1
|
Briganti S, Mosca S, Di Nardo A, Flori E, Ottaviani M. New Insights into the Role of PPARγ in Skin Physiopathology. Biomolecules 2024; 14:728. [PMID: 38927131 PMCID: PMC11201613 DOI: 10.3390/biom14060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor expressed in many tissues, including skin, where it is essential for maintaining skin barrier permeability, regulating cell proliferation/differentiation, and modulating antioxidant and inflammatory responses upon ligand binding. Therefore, PPARγ activation has important implications for skin homeostasis. Over the past 20 years, with increasing interest in the role of PPARs in skin physiopathology, considerable effort has been devoted to the development of PPARγ ligands as a therapeutic option for skin inflammatory disorders. In addition, PPARγ also regulates sebocyte differentiation and lipid production, making it a potential target for inflammatory sebaceous disorders such as acne. A large number of studies suggest that PPARγ also acts as a skin tumor suppressor in both melanoma and non-melanoma skin cancers, but its role in tumorigenesis remains controversial. In this review, we have summarized the current state of research into the role of PPARγ in skin health and disease and how this may provide a starting point for the development of more potent and selective PPARγ ligands with a low toxicity profile, thereby reducing unwanted side effects.
Collapse
Affiliation(s)
| | | | | | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.B.); (S.M.); (A.D.N.); (M.O.)
| | | |
Collapse
|
2
|
Clarisse D, Van Moortel L, Van Leene C, Gevaert K, De Bosscher K. Glucocorticoid receptor signaling: intricacies and therapeutic opportunities. Trends Biochem Sci 2024; 49:431-444. [PMID: 38429217 DOI: 10.1016/j.tibs.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
The glucocorticoid receptor (GR) is a major nuclear receptor (NR) drug target for the treatment of inflammatory disorders and several cancers. Despite the effectiveness of GR ligands, their systemic action triggers a plethora of side effects, limiting long-term use. Here, we discuss new concepts of and insights into GR mechanisms of action to assist in the identification of routes toward enhanced therapeutic benefits. We zoom in on the communication between different GR domains and how this is influenced by different ligands. We detail findings on the interaction between GR and chromatin, and highlight how condensate formation and coregulator confinement can perturb GR transcriptional responses. Last, we discuss the potential of novel ligands and the therapeutic exploitation of crosstalk with other NRs.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Chloé Van Leene
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
3
|
Sakakibara N, Clavijo PE, Sievers C, Gray VC, King KE, George AL, Ponnamperuma RM, Walter BA, Chen Z, Van Waes C, Allen CT, Weinberg WC. Oncogenic Ras and ΔNp63α cooperate to recruit immunosuppressive polymorphonuclear myeloid-derived suppressor cells in a mouse model of squamous cancer pathogenesis. Front Immunol 2023; 14:1200970. [PMID: 37638000 PMCID: PMC10449460 DOI: 10.3389/fimmu.2023.1200970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Amplification of human chromosome 3q26-29, which encodes oncoprotein ΔNp63 among other isoforms of the p63 family, is a feature common to squamous cell carcinomas (SCCs) of multiple tissue origins. Along with overexpression of ΔNp63, activation of the protooncogene, RAS, whether by overexpression or oncogenic mutation, is frequently observed in many cancers. In this study, analysis of transcriptome data from The Cancer Genome Atlas (TCGA) demonstrated that expression of TP63 mRNA, particularly ΔNp63 isoforms, and HRAS are significantly elevated in advanced squamous cell carcinomas of the head and neck (HNSCCs), suggesting pathological significance. However, how co-overexpressed ΔNp63 and HRAS affect the immunosuppressive tumor microenvironment (TME) is incompletely understood. Methods Here, we established and characterized an immune competent mouse model using primary keratinocytes with retroviral-mediated overexpression of ΔNp63α and constitutively activated HRAS (v-rasHa G12R) to evaluate the role of these oncogenes in the immune TME. Results In this model, orthotopic grafting of wildtype syngeneic keratinocytes expressing both v-rasHa and elevated levels of ΔNp63α consistently yield carcinomas in syngeneic hosts, while cells expressing v-rasHa alone yield predominantly papillomas. We found that polymorphonuclear (PMN) myeloid cells, experimentally validated to be immunosuppressive and thus representing myeloid-derived suppressor cells (PMN-MDSCs), were significantly recruited into the TME of carcinomas arising early following orthotopic grafting of ΔNp63α/v-rasHa-expressing keratinocytes. ΔNp63α/v-rasHa-driven carcinomas expressed higher levels of chemokines implicated in recruitment of MDSCs compared to v-rasHa-initiated tumors, providing a heretofore undescribed link between ΔNp63α/HRAS-driven carcinomas and the development of an immunosuppressive TME. Conclusion These results support the utilization of a genetic carcinogenesis model harboring specific genomic drivers of malignancy to study mechanisms underlying the development of local immunosuppression.
