1
|
Piccolo P, Brunetti-Pierri N. Current and Emerging Issues in Adeno-Associated Virus Vector-Mediated Liver-Directed Gene Therapy. Hum Gene Ther 2024. [PMID: 39714937 DOI: 10.1089/hum.2024.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Adeno-associated virus (AAV) vectors have demonstrated safety and efficacy for gene transfer to hepatocytes in preclinical models, in various clinical trials and from a clinical experience with a growing number of approved gene therapy products. Although the exact duration is unknown, the expression of therapeutic genes in hepatocytes remains stable for several years after a single administration of the vector at clinically relevant doses in adult patients with hemophilia and other inherited metabolic disorders. However, clinical applications, especially for diseases requiring high AAV vector doses by intravenous administrations, have raised several concerns. These include the high prevalence of pre-existing immunity against the vector capsid, activation of the complement and the innate immunity with serious life-threatening complications, elevation of liver transaminases, liver growth associated with loss of transgene expression, underlying conditions negatively affecting AAV vector safety and efficacy. Despite these issues, the field is rapidly advancing with a better understanding of vector-host interactions and the development of new strategies to improve liver-directed gene therapy. This review provides an overview of the current and emerging challenges for AAV-mediated liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy
| |
Collapse
|
2
|
Wei P, Chen K, Chen J. Engineering an Ultrasound-Responsive Glycopolymersome for Hepatocyte-Specific Gene Delivery. Biomacromolecules 2024; 25:7838-7849. [PMID: 39514216 DOI: 10.1021/acs.biomac.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The ability to design liver-targeted gene delivery vectors is plagued with difficulties ranging from carrier-mediated cellular toxicity to challenges in encapsulating sensitive nucleic acids. Herein, we present an ultrasound-responsive glycopolymersome strategy for in situ loading of nucleic acids and achieving hepatocyte-specific gene delivery. This glycopolymersome is self-assembled from a block copolymer, N-acetylgalactosamine-grafted poly(glutamic acid)-block-poly(ε-caprolactone) (PGAGalNAc-b-PCL). GalNAc is introduced to afford liver targeting through the selective binding to the asialoglycoprotein receptor overexpressed on hepatocytes. External ultrasound is utilized to assist in encapsulating nucleic acids within the hydrophilic lumen of glycopolymersomes by exploiting their ultrasound responsiveness nature. Biological studies confirmed the successful encapsulation of plasmid DNA (pDNA) and small interfering RNA (siRNA), rapid nuclear internalization, and efficient gene transfection. These findings collectively demonstrated that this ultrasound-responsive glycopolymersome could be exploited as a novel safe and efficient gene vector targeting hepatocytes.
Collapse
Affiliation(s)
- Ping Wei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Kai Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Zhang L, Wang R, Nan Y, Kong L. Deciphering the role of LncRNA in alcoholic liver disease: Mechanisms and therapeutic potential. Medicine (Baltimore) 2024; 103:e40378. [PMID: 39533619 PMCID: PMC11557020 DOI: 10.1097/md.0000000000040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Alcoholic liver disease (ALD) is a spectrum of liver damage caused by chronic alcohol consumption. The disease progresses in stages, starting with simple fatty liver, progressing to alcoholic hepatitis and potentially leading to fibrosis and cirrhosis. The pathophysiology of ALD is complex and involves several cellular and molecular mechanisms. Recent research has highlighted the role of long non-coding RNAs (LncRNAs) as critical regulators in the development and progression of ALD. This article reviews the current understanding of LncRNAs in ALD, focusing on their functions in key pathological processes and their potential as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lingbo Kong
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Mo D, Lv M, Mao X. Using different zebrafish models to explore liver regeneration. Front Cell Dev Biol 2024; 12:1485773. [PMID: 39544362 PMCID: PMC11560876 DOI: 10.3389/fcell.2024.1485773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
The liver possesses an impressive capability to regenerate following various injuries. Given its profound implications for the treatment of liver diseases, which afflict millions globally, liver regeneration stands as a pivotal area of digestive organ research. Zebrafish (Danio rerio) has emerged as an ideal model organism in regenerative medicine, attributed to their remarkable ability to regenerate tissues and organs, including the liver. Many fantastic studies have been performed to explore the process of liver regeneration using zebrafish, especially the extreme hepatocyte injury model. Biliary-mediated liver regeneration was first discovered in the zebrafish model and then validated in mammalian models and human patients. Considering the notable expansion of biliary epithelial cells in many end-stage liver diseases, the promotion of biliary-mediated liver regeneration might be another way to treat these refractory liver diseases. To date, a comprehensive review discussing the current advancements in zebrafish liver regeneration models is lacking. Therefore, this review aims to investigate the utility of different zebrafish models in exploring liver regeneration, highlighting the genetic and cellular insights gained and discussing the potential translational impact on human health.
Collapse
Affiliation(s)
- Dashuang Mo
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, China
| |
Collapse
|
5
|
Hosgood SA, Nicholson ML. Current Basic Research in Normothermic Machine Perfusion. Eur Surg Res 2024; 65:137-145. [PMID: 39471796 DOI: 10.1159/000542290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is gradually being introduced into clinical transplantation to improve the quality of organs and increase utilisation. This review details current understanding of the underlying mechanistic effects of NMP in the heart, lung, liver, and kidney. It also considers recent advancements to extend the perfusion interval in these organs and the use of NMP to introduce novel therapeutic interventions, with a focus on organ modulation. SUMMARY The re-establishment of circulation during NMP leads to the upregulation of inflammatory and immune mediators, similar to an ischaemia-reperfusion injury response. The level of injury is determined by the condition of the organ, but inflammation may also be exacerbated by the passenger leucocytes that emerge from the organ during perfusion. There is evidence that damaged organs can recover and that prolonged NMP may be advantageous. In the liver, successful 7-day NMP has been achieved. The delivery of therapeutic agents to an organ can aid repair and be used to modify the organ to reduce immunogenicity or change the structure of the blood group antigens to create a universal donor blood group organ. KEY MESSAGES The application of NMP in organ transplantation is a growing area of research and is increasingly being used in the clinic. In the future, NMP may offer the opportunity to change practice. If organs can be preserved for days on an NMP system, transplantation may become an elective rather than an emergency procedure. The ability to introduce therapies during NMP is an effective way to treat an organ and avoid the complexity of treating the recipient.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
6
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
7
|
Kumar A, Combe E, Mougené L, Zoulim F, Testoni B. Applications of CRISPR/Cas as a Toolbox for Hepatitis B Virus Detection and Therapeutics. Viruses 2024; 16:1565. [PMID: 39459899 PMCID: PMC11512240 DOI: 10.3390/v16101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a significant global health challenge, leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Covalently closed circular DNA (cccDNA) and integrated HBV DNA are pivotal in maintaining viral persistence. Recent advances in CRISPR/Cas technology offer innovative strategies to inhibit HBV by directly targeting both cccDNA and integrated HBV DNA or indirectly by degrading HBV RNAs or targeting host proteins. This review provides a comprehensive overview of the latest advancements in using CRISPR/Cas to inhibit HBV, with a special highlight on newer non-double-strand (non-DSB) break approaches. Beyond the canonical use of CRISPR/Cas for target inhibition, we discuss additional applications, including HBV diagnosis and developing models to understand cccDNA biology, highlighting the diverse use of this technology in the HBV field.
