1
|
Nigro A, Osman A, Suryadevara P, Cices A. Vitiligo and the microbiome of the gut and skin: a systematic review. Arch Dermatol Res 2025; 317:201. [PMID: 39777551 DOI: 10.1007/s00403-024-03679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Vitiligo is a chronic autoimmune skin condition characterized by depigmentation due to the destruction of melanocytes. Recent research has identified potential links between vitiligo and alterations in both the gut and skin microbiomes. This systematic review aims to explore these microbiome changes and their potential role in the onset and progression of vitiligo. A comprehensive search of the PubMed, Medline (OVID), and Web of Science databases was conducted to identify studies examining the gut and/or skin microbiota in vitiligo patients. A total of six studies were included in the qualitative analysis. Data extracted included study type, patient demographics, microbiome sampling methods, bacterial diversity, and bacterial ratios. The studies were assessed using the Methodological Index for Non-Randomized Studies (MINORS) scale. The results revealed inconsistent findings regarding microbial diversity in vitiligo patients. Some studies observed decreased α-diversity in the gut microbiome, while others found an increase, particularly in patients with longer disease duration. An increased Firmicutes-to-Bacteroidetes ratio (higher levels of Firmicutes bacteria compared to Bacteroidetes) was noted in several studies, suggesting a dysbiotic gut microbiome. In the skin microbiome, similar trends of dysbiosis were observed, with alterations in bacterial diversity between lesional and non-lesional skin. The findings indicate that gut and skin microbiome changes may play a role in the pathogenesis of vitiligo. However, the data remain inconclusive due to variability in methodologies and sample sizes. Further research is needed to elucidate the clinical relevance of microbiome alterations in vitiligo, with a focus on controlling external factors such as diet and lifestyle.
Collapse
Affiliation(s)
- Alexandra Nigro
- Department of Dermatology, Eastern Virginia Medical School, Norfolk, Virginia, 23510, USA
| | - Alim Osman
- Department of Dermatology, Eastern Virginia Medical School, Norfolk, Virginia, 23510, USA
| | - Pavan Suryadevara
- Department of Dermatology, Eastern Virginia Medical School, Norfolk, Virginia, 23510, USA
| | - Ahuva Cices
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, USA.
| |
Collapse
|
2
|
Touni AA, Muttar S, Siddiqui Z, Shivde RS, Krischke E, Paul D, Youssef MA, Sperling AI, Abdel-Aziz R, Abdel-Wahab H, Knight KL, Le Poole IC. Bacillus subtilis-derived-exopolysaccharide halts depigmentation and autoimmunity in vitiligo. J Invest Dermatol 2024:S0022-202X(24)03043-4. [PMID: 39746569 DOI: 10.1016/j.jid.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Vitiligo has a complex multifactorial etiology involving a T-cell mediated autoimmune response to cutaneous melanocytes. Microbial dysbiosis has been assigned a contributing role in vitiligo etiology. Treating vitiligo can be a challenging task and finding novel treatment approaches is crucial. Here, we tested exopolysaccharides (EPS) isolated from B.subtilis as a microbiome-based therapy. Vitiligo-prone h3TA2 mice were treated by weekly intraperitoneal EPS injection for 18 weeks. Depigmentation was measured over time, measuring immune responses at end point. EPS treatment significantly limited the rate of depigmentation. The abundance of cutaneous T cells, specifically CD8+ cytotoxic T cells was reduced while regulatory T cells were more abundant in the skin of treated mice compared to untreated mice. Moreover, EPS treatment was associated with increased numbers of splenic M2 macrophages, elevated splenic IDO expression and a systemic cytokine shift towards a type 2 pattern of cytokines. Importantly, splenocytes retrieved from EPS-treated mice were less responsive to cognate tyrosinase peptide as demonstrated by limited release of IFN- g and other inflammatory cytokines. In summary, EPS isolated from B. subtilis interfered with T-cell mediated depigmentation in the h3TA2 mouse model of vitiligo suggesting that B. subtilis EPS could serve as a novel treatment entity for vitiligo.
Collapse
Affiliation(s)
- Ahmed A Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA
| | - Sara Muttar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA
| | - Zoya Siddiqui
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Rohan S Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA
| | - Emily Krischke
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA
| | - Digvijay Paul
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA
| | - Mohamed A Youssef
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA
| | - Anne I Sperling
- Department of Microbiology and Immunology, Robert H. Lurie comprehensive Cancer Center, Northwestern University, Chicago (IL), USA
| | - Rasha Abdel-Aziz
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Katherine L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago (IL), USA
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA; Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Tulic MK, Kovacs D, Bastonini E, Briganti S, Passeron T, Picardo M. Focusing on the Dark Side of the Moon: Involvement of the Nonlesional Skin in Vitiligo. J Invest Dermatol 2024:S0022-202X(24)02886-0. [PMID: 39708041 DOI: 10.1016/j.jid.2024.10.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 12/23/2024]
Abstract
Research over the last decade has revealed that the normally pigmented skin of patients with vitiligo is not normal at all, as evidenced by alterations in cutaneous morphology and modifications in cellular and metabolic functions that ultimately drive immune activation against melanocytes. Furthermore, nonlesional skin is in a state of subclinical inflammation until triggered by internal and/or external exposomal events. Therefore, targeting early processes that drive immune dysregulation in normally pigmented skin may avoid or reduce melanocyte loss. Thus, shifting the focus to nonlesional skin may prevent the appearance of clinical manifestations of the disease rather than treating the lesions.
Collapse
Affiliation(s)
- Meri K Tulic
- Team 12, University of Cote d'Azur, INSERM U1065, Mediterranean Centre for Molecular Medicine, Nice, France.
