1
|
López-Silva M, García-Valle DE. Ice cream cone fortified with spent coffee ground: Chemical composition, quality and sensory characteristics, and in vitro starch digestibility. Food Chem 2024; 459:140288. [PMID: 39002335 DOI: 10.1016/j.foodchem.2024.140288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
The objective of the study was to evaluate the effect of the incorporation of spent coffee grounds in ice cream cones on the quality, sensory characteristics, and in vitro starch digestibility. The incorporation of spent coffee grounds in ice cream cones increased the content of dietary fiber and phenolic compounds. However, the quality and texture characteristics decreased with the addition of spent coffee grounds. The in vitro starch digestibility decreased significantly, resulting in a significant increase in resistant starch content. Fitting starch digestibility using the LOS-plot model revealed the presence of two sequential first-order digestion rates. Sensory analysis revealed that the panelists well accepted ice cream cones fortified with spent coffee grounds. The results suggest that spent coffee grounds are a potential ingredient for the formulation of food matrices with reduced starch digestibility, which contributes to the prevention of chronic degenerative diseases such as type II diabetes.
Collapse
Affiliation(s)
- Madai López-Silva
- Tecnológico Nacional de México/Instituto Tecnólogico Superior de Atlixco-Departamento de Ingeniería Bioquímica, Atlixco, Puebla, México
| | | |
Collapse
|
2
|
Akkari I, Kaci MM, Pazos M. Revolutionizing waste: Harnessing agro-food hydrochar for potent adsorption of organic and inorganic contaminants in water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1035. [PMID: 39379759 DOI: 10.1007/s10661-024-13171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Constant pollution from a wide range of human activities has a negative impact on the quantity and quality of the planet's water resources. On the other hand, agro-food waste can impact climate change and other forms of life, in addition to having social, economic, and environmental consequences. However, as a result of their inherent physicochemical properties and lignocellulosic composition, these residues are becoming increasingly recognized as valuable products in line with government policies advocating zero waste and circular economies. An advantageous way to convert these wastes into energy and chemicals is hydrothermal carbonization (HTC). This review highlights the valorization of agro-food waste into hydrochar-based adsorbents for the elimination of organic and inorganic contaminants from aqueous environments. An overview of the toxicity of pollutants in aqueous environments, food waste management, as well as HTC technology was initially proposed. Then, a discussion on the conversion of major agro-food wastes into contaminant adsorbents was given in detail. Adsorption mechanisms as well as the possibility of reuse of adsorbents were also discussed. Enhanced properties of the produced materials enable them to provide competent solutions to various ecological contexts, including removing pollutants from wastewater with cost-effectiveness and satisfactory results. Besides addressing environmental concerns, this sustainable approach opens the door for more environmentally-friendly and resource-efficient applications in the future, making it an exciting prospect.
Collapse
Affiliation(s)
- Imane Akkari
- Materials Technology and Process Engineering Laboratory (LTMGP), University of Bejaia, 06000, Bejaia, Algeria.
| | - Mohamed Mehdi Kaci
- Laboratory of Reaction Engineering, Faculty of Mechanical and Process Engineering (USTHB), BP 32, 16111, Algiers, Algeria.
| | - Marta Pazos
- CINTECX-Universidade de Vigo, Department of Chemical Engineering Campus As Lagoas-Marcosende, University of Vigo, 36310, Vigo, Spain.
| |
Collapse
|
3
|
Patrignani M, Hasperué HJ, Cervera-Mata A, Pastoriza S, Rufián Henares JÁ. Spent coffee grounds as an alternative fertilizer: impact on bioaccessibility of antioxidants and commercial quality of lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39354872 DOI: 10.1002/jsfa.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND During the processing of spent coffee grounds (SCGs) several residues are obtained, which are mostly disposed of in landfills. There is an urgent need for a comprehensive waste management strategy for these residues. This study evaluates the potential of SCGs as a biofertilizer by assessing their effects on lettuce leaves and the release of antioxidants following in vitro digestion and fermentation. RESULTS Lettuce plants were grown with different amounts of SCGs (0-150 g kg-1) in the substrate. High SCG concentrations in the soil generated lighter colored tissues, a decrease in the green color, less root development, and lower dry weight of leaves (P < 0.05). The SCG levels also affected the release of antioxidants by the final product. This effect was more pronounced in the digested fraction: applying the Ferric Reducing Antioxidant Power (FRAP) method, the addition of SCGs from 10 g kg-1 to 125 g kg-1 increased the amount of antioxidant from 43.88 ± 4.81 to 105.96 ± 29.09 μmol Trolox g-1 of dry weight (P < 0.05). The Indigo Carmine Reducing Capacity (ICRED) method also showed a similar trend, but in this case the highest value was obtained with 150 g kg-1 of SCGs (16.41 ± 3.93 mmol catechin g-1 of dry weight) (P < 0.05). Moreover, in the fermented fraction a significant increase in the antioxidant released was found with low levels of SCG(P<0.05), while lettuces fertilized with intermediate amounts of SCGs (25 and 50 g kg-1) presented the highest amount of insoluble antioxidant (P < 0.05). CONCLUSION A compromise should be found in order to achieve a product with a high antioxidant capacity and an acceptable visual quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariela Patrignani
- CIDCA (CONICET - CIC-Facultad de Ciencias Exactas - Universidad Nacional de La Plata), La Plata, Argentina
| | - Héctor Joaquín Hasperué
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Ana Cervera-Mata
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|
4
|
Hernández-Varela JD, Chanona-Pérez JJ, Foruzanmehr R, Medina DI. Assessing the reinforcement effect by response surface methodology of holocellulose from spent coffee grounds on biopolymeric films as food packaging materials. Biopolymers 2024; 115:e23585. [PMID: 38847141 DOI: 10.1002/bip.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 09/26/2024]
Abstract
The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.
