujib S, Jerome E, Trovato FM, Artru F, Sheth R, Huang XH, Ma Y, Dazzi F, Pirani T, Antoniades CG, Lee WM, McPhail MJ, Karvellas CJ. Macrophage activation markers are associated with infection and mortality in patients with acute liver failure. Liver Int 2024; 44:1900-1911. [PMID: 38588014 PMCID: PMC11466005 DOI: 10.1111/liv.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND AIMS Acute liver failure is a multisystem disorder with a high mortality and frequent need for emergency liver transplantation. Following massive innate immune system activation, soluble markers of macrophage activation are released during liver damage and their association with disease severity and prognosis requires exploration. METHODS Patients ALF from the United States Acute Liver Failure Study Group (USALFSG, n = 224) and King's College Hospital (n = 40) together with healthy controls (HC, n = 50) were recruited. Serum from early (Days 1-3) and late (>Day 3) time points were analysed for MAMs by enzyme-linked immunosorbent assay correlated to markers of illness severity and 21-day spontaneous survival. Surface expression phenotyping was performed via Flow Cytometry on CD14+ monocytes. RESULTS All MAMs serum concentrations were significantly higher in ALF compared to controls (p < .0001). sCD206 concentration was higher in early and late stages of the disease in patients with bacteraemia (p = .002) and infection in general (p = .006). In MELD-adjusted multivariate modelling, sCD206 and sCD163 were independently associated with mortality. CD14+ monocyte expression of CD206 (p < .001) was higher in patients with ALF compared with controls and correlated with SOFA score (p = .018). sCD206 was independently validated as a predictor of infection in an external cohort. CONCLUSIONS sCD206 is increased in serum of ALF patients with infections and poor outcome and is upregulated on CD14+ monocytes. Later measurements of sCD163 and sCD206 during the evolution of ALF have potential as mechanistic predictors of mortality. sCD206 should be explored as a biomarker of sepsis and mortality in ALF.
Collapse
Affiliation(s)
- Anna Cavazza
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Roberto Savoldelli
- School of Cardiovascular and Metabolic Medicine and ScienceKing's College LondonLondonUK
| | - Salma Mujib
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Ellen Jerome
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Francesca M. Trovato
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Florent Artru
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Roosey Sheth
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Xiao Hong Huang
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
| | - Yun Ma
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine and ScienceKing's College LondonLondonUK
| | - Tasneem Pirani
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Charalambos G. Antoniades
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - William M. Lee
- Division of Digestive and Liver DiseasesUT Southwestern Medical CenterDallasTexasUSA
| | - Mark J. McPhail
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Constantine J. Karvellas
- Division of Gastroenterology (Liver Unit), Department of Critical Care MedicineUniversity of AlbertaEdmontonCanada
| | | |
Collapse
|
6
|
Arbeev KG, Bagley O, Ukraintseva SV, Kulminski A, Stallard E, Schwaiger-Haber M, Patti GJ, Gu Y, Yashin AI, Province MA. Methods for joint modelling of longitudinal omics data and time-to-event outcomes: Applications to lysophosphatidylcholines in connection to aging and mortality in the Long Life Family Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311176. [PMID: 39132492 PMCID: PMC11312646 DOI: 10.1101/2024.07.29.24311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Studying relationships between longitudinal changes in omics variables and risks of events requires specific methodologies for joint analyses of longitudinal and time-to-event outcomes. We applied two such approaches (joint models [JM], stochastic process models [SPM]) to longitudinal metabolomics data from the Long Life Family Study focusing on understudied associations of longitudinal changes in lysophosphatidylcholines (LPC) with mortality and aging-related outcomes (23 LPC species, 5,790 measurements of each in 4,011 participants, 1,431 of whom died during follow-up). JM analyses found that higher levels of the majority of LPC species were associated with lower mortality risks, with the largest effect size observed for LPC 15:0/0:0 (hazard ratio: 0.715, 95% CI (0.649, 0.788)). SPM applications to LPC 15:0/0:0 revealed how the association found in JM reflects underlying aging-related processes: decline in robustness to deviations from optimal LPC levels, better ability of males' organisms to return to equilibrium LPC levels (which are higher in females), and increasing gaps between the optimum and equilibrium levels leading to increased mortality risks with age. Our results support LPC as a biomarker of aging and related decline in robustness/resilience, and call for further exploration of factors underlying age-dynamics of LPC in relation to mortality and diseases.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Svetlana V. Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Alexander Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Metabolomics and Isotope Tracing at Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Metabolomics and Isotope Tracing at Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, New York 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Michael A. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