Collapse
Affiliation(s)
- Nozomi Sakakibara
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Paúl E. Clavijo
- Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Cem Sievers
- Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Veronica C. Gray
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Kathryn E. King
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Andrea L. George
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Roshini M. Ponnamperuma
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Beatriz A. Walter
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, MD, United States
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Clint T. Allen
- Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Wendy C. Weinberg
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| |
Collapse
|
4
|
McAleer JP. Obesity and the microbiome in atopic dermatitis: Therapeutic implications for PPAR-γ agonists. FRONTIERS IN ALLERGY 2023; 4:1167800. [PMID: 37051264 PMCID: PMC10083318 DOI: 10.3389/falgy.2023.1167800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by epidermal barrier disruption, Th2 immune responses to skin allergens and microbial dysbiosis within affected lesions. Studies within the past decade have revealed genetic and environmental factors contributing to AD in children. Obesity is a metabolic disorder that often manifests early in life and is associated with reduced bacterial diversity, leading to skin colonization with lipophilic bacteria and intestinal colonization with pro-inflammatory species. These changes impair epithelial barriers and promote Th17 responses, which may worsen the severity of AD symptoms. While few studies have examined the contribution of microbiota in obesity-induced allergies, there is emerging evidence that PPAR-γ may be an effective therapeutic target. This review discusses the microbiome in pediatric AD, treatment with probiotics, how disease is altered by obesity and potential therapeutic effects of PPAR-γ agonists. While healthy skin contains diverse species adapted for specific niches, lesional skin is highly colonized with Staphylococcus aureus which perpetuates the inflammatory reaction. Treatments for AD should help to restore microbial diversity in the skin and intestine, as well as epithelial barrier function. Pre-clinical models have shown that PPAR-γ agonists can suppress Th17 responses, IgE production and mast cell function, while improving the epidermal barrier and microbial homeostasis. Overall, PPAR-γ agonists may be effective in a subset of patients with AD, and future studies should distinguish their metabolic and anti-inflammatory effects in order to inform the best therapies.