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Thierry Passeron
- Team 12, University of Cote d'Azur, INSERM U1065, Mediterranean Centre for Molecular Medicine, Nice, France; Dermatology Department, University Hospital (CHU), University of Cote d'Azur, Nice, France
| | - Mauro Picardo
- Immaculate Institute of Dermatopathology and Scientific Institute of Recovery, Hospitalisation and Cure (IDI-IRCCS), Rome, Italy
| |
Collapse
|
4
|
Wang Z, Yu Z, Yuan W, Gu Y, Xiu X, Song L. Unique genital microbiota in male lichen sclerosus urethral stricture associated with urine exposure. BMC Microbiol 2024; 24:508. [PMID: 39614166 DOI: 10.1186/s12866-024-03659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Lichen sclerosus (LS) is a chronic inflammatory cicatricial skin disease that can lead to urethral stricture or even malignant transformation and the etiology is still unknown. This study comparatively analyzed the balanopreputial swab and urine microbiota simultaneously between male patients with LS urethral stricture (LSUS) and non-LS urethral stricture (non-LSUS). METHODS We prospectively included 31 male patients with LSUS and 30 with non-LSUS in this case-control study. Midstream urine samples and balanopreputial swabs were collected from each patient for the 16S V3-V4 hypervariable region sequencing. Operational taxonomic units were defined using a > 97% sequence similarity threshold. We compared the differences in alpha diversity, beta diversity, and microbial structure between the two groups. RESULTS Whether in swab or urine samples, there was no significant difference in alpha diversity between the two groups. Swab samples showed a significant difference in beta diversity (p = 0.001). For all individuals, composition analyses showed that the most abundant phyla were Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes in both samples. Additionally, the microbial communities of swab samples were significantly more similar to the communities of urine samples in the LSUS group (p = 0.047). CONCLUSIONS Microbiota showed significant variation between LSUS and non-LSUS groups, suggesting that microecological imbalance may be closely related to the occurrence of LS. Urinary irritation may be related to the unique microbiota on the genital skin of patients with LSUS.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Zhenwei Yu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Xianjie Xiu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Lujie Song
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.
| |
Collapse
|
5
|
Gómez-Arias PJ, Gay-Mimbrera J, Rivera-Ruiz I, Aguilar-Luque M, Juan-Cencerrado M, Mochón-Jiménez C, Gómez-García F, Sánchez-González S, Ortega-Hernández A, Gómez-Garre D, Parra-Peralbo E, Isla-Tejera B, Ruano J. Association Between Scalp Microbiota Imbalance, Disease Severity, and Systemic Inflammatory Markers in Alopecia Areata. Dermatol Ther (Heidelb) 2024; 14:2971-2986. [PMID: 39384736 PMCID: PMC11557780 DOI: 10.1007/s13555-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Alopecia areata (AA) is an autoimmune disease causing non-scarring hair loss, with both genetic and environmental factors implicated. Recent research highlights a possible role for scalp microbiota in influencing both local and systemic inflammatory responses, potentially impacting AA progression. This study examines the link among scalp microbiota imbalances, AA severity, and systemic inflammation. METHODS We conducted a cross-sectional study with 24 participants, including patients with AA of varying severities and healthy controls. Scalp microbial communities were analyzed using swab samples and ion torrent sequencing of the 16S rRNA gene across multiple hypervariable regions. We explored correlations among bacterial abundance, microbiome metabolic pathways, and circulating inflammatory markers. RESULTS Our findings reveal significant dysbiosis in the scalp microbiota of patients with AA compared to healthy controls. Severe AA cases had an increased presence of pro-inflammatory microbial taxa like Proteobacteria, whereas milder cases had higher levels of anti-inflammatory Actinobacteria. Notable species differences included abundant gram-negative bacteria such as Alistipes inops and Bacteroides pleibeius in severe AA, contrasted with Blautia faecis and Pyramydobacter piscolens predominantly in controls. Significantly, microbial imbalance correlated with AA severity (SALT scores) and systemic inflammatory markers, with elevated pro-inflammatory cytokines linked to more severe disease. CONCLUSION These results suggest that scalp microbiota may play a role in AA-related inflammation, although it is unclear whether the shifts are a cause or consequence of hair loss. Further research is needed to clarify the causal relationship and mechanisms involved.
Collapse
Affiliation(s)
- Pedro J Gómez-Arias
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Jesús Gay-Mimbrera
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
| | - Irene Rivera-Ruiz
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Macarena Aguilar-Luque
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
| | - Miguel Juan-Cencerrado
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Carmen Mochón-Jiménez
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Francisco Gómez-García
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Silvia Sánchez-González
- Laboratory of Vascular Biology and Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 4ª Planta Sur, C/ Profesor Martín Lagos, S/N, 28040, Madrid, Spain
| | - Adriana Ortega-Hernández
- Laboratory of Vascular Biology and Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 4ª Planta Sur, C/ Profesor Martín Lagos, S/N, 28040, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratory of Vascular Biology and Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 4ª Planta Sur, C/ Profesor Martín Lagos, S/N, 28040, Madrid, Spain.
| | - Esmeralda Parra-Peralbo
- Department of Pharmacy and Nutrition, Faculty of Biomedical Science and Health, Universidad Europea, Madrid, Spain
| | - Beatriz Isla-Tejera
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain.
- Department of Pharmacy, Reina Sofía University Hospital, 14004, Córdoba, Spain.
| | - Juan Ruano
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| |
Collapse
|
6
|
Kumar S, Mahajan S, Kale D, Chourasia N, Khan A, Asati D, Kotnis A, Sharma VK. Insights into the gut microbiome of vitiligo patients from India. BMC Microbiol 2024; 24:440. [PMID: 39468434 PMCID: PMC11514916 DOI: 10.1186/s12866-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Vitiligo is an autoimmune disease characterized by loss of pigmentation in the skin. It affects 0.4 to 2% of the global population, but the factors that trigger autoimmunity remain elusive. Previous work on several immune-mediated dermatological disorders has illuminated the substantial roles of the gut microbiome in disease pathogenesis. Here, we examined the gut microbiome composition in a cohort of vitiligo patients and healthy controls from India, including patients with a family history of the disease. RESULTS Our results show significant alterations in the gut microbiome of vitiligo patients compared to healthy controls, affecting taxonomic and functional profiles as well as community structure. We observed a reduction in the abundance of several bacterial taxa commonly associated with a healthy gut microbiome and noted a decrease in the abundance of SCFA (Short Chain Fatty Acids) producing taxa in the vitiligo group. Observation of a higher abundance of genes linked to bacteria-mediated degradation of intestinal mucus suggested a potential compromise of the gut mucus barrier in vitiligo. Functional analysis also revealed a higher abundance of fatty acid and lipid metabolism-related genes in the vitiligo group. Combined analysis with data from a French cohort of vitiligo also led to the identification of common genera differentiating healthy and gut microbiome across populations. CONCLUSION Our observations, together with available data, strengthen the role of gut microbiome dysbiosis in symptom exacerbation and possibly pathogenesis in vitiligo. The reported microbiome changes also showed similarities with other autoimmune disorders, suggesting common gut microbiome-mediated mechanisms in autoimmune diseases. Further investigation can lead to the exploration of dietary interventions and probiotics for the management of these conditions.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shruti Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deeksha Kale
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nidhi Chourasia
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Anam Khan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Dinesh Asati
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
| | - Vineet K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
7
|
Zhang K, Jiang L, Fu C, Huang J, Wen Y, Zhou S, Huang J, Chen J, Zeng Q. Identification of dietary factors that impact the gut microbiota associated with vitiligo: A Mendelian randomization study and meta-analysis. Exp Dermatol 2024; 33:e15176. [PMID: 39304334 DOI: 10.1111/exd.15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Previous observational studies have suggested that gut microbiota might be associated with vitiligo. However, owing to the limitations in observational studies of reverse causality and confounders, it remains unclear that whether and how the causal relationships exist. The results suggested that pylum.Bacteroidetes, family.BacteroidalesS24.7, genus.LachnospiraceaeND3007, genus.Marvinbryantia are protective factors for vitiligo. Conversely, family.Lachnospiraceae, order.Burkholderiales, genus.Adlercreutzia, genus.Catenibacterium and genus.Lachnospira are risk factors for vitiligo. In addition, the causative connection between dietary factors and the gut microbiota associated with vitiligo was also investigated. The results revealed that 'alcohol intake versus 10 years pervious' results in a reduction in the abundance of genus.Lachnospiraceae ND3007 and family.BacteroidalesS24.7, bread intake leads to a reduction of genus.Marvinbryantia, 'average weekly red wine intake' is linked to a decrease in the abundance of order.Burkholderiales, tea intake is associated with an augmentation in the abundance of genus.Catenibacterium, salad/raw vegetable intake elevates the abundance of order.Burkholderiales. In summary, this Mendelian randomization study substantiates potential causal effects of gut microbiota on vitiligo. Modulating the gut microbiota through regulating dietary composition may be a novel strategy for preventing vitiligo.