Collapse
Affiliation(s)
- Anuj Kumar
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Emmanuel Combe
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Léa Mougené
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hepatology Department, Hospices Civils de Lyon (HCL), Croix-Rousse Hospital, 69004 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
| | - Barbara Testoni
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
8
|
Torella L, Santana-Gonzalez N, Zabaleta N, Gonzalez Aseguinolaza G. Gene editing in liver diseases. FEBS Lett 2024; 598:2348-2371. [PMID: 39079936 DOI: 10.1002/1873-3468.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 10/16/2024]
Abstract
The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Santana-Gonzalez
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
9
|
D'Alessio AM, Boffa I, De Stefano L, Soria LR, Brunetti-Pierri N. Liver gene transfer for metabolite detoxification in inherited metabolic diseases. FEBS Lett 2024; 598:2372-2384. [PMID: 38884367 DOI: 10.1002/1873-3468.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Inherited metabolic disorders (IMDs) are a growing group of genetic diseases caused by defects in enzymes that mediate cellular metabolism, often resulting in the accumulation of toxic substrates. The liver is a highly metabolically active organ that hosts several thousands of chemical reactions. As such, it is an organ frequently affected in IMDs. In this article, we review current approaches for liver-directed gene-based therapy aimed at metabolite detoxification in a variety of IMDs. Moreover, we discuss current unresolved challenges in gene-based therapies for IMDs.
Collapse
Affiliation(s)
- Alfonso M D'Alessio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Iolanda Boffa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Leandro R Soria
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
10
|
Wu YC, Xiang XL, Yong JK, Li M, Li LM, Lv ZC, Zhou Y, Sun XC, Zhang ZJ, Tong H, He XY, Xia Q, Feng H. Immune remodulation in pediatric inherited metabolic liver diseases. World J Hepatol 2024; 16:1258-1268. [PMID: 39351516 PMCID: PMC11438594 DOI: 10.4254/wjh.v16.i9.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 09/23/2024] Open
Abstract
Inherited metabolic liver diseases arise from genetic mutations that lead to disruptions in liver metabolic pathways and are predominantly observed in pediatric populations. The spectrum of genetic metabolic liver disorders is diverse, encompassing a range of conditions associated with aberrations in iron, copper, carbohydrate, lipid, protein, and amino acid metabolism. Historically, research in the domain of genetic metabolic liver diseases has predominantly concentrated on hepatic parenchymal cell alterations. Nevertheless, emerging studies suggest that inherited metabolic liver diseases exert significant influences on the immune microenvironment, both within the liver and systemically. This review endeavors to encapsulate the immunological features of genetic metabolic liver diseases, aiming to expand the horizons of researchers in this discipline, and to elucidate the underlying pathophysiological mechanisms pertinent to hereditary metabolic liver diseases and to propose innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yi-Chi Wu
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xue-Lin Xiang
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - June-Kong Yong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
| | - Lin-Man Li
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zi-Cheng Lv
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xi-Cheng Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huan Tong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 200012, China
| | - Xiao-Ying He
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 200012, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China.
| |
Collapse
|
11
|
Soth S, Takakura M, Suekawa M, Onishi T, Hirohata K, Hashimoto T, Maruno T, Fukuhara M, Tsunaka Y, Torisu T, Uchiyama S. Quantification of full and empty particles of adeno-associated virus vectors via a novel dual fluorescence-linked immunosorbent assay. Mol Ther Methods Clin Dev 2024; 32:101291. [PMID: 39070291 PMCID: PMC11283060 DOI: 10.1016/j.omtm.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The adeno-associated virus (AAV) vector is one of the most advanced platforms for gene therapy because of its low immunogenicity and non-pathogenicity. The concentrations of both AAV vector empty particles, which do not contain DNA and do not show any efficacy, and AAV vector full particles (FPs), which contain DNA, are important quality attributes. In this study, a dual fluorescence-linked immunosorbent assay (dFLISA), which uses two fluorescent dyes to quantify capsid and genome titers in a single analysis, was established. In dFLISA, capture of AAV particles, detection of capsid proteins, and release and detection of the viral genome are performed in the same well. We demonstrated that the capsid and genomic titers determined by dFLISA were comparable with those of analytical ultracentrifugation. The FP ratios determined by dFLISA were in good agreement with the expected values. In addition, we showed that dFLISA can quantify the genomic and capsid titers of crude samples. dFLISA can be easily modified for measuring other AAV vector serotypes and AAV vectors with different genome lengths. These features make dFLISA a valuable tool for the future development of AAV-based gene therapies.
Collapse
Affiliation(s)
- Sereirath Soth
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikako Takakura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Suekawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Onishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Hirohata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tamami Hashimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Fukuhara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsunaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
12
|
Miao Y, Fu C, Yu Z, Yu L, Tang Y, Wei M. Current status and trends in small nucleic acid drug development: Leading the future. Acta Pharm Sin B 2024; 14:3802-3817. [PMID: 39309508 PMCID: PMC11413693 DOI: 10.1016/j.apsb.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Small nucleic acid drugs, composed of nucleotides, represent a novel class of pharmaceuticals that differ significantly from conventional small molecule and antibody-based therapeutics. These agents function by selectively targeting specific genes or their corresponding messenger RNAs (mRNAs), further modulating gene expression and regulating translation-related processes. Prominent examples within this category include antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), microRNAs (miRNAs), and aptamers. The emergence of small nucleic acid drugs as a focal point in contemporary biopharmaceutical research is attributed to their remarkable specificity, facile design, abbreviated development cycles, expansive target spectrum, and prolonged activity. Overcoming challenges such as poor stability, immunogenicity, and permeability issues have been addressed through the integration of chemical modifications and the development of drug delivery systems. This review provides an overview of the current status and prospective trends in small nucleic acid drug development. Commencing with a historical context, we introduce the primary classifications and mechanisms of small nucleic acid drugs. Subsequently, we delve into the advantages of the U.S. Food and Drug Administration (FDA) approved drugs and mainly discuss the challenges encountered during their development. Apart from researching chemical modification and delivery system that efficiently deliver and enrich small nucleic acid drugs to target tissues, promoting endosomal escape is a critical scientific question and important research direction in siRNA drug development. Future directions in this field will prioritize addressing these challenges to facilitate the clinical transformation of small nucleic acid drugs.
Collapse
Affiliation(s)
- Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Tang
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
13
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
14
|
Wang S, Wang X, Wang Y. The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101395. [PMID: 39218152 PMCID: PMC11530608 DOI: 10.1016/j.jcmgh.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.
Collapse
Affiliation(s)
- Shuyong Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuan Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
15
|
Azadeh M, Good J, Gunsior M, Kulagina N, Lu Y, McNally J, Myler H, Ni YG, Pelto R, Quadrini KJ, Vrentas C, Yang L. Best Practices for Development and Validation of Enzymatic Activity Assays to Support Drug Development for Inborn Errors of Metabolism and Biomarker Assessment. AAPS J 2024; 26:97. [PMID: 39179710 DOI: 10.1208/s12248-024-00966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024] Open
Abstract
Aberrant or dysfunctional cellular enzymes are responsible for a wide range of diseases including cancer, neurodegenerative conditions, and metabolic disorders. Deficiencies in enzyme level or biofunction may lead to intracellular accumulation of substrate to toxic levels and interfere with overall cellular function, ultimately leading to cell damage, disease, and death. Marketed therapeutic interventions for inherited monogenic enzyme deficiency disorders include enzyme replacement therapy and small molecule chaperones. Novel approaches of in vivo gene therapy and ex vivo cell therapy are under clinical evaluation and provide promising opportunities to expand the number of available disease-modifying treatments. To support the development of these different therapeutics, assays to quantify the functional activity of protein enzymes have gained importance in the diagnosis of disease, assessment of pharmacokinetics and pharmacodynamic response, and evaluation of drug efficacy. In this review, we discuss the technical aspects of enzyme activity assays in the bioanalytical context, including assay design and format as well as the unique challenges and considerations associated with assay development, validation, and life cycle management.