Collapse
Affiliation(s)
- Josué David Hernández-Varela
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey, Nuevo Leon, Mexico
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Reza Foruzanmehr
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Dora Iliana Medina
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
5
|
Kyriakoudi A, Loukri A, Christaki S, Oliinychenko Y, Stratakos AC, Mourtzinos I. Impact of Cold Atmospheric Plasma Pretreatment on the Recovery of Phenolic Antioxidants from Spent Coffee Grounds. FOOD ANAL METHOD 2024; 17:1484-1496. [PMID: 39345863 PMCID: PMC11436392 DOI: 10.1007/s12161-024-02661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024]
Abstract
In the present study, cold atmospheric plasma (CAP) was employed as a pretreatment method for the extraction of phenolic compounds from spent coffee grounds (SCGs). The impact of CAP treatment conditions, i.e., thickness of the SCGs layer (mm), distance between the plasma source and the SCGs layer (mm) and duration of CAP treatment (min), on the total phenol content, in vitro antioxidant activity, as well as caffeine and chlorogenic acid content of SCGs, was investigated. The process parameters were optimized with the aid of response surface methodology (RSM). After optimizing the CAP pretreatment conditions, the CAP-treated SCGs were subjected to ultrasound-assisted extraction using ethanol as the extraction solvent. The optimum conditions for CAP treatment identified, i.e., thickness, 1 mm; distance, 16 mm; and duration, 15 min, led to a significant enhancement in the recovery of bioactive compounds from SCGs compared to those obtained from untreated SCGs. Total phenolic content and antioxidant activity significantly increased (i.e., TPC from 19.0 ± 0.7 to 24.9 ± 1.4 mg GAE/100 g dry SCGs, ADPPH from 106.7 ± 5.01 to 112.3 ± 4.3 μmol Trolox/100 g dry SCGs, AABTS from 106.7 ± 5.01 to 197.6 ± 5.8 μmol Trolox/100 g dry SCGs, ACUPRAC from 17938 ± 157 to 18299 ± 615 μmol Trolox/100 g dry SCGs). A significant increase in caffeine content from 799.1 ± 65.1 mg to 1064 ± 25 mg/100 g dry SCGs and chlorogenic acid content from 79.7 ± 15.3 mg to 111.3 ± 3.3 mg/100 g dry SCGs, was also observed. Overall, CAP pre-treatment can be used to enhance the recovery of bioactive compounds from SCGs.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Anastasia Loukri
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Stamatia Christaki
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Yelyzaveta Oliinychenko
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY UK
| | - Alexandros Ch Stratakos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY UK
| | - Ioannis Mourtzinos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY UK
| |
Collapse
|
6
|
Aouay F, Attia A, Dammak L, Ben Amar R, Deratani A. Activated Carbon Prepared from Waste Coffee Grounds: Characterization and Adsorption Properties of Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3078. [PMID: 38998161 PMCID: PMC11242847 DOI: 10.3390/ma17133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Spent coffee grounds (SCGs) have great potential as a useful, value-added biological material. In this context, activated carbon (AC) was prepared from SCGs by an activation process using H3PO4 at 600 °C in the air and used as an adsorbent for the azo dye AO7, a model molecule for dye colorants found in textile industry effluents. X-ray diffraction, SEM and BET revealed that the AC was predominantly amorphous, consisting of a powder of 20-100 µm particles with mesopores averaging 5.5 nm in pore size. Adsorption kinetics followed a pseudo-second-order law, while the Langmuir model best fitted the experimental isotherm data (maximum capacity of 119.5 mg AO7 per AC g). The thermodynamic parameters revealed that adsorption was endothermic and spontaneous. All the characterizations indicated that adsorption occurred by physisorption via mainly π-π interactions. The best experimental removal efficiency optimized by means of a Box-Behnken design and response surface methodology was 98% for an initial AO7 concentration of 20 mg·L-1 at pH 7.5 with a dose of 0.285 g·L-1 of AC and a contact time of 40 min. These results clearly show that activated carbon prepared from SCGs can be a useful material for efficiently removing organic matter from aqueous solutions.