Collapse
Affiliation(s)
- Keyi Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiangfeng Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqing Wen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shu Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Touni AA, Sohn R, Cosgrove C, Shivde RS, Dellacecca ER, Abdel-Aziz RTA, Cedercreutz K, Green SJ, Abdel-Wahab H, Le Poole IC. Topical antibiotics limit depigmentation in a mouse model of vitiligo. Pigment Cell Melanoma Res 2024; 37:583-596. [PMID: 38439216 DOI: 10.1111/pcmr.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Oral neomycin administration impacts the gut microbiome and delays vitiligo development in mice, and topical antibiotics may likewise allow the microbiome to preserve skin health and delay depigmentation. Here, we examined the effects of 6-week topical antibiotic treatment on vitiligo-prone pmel-1 mice. Bacitracin, Neosporin, or Vaseline were applied to one denuded flank, while the contralateral flank was treated with Vaseline in all mice. Ventral depigmentation was quantified weekly. We found that topical Neosporin treatment significantly reduced depigmentation and exhibited effects beyond the treated area, while Bacitracin ointment had no effect. Stool samples collected from four representative mice/group during treatment revealed that Neosporin treatment aligned with reduced abundance of the Alistipes genus in the gut, while relevant changes to the skin microbiome at end point were less apparent. Either antibiotic treatment led to reduced expression of MR1, potentially limiting mucosal-associated invariant T-cell activation, while Neosporin-treated skin selectively revealed significantly reduced CD8+ T-cell abundance. The latter finding aligned with reduced expression of multiple inflammatory markers and markedly increased regulatory T-cell density. Our studies on favorable skin and oral antibiotic treatment share the neomycin compound, and in either case, microbial changes were most apparent in stool samples. Taken together, neomycin-containing antibiotic applications can mediate skin Treg infiltration to limit vitiligo development. Our study highlights the therapeutic potential of short-term antibiotic applications to limit depigmentation vitiligo.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rachel Sohn
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rohan S Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia R Dellacecca
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Kettil Cedercreutz
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stefan J Green
- Department of Internal Medicine and Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Sant'Anna‐Silva ACB, Botton T, Rossi A, Dobner J, Bzioueche H, Thach N, Blot L, Pagnotta S, Kleszczynski K, Steinbrink K, Mazure NM, Rocchi S, Krutmann J, Passeron T, Tulic MK. Vitiligo auto-immune response upon oxidative stress-related mitochondrial DNA release opens up new therapeutic strategies. Clin Transl Med 2024; 14:e1810. [PMID: 39113238 PMCID: PMC11306283 DOI: 10.1002/ctm2.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Affiliation(s)
| | | | - Andrea Rossi
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - Jochen Dobner
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | | | - Nguyen Thach
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | | | - Sophie Pagnotta
- Common Centre of Applied Microscopy (CCMA)Université Côte d'AzurNiceFrance
| | | | | | | | | | - Jean Krutmann
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
- Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Thierry Passeron
- Université Côte d'Azur, INSERM U1065, C3MNiceFrance
- Department of DermatologyUniversité Côte d'Azur, CHU NiceNiceFrance
| | | |
Collapse
|
10
|
Li SZ, Wu QY, Fan Y, Guo F, Hu XM, Zuo YG. Gut Microbiome Dysbiosis in Patients with Pemphigus and Correlation with Pathogenic Autoantibodies. Biomolecules 2024; 14:880. [PMID: 39062594 PMCID: PMC11274803 DOI: 10.3390/biom14070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pemphigus is a group of potentially life-threatening autoimmune bullous diseases induced by pathogenic autoantibodies binding to the surface of epidermal cells. The role of the gut microbiota (GM) has been described in various autoimmune diseases. However, the impact of the GM on pemphigus is less understood. This study aimed to investigate whether there was alterations in the composition and function of the GM in pemphigus patients compared to healthy controls (HCs). METHODS Fecal samples were collected from 20 patients with active pemphigus (AP), 11 patients with remission pemphigus (PR), and 47 HCs. To sequence the fecal samples, 16S rRNA was applied, and bioinformatic analyses were performed. RESULTS We found differences in the abundance of certain bacterial taxa among the three groups. At the family level, the abundance of Prevotellaceae and Coriobacteriaceae positively correlated with pathogenic autoantibodies. At the genus level, the abundance of Klebsiella, Akkermansia, Bifidobacterium, Collinsella, Gemmiger, and Prevotella positively correlated with pathogenic autoantibodies. Meanwhile, the abundance of Veillonella and Clostridium_XlVa negatively correlated with pathogenic autoantibodies. A BugBase analysis revealed that the sum of potentially pathogenic bacteria was elevated in the AP group in comparison to the PR group. Additionally, the proportion of Gram-negative bacteria in the PR group was statistically significantly lower in comparison to the HC group. CONCLUSION The differences in GM composition among the three groups, and the correlation between certain bacterial taxa and pathogenic autoantibodies of pemphigus, support a linkage between the GM and pemphigus.