Collapse
Affiliation(s)
- Mitra Azadeh
- Ultragenyx Pharmaceutical, Inc., Novato, California, USA
| | | | | | - Nadia Kulagina
- Smithers Pharmaceutical Development Services, Gaithersburg, Maryland, USA
| | - Yanmei Lu
- Sangamo Therapeutics, Richmond, California, USA
| | | | | | - Yan G Ni
- Passage Bio, Inc., Philadelphia, Pennsylvania, USA
| | - Ryan Pelto
- Alexion, AstraZeneca Rare Disease, New Haven, Connecticut, USA
| | | | - Catherine Vrentas
- Pharmaceutical Product Development, a ThermoFisher Company, Richmond, Virginia, USA.
- , Richmond, Virginia, USA.
| | - Lin Yang
- Regenxbio, Rockville, Maryland, USA
| |
Collapse
|
16
|
Szabó L, Pollio AR, Vogel GF. Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. Traffic 2024; 25:e12954. [PMID: 39187475 DOI: 10.1111/tra.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.
Collapse
Affiliation(s)
- Luca Szabó
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adam R Pollio
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Friedrich Vogel
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
19
|
Maturana CJ, Engel EA. Persistent transgene expression in peripheral tissues one year post intravenous and intramuscular administration of AAV vectors containing the alphaherpesvirus latency-associated promoter 2. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2024; 4:1379991. [PMID: 38665693 PMCID: PMC11044866 DOI: 10.3389/fviro.2024.1379991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Significant progress has been made in enhancing recombinant adeno-associated virus (rAAV) for clinical investigation. Despite its versatility as a gene delivery platform, the inherent packaging constraint of 4.7 kb imposes restrictions on the range of diseases it can address. In this context, we present findings of an exceptionally compact and long-term promoter that facilitates the expression of larger genes compared to conventional promoters. This compact promoter originated from the genome of the alphaherpesvirus pseudorabies virus, latency-associated promoter 2 (LAP2, 404 bp). Promoter driving an mCherry reporter was packaged into single strand (ss) AAV8 and AAV9 vectors and injected into adult C57BL/6 mice at a dose of 5 × 1011 vg/mouse by single intravenous or intramuscular administration. An ssAAV8 and ssAAV9 vector with elongation factor-1α promoter (EF1α, 1264 bp) was injected side-by-side for comparison. After 400 days, we sacrificed the mice and examined mCherry expression in liver, kidney, heart, lung, spleen, pancreas, skeletal muscle, and brain. We found that LAP2 exhibited robust transgene expression across a wide range of cells and tissues comparable to the larger EF1α, which is currently recognized as a rather potent and ubiquitous promoter. The AAV8-LAP2 and AAV9-LAP2 constructs displayed strong transduction and transcription in liver, kidney, and skeletal muscle on both route of administration. However, no expression was detected in the heart, lung, spleen, pancreas, and brain. The outcomes of our investigation propose the viability of LAP2 for gene therapy applications demanding the expression of large or multiple therapeutic genes following a single viralvector administration.
Collapse
Affiliation(s)
- Carola J. Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
20
|
Blackwood M, Gruntman AM, Tang Q, Pires-Ferreira D, Reil D, Kondratov O, Marsic D, Zolotukhin S, Gernoux G, Keeler AM, Mueller C, Flotte TR. Biodistribution and safety of a single rAAV3B-AAT vector for silencing and replacement of alpha-1 antitrypsin in Cynomolgus macaques. Mol Ther Methods Clin Dev 2024; 32:101200. [PMID: 38445045 PMCID: PMC10914479 DOI: 10.1016/j.omtm.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is characterized by both chronic lung disease due to loss of wild-type AAT (M-AAT) antiprotease function and liver disease due to toxicity from delayed secretion, polymerization, and aggregation of misfolded mutant AAT (Z-AAT). The ideal gene therapy for AATD should therefore comprise both endogenous Z-AAT suppression and M-AAT overexpression. We designed a dual-function rAAV3B (df-rAAV3B) construct, which was effective at transducing hepatocytes, resulting in a considerable decrease of Z-AAT levels and safe M-AAT augmentation in mice. We optimized df-rAAV3B and created two variants, AAV3B-E12 and AAV3B-G3, to simultaneously enhance the concentration of M-AAT in the bloodstream to therapeutic levels and silence endogenous AAT liver expression in cynomolgus monkeys. Our results demonstrate that AAV3b-WT, AAV3B-E12, and AAV3B-G3 were able to transduce the monkey livers and achieve high M-AAT serum levels efficiently and safely. In this nondeficient model, we did not find downregulation of endogenous AAT. However, the dual-function vector did serve as a potentially "liver-sparing" alternative for high-dose liver-mediated AAT gene replacement in the context of underlying liver disease.
Collapse
Affiliation(s)
- Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alisha M. Gruntman
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Qiushi Tang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Debora Pires-Ferreira
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Darcy Reil
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
- MaiBo Biotech, Suzhou Industrial Park, Jiangsu, China
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Gwladys Gernoux
- Nantes Université, CHU de Nantes, INSERM, TaRGeT–Translational Research in Gene Therapy, UMR 1089, 44200 Nantes, France
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
21
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
22
|
Hadi M, Qutaiba B Allela O, Jabari M, Jasoor AM, Naderloo O, Yasamineh S, Gholizadeh O, Kalantari L. Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma. Virol J 2024; 21:17. [PMID: 38216938 PMCID: PMC10785434 DOI: 10.1186/s12985-024-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Collapse
Affiliation(s)
- Meead Hadi
- Department of Microbiology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mansoureh Jabari
- Medical Campus, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Asna Mahyazadeh Jasoor
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Omid Naderloo
- Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University of Gorgan Breanch, Gorgan, Iran
| | | | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
23
|
Wagner C, Fuchsberger FF, Innthaler B, Pachlinger R, Schrenk I, Lemmerer M, Birner-Gruenberger R. Automated Mass Photometry of Adeno-Associated Virus Vectors from Crude Cell Extracts. Int J Mol Sci 2024; 25:838. [PMID: 38255912 PMCID: PMC10815086 DOI: 10.3390/ijms25020838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Mass photometry (MP) is a fast and simple analysis method for the determination of the proportions of subpopulations in an AAV sample. It is label-free and requires minimal sample volumes between 5-10 µL, which makes it a promising candidate over orthogonal techniques such as analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (Cryo-TEM) or charge-detection mass spectrometry (CDMS). However, these methods are limited in their application to purified samples only. Here we developed a purification step based on single-domain monospecific antibody fragments immobilised on either a poly(styrene-divinylbenzene) resin or on magnetic beads prior to MP analysis that allows the quantification of empty, partially filled, full and overfull AAV vectors in crude cell extracts. This is aimed at identifying potentially promising harvest conditions that yield large numbers of filled AAV vectors during the early stages of the viral vector development platform, e.g., the type of transfection reagent used. Furthermore, we provide a direct comparison of the automated and manual handling of the mass photometer with respect to the quantities of AAV subspecies, molar mass of the capsid and payload, and highlight the differences between the "buffer-free" sample measurement and the "buffer-dilution" mode. In addition, we provide information on which candidates to use for calibration and demonstrate the limitations of the mass photometer with respect to the estimation of the capsid titer.