Collapse
Affiliation(s)
- Feryelle Aouay
- Research Unit "Advanced Technologies for Environment and Smart Cities", Faculty of Sciences, University of Sfax, 3000 Sfax, Tunisia
- Institut Europeen des Membranes, IEM UMR-5635, CNRS, ENSCM, University Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Afef Attia
- Research Unit "Advanced Technologies for Environment and Smart Cities", Faculty of Sciences, University of Sfax, 3000 Sfax, Tunisia
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris Est, ICMPE UMR-CNRS 7182-UPEC, Université Paris Est Creteil 2 rue Henri Dunant, 94320 Thiais, France
| | - Raja Ben Amar
- Research Unit "Advanced Technologies for Environment and Smart Cities", Faculty of Sciences, University of Sfax, 3000 Sfax, Tunisia
| | - Andre Deratani
- Institut Europeen des Membranes, IEM UMR-5635, CNRS, ENSCM, University Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
7
|
Stavrinou A, Theodoropoulou MA, Aggelopoulos CA, Tsakiroglou CD. Phenanthrene sorption studies on coffee waste- and diatomaceous earth-based adsorbents, and adsorbent regeneration with cold atmospheric plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39884-39906. [PMID: 37166734 PMCID: PMC11511722 DOI: 10.1007/s11356-023-27381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Phenanthrene (PHE) is a polycyclic aromatic hydrocarbon categorized as a high priority organic pollutant being toxic for the ecosystem and human health, and its sorption on natural organic or inorganic substances seems a well-promising method for its removal from water streams. The goals of the present work are (i) to assess the capacity of low-cost adsorbents fabricated by treating coffee wastes and diatomaceous earth to remove PHE from water; (ii) to elucidate the role of the pore structure on PHE sorption dynamics; and (iii) to assess the potential to regenerate adsorbents loaded with PHE, by using the novel technology of cold atmospheric plasma (CAP). Diatomaceous earth (DE) and DE pre-treated with sodium hydroxide (NaOH) or phosphoric acid (H3PO4) were chosen as inorganic adsorbents. Coffee waste (CW) and activated carbons (AC) produced from its pyrolysis at 800 °C (CWAC), either untreated (CWAC-800) or pre-treated with NaOH (CWAC-NaOH-800) and H3PO4 (CWAC-H3PO4-800), were chosen as organic adsorbents. The adsorbents were characterized with nitrogen adsorption-desorption isotherms, attenuated total reflectance-Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and mercury intrusion porosimetry. Based on the PHE sorption capacity and pore structure/surface characteristics, the CWAC-NaOH-800 was chosen as the most efficient adsorbent for further equilibrium and kinetic sorption studies. The multi-compartment model was used to describe the PHE sorption dynamics in CWAC-NaOH-800 by accounting for the pore/surface diffusion and instantaneous sorption. The CWAC-NaOH-800 exhibited remarkable values for (i) the specific surface area (SBET = 676.5 m2/g) and meso- and micro-pore volume determined by nitrogen sorption (VLN2 = 0.415 cm3/g); (ii) the macro- and meso-pore volume determined by mercury intrusion porosimetry (VMIP = 3.134 cm3/g); and (iii) the maximum PHE sorption capacity (qmax = 142 mg/g). The percentage of adsorbent recovery after its regeneration with CAP was found to be ~ 35%. From the simulation of sorption dynamics, it was found that at early times, the sorption kinetics is governed by the film diffusion towards the external surface of grains, but at late times, most of the adsorbed mass is transferred primarily to meso-/macro-pores via diffusion, and secondarily to micro-porosity via surface diffusion. Based on the adsorbent characteristics, effect of pH on sorption efficiency, and numerical analysis of sorption dynamics, it was concluded that probably the dominant adsorption mechanism is the π-π interactions between hydrophobic PHE aromatic rings and CWAC-NaOH-800 graphene layers. The high PHE removal efficiency of CWAC-NaOH-800, the successful interpretation of sorption dynamics with the multi-compartment model, and the potential to regenerate PHE-loaded adsorbents with the green and economic technology of CAP motivate a strategy for testing CWACs towards the adsorption of other PAHs, application of adsorbents to real wastewaters, and scaling-up to pilot units.
Collapse
Affiliation(s)
- Anastasia Stavrinou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
- Department of Physics, University of Patras, 26504, Patras, Greece
| | - Maria A Theodoropoulou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
- Hellenic Open University, 26335, Patras, Greece
| | - Christos A Aggelopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
| | - Christos D Tsakiroglou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece.
| |
Collapse
|
8
|
Gabisa EW, Ratanatamskul C. Recycling of waste coffee grounds as a photothermal material modified with ZnCl 2 for water purification. Sci Rep 2024; 14:10811. [PMID: 38734820 PMCID: PMC11088620 DOI: 10.1038/s41598-024-61768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to develop a photothermal material modified with carbonization and ZnCl2 impregnation and supported by polyvinyl alcohol (PVA) for water purification using the waste coffee grounds. Scanning electron microscopy (SEM) characterization of the prepared material revealed that a significant surface modification was achieved due to the carbonization and ZnCl2 impregnation. X-ray diffraction analysis (XRD) pattern of the samples showed two broad peaks at 18.4° and 22.2°, this is due to the crystal planes of β-crystal phase structure, which indicates the existence of strong hydrogen bonds between the micro-structures and therefore less suspectable to chemical attack. Additionally, thermogravimetric analysis (TGA) result suggests a slight mass reduction between the temperature range of 65-75 °C implying the thermal stability of the prepared material. The produced modified material had a photothermal conversion efficiency of 74% and could produce vapor at a rate of 1.12 kg/m2h under 980 W/m2 irradiation at 1 sun. A significant reduction in Cu2+ ion concentration (83%), turbidity (91%), total dissolved solids (TDS) (61%), microbial load (95.6%), and total hardness (41.2%) were achieved. Therefore, waste coffee grounds can be considered as a future eco-friendly and low-cost candidate for water purification.