Collapse
Affiliation(s)
- Si-Zhe Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Qing-Yang Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Feng Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Xiao-Min Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| |
Collapse
|
11
|
Garlet A, Andre-Frei V, Del Bene N, Cameron HJ, Samuga A, Rawat V, Ternes P, Leoty-Okombi S. Facial Skin Microbiome Composition and Functional Shift with Aging. Microorganisms 2024; 12:1021. [PMID: 38792850 PMCID: PMC11124346 DOI: 10.3390/microorganisms12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle grade. Volunteers' metadata were collected through questionnaires and non-invasive biophysical measurements. A simple model and a biological statistical model were used to show the difference in skin microbiota composition between the two age groups. Taxonomic and non-metric multidimensional scaling analysis showed that the skin microbiome was more diverse in the older group (≥55 yo). There was also a significant decrease in Actinobacteria, namely in Cutibacterium acnes, and an increase in Corynebacterium kroppenstedtii. Some Streptococcus and Staphylococcus species belonging to the Firmicutes phylum and species belonging to the Proteobacteria phylum increased. In the 18-35 yo younger group, the microbiome was characterized by a significantly higher proportion of Cutibacterium acnes and Lactobacillus, most strikingly, Lactobacillus crispatus. The functional analysis using GO terms revealed that the young group has a higher significant expression of genes involved in biological and metabolic processes and in innate skin microbiome protection. The better comprehension of age-related impacts observed will later support the investigation of skin microbiome implications in antiaging protection.
Collapse
Affiliation(s)
- Allison Garlet
- BASF Corporation, 540 White Plains Road, Tarrytown, NY 10591, USA; (A.G.); (N.D.B.)
| | - Valerie Andre-Frei
- BASF Beauty Care Solutions, 32 Rue Saint Jean de Dieu, 69007 Lyon, France;
| | - Nicolas Del Bene
- BASF Corporation, 540 White Plains Road, Tarrytown, NY 10591, USA; (A.G.); (N.D.B.)
| | | | - Anita Samuga
- BASF Corporation, 26 Davis Dr, Raleigh-Durham, NC 27709, USA; (H.J.C.); (A.S.)
| | - Vimal Rawat
- BASF SE, Speyerer Str. 2, 67117 Limburgerhof, Germany;
| | - Philipp Ternes
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589 Berlin, Germany;
| | | |
Collapse
|
12
|
Dascălu RC, Bărbulescu AL, Stoica LE, Dinescu ȘC, Biță CE, Popoviciu HV, Ionescu RA, Vreju FA. Review: A Contemporary, Multifaced Insight into Psoriasis Pathogenesis. J Pers Med 2024; 14:535. [PMID: 38793117 PMCID: PMC11122105 DOI: 10.3390/jpm14050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a chronic recurrent inflammatory autoimmune pathology with a significant genetic component and several interferences of immunological cells and their cytokines. The complex orchestration of psoriasis pathogenesis is related to the synergic effect of immune cells, polygenic alterations, autoantigens, and several other external factors. The major act of the IL-23/IL-17 axis, strongly influencing the inflammatory pattern established during the disease activity, is visible as a continuous perpetuation of the pro-inflammatory response and keratinocyte activation and proliferation, leading to the development of psoriatic lesions. Genome-wide association studies (GWASs) offer a better view of psoriasis pathogenic pathways, with approximately one-third of psoriasis's genetic impact on psoriasis development associated with the MHC region, with genetic loci located on chromosome 6. The most eloquent genetic factor of psoriasis, PSORS1, was identified in the MHC I site. Among the several factors involved in its complex etiology, dysbiosis, due to genetic or external stimulus, induces a burst of pro-inflammatory consequences; both the cutaneous and gut microbiome get involved in the psoriasis pathogenic process. Cutting-edge research studies and comprehensive insights into psoriasis pathogenesis, fostering novel genetic, epigenetic, and immunological factors, have generated a spectacular improvement over the past decades, securing the path toward a specific and targeted immunotherapeutic approach and delayed progression to inflammatory arthritis. This review aimed to offer insight into various domains that underline the pathogenesis of psoriasis and how they influence disease development and evolution. The pathogenesis mechanism of psoriasis is multifaceted and involves an interplay of cellular and humoral immunity, which affects susceptible microbiota and the genetic background. An in-depth understanding of the role of pathogenic factors forms the basis for developing novel and individualized therapeutic targets that can improve disease management.
Collapse
Affiliation(s)
- Rucsandra Cristina Dascălu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Andreea Lili Bărbulescu
- Department of Pharmacology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Loredana Elena Stoica
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Cristina Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Horațiu Valeriu Popoviciu
- Department of Rheumatology, BFK and Medical Rehabilitation, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Mures, Romania;
| | - Răzvan Adrian Ionescu
- Third Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| |
Collapse
|
13
|
Kuroda Y, Yang L, Shibata T, Hayashi M, Araki Y, Nishida M, Namiki T, Makino T, Shimizu T, Suzuki T, Sayo T, Takahashi Y, Tsuruta D, Katayama I. High α-diversity of skin microbiome and mycobiome in Japanese patients with vitiligo. J Dermatol Sci 2024; 114:34-43. [PMID: 38508974 DOI: 10.1016/j.jdermsci.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Vitiligo is an acquired pigmentary disorder characterized by depigmented patches on the skin that majorly impact patients' quality of life. Although its etiology involves genetic and environmental factors, the role of microorganisms as environmental factors in vitiligo pathology remains under-researched. OBJECTIVES Our study explored the presence of characteristic bacterial and fungal flora in vitiligo-affected skin and investigated their potential roles in vitiligo pathogenesis. METHODS We sequenced bacterial 16S rRNA and the fungal ITS1 region from skin swabs collected at frequently affected sites, namely the forehead and back, of patients with vitiligo. We analyzed bacterial and fungal flora in lesional and non-lesional areas of patients with vitiligo compared with corresponding sites in age- and sex-matched healthy subjects. RESULTS Our findings revealed elevated α-diversity in both bacterial and fungal flora within vitiligo lesions compared with healthy controls. Notably, bacterial flora exhibited a distinctive composition in patients with vitiligo, and the proportional representation of Enterococcus was inversely correlated with the degree of vitiligo progression. Gammaproteobacteria, Staphylococcus spp., and Corynebacterium spp. were more abundant in vitiligo patients, with notable Staphylococcus spp. prevalence during the stable phase on the forehead. Conversely, the proportion of Malassezia sympodialis was lower and that of Malassezia globosa was higher in the progressive phase on the back of vitiligo patients. CONCLUSION Our study identified some characteristic bacterial and fungal groups associated with vitiligo activity and prognosis, highlighting the potential roles of microorganisms in pathogenesis and offering insights into personalized disease-management approaches.