7
|
Wei Z, Liu Y, Xiong Q, Mei X, Li J, Wu Z. Causality of metabolites and metabolic pathways on cholestatic liver diseases: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1395526. [PMID: 39015781 PMCID: PMC11250271 DOI: 10.3389/fmed.2024.1395526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background and Aims Blood metabolite abnormalities have revealed an association with cholestatic liver diseases (CLDs), while the underlying metabolic mechanisms have remained sluggish yet. Accordingly, the present evaluation aims to investigate the causal relationship between blood metabolites and the risk of two major CLDs, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Methods Univariable and multivariable Mendelian randomization (MR) approaches were employed to uncover potential causal associations between blood metabolites and 2 CLDs, including PBS and PSC, through extracting instrumental variables (IVs) for metabolites from genome-wide association studies (GWAS) conducted on European individuals. The GWAS summary data of PBC or PSC were sourced from two distinct datasets. The initial analysis employed inverse variance weighted (IVW) and an array of sensitivity analyses, followed by replication and meta-analysis utilizing FinnGen consortium data. Finally, a multivariable MR analysis was carried out to ascertain the independent effects of each metabolite. Furthermore, the web-based tool MetaboAnalyst 5.0 was used to perform metabolic pathway examination. Results A genetic causality between 15 metabolites and CLDs was recognized after preliminary analysis and false discovery rate (FDR) correction. Subsequently, 9 metabolites consistently represented an association through replication and meta-analysis. Additionally, the independent causal effects of 7 metabolites were corroborated by multivariable MR analysis. Specifically, the metabolites isovalerylcarnitine (odds ratio [OR] = 3.146, 95% confidence intervals [CI]: 1.471-6.726, p = 0.003), valine (OR = 192.44, 95%CI: 4.949-7483.27, p = 0.005), and mannose (OR = 0.184, 95%CI: 0.068-0.499, p < 0.001) were found to have a causal relationship with the occurrence of PBC. Furthermore, erythrose (OR = 5.504, 95%CI: 1.801-16.821, p = 0.003), 1-stearoylglycerophosphocholine (OR = 6.753, 95%CI: 2.621-17.399, p = 7.64 × 10-5), X-11847 (OR = 0.478, 95%CI: 0.352-0.650, p = 2.28 × 10-6), and X-12405 (OR = 3.765, 95%CI: 1.771-8.005, p = 5.71 × 10-4) were independently associated with the occurrence of PSC. Furthermore, the analysis of metabolic pathways identified seven significant pathways in two CLDs. Conclusion The findings of the present study have unveiled robust causal relationships between 7 metabolites and 2 CLDs, thereby providing novel insights into the metabolic mechanisms and therapeutic strategies for these disorders.
Collapse
Affiliation(s)
- Zhengxiao Wei
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yingfen Liu
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Qingqing Xiong
- Department of Science and Education Division, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Xue Mei
- Department of Infectious Diseases, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Jinghong Li
- Department of Infectious Diseases, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Zhangjun Wu
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, China
| |
Collapse
|
8
|
Luo P, Yu X. ENPP2/Autotaxin: The potential drug target for alcoholic liver disease identified through Mendelian randomization analysis. Liver Int 2024; 44:1624-1633. [PMID: 38517150 DOI: 10.1111/liv.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND AND AIMS At present, there is still a lack of radical drug targets for intervention in alcoholic liver disease (ALD), and drug discovery through randomized controlled trials is a lengthy, risky, and expensive undertaking, so we aimed to identify effective drug targets based on human genetics. METHODS We used Mendelian randomization (MR) and Bayesian colocalization analysis to investigate 2639 genes encoding druggable proteins and examined the causal effects on ALD (PMID 34737426: 456348 European with 451 cases and 455 897 controls). In addition, we conducted the mediation analysis to explore the potential mechanism using the genome-wide association study (GWAS) data of blood biomarkers as mediators. RESULTS We finally identified the drug target: ENPP2/Autotaxin and genetically proxied ENPP2/Autotaxin was causally associated with the risk of ALD (OR = 2.28, 95% CI: 1.64 to 3.16, p = 7.49E-7). In addition, we found that the effect of ENPP2/Autotaxin on ALD may be partly mediated by effector memory CD8+ T cell (the proportion of mediation effect: 8.49%). CONCLUSIONS Our integrative analysis suggested that genetically determined levels of circulating ENPP2/Autotaxin have a causal effect on ALD risk and are a promising drug target.