Collapse
Affiliation(s)
- Elias Wagari Gabisa
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bahir Dar Institute of Technology, Faculty of Chemical and Food Engineering, Bahir Dar University, Bahir Dar, Ethiopia
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Giménez-Martínez P, Zúñiga F, Medici S, Fuselli S, Martínez J. Spent coffee grounds extract: antimicrobial activity against Paenibacillus larvae and its effect on the expression of antimicrobial peptides in Apis mellifera. Vet Res Commun 2024; 48:889-899. [PMID: 37989931 DOI: 10.1007/s11259-023-10256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
In recent years, natural alternatives have been sought for the control of beekeeping pathologies; in the case of American Foulbrood (AFB) disease, the use of synthetic antibiotics was prohibited due to honey contamination and the generation of resistant bacteria. The significant increase in population growth worldwide has led to great concern about the production of large amounts of waste, including those from agribusiness. Among the most important beverages consumed is coffee, generating thousands of tons of waste called spent coffee grounds (SCG). The SCG is a source of many bioactive compounds with known antimicrobial activity. The aims of the present work were: (1) to obtain and chemically analyse by HPLC of SCG extracts (SCGE), (2) to analyse the antimicrobial activity of SCGE against vegetative form of Paenibacillus larvae (the causal agent of AFB), (3) to evaluate the toxicity in bees of SCGE and (4) to analyse the effect of the extracts on the expression of various genes of the immune system of bees. SCGs have a high content of phenolic compounds, and the caffeine concentration was of 0.3%. The MIC value obtained was 166.667 µg/mL; the extract was not toxic to bees, and interestingly, overexpression of abaecin and hymenoptaecin peptides was observed. Thus, SCGE represents a promising alternative for application in the control of American Foulbrood and as a possible dietary supplement to strengthen the immune system of honeybees. Therefore, the concept of circular bio-economy could be applied from the coffee industry to the beekeeping industry.
Collapse
Affiliation(s)
- Pablo Giménez-Martínez
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET-UNMdP. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fabián Zúñiga
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago, 7610658, Chile
| | - Sandra Medici
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET-UNMdP. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sandra Fuselli
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET-UNMdP. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago, 7610658, Chile.
| |
Collapse
|
10
|
Basmak S, Turhan I. Production of β-mannanase, inulinase, and oligosaccharides from coffee wastes and extracts. Int J Biol Macromol 2024; 261:129798. [PMID: 38286365 DOI: 10.1016/j.ijbiomac.2024.129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
This study aimed to produce enzymes (beta (β)-mannanase using a recombinant Aspergillus sojae AsT3 and inulinase using Aspergillus niger A42) and oligosaccharides (mannooligosaccharides (MOS), fructooligosaccharides (FOS)) using coffee waste, ground coffee, and coffee extract by solid-state fermentation (SSF). Plackett-Burman Design (PBD) was used to create a design for enzyme production with four different parameters (temperature, pH, solid-to-liquid ratio (SLR), and mix with coffee wastes and ground coffee). The highest β-mannanase and inulinase activities were 71.17 and 564.07 U/mg of protein respectively. Statistical analysis showed that the temperature was statistically significant for the production of both enzymes (P < 0.05). The produced enzymes were utilized in French Pressed coffee extracts to produce oligosaccharides. As a result of the enzymatic hydrolyzation, the highest mannobiose, mannotriose, mannotetraose, and total MOS levels were 109.66, 101.11, 391.02, and 600.64 ppm, respectively. For the FOS production, the maximal 1,1,1-kestopentaose was 38.34 ppm. Consequently, this study demonstrates that a recombinant Aspergillus sojae AsT3 β-mannanase and Aspergillus niger A42 inulinase produced from coffee wastes and ground coffee can be used in coffee extracts to increase the amount of oligosaccharides in coffee extracts.
Collapse
Affiliation(s)
- Selin Basmak
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
11
|
Kim S, Kim JC, Kim YY, Yang JE, Lee HM, Hwang IM, Park HW, Kim HM. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169521. [PMID: 38141985 DOI: 10.1016/j.scitotenv.2023.169521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Lactic acid is an important industrial precursor; however, high substrate costs are a major challenge in microbial fermentation-based lactic acid production. Coffee waste is a sustainable feedstock alternative for lactic acid production via microbial fermentation. Herein, the feasibility of coffee waste as a feedstock was explored by employing appropriate pretreatment methods and optimizing enzyme combinations. Coffee waste pretreatment with hydrogen peroxide and acetic acid along with a combination of Viscozyme L, Celluclast 1.5 L, and Pectinex Ultra SP-L achieved the 78.9 % sugar conversion rate at a substrate concentration of 4 % (w/v). Lactiplantibacillus plantarum WiKim0126-induced fermentation with a 4 % solid loading yielded a lactic acid concentration of 22.8 g/L (99.6 % of the theoretical maximum yield) and productivity of 0.95 g/L/h within 24 h. These findings highlight the viability of coffee waste as an eco-friendly resource for sustainable lactic acid production.
Collapse
Affiliation(s)
- Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea; Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hee Min Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Zheng NC, Chien HW. UV-crosslinking of chitosan/spent coffee ground composites for enhanced durability and multifunctionality. Int J Biol Macromol 2024; 255:128215. [PMID: 37992943 DOI: 10.1016/j.ijbiomac.2023.128215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Spent coffee grounds (SCGs) have numerous applications and are often blended with polymers to create composites. However, SCGs are physically trapped within the polymer matrix, lacking strong chemical bonding. Therefore, this study has developed a new method for UV crosslinking composites using phenyl azide to address the issue of SCG leakage and limited durability of the composites. The main approach involves grafting phenyl azide onto chitosan, which is then combined with SCGs. When exposed to UV light, the SCGs become covalently linked to the chitosan chains. This method not only resolves the problem of chitosan's porous material fragility but also prevents SCG detachment, surpassing the performance of glutaraldehyde-crosslinked composites. Regarding applications, CS/SCG composites exhibit rapid heating and photothermal stability, making them suitable for use as thermal pads in evaporative water purification, enabling for the collection of pure water from contaminated sources. Furthermore, SCGs have the ability to adsorb metal ions, significantly enhancing the Cu2+ adsorption capacity of CS/SCG composites compared to pure CS, with an increase of more than twofold. This research not only presents a practical solution for stabilizing fillers within polymer matrices but also demonstrates the reusability of SCGs.