Collapse
Affiliation(s)
- Christina Wagner
- Pharmaceutical Sciences, Baxalta Innovations (Part of Takeda), 1220 Vienna, Austria
| | - Felix F. Fuchsberger
- Pharmaceutical Sciences, Baxalta Innovations (Part of Takeda), 1220 Vienna, Austria
| | - Bernd Innthaler
- Pharmaceutical Sciences, Baxalta Innovations (Part of Takeda), 1220 Vienna, Austria
| | - Robert Pachlinger
- Pharmaceutical Sciences, Baxalta Innovations (Part of Takeda), 1220 Vienna, Austria
| | - Irene Schrenk
- Pharmaceutical Sciences, Baxalta Innovations (Part of Takeda), 1220 Vienna, Austria
| | - Martin Lemmerer
- Pharmaceutical Sciences, Baxalta Innovations (Part of Takeda), 1220 Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technical University of Vienna, 1040 Vienna, Austria
| |
Collapse
|
24
|
Khalifeh M, Badiee A, Ramezanian N, Sahebkar A, Farahpour A, Kazemi Oskuee R. Lactosylated lipid calcium phosphate-based nanoparticles: A promising approach for efficient DNA delivery to hepatocytes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:952-958. [PMID: 38911238 PMCID: PMC11193503 DOI: 10.22038/ijbms.2024.76683.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 06/25/2024]
Abstract
Objectives For safe and effective gene therapy, the ability to deliver the therapeutic nucleic acid to the target sites is crucial. In this study, lactosylated lipid phosphate calcium nanoparticles (lac-LCP) were developed for targeted delivery of pDNA to the hepatocyte cells. The lac-LCP formulation contained lactose-modified cholesterol (CHL), a ligand that binds to the asialoglycoprotein receptor (ASGR) expressed on hepatocytes, and polyethyleneimine (PEI) in the core. Materials and Methods Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) were used to monitor the chemical modification, and the physicochemical properties of NPs were studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). To evaluate transfection efficiency, cellular uptake and GFP expression were assessed using fluorescence microscopy and flow cytometry. Results The results revealed that lactose-targeted particles (lac-LCP) had a significant increase in cellular uptake by hepatocytes. The inclusion of a low molecular weight PEI (1.8 KDa) with a low PEI/pDNA ratio of 1 in the core of LCP, elicited high degrees of GFP protein expression (by 5 and 6-fold), which exhibited significantly higher efficiency than PEI 1.8 KDa and Lipofectamine. Conclusion The successful functionalization and nuclear delivery of LCP NPs described here indicate its promise as an efficient delivery vector to hepatocyte nuclei.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ramezanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Farahpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Zhang J, Wang TY, Zhang C, Mi C, Geng S, Tang Y, Wang X. CMV/AAT promoter of MAR-based episomal vector enhanced transgene expression in human hepatic cells. 3 Biotech 2023; 13:354. [PMID: 37810190 PMCID: PMC10558423 DOI: 10.1007/s13205-023-03774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
We have previously developed a non-viral episomal vector based on matrix attachment region (MAR) that can facilitate plasmid replication episomally in mammal cells. In this study, we have focused on the development of an alternative tissue specific episomal vector by incorporating into cis-acting elements. We found that AAT promoter demonstrated the highest eGFP expression level in HepG2, Huh-7 and HL-7702 hepatic cells. Furthermore, hCMV enhancer when combined with AAT promoter significantly improved the eGFP expression level in the transfected HepG2 cells. The mean fluorescence intensity of eGFP in hCMV2 group was 1.33 fold, which was higher than that of the control (p < 0.01), followed by the hCMV1 group (1.21 fold). In addition, the percentages of eGFP-expressing cells in hCMV1 and hCMV2 groups were observed to be 49.3% and 57.2%, which were significantly higher than that of the enhancer-devoid control vector (44.3%) (p < 0.05). Moreover, the eGFP protein were up to 3.5 fold and 5.1 fold (p < 0.05), respectively. This observation could be related with the activities of some specific transcription factors (TFs) during the transcriptional process, such as SRF, REL and CREB1. The composite CMV/AAT promoter can be thus used for efficient transgene expression of MAR-based episomal vector in liver cells and as a potential gene transfer tools for the management of liver diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03774-x.
Collapse
Affiliation(s)
- Jihong Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Tian-Yun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Chunbo Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453000 China
| | - Chunliu Mi
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Shaolei Geng
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
| | - Xiaoyin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| |
Collapse
|
26
|
Jiang J, van Ertvelde J, Ertaylan G, Peeters R, Jennen D, de Kok TM, Vinken M. Unraveling the mechanisms underlying drug-induced cholestatic liver injury: identifying key genes using machine learning techniques on human in vitro data sets. Arch Toxicol 2023; 97:2969-2981. [PMID: 37603094 PMCID: PMC10504391 DOI: 10.1007/s00204-023-03583-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Drug-induced intrahepatic cholestasis (DIC) is a main type of hepatic toxicity that is challenging to predict in early drug development stages. Preclinical animal studies often fail to detect DIC in humans. In vitro toxicogenomics assays using human liver cells have become a practical approach to predict human-relevant DIC. The present study was set up to identify transcriptomic signatures of DIC by applying machine learning algorithms to the Open TG-GATEs database. A total of nine DIC compounds and nine non-DIC compounds were selected, and supervised classification algorithms were applied to develop prediction models using differentially expressed features. Feature selection techniques identified 13 genes that achieved optimal prediction performance using logistic regression combined with a sequential backward selection method. The internal validation of the best-performing model showed accuracy of 0.958, sensitivity of 0.941, specificity of 0.978, and F1-score of 0.956. Applying the model to an external validation set resulted in an average prediction accuracy of 0.71. The identified genes were mechanistically linked to the adverse outcome pathway network of DIC, providing insights into cellular and molecular processes during response to chemical toxicity. Our findings provide valuable insights into toxicological responses and enhance the predictive accuracy of DIC prediction, thereby advancing the application of transcriptome profiling in designing new approach methodologies for hazard identification.
Collapse
Affiliation(s)
- Jian Jiang
- Entity of In Vitro Toxicology and Dermato‑Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Jonas van Ertvelde
- Entity of In Vitro Toxicology and Dermato‑Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Gökhan Ertaylan
- Vlaamse Instelling voor Technologisch Onderzoek (VITO) NV, Health, Boeretang 200, 2400, Mol, Belgium
| | - Ralf Peeters
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato‑Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
27
|
Zhang Y, Peng C, Wang L, Chen S, Wang J, Tian Z, Wang C, Chen X, Zhu S, Zhang GF, Wang Y. Prevalence of propionic acidemia in China. Orphanet J Rare Dis 2023; 18:281. [PMID: 37689673 PMCID: PMC10493020 DOI: 10.1186/s13023-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Propionic acidemia (PA) is a rare autosomal recessive congenital disease caused by mutations in the PCCA or PCCB genes. Elevated propionylcarnitine, 2-methylcitric acid (2MCA), propionylglycine, glycine and 3-hydroxypropionate can be used to diagnose PA. Early-onset PA can lead to acute deterioration, metabolic acidosis, and hyperammonemia shortly after birth, which can result in high mortality and disability. Late-onset cases of PA have a more heterogeneous clinical spectra, including growth retardation, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, arrhythmias, adaptive immune defects, rhabdomyolysis, optic atrophy, hearing loss, premature ovarian failure, and chronic kidney disease. Timely and accurate diagnosis and appropriate treatment are crucial to saving patients' lives and improving their prognosis. Recently, the number of reported PA cases in China has increased due to advanced diagnostic techniques and increased research attention. However, an overview of PA prevalence in China is lacking. Therefore, this review provides an overview of recent advances in the pathogenesis, diagnostic strategies, and treatment of PA, including epidemiological data on PA in China. The most frequent variants among Chinese PA patients are c.2002G > A in PCCA and c.1301C > T in PCCB, which are often associated with severe clinical symptoms. At present, liver transplantation from a living (heterozygous parental) donor is a better option for treating PA in China, especially for those exhibiting a severe metabolic phenotype and/or end-organ dysfunction. However, a comprehensive risk-benefit analysis should be conducted as an integral part of the decision-making process. This review will provide valuable information for the medical care of Chinese patients with PA.