Collapse
Affiliation(s)
- Peiqiong Luo
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| |
Collapse
|
9
|
Tenebro CP, Marcial NBJM, Salcepuedes JJ, Torrecampo JC, Hernandez RD, Francisco JAP, Infante KMG, Belardo VJ, Paderes MC, Alvero RGY, Saludes JP, Dalisay DS. Visualization of renal rotenone accumulation after oral administration and in situ detection of kidney injury biomarkers via MALDI mass spectrometry imaging. Front Mol Biosci 2024; 11:1366278. [PMID: 39011141 PMCID: PMC11246995 DOI: 10.3389/fmolb.2024.1366278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
The examination of drug accumulation within complex biological systems offers valuable insights into the molecular aspects of drug metabolism and toxicity. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an innovative methodology that enables the spatial visualization and quantification of biomolecules as well as drug and its metabolites in complex biological system. Hence, this method provides valuable insights into the metabolic profile and any molecular changes that may occur as a result of drug treatment. The renal system is particularly vulnerable to adverse effects of drug-induced harm and toxicity. In this study, MALDI MSI was utilized to examine the spatial distribution of drug and renal metabolites within kidney tissues subsequent to a single oral dosage of the anticancer compound rotenone. The integration of ion mobility spectrometry with MALDI MSI enhanced the data acquisition and analysis, resulting to improved mass resolution. Subsequently, the MS/MS fragment ions of rotenone reference drug were detected and characterized using MALDI HDMS/MS imaging. Notably, drug accumulation was observed in the cortical region of the representative kidney tissue sections treated with rotenone. The histological examination of treated kidney tissues did not reveal any observable changes. Differential ion intensity of renal endogenous metabolites was observed between untreated and rotenone-treated tissues. In the context of treated kidney tissues, the ion intensity level of sphingomyelin (D18:1/16:0), a sphingolipid indicator of glomerular cell injury and renal damage, was found to be elevated significantly compared to untreated kidney tissues. Conversely, the ion intensities of choline, glycero-3-phosphocholine (GPC), inosine, and a lysophosphatidylcholine LysoPC(18:0) exhibited a significant decrease. The results of this study demonstrate the potential of MALDI MSI as a novel technique for investigating the in situ spatial distribution of drugs and renal endogenous molecules while preserving the anatomical integrity of the kidney tissue. This technique can be used to study drug-induced metabolism and toxicity in a dynamic manner.
Collapse
Affiliation(s)
- Chuckcris P Tenebro
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Neaven Bon Joy M Marcial
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Janine J Salcepuedes
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Josie C Torrecampo
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Rajelle D Hernandez
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | | | - Monissa C Paderes
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | | | - Jonel P Saludes
- Center for Natural Drug Discovery and Development, University of San Agustin, Iloilo City, Philippines
- Department of Chemistry, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
- Department of Biology, University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
10
|
Artru F, McPhail MJ. Immunopathogenesis of acute on chronic liver failure. Am J Transplant 2024; 24:724-732. [PMID: 38346497 DOI: 10.1016/j.ajt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Acute-on-chronic liver failure is a well-established description of a high-mortality syndrome of chronic liver disease (usually cirrhosis) with organ failure. While the exact definition is under refinement, the accepted understanding of this entity is in patients with chronic liver disease and various organs in failure and where systemic inflammation is a major component of the pathobiology. There are limited therapies for a disease with such a poor prognosis, and while improvements in the critical care management and for very few patients, liver transplantation, mean 50% can survive to hospital discharge, rapid application of new therapies is required. Here we explain the current understanding of the immunologic abnormalities seen in acute-on-chronic liver failure across the innate and adaptive immune systems, the role of the hepatic cell death and the gut-liver axis, and recommendations for future research and treatment paradigms.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom; Liver department and NUMECAN institute, Rennes University Hospital and Rennes University, France