Collapse
Affiliation(s)
- Nai-Ci Zheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| |
Collapse
|
13
|
Bhattarai S, Janaswamy S. Biodegradable, UV-blocking, and antioxidant films from lignocellulosic fibers of spent coffee grounds. Int J Biol Macromol 2023; 253:126798. [PMID: 37689289 DOI: 10.1016/j.ijbiomac.2023.126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Plastics are strong, flexible, and inexpensive and hence desirable for packaging. However, as they biodegrade very slowly, their waste remains a global burden and pollution, warranting a search for safer alternatives. Towards this end, residual fibers from biowaste, such as spent coffee grounds (SCGs), stand out for creating biodegradable packaging materials. Herein, lignocellulosic fibers from SCG were extracted, and various amounts (0.6, 0.8, 1.0, and 1.2 g) were solubilized using 68 % ZnCl2 and crosslinked with salt (CaCl2) amounts 0.1, 0.2, 0.3 and 0.4 g and prepared biodegradable films. The films were characterized for their color, thickness, moisture content, tensile strength, elongation at break, water vapor permeability, transmittance of electromagnetic radiation, biodegradability, and antioxidant properties. The results reveal that the films possess the highest tensile strength of 26.8 MPa. The tensile strengths are positively correlated to salt and SCG extract amounts. The percentage of elongation decreased with an increase in the calcium ions but increased with SCG residue increment. The films biodegraded in the soil, and most lost >80 % of their initial weight in 45 and 100 days, respectively, at 30 % and 12 % soil moisture. Biodegradability and water vapor permeability decreased with an increase in salt content. Films also showed antioxidant properties and blocked UV and IR radiation significantly. Overall, this research involving green and recyclable chemicals in preparation of SCG residue fibers is a promising, economical, and sustainable route to produce strong biodegradable films to replace petrochemical plastics and thus is an attractive contribution to the circular bioeconomy.
Collapse
Affiliation(s)
- Sajal Bhattarai
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA; Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
14
|
Batista MJPA, Marques MBF, Franca AS, Oliveira LS. Development of Films from Spent Coffee Grounds' Polysaccharides Crosslinked with Calcium Ions and 1,4-Phenylenediboronic Acid: A Comparative Analysis of Film Properties and Biodegradability. Foods 2023; 12:2520. [PMID: 37444258 DOI: 10.3390/foods12132520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Most polymeric materials are synthetic and derived from petroleum, hence they accumulate in landfills or the ocean, and recent studies have focused on alternatives to replace them with biodegradable materials from renewable sources. Biodegradable wastes from food and agroindustry, such as spent coffee grounds (SCGs), are annually discarded on a large scale and are rich in organic compounds, such as polysaccharides, that could be used as precursors to produce films. Around 6.5 million tons of SCGs are discarded every year, generating an environmental problem around the world. Therefore, it was the aim of this work to develop films from the SCGs polysaccharide fraction, which is comprised of cellulose, galactomannans and arabinogalactans. Two types of crosslinking were performed: the first forming coordination bonds of calcium ions with polysaccharides; and the second through covalent bonds with 1,4-phenylenediboronic acid (PDBA). The films with Ca2+ ions exhibited a greater barrier to water vapor with a reduction of 44% of water permeability vapor and 26% greater tensile strength than the control film (without crosslinkers). Films crosslinked with PDBA presented 55-81% higher moisture contents, 85-125% greater permeability to water vapor and 67-150% larger elongations at break than the films with Ca2+ ions. Film biodegradability was demonstrated to be affected by the crosslinking density, with the higher the crosslinking density, the longer the time for the film to fully biodegrade. The results are promising and suggest that future research should focus on enhancing the properties of these films to expand the range of possible applications.
Collapse
Affiliation(s)
- Michelle J P A Batista
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - M Betânia F Marques
- DQ, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana S Franca
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leandro S Oliveira
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
15
|
Hernández-Varela JD, Medina DI. Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging. Polymers (Basel) 2023; 15:2823. [PMID: 37447469 DOI: 10.3390/polym15132823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
One of the main limitations in the creation of bioplastics is their large-scale development, referred to as the industrial-scale processing of plastics. For this reason, bioplastic engineering emerges as one of the main objectives of researchers, who are attempting to create not only more environmentally friendly but also sustainable, low-cost, and less polluting materials. This review presents the advances in the development of biodegradable and compostable films/containers using eco-friendly components of by-products of the coffee industry, such as coffee flour (CF), coffee mucilage (CM), coffee husks (CH), coffee silverskin (CS), and spent coffee grounds (SCGs), and a brief review of the common industrial processing techniques for the production of food packaging, including extrusion, compression molding, injection molding, and laboratory-scale techniques such as solvent casting. Finally, this review presents various advances in the area that can be scalable or applicable to different products using by-products generated from the coffee industry, taking into account the limitations and drawbacks of using a biomaterial.