Collapse
|
5
|
Discovery of PPARγ and glucocorticoid receptor dual agonists to promote the adiponectin and leptin biosynthesis in human bone marrow mesenchymal stem cells. Eur J Med Chem 2022; 245:114927. [DOI: 10.1016/j.ejmech.2022.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
|
6
|
Maschalidi S, Mehrotra P, Keçeli BN, De Cleene HKL, Lecomte K, Van der Cruyssen R, Janssen P, Pinney J, van Loo G, Elewaut D, Massie A, Hoste E, Ravichandran KS. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 2022; 606:776-784. [PMID: 35614212 DOI: 10.1038/s41586-022-04754-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are a major complication of diabetes, which affects 1 in 10 people worldwide. Dying cells in the wound perpetuate the inflammation and contribute to dysregulated tissue repair1-3. Here we reveal that the membrane transporter SLC7A11 acts as a molecular brake on efferocytosis, the process by which dying cells are removed, and that inhibiting SLC7A11 function can accelerate wound healing. Transcriptomics of efferocytic dendritic cells in mouse identified upregulation of several SLC7 gene family members. In further analyses, pharmacological inhibition of SLC7A11, or deletion or knockdown of Slc7a11 using small interfering RNA enhanced efferocytosis in dendritic cells. Slc7a11 was highly expressed in dendritic cells in skin, and single-cell RNA sequencing of inflamed skin showed that Slc7a11 was upregulated in innate immune cells. In a mouse model of excisional skin wounding, inhibition or loss of SLC7A11 expression accelerated healing dynamics and reduced the apoptotic cell load in the wound. Mechanistic studies revealed a link between SLC7A11, glucose homeostasis and diabetes. SLC7A11-deficient dendritic cells were dependent on aerobic glycolysis using glucose derived from glycogen stores for increased efferocytosis; also, transcriptomics of efferocytic SLC7A11-deficient dendritic cells identified increased expression of genes linked to gluconeogenesis and diabetes. Further, Slc7a11 expression was higher in the wounds of diabetes-prone db/db mice, and targeting SLC7A11 accelerated their wound healing. The faster healing was also linked to the release of the TGFβ family member GDF15 from efferocytic dendritic cells. In sum, SLC7A11 is a negative regulator of efferocytosis, and removing this brake improves wound healing, with important implications for wound management in diabetes.
Collapse
Affiliation(s)
- Sophia Maschalidi
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Parul Mehrotra
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Burcu N Keçeli
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hannah K L De Cleene
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kim Lecomte
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Renée Van der Cruyssen
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Pinney
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Esther Hoste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kodi S Ravichandran
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Zhao M, Liang Y, Song F, Ma L, Wang Y, Gao W, Tian J, Ying X, Shen C, Wang S, Jiao L, Wang Y, Sun X, Ma L, Ma X. Preventive Antenatal Educational Program on Allergic Diseases (PAEPAD) versus standard antenatal care for prevention of atopic dermatitis: study protocol for a single-centre, investigator-blinded randomised controlled trial. BMJ Open 2022; 12:e048083. [PMID: 35078832 PMCID: PMC8796218 DOI: 10.1136/bmjopen-2020-048083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Patient education serves an essential purpose in the long-term management of allergic diseases as a secondary prevention approach. However, evidence on using education for primary prevention is limited. This study aims to evaluate the effect of an educational intervention, that is, the Preventive Antenatal Educational Program on Allergic Diseases (PAEPAD), on infantile allergic disease incidences compared with the standard care. METHODS AND ANALYSIS This is a single-centre randomised controlled trial of expecting mother-children dyads in Daxing Teaching Hospital of Beijing, China. A total of 2266 expecting mothers will be recruited. Expecting mothers enlisted in the birth registry of Daxing Teaching Hospital of Capital Medical University and intend to give birth at this location will be screened for eligibility. Women aged≥18 years with less than 14+6 weeks of pregnancy who intends to remain resident in Daxing district for at least 2 years postpartum will be entered into the run-in phase. Randomisation will take place at 30 weeks of gestation. Women at high risk for miscarriage or intend to have abortions will be excluded. The participants will be allocated into two groups (ie, the PAEPAD and the standard care group) by random allocation (1:1). The PAEPAD group will receive a multidisciplinary education of neonatal care, including standard education as the control group and additional information on skincare of infants, sun protection, topical corticosteroids and an overview of atopic dermatitis (AD), whereas the standard care group will receive the standard neonatal care education carried out by obstetricians. Participants will be followed for 2 years. The primary outcome will be infantile AD cumulative incidence at 2 years postpartum. Secondary outcomes will include other AD outcomes, atopic march outcomes, knowledge outcomes and other maternal and neonatal outcomes. Data collection will be carried out using both electronic and paper questionnaires. Biological samples will also be collected longitudinally. ETHICS AND DISSEMINATION The study design was approved by the ethical committee of Capital Medical University Daxing Teaching Hospital, Beijing, China. The trial results will be published in peer-reviewed journals and at conferences. TRIAL REGISTRATION NUMBER ChiCTR registry (Trial ID: ChiCTR2000040463).