Collapse
Affiliation(s)
- Yixing Zhang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuwen Peng
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Lifang Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Sitong Chen
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Junwei Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuangong Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Suhong Zhu
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| | - You Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| |
Collapse
|
28
|
Khalil A, Quaglia A, Gélat P, Saffari N, Rashidi H, Davidson B. New Developments and Challenges in Liver Transplantation. J Clin Med 2023; 12:5586. [PMID: 37685652 PMCID: PMC10488676 DOI: 10.3390/jcm12175586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Liver disease is increasing in incidence and is the third most common cause of premature death in the United Kingdom and fourth in the United States. Liver disease accounts for 2 million deaths globally each year. Three-quarters of patients with liver disease are diagnosed at a late stage, with liver transplantation as the only definitive treatment. Thomas E. Starzl performed the first human liver transplant 60 years ago. It has since become an established treatment for end-stage liver disease, both acute and chronic, including metabolic diseases and primary and, at present piloting, secondary liver cancer. Advances in surgical and anaesthetic techniques, refined indications and contra-indications to transplantation, improved donor selection, immunosuppression and prognostic scoring have allowed the outcomes of liver transplantation to improve year on year. However, there are many limitations to liver transplantation. This review describes the milestones that have occurred in the development of liver transplantation, the current limitations and the ongoing research aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Amjad Khalil
- Liver Unit, Wellington Hospital, London NW8 9TA, UK
- Centre for Surgical Innovation, Organ Regeneration and Transplantation, University College London, London NW3 2PS, UK
- Clinical Service of HPB Surgery and Liver Transplantation, Royal Free Hospital, London NW3 2QG, UK
| | - Alberto Quaglia
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Pierre Gélat
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Hassan Rashidi
- Institute of Child Health, University College London, London WC1N 1EH, UK;
| | - Brian Davidson
- Liver Unit, Wellington Hospital, London NW8 9TA, UK
- Centre for Surgical Innovation, Organ Regeneration and Transplantation, University College London, London NW3 2PS, UK
- Clinical Service of HPB Surgery and Liver Transplantation, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
29
|
Wagner C, Fuchsberger FF, Innthaler B, Lemmerer M, Birner-Gruenberger R. Quantification of Empty, Partially Filled and Full Adeno-Associated Virus Vectors Using Mass Photometry. Int J Mol Sci 2023; 24:11033. [PMID: 37446211 DOI: 10.3390/ijms241311033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Adeno-associated viruses (AAV) are one of the most commonly used vehicles in gene therapies for the treatment of rare diseases. During the AAV manufacturing process, particles with little or no genetic material are co-produced alongside the desired AAV capsid containing the transgene of interest. Because of the potential adverse health effects of these byproducts, they are considered impurities and need to be monitored carefully. To date, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM) and charge-detection mass spectrometry (CDMS) are used to quantify these subspecies. However, they are associated with long turnaround times, low sample throughput and complex data analysis. Mass photometry (MP) is a fast and label-free orthogonal technique which is applicable to multiple serotypes without the adaption of method parameters. Furthermore, it can be operated with capsid titers as low as 8 × 1010 cp mL-1 with a CV < 5% using just 10 µL total sample volume. Here we demonstrate that mass photometry can be used as an orthogonal method to AUC to accurately quantify the proportions of empty, partially filled, full and overfull particles in AAV samples, especially in cases where ion-exchange chromatography yields no separation of the populations. In addition, it can be used to confirm the molar mass of the packaged genomic material in filled AAV particles.
Collapse
Affiliation(s)
- Christina Wagner
- Analytical Development Europe, Takeda Vienna, 1220 Vienna, Austria
| | - Felix F Fuchsberger
- Gene Therapy Process Development Europe, Takeda Orth an der Donau, 2304 Orth an der Donau, Austria
| | - Bernd Innthaler
- Gene Therapy Process Development Europe, Takeda Orth an der Donau, 2304 Orth an der Donau, Austria
| | - Martin Lemmerer
- Analytical Development Europe, Takeda Vienna, 1220 Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1040 Vienna, Austria
| |
Collapse
|
30
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
31
|
Gong J, Yang R, Zhou M, Chang LJ. Improved intravenous lentiviral gene therapy based on endothelial-specific promoter-driven factor VIII expression for hemophilia A. Mol Med 2023; 29:74. [PMID: 37308845 DOI: 10.1186/s10020-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Shenzhen Geno-Immune Medical Institute, 6 Yuexing 2nd Rd., 2nd Floor, Nanshan Dist., Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
32
|
Broussau S, Lytvyn V, Simoneau M, Guilbault C, Leclerc M, Nazemi-Moghaddam N, Coulombe N, Elahi SM, McComb S, Gilbert R. Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Mol Ther Methods Clin Dev 2023; 29:40-57. [PMID: 36936448 PMCID: PMC10018046 DOI: 10.1016/j.omtm.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Lentiviral vectors (LVs) are important for cell therapy because of their capacity to stably modify the genome after integration. This study describes a novel and relatively simple approach to generate packaging cells and producer clones for self-inactivating (SIN) LVs pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). A novel gene regulation system, based on the combination of the cumate and coumermycin induction systems, was developed to ensure tight control for the expression of cytotoxic packaging elements. To accelerate clone isolation and ensure monoclonality, the packaging genes were transfected simultaneously into human embryonic kidney cells (293SF-3F6) previously engineered with the induction system, and clones were isolated after limiting dilution into nanowell arrays using a robotic cell picking instrument with scanning capability. The method's effectiveness to isolate colonies derived from single cells was demonstrated using mixed populations of cells labeled with two different fluorescent markers. Because the recipient cell line grew in suspension culture, and all the procedures were performed without serum, the resulting clones were readily adaptable to serum-free suspension culture. The best producer clone produced LVs expressing GFP at a titer of 2.3 × 108 transduction units (TU)/mL in the culture medium under batch mode without concentration.
Collapse
Affiliation(s)
- Sophie Broussau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Simoneau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Claire Guilbault
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Leclerc
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nathalie Coulombe
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Scott McComb
- Department of Immunology, Human Health Therapeutics Research Centre, National Research Council, Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Département de Génie chimique, Université Laval, Québec, QC G1V 0A6, Canada
- Corresponding author: Rénald Gilbert, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada.
| |
Collapse
|
33
|
Vargas PA, Yu C, Goldaracena N. Comprehensive review of the application of MP and the potential for graft modification. FRONTIERS IN TRANSPLANTATION 2023; 2:1163539. [PMID: 38993846 PMCID: PMC11235300 DOI: 10.3389/frtra.2023.1163539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Following procurement, the liver graft is exposed to an ischemic period that triggers several pathophysiologic changes in response to oxygen deprivation. Therefore, the goal during organ preservation is to attenuate such response and provide an adequate environment that prepares the graft for its metabolic reactivation following implantation. This has been widely achieved via static cold storage preservation, where the maintenance of the graft using cold preservation solutions reduce its metabolic activity and confer cytoprotection until transplantation. However, despite being the gold standard for organ preservation, static cold storage holds several disadvantages. In addition, the ongoing organ shortage has led to the use of unconventional grafts that could benefit from therapies pre-transplant. Organ preservation via machine perfusion systems appears as a promising solution to address both. Methods Here, we aim to present a state-of-the-art narrative review regarding liver graft modification options using machine perfusion systems in combination with adjuvant strategies including immunomodulation, gene therapy and pharmacotherapy. Results Available reports are scarce and mostly on experimental animal models. Most of the literature reflects the use of normothermic or subnormothermic machine perfusion devices given that these particular type of machine allows for a metabolically active organ, and therefore facilitates its modification. Although limited, promising findings in available reports suggest that organ preservation using machine perfusion system when combined with alternative therapies can be feasible and safe strategies for graft modification. Discussion Further research on clinical settings are needed to better elucidate the true effect of graft modification pre-transplant on short- and long-term graft and patient survival. There is a long way ahead to develop guidelines and approve these novel therapies for clinical practice. However, the path looks promising.