Collapse
Affiliation(s)
- Yasutaka Kuroda
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Lingli Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| | | | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuta Araki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Makiko Nishida
- Department of Dermatology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Tokyo, Japan
| | - Takeshi Namiki
- Department of Dermatology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Tokyo, Japan
| | - Teruhiko Makino
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tetsuya Sayo
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Yoshito Takahashi
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
14
|
Zhou P, Chen C, Patil S, Dong S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Front Nutr 2024; 11:1355542. [PMID: 38389798 PMCID: PMC10881654 DOI: 10.3389/fnut.2024.1355542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The gut microbiota and immune system interaction play a crucial role in maintaining overall health. Probiotics, prebiotics, and postbiotics have emerged as promising therapeutic approaches to positively influence this complex axis and enhance health outcomes. Probiotics, as live bacteria, promote the growth of immune cells, shape immune responses, and maintain gut barrier integrity. They modify the gut microbiota by fostering beneficial bacteria while suppressing harmful ones. Additionally, probiotics interact with the immune system, increasing immune cell activity and anti-inflammatory cytokine production. Prebiotics, as indigestible fibers, selectively nourish beneficial microorganisms in the gut, enhancing gut microbial diversity and activity. This, in turn, improves gut health and boosts immune responses while controlling inflammation through its immunomodulatory properties. Postbiotics, produced during probiotic fermentation, such as short-chain fatty acids and antimicrobial peptides, positively impact gut health and modulate immune responses. Ensuring quality control and standardization will be essential for successful clinical implementation of these interventions. Overall, understanding and harnessing the gut microbiota-immune system interplay offer promising avenues for improving digestive and immunological health.
Collapse
Affiliation(s)
- Pengjun Zhou
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Chunlan Chen
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Department of Pediatric Research, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
AL-Smadi K, Leite-Silva VR, Filho NA, Lopes PS, Mohammed Y. Innovative Approaches for Maintaining and Enhancing Skin Health and Managing Skin Diseases through Microbiome-Targeted Strategies. Antibiotics (Basel) 2023; 12:1698. [PMID: 38136732 PMCID: PMC10741029 DOI: 10.3390/antibiotics12121698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The skin microbiome is crucial in maintaining skin health, and its disruption is associated with various skin diseases. Prebiotics are non-digestible fibers and compounds found in certain foods that promote the activity and growth of beneficial bacteria in the gut or skin. On the other hand, live microorganisms, known as probiotics, benefit in sustaining healthy conditions when consumed in reasonable quantities. They differ from postbiotics, which are by-product compounds from bacteria that release the same effects as their parent bacteria. The human skin microbiome is vital when it comes to maintaining skin health and preventing a variety of dermatological conditions. This review explores novel strategies that use microbiome-targeted treatments to maintain and enhance overall skin health while managing various skin disorders. It is important to understand the dynamic relationship between these beneficial microorganisms and the diverse microbial communities present on the skin to create effective strategies for using probiotics on the skin. This understanding can help optimize formulations and treatment regimens for improved outcomes in skincare, particularly in developing solutions for various skin problems.
Collapse
Affiliation(s)
- Khadeejeh AL-Smadi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
| | - Vania Rodrigues Leite-Silva
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Newton Andreo Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Patricia Santos Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
16
|
Seneschal J, Speeckaert R, Taïeb A, Wolkerstorfer A, Passeron T, Pandya AG, Lim HW, Ezzedine K, Zhou Y, Xiang F, Thng S, Tanemura A, Suzuki T, Rosmarin D, Rodrigues M, Raboobee N, Pliszewski G, Parsad D, Oiso N, Monteiro P, Meurant JM, Maquignon N, Lui H, Le Poole C, Leone G, Lee AY, Lan E, Katayama I, Huggins R, Oh SH, Harris JE, Hamzavi IH, Gupta S, Grimes P, Goh BK, Ghia D, Esmat S, Eleftheriadou V, Böhm M, Benzekri L, Bekkenk M, Bae JM, Alomar A, Abdallah M, Picardo M, van Geel N. Worldwide expert recommendations for the diagnosis and management of vitiligo: Position statement from the international Vitiligo Task Force-Part 2: Specific treatment recommendations. J Eur Acad Dermatol Venereol 2023; 37:2185-2195. [PMID: 37715487 DOI: 10.1111/jdv.19450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND The treatment of vitiligo can be challenging. Up-to-date agreed consensus recommendations on the use of topical and systemic therapies to facilitate the clinical management of vitiligo are currently lacking. OBJECTIVES To develop internationally agreed-upon expert-based recommendations for the treatment of vitiligo. METHODS In this consensus statement, a consortium of 42 international vitiligo experts and four patient representatives participated in different online and live meetings to develop a consensus management strategy for vitiligo. At least two vitiligo experts summarized the evidence for different topics included in the algorithms. A survey was then given to a core group of eight experts to resolve the remaining issues. Subsequently, the recommendations were finalized and validated based on further input from the entire group during two live meetings. RESULTS The recommendations provided summarize the latest evidence regarding the use of topical therapies (steroids, calcineurin inhibitors and Jak-inhibitors) and systemic therapies, including steroids and other systemic immunomodulating or antioxidant agents. The different modalities of phototherapies (NB-UVB, photochemotherapy, excimer devices and home phototherapy), which are often combined with other therapies, are also summarized. Interventional approaches as well as depigmentation strategies are presented for specific indications. Finally, the status of innovative and targeted therapies under development is discussed. CONCLUSIONS This international consensus statement culminated in expert-based clinical practice recommendations for the treatment of vitiligo. The development of new therapies is ongoing in vitiligo, and this will likely improve the future management of vitiligo, a disease that still has many unmet needs.