Collapse
Affiliation(s)
- Mutong Zhao
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Yuan Liang
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Fengli Song
- Obstetrics and Gynecology, Beijing Daxing District People's Hospital, Daxing Teaching Hospital, Capital Medical University, Beijing, China
| | - Lili Ma
- Obstetrics and Gynecology, Beijing Daxing District People's Hospital, Daxing Teaching Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Obstetrics and Gynecology, Beijing Daxing District People's Hospital, Daxing Teaching Hospital, Capital Medical University, Beijing, China
| | - Wanli Gao
- Obstetrics and Gynecology, Beijing Daxing District People's Hospital, Daxing Teaching Hospital, Capital Medical University, Beijing, China
| | - Jing Tian
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiangji Ying
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Chunping Shen
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Shan Wang
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Lei Jiao
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Yang Wang
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiaoyan Sun
- Obstetrics and Gynecology, Beijing Daxing District People's Hospital, Daxing Teaching Hospital, Capital Medical University, Beijing, China
| | - Lin Ma
- Dermatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiuhua Ma
- Obstetrics and Gynecology, Beijing Daxing District People's Hospital, Daxing Teaching Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Konger RL, Derr-Yellin E, Zimmers TA, Katona T, Xuei X, Liu Y, Zhou HM, Simpson ER, Turner MJ. Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. Int J Mol Sci 2021; 22:ijms22168634. [PMID: 34445339 PMCID: PMC8395473 DOI: 10.3390/ijms22168634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Both agonist studies and loss-of-function models indicate that PPARγ plays an important role in cutaneous biology. Since PPARγ has a high level of basal activity, we hypothesized that epidermal PPARγ would regulate normal homeostatic processes within the epidermis. In this current study, we performed mRNA sequencing and differential expression analysis of epidermal scrapings from knockout mice and wildtype littermates. Pparg-/-epi mice exhibited a 1.5-fold or greater change in the expression of 11.8% of 14,482 identified transcripts. Up-regulated transcripts included those for a large number of cytokines/chemokines and their receptors, as well as genes associated with inflammasome activation and keratinization. Several of the most dramatically up-regulated pro-inflammatory genes in Pparg-/-epi mouse skin included Igfl3, 2610528A11Rik, and Il1f6. RT-PCR was performed from RNA obtained from non-lesional full-thickness skin and verified a marked increase in these transcripts, as well as transcripts for Igflr1, which encodes the receptor for Igfl3, and the 2610528A11Rik receptor (Gpr15). Transcripts for Il4 were detected in Pparg-/-epi mouse skin, but transcripts for Il17 and Il22 were not detected. Down-regulated transcripts included sebaceous gland markers and a number of genes associated with lipid barrier formation. The change in these transcripts correlates with an asebia phenotype, increased transepidermal water loss, alopecia, dandruff, and the appearance of spontaneous inflammatory skin lesions. Histologically, non-lesional skin showed hyperkeratosis, while inflammatory lesions were characterized by dermal inflammation and epidermal acanthosis, spongiosis, and parakeratosis. In conclusion, loss of epidermal Pparg alters a substantial set of genes that are associated with cutaneous inflammation, keratinization, and sebaceous gland function. The data indicate that epidermal PPARγ plays an important role in homeostatic epidermal function, particularly epidermal differentiation, barrier function, sebaceous gland development and function, and inflammatory signaling.