| | - Mark J McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
11
|
Feng S, Wang S, Liu C, Wu S, Zhang B, Lu C, Huang C, Chen T, Zhou C, Zhu J, Chen J, Xue J, Wei W, Zhan X. Prediction model for spinal cord injury in spinal tuberculosis patients using multiple machine learning algorithms: a multicentric study. Sci Rep 2024; 14:7691. [PMID: 38565845 PMCID: PMC10987632 DOI: 10.1038/s41598-024-56711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Spinal cord injury (SCI) is a prevalent and serious complication among patients with spinal tuberculosis (STB) that can lead to motor and sensory impairment and potentially paraplegia. This research aims to identify factors associated with SCI in STB patients and to develop a clinically significant predictive model. Clinical data from STB patients at a single hospital were collected and divided into training and validation sets. Univariate analysis was employed to screen clinical indicators in the training set. Multiple machine learning (ML) algorithms were utilized to establish predictive models. Model performance was evaluated and compared using receiver operating characteristic (ROC) curves, area under the curve (AUC), calibration curve analysis, decision curve analysis (DCA), and precision-recall (PR) curves. The optimal model was determined, and a prospective cohort from two other hospitals served as a testing set to assess its accuracy. Model interpretation and variable importance ranking were conducted using the DALEX R package. The model was deployed on the web by using the Shiny app. Ten clinical characteristics were utilized for the model. The random forest (RF) model emerged as the optimal choice based on the AUC, PRs, calibration curve analysis, and DCA, achieving a test set AUC of 0.816. Additionally, MONO was identified as the primary predictor of SCI in STB patients through variable importance ranking. The RF predictive model provides an efficient and swift approach for predicting SCI in STB patients.
Collapse
Affiliation(s)
- Sitan Feng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shujiang Wang
- Department of Outpatient, General Hospital of Eastern Theater Command, Nanjing, Jiangsu, People's Republic of China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bin Zhang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Spine Ward, Bei Jing Ji Shui Tan Hospital Gui Zhou Hospital, Guiyang, Guizhou, People's Republic of China
| | - Chunxian Lu
- Department of Spine and Osteopathy Ward, Bai Se People's Hospital, Baise, Guangxi, People's Republic of China
| | - Chengqian Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiarui Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiang Xue
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wendi Wei
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
12
|
Wang W, Jiang F, Wu WQ, Zhu XL, Wang HX, Zhang L, Fan ZY. Identification of lymph node adulteration in minced pork by comprehensive metabolomics and lipidomics approach based on UPLC/LTQ-Orbitrap MS. J Food Sci 2024; 89:2249-2260. [PMID: 38477648 DOI: 10.1111/1750-3841.17005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
The deliberate pork adulteration with lymph nodes is a common adulteration phenomenon, and it poses a serious threat to public health and food safety. An untargeted metabolomics and lipidomics approach based on ultrahigh performance liquid chromatography coupled with linear ion trap quadrupole-Orbitrap high resolution mass spectrometry (MS) was used to distinguish lymph nodes from minced pork. The principal component analysis and orthogonal projection to latent structures discriminant analysis models were established with the good of fitness and predictivity. The results showed that there were significant differences in metabolites and lipids between lymph nodes and pork. A total of 16 significantly differentiated metabolites were identified, of which 1-palmitoylglycerophosphocholine, 12,13-dihydroxy-9-octadecenoic acid, and prostaglandin E2 (PGE2) were positively correlated with lymph node content and were identified as potential markers of lymph nodes. These three markers were combined to create a binary logistic regression model, and a combined-factor exceeding 0.75 was ultimately identified as a marker for pork adulteration with lymph nodes. The desorption electrospray ionization-MS images showed that PGE2 had a higher relative abundance in the lymph node region than in adjacent non-lymph node regions, indicating that PGE2 was a marker that contributed significantly for identifying lymph nodes adulteration into pork. Our results provide a theoretical basis for identifying lymph node adulteration, which will contribute to combating fraud in the meat industry.