Collapse
Affiliation(s)
- Julien Seneschal
- Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hospital Saint-André, ImmunoConcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| | | | - Alain Taïeb
- Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hospital Saint-André, BRIC, UMR 1312, Inserm, University Bordeaux, Bordeaux, France
| | - Albert Wolkerstorfer
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - Thierry Passeron
- Department of Dermatology, University Hospital of Nice, Nice, France
| | - Amit G Pandya
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Khaled Ezzedine
- Department of Dermatology, University Hospital Henri Mondor, EpiDermE EA 7379, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Youwen Zhou
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Flora Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Steven Thng
- Skin Research Institute of Singapore, ASTAR, Singapore, Singapore
| | - Atsushi Tanemura
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - David Rosmarin
- Department of Dermatology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michelle Rodrigues
- Chroma Dermatology, Pigment and Skin of Colour Centre, Wheelers Hill, Victoria, Australia
- Department of Dermatology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Noufal Raboobee
- Department of Dermatology, Westville Hospital, Durban, South Africa
| | | | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naoki Oiso
- Department of Dermatology, Kindai University Nara Hospital, Ikoma, Japan
| | | | | | | | - Harvey Lui
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment Unit, Israelite Hospital, Roma
| | - Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Eric Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ichiro Katayama
- Pigmentation Research and Therapeutics, Osaka Metropolitan University, Osaka, Japan
| | - Richard Huggins
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Sang Ho Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - John E Harris
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Iltefat H Hamzavi
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Pearl Grimes
- Vitiligo & Pigmentation Institute of Southern California, Los Angeles, California, USA
| | | | - Deepti Ghia
- Department of Dermatology, Jaslok Hospital and Research Hospital and South Mumbai Dermatology Clinic, Mumbai, India
| | - Samia Esmat
- Department of Dermatology, Faculty of Medicine Cairo University, Cairo, Egypt
| | | | - Markus Böhm
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Laila Benzekri
- Department of Dermatology, Mohammed V University, Ibn Sina University Hospital, Rabat, Morocco
| | - Marcel Bekkenk
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, VU University, Amsterdam, The Netherlands
| | - Jung Min Bae
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Augustin Alomar
- Department of Dermatology, Clinica Dermatologica Moragas, Barcelona, Spain
| | - Marwa Abdallah
- Dermatology, Andrology, and Venereology Department, Ain Shams University, Cairo, Egypt
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
17
|
Luan M, Niu M, Yang P, Han D, Zhang Y, Li W, He Q, Zhao Y, Mao B, Chen J, Mou K, Li P. Metagenomic sequencing reveals altered gut microbial compositions and gene functions in patients with non-segmental vitiligo. BMC Microbiol 2023; 23:265. [PMID: 37737154 PMCID: PMC10515041 DOI: 10.1186/s12866-023-03020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Vitiligo has been correlated with an abnormal gut microbiota. We aimed to systematically identify characteristics of the gut microbial compositions, genetic functions, and potential metabolic features in patients with non-segmental vitiligo. METHODS Twenty-five patients with non-segmental vitiligo and 25 matched healthy controls (HCs) were enrolled. Metagenomic sequencing and bioinformatic analysis were performed to determine the gut microbiota profiles. Differences in gut microbiota diversity and composition between patients with vitiligo and HCs were analyzed. Gene functions and gut metabolic modules were predicted with the Kyoto Encyclopedia of Gene and Genomes (KEGG) and MetaCyc databases. RESULTS Compared with HCs, alpha diversity of intestinal microbiome in vitiligo patients was significantly reduced. At the species level, the relative abundance of Staphylococcus thermophiles was decreased, and that of Bacteroides fragilis was increased in patients with vitiligo compared with those of the HCs. Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed representative microbial markers of Lachnospiraceae_bacterium_BX3, Massilioclostridium_coli, TM7_phylum_sp_oral_taxon_348 and Bacteroides_fragilis for patients with vitiligo. KEGG gene function analysis showed that the NOD-like receptor signaling pathway was significantly enriched in patients with vitiligo. Gut metabolic modules (GMMs) analysis showed that cysteine degradation was significantly down-regulated, and galactose degradation was up-regulated in patients with vitiligo. A panel of 28 microbial features was constructed to distinguish patients with vitiligo from HCs. CONCLUSIONS The gut microbial profiles and genetic functions of patients with vitiligo were distinct from those of the HCs. The identified gut microbial markers may potentially be used for earlier diagnosis and treatment targets.
Collapse
Affiliation(s)
- Mei Luan
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Mengtian Niu
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Pengju Yang
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Dan Han
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Yudan Zhang
- Center for Translational Medicine, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Weizhe Li
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Qiannan He
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Yixin Zhao
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Binyue Mao
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Jianan Chen
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Kuanhou Mou
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China.
| | - Pan Li
- Center for Translational Medicine, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
Doh JY, Rintarhat P, Jung WH, Kim HS. Truncal acne following JAK inhibitor use in vitiligo with rare opportunistic fungal infections: Two case reports. JAAD Case Rep 2023; 37:123-127. [PMID: 37405176 PMCID: PMC10315772 DOI: 10.1016/j.jdcr.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Affiliation(s)
- Jee Yun Doh
- Department of Dermatology, Seoul St. Mary`s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Piyapat Rintarhat
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
19
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
20
|
Wu Q, Cheng P, Shao T, Li Z, Ji Q, Wang L, Yao S, Lu B. Alterations of gut microbiota and gut metabolites in the young-adult vitiligo patients. J Eur Acad Dermatol Venereol 2023. [PMID: 36883792 DOI: 10.1111/jdv.19012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Affiliation(s)
- Qizheng Wu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Panpan Cheng
- Hematology Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Tianying Shao
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhengyu Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingjie Ji
- Rehabilitation Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shulan Yao
- Dermatology Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bin Lu
- Dermatology Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
21
|
Hooper MJ, Enriquez GL, Veon FL, LeWitt TM, Sweeney D, Green SJ, Seed PC, Choi J, Guitart J, Burns MB, Zhou XA. Narrowband ultraviolet B response in cutaneous T-cell lymphoma is characterized by increased bacterial diversity and reduced Staphylococcus aureus and Staphylococcus lugdunensis. Front Immunol 2022; 13:1022093. [PMID: 36439132 PMCID: PMC9692126 DOI: 10.3389/fimmu.2022.1022093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Skin microbiota have been linked to disease activity in cutaneous T-cell lymphoma (CTCL). As the skin microbiome has been shown to change after exposure to narrowband ultraviolet B (nbUVB) phototherapy, a common treatment modality used for CTCL, we performed a longitudinal analysis of the skin microbiome in CTCL patients treated with nbUVB. 16S V4 rRNA gene amplicon sequencing for genus-level taxonomic resolution, tuf2 amplicon next generation sequencing for staphylococcal speciation, and bioinformatics were performed on DNA extracted from skin swabs taken from lesional and non-lesional skin of 25 CTCL patients receiving nbUVB and 15 CTCL patients not receiving nbUVB from the same geographical region. Disease responsiveness to nbUVB was determined using the modified Severity Weighted Assessment Tool: 14 (56%) patients responded to nbUVB while 11 (44%) patients had progressive disease. Microbial α-diversity increased in nbUVB-responders after phototherapy. The relative abundance of Staphylococcus, Corynebacterium, Acinetobacter, Streptococcus, and Anaerococcus differentiated nbUVB responders and non-responders after treatment (q<0.05). Microbial signatures of nbUVB-treated patients demonstrated significant post-exposure depletion of S. aureus (q=0.024) and S. lugdunensis (q=0.004) relative abundances. Before nbUVB, responder lesional skin harboured higher levels of S. capitis (q=0.028) and S. warneri (q=0.026) than non-responder lesional skin. S. capitis relative abundance increased in the lesional skin of responders (q=0.05) after phototherapy; a similar upward trend was observed in non-responders (q=0.09). Post-treatment skin of responders exhibited significantly reduced S. aureus (q=0.008) and significantly increased S. hominis (q=0.006), S. pettenkoferi (q=0.021), and S. warneri (q=0.029) relative abundances compared to that of no-nbUVB patients. Staphylococcus species abundance was more similar between non-responders and no-nbUVB patients than between responders and no-nbUVB patients. In sum, the skin microbiome of CTCL patients who respond to nbUVB is different from that of non-responders and untreated patients, and is characterized by shifts in S. aureus and S. lugdunensis. Non-responsiveness to phototherapy may reflect more aggressive disease at baseline.