Collapse
Affiliation(s)
- Raymond L. Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-317-274-4154
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Terrence Katona
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
| | - Xiaoling Xuei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
| | - Ed Ronald Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew J. Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of Dermatology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Merk VM, Phan TS, Brunner T. Regulation of Tissue Immune Responses by Local Glucocorticoids at Epithelial Barriers and Their Impact on Interorgan Crosstalk. Front Immunol 2021; 12:672808. [PMID: 34012456 PMCID: PMC8127840 DOI: 10.3389/fimmu.2021.672808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
The anti-inflammatory role of extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers is of increasing interest with regard to the search for alternatives to synthetic corticosteroids in the therapy of inflammatory disorders. Despite being very effective in many situations the use of synthetic corticosteroids is often controversial, as exemplified in the treatment of influenza patients and only recently in the current COVID-19 pandemic. Exploring the regulatory capacity of locally produced GCs in balancing immune responses in barrier tissues and in pathogenic disorders that lead to symptoms in multiple organs, could provide new perspectives for drug development. Intestine, skin and lung represent the first contact zones between potentially harmful pathogens or substances and the body, and are therefore important sites of immunoregulatory mechanisms. Here, we review the role of locally produced GCs in the regulation of type 2 immune responses, like asthma, atopic dermatitis and ulcerative colitis, as well as type 1 and type 3 infectious, inflammatory and autoimmune diseases, like influenza infection, psoriasis and Crohn’s disease. In particular, we focus on the role of locally produced GCs in the interorgan communication, referred to as gut-skin axis, gut-lung axis or lung-skin axis, all of which are interconnected in the pathogenic crosstalk atopic march.
Collapse
Affiliation(s)
- Verena M Merk
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Ubags ND, Trompette A, Pernot J, Nibbering B, Wong NC, Pattaroni C, Rapin A, Nicod LP, Harris NL, Marsland BJ. Microbiome-induced antigen-presenting cell recruitment coordinates skin and lung allergic inflammation. J Allergy Clin Immunol 2021; 147:1049-1062.e7. [DOI: 10.1016/j.jaci.2020.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
|
11
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
12
|
Liu S, Chang X, Yu J, Xu W. Cerasus humilis Cherry Polyphenol Reduces High-Fat Diet-Induced Obesity in C57BL/6 Mice by Mitigating Fat Deposition, Inflammation, and Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4424-4436. [PMID: 32227855 DOI: 10.1021/acs.jafc.0c01617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to determine the anti-obesity effects and mechanisms of Cerasus humilis polyphenol (CHP) in C57BL/6 obese mice and 3T3-L1 cells. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used for the qualitative and quantitative identification of CHP components. The obese mice, induced by feeding high-fat diet (HFD), were treated with CHP (250 mg/kg/day) by gavage for 12 weeks. Orlistat was gavaged at 15.6 mg/kg bw/day, as a positive control group. The analysis revealed that the main components of CHP were procyanidin B2, cyanidin-3-glucoside, and pelargonidin-3-glucoside. CHP dietary supplementation significantly reduced body weight and improved blood lipid measurements in HFD-fed mice (p < 0.01). Moreover, it inhibited mRNA expression of miR-122, Srebp-1c, and Cpt1a (p < 0.01) and reduced hepatic lipid deposition, as seen by hematoxylin and eosin staining. CHP downregulated the protein expression of PPARγ and C/EBPα in HFD-induced obese mice and inhibited adipocyte differentiation (p < 0.01). Compared with the HFD group, CHP supplementation had an obvious anti-inflammatory effect (decreased protein expression, such as TNF-α, IL-6, and MCP1), reducing leptin levels and TNF-α secretion in serum and cells (p < 0.01). CHP significantly inhibited the expression of miR-27a/b (53.3 and 29.9%, p < 0.01) in mice retroperitoneal white adipocytes, enhancing the expression of the target gene Prdm16 and significantly upregulating Sirt1 (105.5%, p < 0.01) compared with the HFD group. Moreover, CHP supplementation effectively improved oxidative stress (ROS, T-AOC, SOD, CAT, and GSH-Px) induced by HFD in obese mice (p < 0.01). Thus, CHP mitigates adipocyte differentiation, browning of white adipocytes, and reduction of inflammation and antioxidant activity to reduce obesity. Consequently, these results provide novel insights into the anti-obesity roles of CHP in HFD-induced obesity.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Xuedong Chang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Jincheng Yu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Weifeng Xu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