Collapse
Affiliation(s)
- Josué D Hernández-Varela
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Dora I Medina
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
16
|
Sniegoňová P, Szotkowski M, Holub J, Sikorová P, Márová I. The Effect of Oil-Rich Food Waste Substrates, Used as an Alternative Carbon Source, on the Cultivation of Microalgae-A Pilot Study. Microorganisms 2023; 11:1621. [PMID: 37512794 PMCID: PMC10383527 DOI: 10.3390/microorganisms11071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Microalgae are mostly phototrophic microorganisms present worldwide, showcasing great adaptability to their environment. They are known for producing essential metabolites such as carotenoids, chlorophylls, sterols, lipids, and many more. This study discusses the possibility of the mixotrophic abilities of microalgae in the presence of food waste oils. The utilization of food waste materials is becoming more popular as a research subject as its production grows every year, increasing the environmental burden. In this work, waste frying oil and coffee oil were tested for the first time as a nutrition source for microalgae cultivation. Waste frying oil is produced in large amounts all over the world and its simple purification is one of its greatest advantages as it only needs to be filtered from leftover food pieces. Coffee oil is extracted from waste spent coffee grounds as a by-product. The waste frying oil and coffee oil were added to the basic algal media as an alternative source of carbon. As a pilot study for further experimentation, the effect of oil in the medium, algal adaptability, and capability to survive were tested within these experiments. The growth and production characteristics of four algae and cyanobacteria strains were tested, of which the strain Desmodesmus armatus achieved exceptional results of chlorophyll (8.171 ± 0.475 mg/g) and ubiquinone (5.708 ± 0.138 mg/g) production. The strain Chlamydomonas reindhartii showed exceptional lipid accumulation in the range of 30-46% in most of the samples.
Collapse
Affiliation(s)
- Pavlína Sniegoňová
- Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Jiří Holub
- Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Pavlína Sikorová
- Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| |
Collapse
|
17
|
de Bomfim ASC, de Oliveira DM, Benini KCCDC, Cioffi MOH, Voorwald HJC, Rodrigue D. Effect of Spent Coffee Grounds on the Crystallinity and Viscoelastic Behavior of Polylactic Acid Composites. Polymers (Basel) 2023; 15:2719. [PMID: 37376365 DOI: 10.3390/polym15122719] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This work investigated the addition of spent coffee grounds (SCG) as a valuable resource to produce biocomposites based on polylactic acid (PLA). PLA has a positive biodegradation effect but generates poor proprieties, depending on its molecular structure. The PLA and SCG (0, 10, 20 and 30 wt.%) were mixed via twin-screw extrusion and molded by compression to determine the effect of composition on several properties, including mechanical (impact strength), physical (density and porosity), thermal (crystallinity and transition temperature) and rheological (melt and solid state). The PLA crystallinity was found to increase after processing and filler addition (34-70% in the 1st heating) due to a heterogeneous nucleation effect, leading to composites with lower glass transition temperature (1-3 °C) and higher stiffness (~15%). Moreover, the composites had lower density (1.29, 1.24 and 1.16 g/cm3) and toughness (30.2, 26.8 and 19.2 J/m) as the filler content increased, which is associated with the presence of rigid particles and residual extractives from SCG. In the melt state, polymeric chain mobility was enhanced, and composites with a higher filler content became less viscous. Overall, the composite with 20 wt.% SCG provided the most balanced properties being similar to or better than neat PLA but at a lower cost. This composite could be applied not only to replace conventional PLA products, such as packaging and 3D printing, but also to other applications requiring lower density and higher stiffness.
Collapse
Affiliation(s)
- Anne Shayene Campos de Bomfim
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, SP, Brazil
| | - Daniel Magalhães de Oliveira
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, SP, Brazil
| | - Kelly Cristina Coelho de Carvalho Benini
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, SP, Brazil
| | - Maria Odila Hilário Cioffi
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, SP, Brazil
| | - Herman Jacobus Cornelis Voorwald
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, SP, Brazil
| | - Denis Rodrigue
- Center for Research on Advanced Materials (CERMA), Department of Chemical Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
18
|
Zdanowicz M, Rokosa M, Pieczykolan M, Antosik AK, Chudecka J, Mikiciuk M. Study on Physicochemical Properties of Biocomposite Films with Spent Coffee Grounds as a Filler and Their Influence on Physiological State of Growing Plants. Int J Mol Sci 2023; 24:ijms24097864. [PMID: 37175572 PMCID: PMC10178467 DOI: 10.3390/ijms24097864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of the study was to plasticize corn starch with two selected urea (U)-rich plasticizers: choline chloride (CC):U or betaine (B):U eutectic mixtures at a molar ratio of 1:5 with a presence of spent coffee grounds as a filler. The biomaterials were prepared via a solventless one-step extrusion method and then extrudates were thermoformed using compression molding into sheets. The materials were characterized using mechanical and sorption tests, TGA, DMTA and FTIR. Additionally, a study on the biodegradation and remaining nitrogen content in soil was conducted. For the first time, an influence on physiological state of growing plants of the materials presence in soil was investigated. The addition of the coffee filler slightly increased the mechanical properties and decreased the swelling degree of the materials. The DMTA results indicated that biocomposites were easily thermoformable and the high filler addition (20 pph per polymer matrix) did not affect the processability. According to the biodegradation test results, the materials disappeared in soil within ca. 70 days. The results from this study on the physiological state of growing plants revealed that the materials, especially plasticized with CCU, did not exhibit any toxic effect on the yellow dwarf bean. The percentage of total nitrogen in the soil substrate in comparison with the control increased indicating an effective release of nitrogen from the TPS materials into the substrate.