Collapse
Affiliation(s)
- Madeline J. Hooper
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Gail L. Enriquez
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Francesca L. Veon
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Tessa M. LeWitt
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Dagmar Sweeney
- Genome Research Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Patrick C. Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Joan Guitart
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Michael B. Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Xiaolong A. Zhou
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- *Correspondence: Xiaolong A. Zhou,
| |
Collapse
|
22
|
Hlača N, Žagar T, Kaštelan M, Brajac I, Prpić-Massari L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022; 10:biomedicines10071639. [PMID: 35884944 PMCID: PMC9313271 DOI: 10.3390/biomedicines10071639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Vitiligo is an acquired immune-mediated disorder of pigmentation clinically characterized by well-defined depigmented or chalk-white macules and patches on the skin. The prevalence of vitiligo varies by geographical area, affecting 0.5% to 2% of the population. The disease imposes a significant psychological burden due to its major impact on patients’ social and emotional aspects of life. Given its autoimmune background, vitiligo is frequently associated with other autoimmune diseases or immune-mediated diseases. Vitiligo is a multifaceted disorder that involves both genetic predisposition and environmental triggers. In recent years, major predisposing genetic loci for the development of vitiligo have been discovered. The current findings emphasize the critical role of immune cells and their mediators in the immunopathogenesis of vitiligo. Oxidative-stress-mediated activation of innate immunity cells such as dendritic cells, natural killer, and ILC-1 cells is thought to be a key event in the early onset of vitiligo. Innate immunity cells serve as a bridge to adaptive immunity cells including T helper 1 cells, cytotoxic T cells and resident memory T cells. IFN-γ is the primary cytokine mediator that activates the JAK/STAT pathway, causing keratinocytes to produce the key chemokines CXCL9 and CXCL10. Complex interactions between immune and non-immune cells finally result in apoptosis of melanocytes. This paper summarizes current knowledge on the etiological and genetic factors that contribute to vitiligo, with a focus on immunopathogenesis and the key cellular and cytokine players in the disease’s inflammatory pathways.
Collapse
|
23
|
Marchioro HZ, Castro CCSD, Fava VM, Sakiyama PH, Dellatorre G, Miot HA. Update on the pathogenesis of vitiligo. An Bras Dermatol 2022; 97:478-490. [PMID: 35643735 PMCID: PMC9263675 DOI: 10.1016/j.abd.2021.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disease whose pathogenesis results from the interaction of genetic components, metabolic factors linked to cellular oxidative stress, melanocyte adhesion to the epithelium, and immunity (innate and adaptive), which culminate in aggression against melanocytes. In vitiligo, melanocytes are more sensitive to oxidative damage, leading to the increased expression of proinflammatory proteins such as HSP70. The lower expression of epithelial adhesion molecules, such as DDR1 and E-cadherin, facilitates damage to melanocytes and exposure of antigens that favor autoimmunity. Activation of the type 1-IFN pathway perpetuates the direct action of CD8+ cells against melanocytes, facilitated by regulatory T-cell dysfunction. The identification of several genes involved in these processes sets the stage for disease development and maintenance. However, the relationship of vitiligo with environmental factors, psychological stress, comorbidities, and the elements that define individual susceptibility to the disease are a challenge to the integration of theories related to its pathogenesis.
Collapse
|
24
|
Hooper MJ, LeWitt TM, Pang Y, Veon FL, Chlipala GE, Feferman L, Green SJ, Sweeney D, Bagnowski KT, Burns MB, Seed PC, Choi J, Guitart J, Zhou XA. Gut dysbiosis in cutaneous T-cell lymphoma is characterized by shifts in relative abundances of specific bacterial taxa and decreased diversity in more advanced disease. J Eur Acad Dermatol Venereol 2022; 36:1552-1563. [PMID: 35366365 PMCID: PMC9391260 DOI: 10.1111/jdv.18125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cutaneous T-cell lymphoma (CTCL) patients often suffer from recurrent skin infections and profound immune dysregulation in advanced disease. The gut microbiome has been recognized to influence cancers and cutaneous conditions; however, it has not yet been studied in CTCL. OBJECTIVES To investigate the gut microbiome in patients with CTCL and in healthy controls. METHODS Case-control study conducted between January 2019 and November 2020 at Northwestern's busy multidisciplinary CTCL clinic (Chicago, Illinois, USA) utilizing 16S ribosomal RNA gene amplicon sequencing and bioinformatics analyses to characterize the microbiota present in fecal samples of CTCL patients (n=38) and age-matched healthy controls (n=13) from the same geographical region. RESULTS Gut microbial α-diversity trended lower in patients with CTCL and was significantly lower in patients with advanced CTCL relative to controls (p=0.015). No differences in β-diversity were identified. Specific taxa were significantly reduced in patient samples; significance was determined using adjusted p-values (q-values) that accounted for a false discovery rate threshold of 0.05. Significantly reduced taxa in patient samples included the phylum Actinobacteria (q=0.0002), classes Coriobacteriia (q=0.002) and Actinobacteria (q=0.03), order Coriobacteriales (q=0.003), and genus Anaerotruncus (q=0.01). The families of Eggerthellaceae (q=0.0007) and Lactobacillaceae (q=0.02) were significantly reduced in patients with high skin disease burden. CONCLUSIONS Gut dysbiosis can be seen in patients with CTCL compared to healthy controls and is pronounced in more advanced CTCL. The taxonomic shifts associated with CTCL are similar to those previously reported in atopic dermatitis and opposite those of psoriasis, suggesting microbial parallels to the immune profile and skin barrier differences between these conditions. These findings may suggest new microbial disease biomarkers and reveal a new angle for intervention.