Collapse
Affiliation(s)
- Paola A. Vargas
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Christine Yu
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Nicolas Goldaracena
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
34
|
Harmening N, Johnen S, Izsvák Z, Ivics Z, Kropp M, Bascuas T, Walter P, Kreis A, Pajic B, Thumann G. Enhanced Biosafety of the Sleeping Beauty Transposon System by Using mRNA as Source of Transposase to Efficiently and Stably Transfect Retinal Pigment Epithelial Cells. Biomolecules 2023; 13:biom13040658. [PMID: 37189405 DOI: 10.3390/biom13040658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal neovascularization (CNV), which leads to retinal pigment epithelial (RPE) cell and photoreceptor degeneration and blindness if untreated. Since blood vessel growth is mediated by endothelial cell growth factors, including vascular endothelial growth factor (VEGF), treatment consists of repeated, often monthly, intravitreal injections of anti-angiogenic biopharmaceuticals. Frequent injections are costly and present logistic difficulties; therefore, our laboratories are developing a cell-based gene therapy based on autologous RPE cells transfected ex vivo with the pigment epithelium derived factor (PEDF), which is the most potent natural antagonist of VEGF. Gene delivery and long-term expression of the transgene are enabled by the use of the non-viral Sleeping Beauty (SB100X) transposon system that is introduced into the cells by electroporation. The transposase may have a cytotoxic effect and a low risk of remobilization of the transposon if supplied in the form of DNA. Here, we investigated the use of the SB100X transposase delivered as mRNA and showed that ARPE-19 cells as well as primary human RPE cells were successfully transfected with the Venus or the PEDF gene, followed by stable transgene expression. In human RPE cells, secretion of recombinant PEDF could be detected in cell culture up to one year. Non-viral ex vivo transfection using SB100X-mRNA in combination with electroporation increases the biosafety of our gene therapeutic approach to treat nvAMD while ensuring high transfection efficiency and long-term transgene expression in RPE cells.
Collapse
Affiliation(s)
- Nina Harmening
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Andreas Kreis
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Eye Clinic ORASIS, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
35
|
Rana J, Marsic D, Zou C, Muñoz-Melero M, Li X, Kondratov O, Li N, de Jong YP, Zolotukhin S, Biswas M. Characterization of a Bioengineered AAV3B Capsid Variant with Enhanced Hepatocyte Tropism and Immune Evasion. Hum Gene Ther 2023; 34:289-302. [PMID: 36950804 PMCID: PMC10125406 DOI: 10.1089/hum.2022.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023] Open
Abstract
Capsid engineering of adeno-associated virus (AAV) can surmount current limitations to gene therapy such as broad tissue tropism, low transduction efficiency, or pre-existing neutralizing antibodies (NAb) that restrict patient eligibility. We previously generated an AAV3B combinatorial capsid library by integrating rational design and directed evolution with the aim of improving hepatotropism. A potential isolate, AAV3B-DE5, gained a selective proliferative advantage over five rounds of iterative selection in hepatocyte spheroid cultures. In this study, we reanalyzed our original dataset derived from the AAV3B combinatorial library and isolated variants from earlier (one to three) rounds of selection, with the assumption that variants with faster replication kinetics are not necessarily the most efficient transducers. We identified a potential candidate, AAV3B-V04, which demonstrated significantly enhanced transduction in mouse-passaged primary human hepatocytes as well as in humanized liver chimeric mice, compared to the parental AAV3B or the previously described isolate, AAV3B-DE5. Interestingly, the AAV3B-V04 capsid variant exhibited significantly reduced seroreactivity to pooled or individual human serum samples. Forty-four percent of serum samples with pre-existing NAbs to AAV3B had 5- to 20-fold lower reciprocal NAb titers to AAV3B-V04. AAV3B-V04 has only nine amino acid substitutions, clustered in variable region IV compared to AAV3B, indicating the importance of the loops at the top of the three-fold protrusions in determining both transduction efficiency and immunogenicity. This study highlights the effectiveness of rational design combined with targeted selection for enhanced AAV transduction via molecular evolution approaches. Our findings support the concept of limiting selection rounds to isolate the best transducing AAV3B variant without outgrowth of faster replicating candidates. We conclude that AAV3B-V04 provides advantages such as improved human hepatocyte tropism and immune evasion and propose its utility as a superior candidate for liver gene therapy.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Porton Biologics, Jiangsu, China
| | - Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xin Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ning Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Parsamanesh N, Kooshkaki O, Siami H, Santos RD, Jamialahmadi T, Sahebkar A. Gene and cell therapy approaches for familial hypercholesterolemia: An update. Drug Discov Today 2023; 28:103470. [PMID: 36572377 DOI: 10.1016/j.drudis.2022.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Familial hypercholesterolemia (FH) is a common autosomal codominant hereditary illness marked by the heightened risk of early atherosclerotic cardiovascular disease and high blood levels of low-density lipoprotein cholesterol (LDL-C). FH patients can have homozygous or heterozygous variants. This condition has been linked to variations in the genes for the LDL receptor (LDLR), apolipoprotein B, proprotein convertase subtilisin/Kexin 9 (PCSK9), and LDLR adaptor protein 1. Drugs such as statins, ezetimibe, and PCSK9 inhibitors are currently widely available, allowing for the theoretical normalization of plasma LDL-C levels mostly in patients with heterozygous FH. However, homozygous FH patients usually have a poor response to traditional lipid-lowering therapy and may have a poor prognosis at a young age. LDL apheresis and novel pharmacological therapies such as microsomal transfer protein inhibitors or anti-angiopoietin-like protein 3 monoclonal antibodies are extremely expensive and unavailable in most regions of the world. Therefore, the unmet need persists for these patients. In this review, we discuss the numerous gene delivery, gene editing, and stem cell manipulation techniques used in this study to correct FH-causing LDLR gene variations in vitro, ex vivo, and in vivo. Finally, we looked at a variety of studies that corrected genetic defects that caused FH using the ground-breaking clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing technology.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Lim SW, Fang X, Cui S, Lee H, Shin YJ, Ko EJ, Lee KI, Lee JY, Chung BH, Yang CW. CRISPR-Cas9-Mediated Correction of SLC12A3 Gene Mutation Rescues the Gitelman's Disease Phenotype in a Patient-Derived Kidney Organoid System. Int J Mol Sci 2023; 24:ijms24033019. [PMID: 36769335 PMCID: PMC9917614 DOI: 10.3390/ijms24033019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The aim of this study is to explore the possibility of modeling Gitelman's disease (GIT) with human-induced pluripotent stem cell (hiPSC)-derived kidney organoids and to test whether gene correction using CRISPR/Cas9 can rescue the disease phenotype of GIT. To model GIT, we used the hiPSC line CMCi002 (CMC-GIT-001), generated using PBMCs from GIT patients with SLC12A3 gene mutation. Using the CRISPR-Cas9 system, we corrected CMC-GIT-001 mutations and hence generated CMC-GIT-001corr. Both hiPSCs were differentiated into kidney organoids, and we analyzed the GIT phenotype. The number of matured kidney organoids from the CMC-GIT-001corr group was significantly higher, 3.3-fold, than that of the CMC-GIT-001 group (12.2 ± 0.7/cm2 vs. 3.7 ± 0.2/cm2, p < 0.05). In qRT-PCR, performed using harvested kidney organoids, relative sodium chloride cotransporter (NCCT) mRNA levels (normalized to each iPSC) were increased in the CMC-GIT-001corr group compared with the CMC-GIT-001 group (4.1 ± 0.8 vs. 2.5 ± 0.2, p < 0.05). Consistently, immunoblot analysis revealed increased levels of NCCT protein, in addition to other tubular proteins markers, such as LTL and ECAD, in the CMC-GIT-001corr group compared to the CMC-GIT-001 group. Furthermore, we found that increased immunoreactivity of NCCT in the CMC-GIT-001corr group was colocalized with ECAD (a distal tubule marker) using confocal microscopy. Kidney organoids from GIT patient-derived iPSC recapitulated the Gitelman's disease phenotype, and correction of SLC12A3 mutation utilizing CRISPR-Cas9 technology provided therapeutic insight.