Collapse
Affiliation(s)
- Magdalena Zdanowicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego St. 35, 71-270 Szczecin, Poland
| | - Marta Rokosa
- Laboratory of Plant Physiology and Entomology, Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego St. 17, 70-953 Szczecin, Poland
| | - Magdalena Pieczykolan
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego St. 35, 71-270 Szczecin, Poland
| | - Adrian Krzysztof Antosik
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego St. 35, 71-270 Szczecin, Poland
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland
| | - Justyna Chudecka
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego St. 17, 71-434 Szczecin, Poland
| | - Małgorzata Mikiciuk
- Laboratory of Plant Physiology and Entomology, Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego St. 17, 70-953 Szczecin, Poland
| |
Collapse
|
19
|
Jin Ong P, Leow Y, Yun Debbie Soo X, Hui Chua M, Ni X, Suwardi A, Kiang Ivan Tan C, Zheng R, Wei F, Xu J, Jun Loh X, Kai D, Zhu Q. Valorization of Spent coffee Grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:339-347. [PMID: 36603448 DOI: 10.1016/j.wasman.2022.12.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Spent coffee grounds (SCGs) are waste residues arising from the process of coffee brewing and are usually sent to landfills, causing environmental concerns. SCGs contain a considerable amount of fatty acids and is therefore a promising green alternative bio-based phase change material (PCMs) compared to conventional organic and inorganic PCMs. In this study, the extraction of coffee oil from SCGs was conducted using three different organic solvents-ethanol, acetone, and hexane. The chemical composition, chemical, and thermophysical properties of these coffee oil extracts were studied to evaluate their feasibility as a bio-based PCM. Gas chromatography-mass spectroscopy (GC-MS) analysis indicated that coffee oil contains about 60-80 % of fatty acids while the phase transition temperature of the coffee oil extracts is approximately 4.5 ± 0.72 °C, with latent heat values of 51.15 ± 1.46 J/g as determined by differential scanning calorimetry (DSC). Fourier Transform Infrared Spectroscopy (FTIR) and DSC results of coffee oil extracts after thermal cycling revealed good thermal and chemical stability. An application study to evaluate coffee oil extract as a potential cold therapy modality showed that it can maintain temperatures below normal body temperature for up to 46 min. In conclusion, this work exemplifies the potential of SCGs as a promising green and sustainable resource for bio-based PCMs for low-temperature thermal energy storage applications such as cold-chain transportation and cold therapy.
Collapse
Affiliation(s)
- Pin Jin Ong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Ming Hui Chua
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Xiping Ni
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Rongyan Zheng
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Fengxia Wei
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island 627833, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3 117543, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island 627833, Singapore; Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA 117575, Singapore.
| | - Dan Kai
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Qiang Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link 637371, Singapore.
| |
Collapse
|
20
|
Titiri E, Filippi K, Giannakis N, Vlysidis A, Koutinas A, Stylianou E. Optimisation of alkaline pretreatment of spent coffee grounds for microbial oil production by Cryptococcus curvatus. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Magengelele M, Malgas S, Pletschke BI. Bioconversion of spent coffee grounds to prebiotic mannooligosaccharides - an example of biocatalysis in biorefinery. RSC Adv 2023; 13:3773-3780. [PMID: 36756573 PMCID: PMC9890647 DOI: 10.1039/d2ra07605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Spent coffee ground (SCG), an agro-industrial waste, have a high content of polysaccharides such as mannan, making it ideal for utilisation for the production of nutraceutical oligosaccharides. Recently, there has been growing interest in the production of mannooligosaccharides (MOS) for health promotion in humans and animals. MOS are reported to exhibit various bioactive properties, including prebiotic and antioxidant activity. In this study, SCG was Vivinal pretreated using NaOH, characterized and hydrolysed using a Bacillus sp. derived endo-β-1,4-mannanase, Man26A, for MOS production. Structural analyses using Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were conducted to assess the efficacy of the pretreatment. Lignin removal by the pretreatment from SCG was clearly shown by TGA. FT-IR, on the other hand, showed the presence of α-linked d-galactopyranoside (812 cm-1) and β-linked d-mannopyranoside residues (817 cm-1) in both SCG samples, signifying the presence of mannan. Hydrolysis of pretreated SCG by Man26A produced mannobiose and mannotriose as the main MOS products. The effect of simulated gastric conditions on the MOS was investigated and showed this product to be suitable for oral administration. Finally, the prebiotic effect of the MOS on the growth of selected beneficial bacteria was investigated in vitro; showing that it enhanced Lactobacillus bulgaricus, Bacillus subtilis and Streptococcus thermophilus growth. These findings suggest that SCG is a viable source for the production of MOS which can be orally administered as prebiotics for effecting luxuriant growth of probiotic bacteria in the host's digestive tract, leading to a good health status.