Collapse
Affiliation(s)
- Wei Wang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Feng Jiang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Wan-Qin Wu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Xiao-Ling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Hui-Xia Wang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| | - Zhi-Yong Fan
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, China
| |
Collapse
|
13
|
Hassan HM, Liang X, Xin J, Lu Y, Cai Q, Shi D, Ren K, Li J, Chen Q, Li J, Li P, Guo B, Yang H, Luo J, Yao H, Zhou X, Hu W, Jiang J, Li J. Thrombospondin 1 enhances systemic inflammation and disease severity in acute-on-chronic liver failure. BMC Med 2024; 22:95. [PMID: 38439091 PMCID: PMC10913480 DOI: 10.1186/s12916-024-03318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The key role of thrombospondin 1 (THBS1) in the pathogenesis of acute-on-chronic liver failure (ACLF) is unclear. Here, we present a transcriptome approach to evaluate THBS1 as a potential biomarker in ACLF disease pathogenesis. METHODS Biobanked peripheral blood mononuclear cells (PBMCs) from 330 subjects with hepatitis B virus (HBV)-related etiologies, including HBV-ACLF, liver cirrhosis (LC), and chronic hepatitis B (CHB), and normal controls (NC) randomly selected from the Chinese Group on the Study of Severe Hepatitis B (COSSH) prospective multicenter cohort underwent transcriptome analyses (ACLF = 20; LC = 10; CHB = 10; NC = 15); the findings were externally validated in participants from COSSH cohort, an ACLF rat model and hepatocyte-specific THBS1 knockout mice. RESULTS THBS1 was the top significantly differentially expressed gene in the PBMC transcriptome, with the most significant upregulation in ACLF, and quantitative polymerase chain reaction (ACLF = 110; LC = 60; CHB = 60; NC = 45) was used to verify that THBS1 expression corresponded to ACLF disease severity outcome, including inflammation and hepatocellular apoptosis. THBS1 showed good predictive ability for ACLF short-term mortality, with an area under the receiver operating characteristic curve (AUROC) of 0.8438 and 0.7778 at 28 and 90 days, respectively. Enzyme-linked immunosorbent assay validation of the plasma THBS1 using an expanded COSSH cohort subjects (ACLF = 198; LC = 50; CHB = 50; NC = 50) showed significant correlation between THBS1 with ALT and γ-GT (P = 0.01), and offered a similarly good prognostication predictive ability (AUROC = 0.7445 and 0.7175) at 28 and 90 days, respectively. ACLF patients with high-risk short-term mortality were identified based on plasma THBS1 optimal cut-off value (< 28 µg/ml). External validation in ACLF rat serum and livers confirmed the functional association between THBS1, the immune response and hepatocellular apoptosis. Hepatocyte-specific THBS1 knockout improved mouse survival, significantly repressed major inflammatory cytokines, enhanced the expression of several anti-inflammatory mediators and impeded hepatocellular apoptosis. CONCLUSIONS THBS1 might be an ACLF disease development-related biomarker, promoting inflammatory responses and hepatocellular apoptosis, that could provide clinicians with a new molecular target for improving diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Yingyan Lu
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Qun Cai
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jun Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Jiang Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Heng Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Wen Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
14
|
Trovato FM, Artru F, Miquel R, Pirani T, McPhail MJW. Liver Elastography in Acute Liver Failure: A Pilot Study. Crit Care Explor 2024; 6:e1048. [PMID: 38343443 PMCID: PMC10857654 DOI: 10.1097/cce.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES We aimed to assess the feasibility and reliability of sequential ultrasonographic and elastographic monitoring in acute liver failure (ALF). DESIGN Observational study. SETTING ALF is a rare, life-threatening disease that requires intensive care admission and often liver transplant, where the accurate selection of patients is crucial. Liver elastography is a noninvasive tool that can measure hepatic stiffness, but previous results have been inconclusive in ALF. PATIENTS Patients admitted between October 2021 and March 2023 to the Liver Intensive Therapy Unit at King's College Hospital with ALF were recruited, with healthy control (HC) individuals and acute-on-chronic liver failure (ACLF) used as controls. INTERVENTION None. MEASUREMENTS Average shear wave velocity was recorded with ElastPQ on the right and left liver lobes and the spleen. Portal vein flow, hepatic artery resistive index, and peak systolic velocity were also recorded. Physiologic and histologic data were used for comparison. MAIN RESULTS Forty patients with ALF, 22 patients with ACLF, and 9 HC individuals were included in the study. At admission, liver stiffness measurement (LSM) of the right lobe was statistically different between HC individuals (5.6 ± 2 kPa), ALF (31.7 ± 17 kPa), and ACLF (76.3 ± 71 kPa) patients (ALF vs. ACLF, p = 0.0301). Spleen size and stiffness discriminated between ALF (10.4 ± 2 cm and 21.4 ± 16.6 kPa) and ACLF (14 ± 2.3 cm and 42.6 ± 26 kPa). At admission, LSM was not different between ALF patients who spontaneously survived versus patients who died or were transplanted in the following 90 days. However, the trend over the first 10 days of admission was different with a peak of LSM at day 5 in spontaneous survivors followed by reduction during the recovery phase. ALF patients with poor prognosis showed a persistently increased LSM. CONCLUSIONS In ALF stiffness peaks at day 5 of admission with subsequent reduction in patients spontaneously surviving, showing significant difference according to the prognosis at day 7 of admission. LSM might be useful in distinguishing acute from acute-on-chronic liver failure together with spleen volume and stiffness.