Collapse
Affiliation(s)
- Sun Woo Lim
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Xianying Fang
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sheng Cui
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hanbi Lee
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Jeong Ko
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kang In Lee
- R&D Center, ToolGen, Inc., Seoul 06591, Republic of Korea
| | - Jae Young Lee
- R&D Center, ToolGen, Inc., Seoul 06591, Republic of Korea
| | - Byung Ha Chung
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence: (B.H.C.); (C.W.Y.); Tel.: +82-2-2258-6066 (B.H.C.); +82-2-2258-6851 (C.W.Y.); Fax: +82-2-2258-6917 (B.H.C.); +82-2-2258-6917 (C.W.Y.)
| | - Chul Woo Yang
- Transplantation Research Centre College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence: (B.H.C.); (C.W.Y.); Tel.: +82-2-2258-6066 (B.H.C.); +82-2-2258-6851 (C.W.Y.); Fax: +82-2-2258-6917 (B.H.C.); +82-2-2258-6917 (C.W.Y.)
| |
Collapse
|
38
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
39
|
Oxidative Stress Modulation by ncRNAs and Their Emerging Role as Therapeutic Targets in Atherosclerosis and Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12020262. [PMID: 36829822 PMCID: PMC9952114 DOI: 10.3390/antiox12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.
Collapse
|
40
|
Abstract
Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient's immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.
Collapse
|
41
|
Campesi I, Ruoppolo M, Franconi F, Caterino M, Costanzo M. Sex-Gender-Based Differences in Metabolic Diseases. Handb Exp Pharmacol 2023; 282:241-257. [PMID: 37528324 DOI: 10.1007/164_2023_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sexual dimorphism creates different biological and cellular activities and selective regulation mechanisms in males and females, thus generating differential responses in health and disease. In this scenario, the sex itself is a source of physiologic metabolic disparities that depend on constitutive genetic and epigenetic features that characterize in a specific manner one sex or the other. This has as a direct consequence a huge impact on the metabolic routes that drive the phenotype of an individual. The impact of sex is being clearly recognized also in disease, whereas male and females are more prone to the development of some disorders, or have selective responses to drugs and therapeutic treatments. Actually, very less is known regarding the probable differences guided by sex in the context of inherited metabolic disorders, owing to the scarce consideration of sex in such restricted field, accompanied by an intrinsic bias connected with the rarity of such diseases. Metabolomics technologies have been ultimately developed and adopted for being excellent tools for the investigation of metabolic mechanisms, for marker discovery or monitoring, and for supporting diagnostic procedures of metabolic disorders. Hence, metabolomic approaches can excellently embrace the discovery of sex differences, especially when associated to the outcome or the management of certain inborn errors of the metabolism.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE - Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE - Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
- CEINGE - Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy.
| |
Collapse
|
42
|
Florentino RM, Morita K, Haep N, Motomura T, Diaz-Aragon R, Faccioli LA, Collin de l’Hortet A, Cetin Z, Frau C, Vernetti L, Amler AK, Thomas A, Lam T, Kloke L, Takeishi K, Taylor DL, Fox IJ, Soto-Gutierrez A. Biofabrication of synthetic human liver tissue with advanced programmable functions. iScience 2022; 25:105503. [PMID: 36404924 PMCID: PMC9672940 DOI: 10.1016/j.isci.2022.105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Advances in cellular engineering, as well as gene, and cell therapy, may be used to produce human tissues with programmable genetically enhanced functions designed to model and/or treat specific diseases. Fabrication of synthetic human liver tissue with these programmable functions has not been described. By generating human iPSCs with target gene expression controlled by a guide RNA-directed CRISPR-Cas9 synergistic-activation-mediator, we produced synthetic human liver tissues with programmable functions. Such iPSCs were guide-RNA-treated to enhance expression of the clinically relevant CYP3A4 and UGT1A1 genes, and after hepatocyte-directed differentiation, cells demonstrated enhanced functions compared to those found in primary human hepatocytes. We then generated human liver tissue with these synthetic human iPSC-derived hepatocytes (iHeps) and other non-parenchymal cells demonstrating advanced programmable functions. Fabrication of synthetic human liver tissue with modifiable functional genetic programs may be a useful tool for drug discovery, investigating biology, and potentially creating bioengineered organs with specialized functions.