13
|
Bak DH, Lee E, Choi MJ, Lee BC, Kwon TR, Kim JH, Jeon ES, Oh W, Mun SK, Park BC, Na J, Kim BJ. Protective effects of human umbilical cord blood‑derived mesenchymal stem cells against dexamethasone‑induced apoptotic cell death in hair follicles. Int J Mol Med 2019; 45:556-568. [PMID: 31894311 PMCID: PMC6984800 DOI: 10.3892/ijmm.2019.4447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common and distressing condition, and developing new therapeutic agents to prevent hair loss is important. Human umbilical cord blood‑derived mesenchymal stem cells (hUCB‑MSCs) have been studied intensively in regenerative medicine. However, the therapeutic potential of these cells against hair loss and hair organ damage remains unclear, and the effects of hUCB‑MSC transplantation on hair loss require evaluation. The current study aimed to investigate the effects of hUCB‑MSCs on hair regression in vivo and restoration of anagen conduction on hair growth in vitro. The effects of hUCB‑MSCs were explored in mouse catagen induction models using a topical treatment of 0.1% dexamethasone to induce hair regression. Dexamethasone was also used to simulate a stress environment in vitro. The results demonstrated that hUCB‑MSCs significantly prevented hair regression induced by dexamethasone topical stimulation in vivo. Additionally, hUCB‑MSCs significantly increased the proliferation of human dermal papilla cells (hDPCs) and HaCaT cells, which are key constituent cells of the hair follicle. Stimulation of vascular endothelial growth factor secretion and decreased expression of DKK‑1 by hUCB‑MSCs were also observed in hDPCs. Restoration of cell viability by hUCB‑MSCs suggested that these cells exerted a protective effect on glucocorticoid stress‑associated hair loss. In addition, anti‑apoptotic effects and regulation of the autophagic flux recovery were observed in HaCaT cells. The results of the present study indicated that hUCB‑MSCs may have the capacity to protect hair follicular dermal papilla cells and keratinocytes, thus preventing hair loss. Additionally, the protective effects of hUCB‑MSCs may be resistant to dysregulation of autophagy under harmful stress.
Collapse
Affiliation(s)
- Dong Ho Bak
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, North Jeolla 56212, Republic of Korea
| | - Esther Lee
- Department of Dermatology, College of Medicine, Seoul 06973, Republic of Korea
| | - Mi Ji Choi
- Department of Dermatology, College of Medicine, Seoul 06973, Republic of Korea
| | - Byung Chul Lee
- Department of Dermatology, College of Medicine, Seoul 06973, Republic of Korea
| | - Tae-Rin Kwon
- Department of Dermatology, College of Medicine, Seoul 06973, Republic of Korea
| | - Jong-Hwan Kim
- Department of Dermatology, College of Medicine, Seoul 06973, Republic of Korea
| | - Eun Su Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seongnam, Gyeonggi 13494, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seongnam, Gyeonggi 13494, Republic of Korea
| | - Seog Kyun Mun
- Department of Otorhinolaryngology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Byung Cheol Park
- Department of
Dermatology, Dankook Medical College, Cheonan, South Chungcheong 31116, Republic of Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Seoul 06973, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Seoul 06973, Republic of Korea
| |
Collapse
|
14
|
Timmermans S, Souffriau J, Libert C. A General Introduction to Glucocorticoid Biology. Front Immunol 2019; 10:1545. [PMID: 31333672 PMCID: PMC6621919 DOI: 10.3389/fimmu.2019.01545] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones widely used for the treatment of inflammation, autoimmune diseases, and cancer. To exert their broad physiological and therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear receptor superfamily of transcription factors. Despite their success, GCs are hindered by the occurrence of side effects and glucocorticoid resistance (GCR). Increased knowledge on GC and GR biology together with a better understanding of the molecular mechanisms underlying the GC side effects and GCR are necessary for improved GC therapy development. We here provide a general overview on the current insights in GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic strategies are proposed based on recently recognized distinct molecular mechanisms of the GR. We will explain the SEDIGRAM concept, which was launched based on our research results.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