Collapse
Affiliation(s)
- Francesca M Trovato
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Florent Artru
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Rosa Miquel
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Tasneem Pirani
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Mark J W McPhail
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| |
Collapse
|
15
|
Trovato FM, McPhail M. Reply to: "Dysregulation of the LPC-ATX-LPA axis in autoimmune hepatitis is associated with monocyte activation": Autotaxin upregulation in liver failure and the effect on monocyte phenotype and function is a pan-aetiology phenomenon. J Hepatol 2024; 80:e16-e18. [PMID: 37813243 DOI: 10.1016/j.jhep.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Affiliation(s)
- Francesca M Trovato
- Institute of Liver Studies, Department of Inflammation, School of Immunology and Microbial Sciences, Kings College London, UK.
| | - Mark McPhail
- Institute of Liver Studies, Department of Inflammation, School of Immunology and Microbial Sciences, Kings College London, UK
| |
Collapse
|
16
|
Yang F, Fan X, Yang L. Dysregulation of the LPC-ATX-LPA axis in autoimmune hepatitis is associated with monocyte activation. J Hepatol 2024; 80:e14-e16. [PMID: 37392838 DOI: 10.1016/j.jhep.2023.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Affiliation(s)
- Fan Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, China.
| |
Collapse
|
17
|
Jin HL, Feng XY, Feng SL, Dai L, Zhu WT, Yuan ZW. Isoquercitrin attenuates the progression of non-alcoholic steatohepatitis in mice by modulating galectin-3-mediated insulin resistance and lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155188. [PMID: 38056146 DOI: 10.1016/j.phymed.2023.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.
Collapse
Affiliation(s)
- Hong-Liu Jin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Ying Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Sen-Ling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ling Dai
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Ting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhong-Wen Yuan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
18
|
Martins LS, Duarte EL, Lamy MT, Rozenfeld JHK. DODAB vesicles containing lysophosphatidylcholines: The relevance of acyl chain saturation on the membrane structure and thermal properties. Biophys Chem 2023; 300:107075. [PMID: 37451052 DOI: 10.1016/j.bpc.2023.107075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The saturated LPC18:0 and unsaturated LPC18:1 lysophosphatidylcholines have important roles in inflammation and immunity and are interesting targets for immunotherapy. The synthetic cationic lipid DODAB has been successfully employed in delivery systems, and would be a suitable carrier for those lysophosphatidylcholines. Here, assemblies of DODAB and LPC18:0 or LPC18:1 were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. LPC18:0 increased the DODAB gel-fluid transition enthalpy and rigidified both phases. In contrast, LPC18:1 caused a decrease in the DODAB gel-fluid transition temperature and cooperativity, associated with two populations with distinct rigidities in the gel phase. In the fluid phase, LPC18:1 increased the surface order but, differently from LPC18:0, did not affect viscosity at the membrane core. The impact of the different acyl chains of LPC18:0 and 18:1 on structure and thermotropic behavior should be considered when developing applications using mixed DODAB membranes.