Collapse
Affiliation(s)
- Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carla Frau
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Tobias Lam
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Lutz Kloke
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - D. Lansing Taylor
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ira J. Fox
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Zhang L, Liang Y, Liang G, Tian Z, Zhang Y, Liu Z, Ji X. The therapeutic prospects of N-acetylgalactosamine-siRNA conjugates. Front Pharmacol 2022; 13:1090237. [PMID: 36588695 PMCID: PMC9794871 DOI: 10.3389/fphar.2022.1090237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
RNA interference has become increasingly used for genetic therapy following the rapid development of oligonucleotide drugs. Significant progress has been made in its delivery system and implementation in the treatment of target organs. After a brief introduction of RNA interference technology and siRNA, the efficiency and stability of GalNAc-siRNA conjugates are highlighted since several oligonucleotide drugs of GalNAc have been approved for clinical use in recent years. The structure and features of GalNAc-siRNA conjugates are studied and the clinical efficiency and limitations of oligonucleotide-based drugs are summarized and investigated. Furthermore, another delivery system, lipid nanoparticles, that confer many advantages, is concluded, includ-ing stability and mass production, compared with GalNAc-siRNA conjugates. Importantly, developing new approaches for the use of oligonucleotide drugs brings hope to genetic therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yayu Liang
- School of Stomatology, Henan University, Kaifeng, China
| | - Guohui Liang
- School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Zhili Tian
- School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Yue Zhang
- Department of Obstetrics and Gynecology, Zhengzhou, China
| | - Zhihui Liu
- Department of General Practice, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Xinying Ji
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
44
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
45
|
Wang D, Fan X, Li M, Liu T, Lu P, Wang G, Li Y, Han J, Zhao J. Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR J 2022; 5:746-768. [PMID: 36512351 DOI: 10.1089/crispr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recently established prime editor (PE) system is regarded as next-generation gene-editing technology. This methodology can install any base-to-base change as well as insertions and deletions without the requirement for double-stranded break formation or donor DNA templates; thus, it offers more targeting flexibility and greater editing precision than conventional CRISPR-Cas systems or base editors. In this study, we introduce the basic principles of PE and then review its most recent progress in terms of editing versatility, specificity, and efficiency in mammals. Next, we summarize key considerations regarding the selection of PE variants, prime editing guide RNA (pegRNA) design rules, and the efficiency and accuracy evaluation of PE. Finally, we highlight and discuss how PE can assist in a wide range of biological studies and how it can be applied to make precise genomic corrections in animal models, which paves the way for curing human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianbo Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangxin Wang
- Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JunMing Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
46
|
Brannagan TH, Berk JL, Gillmore JD, Maurer MS, Waddington‐Cruz M, Fontana M, Masri A, Obici L, Brambatti M, Baker BF, Hannan LA, Buchele G, Viney NJ, Coelho T, Nativi‐Nicolau J. Liver-directed drugs for transthyretin-mediated amyloidosis. J Peripher Nerv Syst 2022; 27:228-237. [PMID: 36345805 PMCID: PMC10100204 DOI: 10.1111/jns.12519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Transthyretin-mediated amyloidosis (ATTR) is a rare, under-recognized, progressively debilitating, fatal disease caused by the aggregation and extracellular deposition of amyloid transthyretin (TTR) fibrils in multiple organs and tissues throughout the body. TTR is predominantly synthesized by the liver and normally circulates as a homotetramer, while misfolded monomers aggregate to form amyloid fibrils. One strategy to treat ATTR amyloidosis is to reduce the amount of TTR produced by the liver using drugs that directly target the TTR mRNA or gene. This narrative review focuses on how TTR gene silencing tools act to reduce TTR production, describing strategies for improved targeted delivery of these agents to hepatocytes where TTR is preferentially expressed. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), termed RNA silencers, cause selective degradation of TTR mRNA, while a TTR gene editing tool reduces TTR expression by introducing nonsense mutations into the TTR gene. Two strategies to facilitate tissue-specific delivery of these nucleic acid-based drugs employ endogenous receptors expressed by hepatocytes. Lipid nanoparticles (LNPs) that recruit apolipoprotein E support low-density lipoprotein receptor-mediated uptake of unconjugated siRNA and are now used for CRISPR gene editing tools. Additionally, conjugating N-acetylgalactosamine (GalNAc) moieties to ASOs or siRNAs facilitates receptor-mediated uptake by the asialoglycoprotein receptor. In summary, ATTR is a progressive disease with various clinical manifestations due to TTR aggregation, deposition, and amyloid formation. Receptor-targeted ligands (eg, GalNAc) and nanoparticle encapsulation (eg, LNPs) are technologies to deliver ASOs, siRNAs, and gene editing tools to hepatocytes, the primary location of TTR synthesis.
Collapse
Affiliation(s)
- Thomas H. Brannagan
- Peripheral Neuropathy CenterColumbia University, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - John L. Berk
- Amyloidosis CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Julian D. Gillmore
- National Amyloidosis CentreUniversity College London, Royal Free HospitalLondonUK
| | - Mathew S. Maurer
- Cardiac Amyloidosis Program, Division of CardiologyColumbia College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Márcia Waddington‐Cruz
- National Amyloidosis Referral Center‐CEPARMUniversity HospitalFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Marianna Fontana
- National Amyloidosis CentreUniversity College London, Royal Free HospitalLondonUK
| | - Ahmad Masri
- Cardiac Amyloidosis Program, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Laura Obici
- Amyloidosis Research and Treatment CenterIRCCS Fondazione Policlinico San MatteoPaviaItaly
| | | | | | | | | | | | - Teresa Coelho
- Department of NeurosciencesCentro Hospitalar Universitário do PortoPortoPortugal
| | | |
Collapse
|
47
|
Intrabiliary infusion of naked DNA vectors targets periportal hepatocytes in mice. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 27:352-367. [DOI: 10.1016/j.omtm.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
48
|
Recent Advances in Gene Therapy for Familial Hypercholesterolemia: An Update Review. J Clin Med 2022; 11:jcm11226773. [PMID: 36431249 PMCID: PMC9699383 DOI: 10.3390/jcm11226773] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Existing lipid-lowering therapies have difficulty in achieving lipid target levels in patients with familial hypercholesterolemia (FH), especially in the treatment of patients with homozygous familial hypercholesterolemia. (2) Method: All of the literature data containing "Familial hypercholesterolemia" and "Gene Therapy" in PubMed and Clinical Trials from 2018 to 2022 were selected. (3) Results: The rapid development of gene therapy technology in recent years is expected to change the treatment status of FH patients. As emerging gene therapy vectors, the optimized adeno-associated viruses, exosomes, and lipid nanoparticles have demonstrated an improved safety and higher transfection efficiency. Various RNA-targeted therapies are in phase 1-3 clinical trials, such as small interfering RNA-based drugs inclisiran, ARO-ANG3, ARO-APOC3, olpasiran, SLN360, and antisense oligonucleotide-based drugs AZD8233, vupanorsen, volanesorsen, IONIS-APO(a)Rx, etc., all of which have demonstrated excellent lipid-lowering effects. With gene editing technologies, such as CRISPR-Cas 9 and meganuclease, completing animal experiments in mice or cynomolgus monkeys and demonstrating lasting lipid-lowering effects, patients with FH are expected to reach a permanent cure in the future. (4) Conclusion: Gene therapy is being widely used for the lipid-lowering treatment of FH patients and has shown excellent therapeutic promise, but the current delivery efficiency, economic burden, immunogenicity and the precision of gene therapy can be further optimized.
Collapse
|
49
|
MicroRNA-122 mimic/microRNA-221 inhibitor combination as a novel therapeutic tool against hepatocellular carcinoma. Noncoding RNA Res 2022; 8:126-134. [DOI: 10.1016/j.ncrna.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
|
50
|
Wagner C, Innthaler B, Lemmerer M, Pletzenauer R, Birner-Gruenberger R. Biophysical Characterization of Adeno-Associated Virus Vectors Using Ion-Exchange Chromatography Coupled to Light Scattering Detectors. Int J Mol Sci 2022; 23:12715. [PMID: 36361506 PMCID: PMC9655919 DOI: 10.3390/ijms232112715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 09/06/2023] Open
Abstract
Ion-exchange chromatography coupled to light scattering detectors represents a fast and simple analytical method for the assessment of multiple critical quality attributes (CQA) in one single measurement. The determination of CQAs play a crucial role in Adeno-Associated Virus (AAV)-based gene therapies and their applications in humans. Today, several different analytical techniques, including size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), qPCR or ELISA, are commonly used to characterize the gene therapy product regarding capsid titer, packaging efficiency, vector genome integrity, aggregation content and other process-related impurities. However, no universal method for the simultaneous determination of multiple CQAs is currently available. Here, we present a novel robust ion-exchange chromatography method coupled to multi-angle light scattering detectors (IEC-MALS) for the comprehensive characterization of empty and filled AAVs concerning capsid titer, full-to-total ratio, absolute molar mass of the protein and nucleic acid, and the size and polydispersity without baseline-separation of both species prior to data analysis. We demonstrate that the developed IEC-MALS assay is applicable to different serotypes and can be used as an orthogonal method to other established analytical techniques.
Collapse
Affiliation(s)
- Christina Wagner
- Analytical Development Europe, Takeda Vienna, 1220 Vienna, Austria
| | - Bernd Innthaler
- Gene Therapy Process Development, Takeda Orth an der Donau, 2304 Orth an der Donau, Austria
| | - Martin Lemmerer
- Analytical Development Europe, Takeda Vienna, 1220 Vienna, Austria
| | - Robert Pletzenauer
- Gene Therapy Process Development, Takeda Orth an der Donau, 2304 Orth an der Donau, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| |
Collapse
|