McKenzie C, Silverberg JI. The prevalence and persistence of atopic dermatitis in urban United States children. Ann Allergy Asthma Immunol 2019; 123:173-178.e1. [PMID: 31128232 DOI: 10.1016/j.anai.2019.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Previous studies found that childhood atopic dermatitis (AD) and asthma are associated with residence in urban areas. However, little is known about the prevalence and determinants of AD in US urban populations and its impact on quality-of-life (QOL) and asthma. OBJECTIVE To determine AD prevalence and persistence, sociodemographic predictors thereof, and association with QOL and atopic comorbidities in US urban children. METHODS We analyzed data from The Fragile Families and Child Wellbeing Study, a prospective cohort study of 4898 women and their children born in 20 large US cities between 1998 and 2000. AD prevalence was determined at ages 5, 9, and 15 years, and stratified by sex, race/ethnicity, and household poverty income level. RESULTS The prevalences (95% confidence interval [CI]) of childhood AD were 15.0% (11.0%-18.9%), 15.1% (11.5%-18.7%), and 14.5% (10.4%%-18.5%) at ages 5, 9, and 15 years, respectively. Female sex (multivariable repeated measures logistic regression; adjusted odds-ratio [95% CI]: 1.56 [1.02-2.37]) and black race (1.80 [1.07-3.01]) were associated with persistent AD across all 3 ages. Children with AD at ages 5 and 15 (2.63 [1.42-4.86]), 5, 8 and 15 (1.47 [1.02-2.12]) and 9 and 15 years (1.61 [1.00-2.60]) had higher odds of poor/fair/good overall health. Children with AD at ages 5 and 9 years had the highest odds of ever having asthma (adjusted odds ratio [95% confidence interval]: 6.05 [5.88-6.22]), followed by children with AD at ages 5, 9, and 15 years (3.17 [3.07%-3.27]). CONCLUSION Atopic dermatitis prevalence and persistence were highest in US urban children who were female or black. Urban children with persistent AD were more likely to have poor QOL and asthma.
Collapse
Affiliation(s)
- Costner McKenzie
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonathan I Silverberg
- Departments of Dermatology, Preventive Medicine and Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern Medicine Multidisciplinary Eczema Center, Chicago, Illinois.
| |
Collapse
|
16
|
Wang W, Chen M, Jin X, Li X, Yang Z, Lin H, Xu S. H 2S induces Th1/Th2 imbalance with triggered NF-κB pathway to exacerbate LPS-induce chicken pneumonia response. CHEMOSPHERE 2018; 208:241-246. [PMID: 29879557 DOI: 10.1016/j.chemosphere.2018.05.152] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
H2S is one of the air pollutants, which can cause multiple organ damage to the body. H2S exposure will directly damage respiratory system and cause inflammatory reaction. In this experiment, the effect of H2S on LPS-induce chicken pneumonia is explored from the Th1/Th2 balance and the NF-κB pathway. 42-day-old broilers was selected as research object, exposed to exogenous H2S, received an intraperitoneal injection of LPS to establish inflammatory model on forty-second days. We carry out qRT-PCR and Western blot to detect the expression of cytokines secreted by Th1/Th2, PPAR-γ/HO-1 genes, NF-κB pathway genes and the downstream genes COX-2 and iNOS. We found the expression of IL-4, IL-6, TNF-α and IL-1β increased and that of IFN-γ decreased, which indicating the immune imbalance of Th1/Th2 was occurred and the level of PPAR-γ/HO-1 was significantly suppressed. In addition, the activation of I-κB-β and NF-κB genes with the degradation of I-κB-α indicated that NF-κB pathway has been activated, which accompanied with COX-2, PGE and iNOS increasing. These results suggested that H2S exposure can lead to Th1/Th2 immune imbalance, repress the anti-inflammatory effect of PPAR-γ/HO-1, and then activate NF-κB pathway-related genes and the downstream genes to aggravate pneumonia induced by LPS.
Collapse
Affiliation(s)
- Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
17
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 477] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|