Collapse
Affiliation(s)
- Letícia S Martins
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP 04023-062, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, São Paulo, SP 05508-090, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, São Paulo, SP 05508-090, Brazil
| | - Julio H K Rozenfeld
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
19
|
Sepehrinezhad A, Shahbazi A, Joghataei MT, Larsen FS, Sahab Negah S. Inhibition of autotaxin alleviates pathological features of hepatic encephalopathy at the level of gut-liver-brain axis: an experimental and bioinformatic study. Cell Death Dis 2023; 14:490. [PMID: 37528089 PMCID: PMC10394058 DOI: 10.1038/s41419-023-06022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
There is accumulating evidence that the circulatory levels of autotaxin (ATX) and lysophosphatidic acid (LPA) are increased in patients with severe liver disease. However, the potential role of the ATX-LPA axis in hepatic encephalopathy (HE) remains unclear. Our study aimed to investigate the role of the ATX-LPA signaling pathway in mice with thioacetamide (TAA) induced acute HE. To show the role of the ATX-LPA axis in the context of HE, we first measured the involvement of ATX-LPA in the pathogenesis of TAA-induced acute HE. Then, we compared the potential effects of ATX inhibitor (HA130) on astrocyte responses at in vitro and gut-liver-brain axis at in vivo levels. The inflammatory chemokine (C-C motif) ligand 3 was significantly increased in the hyperammonemic condition and could be prevented by ATX inhibition in astrocytes at in vitro level. Further statistical tests revealed that plasma and tissue pro-inflammatory cytokines were inhibited by HA130 in mice. Furthermore, the stage of HE was significantly improved by HA130. The most surprising result was that HA130 alleviated immune infiltrating cells in the liver and intestine and decreased mucus-secreting cells in the intestine. Further analysis showed that the levels of liver enzymes in serum were significantly decreased in response to ATX inhibition. Surprisingly, our data indicated that HA130 could recover permeabilization of the blood-brain barrier, neuroinflammation, and recognition memory. Besides that, we found that the changes of Interleukin-1 (IL-1) and aquaporin-4 (AQP4) in HE might have a connection with the glymphatic system based on bioinformatics analyses. Taken together, our data showed that the ATX-LPA axis contributes to the pathogenesis of HE and that inhibition of ATX improves HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Fin Stolze Larsen
- Department of Gastroenterology and Hepatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
20
|
Magkrioti C, Kaffe E, Aidinis V. The Role of Autotaxin and LPA Signaling in Embryonic Development, Pathophysiology and Cancer. Int J Mol Sci 2023; 24:ijms24098325. [PMID: 37176032 PMCID: PMC10179533 DOI: 10.3390/ijms24098325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Autotaxin (ATX) or Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a secreted enzyme with lysophospholipase D activity, with its primary function being the extracellular hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid [...].
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Eleanna Kaffe
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| |
Collapse
|
21
|
Lin K, Cheng W, Shen Q, Wang H, Wang R, Guo S, Wu X, Wu W, Chen P, Wang Y, Ye H, Zhang Q, Wang R. Lipid Profiling Reveals Lipidomic Signatures of Weight Loss Interventions. Nutrients 2023; 15:nu15071784. [PMID: 37049623 PMCID: PMC10097218 DOI: 10.3390/nu15071784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Obesity is an epidemic all around the world. Weight loss interventions that are effective differ from each other with regard to various lipidomic responses. Here, we aimed to find lipidomic biomarkers that are related to beneficial changes in weight loss. We adopted an untargeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to measure 953 lipid species for Exercise (exercise intervention cohort, N = 25), 1388 lipid species for LSG (laparoscopic sleeve gastrectomy cohort, N = 36), and 886 lipid species for Cushing (surgical removal of the ACTH-secreting pituitary adenomas cohort, N = 25). Overall, the total diacylglycerol (DG), triacylglycerol (TG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM) levels were associated with changes in BMI, glycated hemoglobin (HbA1c), triglyceride, and total cholesterol according to weight loss interventions. We found that 73 lipid species changed among the three weight loss interventions. We screened 13 lipid species with better predictive accuracy in diagnosing weight loss situations in either Exercise, LSG, or Cushing cohorts (AUROC > 0.7). More importantly, we identified three phosphatidylcholine (PC) lipid species, PC (14:0_18:3), PC (31:1), and PC (32:2) that were significantly associated with weight change in three studies. Our results highlight potential lipidomic biomarkers that, in the future, could be used in personalized approaches involving weight loss interventions.
Collapse
Affiliation(s)
- Kaiqing Lin
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Cheng
- Department of Endocrinology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xianmin Wu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Ru Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|