Collapse
Affiliation(s)
- M J Hooper
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - T M LeWitt
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Y Pang
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - F L Veon
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - G E Chlipala
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - L Feferman
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - D Sweeney
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - K T Bagnowski
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - M B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - P C Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - J Choi
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - J Guitart
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - X A Zhou
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Ni Q, Zhang P, Li Q, Han Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front Cell Dev Biol 2022; 10:849985. [PMID: 35321240 PMCID: PMC8937033 DOI: 10.3389/fcell.2022.849985] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ping Zhang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zheyi Han
- Department of Gastroenterology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- *Correspondence: Zheyi Han,
| |
Collapse
|
26
|
Immune Checkpoint Blockade and Skin Toxicity Pathogenesis. J Invest Dermatol 2021; 142:951-959. [PMID: 34844731 DOI: 10.1016/j.jid.2021.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade has revolutionized the treatment of multiple tumor types, including melanoma and nonmelanoma skin cancers. The use of immune checkpoint blockade is curtailed by tissue toxicities termed immune-related adverse events (irAEs), which occur most quickly and most often in the skin. We review the rationale for immune checkpoint blockade use, current agents, use in skin cancers, autoimmune manifestations in the skin, and considerations for predictive biomarkers and treatment options on the basis of skin pathogenesis. We also highlight major gaps in the field and the lack of preclinical modeling in the skin. A deeper understanding of irAE pathophysiology may help to uncouple toxicity and efficacy but mandates an interdisciplinary approach, including foundational skin immunology and autoimmune pathogenesis.
Collapse
|
27
|
Passeron T, Malmqvst VEA, Bzioueche H, Marchetti S, Rocchi S, Tulic MK. Increased Activation of Innate Immunity and Pro-Apoptotic CXCR3B in Normal-Appearing Skin on the Lesional Site of Patients with Segmental Vitiligo. J Invest Dermatol 2021; 142:480-483.e2. [PMID: 34343558 DOI: 10.1016/j.jid.2021.07.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Thierry Passeron
- Mediterranean Centre for Molecular Medicine (C3M), Team 12, INSERM U1065, Université Côte d'Azur, Nice, France; Department of Dermatology, University Hospital of Nice, Côte d'Azur University, Nice, France.
| | - Valentina E A Malmqvst
- Department is Dermatology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Hanene Bzioueche
- Mediterranean Centre for Molecular Medicine (C3M), Team 12, INSERM U1065, Université Côte d'Azur, Nice, France
| | - Sandrine Marchetti
- Mediterranean Centre for Molecular Medicine (C3M), Team 3, INSERM U1065, Université Côte d'Azur, Nice, France
| | - Stephane Rocchi
- Mediterranean Centre for Molecular Medicine (C3M), Team 12, INSERM U1065, Université Côte d'Azur, Nice, France
| | - Meri K Tulic
- Mediterranean Centre for Molecular Medicine (C3M), Team 12, INSERM U1065, Université Côte d'Azur, Nice, France
| |
Collapse
|
28
|
Choi MS, Chae YJ, Choi JW, Chang JE. Potential Therapeutic Approaches through Modulating the Autophagy Process for Skin Barrier Dysfunction. Int J Mol Sci 2021; 22:7869. [PMID: 34360634 PMCID: PMC8345957 DOI: 10.3390/ijms22157869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an attractive process to researchers who are seeking novel potential treatments for various diseases. Autophagy plays a critical role in degrading damaged cellular organelles, supporting normal cell development, and maintaining cellular homeostasis. Because of the various effects of autophagy, recent human genome research has focused on evaluating the relationship between autophagy and a wide variety of diseases, such as autoimmune diseases, cancers, and inflammatory diseases. The skin is the largest organ in the body and provides the first line of defense against environmental hazards, including UV damage, chemical toxins, injuries, oxidative stress, and microorganisms. Autophagy takes part in endogenous defense mechanisms by controlling skin homeostasis. In this manner, regulating autophagy might contribute to the treatment of skin barrier dysfunctions. Various studies are ongoing to elucidate the association between autophagy and skin-related diseases in order to find potential therapeutic approaches. However, little evidence has been gathered about the relationship between autophagy and the skin. In this review, we highlight the previous findings of autophagy and skin barrier disorders and suggest potential therapeutic strategies. The recent research regarding autophagy in acne and skin aging is also discussed.
Collapse
Affiliation(s)
- Min Sik Choi
- Lab of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea;
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Ji-Eun Chang
- Lab of Pharmaceutics, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| |
Collapse
|
29
|
Boniface K, Passeron T, Seneschal J, Tulic MK. Targeting Innate Immunity to Combat Cutaneous Stress: The Vitiligo Perspective. Front Immunol 2021; 12:613056. [PMID: 33936032 PMCID: PMC8079779 DOI: 10.3389/fimmu.2021.613056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple factors are involved in the process leading to melanocyte loss in vitiligo including environmental triggers, genetic polymorphisms, metabolic alterations, and autoimmunity. This review aims to highlight current knowledge on how danger signals released by stressed epidermal cells in a predisposed patient can trigger the innate immune system and initiate a cascade of events leading to an autoreactive immune response, ultimately contributing to melanocyte disappearance in vitiligo. We will explore the genetic data available, the specific role of damage-associated-molecular patterns, and pattern-recognition receptors, as well as the cellular players involved in the innate immune response. Finally, the relevance of therapeutic strategies targeting this pathway to improve this inflammatory and autoimmune condition is also discussed.
Collapse
Affiliation(s)
- Katia Boniface
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France
| | - Thierry Passeron
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France.,Côte d'Azur University, Department of Dermatology, CHU Nice, Nice, France
| | - Julien Seneschal
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Meri K Tulic
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France
| |
Collapse
|