Collapse
Affiliation(s)
- Mihle Magengelele
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University Makhanda (Grahamstown) 6140 Eastern Cape South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of PretoriaHatfield 0002GautengSouth Africa
| | - Brett I. Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes UniversityMakhanda (Grahamstown) 6140Eastern CapeSouth Africa
| |
Collapse
|
22
|
Arancibia-Díaz A, Astudillo-Castro C, Altamirano C, Soto-Maldonado C, Vergara-Castro M, Córdova A, Zúñiga-Hansen ME. Development of solid-state fermentation process of spent coffee grounds for the differentiated obtaining of chlorogenic, quinic, and caffeic acids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:420-427. [PMID: 36373791 DOI: 10.1002/jsfa.12156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Spent coffee grounds (SCGs) are a good source of chlorogenic acid (CGA), which can be hydrolyzed to quinic acid (QA) and caffeic acid (CA). These molecules have antioxidant and neuroprotective capacities, benefiting human health. The hydrolysis of CGA can be done by biotechnological processes, such as solid-state fermentation (SSF). This work evaluated the use of SSF with Aspergillus sp. for the joint release of the three molecules from SCGs. RESULTS Hydroalcoholic extraction of the total phenolic compounds (TPCs) from SCGs was optimized, obtaining 28.9 ± 1.97 g gallic acid equivalent (GAE) kg-1 SCGs using 0.67 L ethanol per 1 L, a 1:9 solid/liquid ratio, and a 63 min extraction time. Subsequently, SSF was performed for 30 days, achieving the maximum yields for CGA, QA, and TPCs on the 16th day: 7.12 ± 0.01 g kg-1 , 4.68 ± 0.11 g kg-1 , and 54.96 ± 0.49 g GAE kg-1 respectively. CA reached its maximum value on the 23rd day, at 4.94 ± 0.04 g kg-1 . The maximum antioxidant capacity was 635.7 mmol Trolox equivalents kg-1 on the 14th day. Compared with unfermented SCGs extracts, TPCs and CGA increase their maximum values 2.3-fold, 18.6-fold for CA, 14.2 for QA, and 6.4-fold for antioxidant capacity. Additionally, different extracts' profiles were obtained throughout the SSF process, allowing us to adjust the type of enriched extract to be produced based on the SSF time. CONCLUSION SSF represents an alternative to produce extracts with different compositions and, consequently, different antioxidant capacities, which is a potentially attractive fermentation process for different applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alejandra Arancibia-Díaz
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carolina Astudillo-Castro
- School of Food Engineering, Faculty of Agricultural and Food Sciences, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| | - Claudia Altamirano
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| | | | - Mauricio Vergara-Castro
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Córdova
- School of Food Engineering, Faculty of Agricultural and Food Sciences, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| | - María Elvira Zúñiga-Hansen
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| |
Collapse
|
23
|
Bing RG, Carey MJ, Laemthong T, Willard DJ, Crosby JR, Sulis DB, Wang JP, Adams MWW, Kelly RM. Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth. BIORESOURCE TECHNOLOGY 2023; 367:128275. [PMID: 36347479 PMCID: PMC10561188 DOI: 10.1016/j.biortech.2022.128275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Naturally occurring, microbial contaminants were found in plant biomasses from common bioenergy crops and agricultural wastes. Unexpectedly, indigenous thermophilic microbes were abundant, raising the question of whether they impact thermophilic consolidated bioprocessing fermentations that convert biomass directly into useful bioproducts. Candidate microbial platforms for biomass conversion, Acetivibrio thermocellus (basionym Clostridium thermocellum; Topt 60 °C) and Caldicellulosiruptor bescii (Topt 78 °C), each degraded a wide variety of plant biomasses, but only A. thermocellus was significantly affected by the presence of indigenous microbial populations harbored by the biomass. Indigenous microbial growth was eliminated at ≥75 °C, conditions where C. bescii thrives, but where A. thermocellus cannot survive. Therefore, 75 °C is the thermophilic threshold to avoid sterilizing pre-treatments on the biomass that prevents native microbes from competing with engineered microbes and forming undesirable by-products. Thermophiles that naturally grow at and above 75 °C offer specific advantages as platform microorganisms for biomass conversion into fuels and chemicals.
Collapse
Affiliation(s)
- Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Morgan J Carey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Daniel B Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States
| | - Jack P Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
24
|
Bartczak P, Stachowiak J, Szmitko M, Grząbka-Zasadzińska A, Borysiak S. Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust. MATERIALS (BASEL, SWITZERLAND) 2022; 16:278. [PMID: 36614616 PMCID: PMC9822441 DOI: 10.3390/ma16010278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Currently, the fundamental activity that will allow for the development of an economy with closed circulation is the management of food waste and production waste for the preparation of biocomposites. The use of waste materials of natural origin allows for the creation of innovative composites with improved physicochemical and functional properties. The present investigation concerns the use of coffee grounds (2.5-20 wt.%) and oak sawdust (2.5-20 wt.%) as effective fillers of rigid polyurethane foam. Innovative composite materials, previously indebted in the literature, were subjected to the necessary analyses to determine the application abilities: processing times, free density, water absorption, dimensional stability, mechanical properties (compressive strength), thermal conductivity, morphology, and flame resistance. The results with respect to the mechanical tests turned out to be the key. Increasing the number of coffee additives has a positive effect on the compressive strength. The addition of this filler in the range of 5-15 wt.% increased the compressive strength of the composites, 136-139 kPa, compared to the reference sample, 127 kPa. The key parameter analysed was thermal conductivity. The results obtained were in range of the requirements, that is, 0.022-0.024 W/m·K for all used amounts of fillers 2.5-20 wt.%. This is extremely important since these materials are used for insulation purposes. The results of the burning-behaviour test have confirmed that the addition of renewable materials does not negatively affect the fire resistance of the received foams; the results were obtained analogously to those obtained from the reference sample without the addition of fillers. The height of the flame did not exceed 17 cm, while the flame decay time was 17 s for the reference sample and the composite with coffee grounds and 18 s for the composite with oak sawdust. In this work, the practical application of bioorganic waste as an innovative filler for the insulation of flooded polyurethane foam is described for the first time. The introduction of fillers of natural origin into the polymer matrix is a promising method to improve the physicochemical and functional properties of rigid polyurethane foams. Composites modified with coffee grounds and sawdust are interesting from a technological, ecological, and economic point of view, significantly increasing the range of use of foam in various industries.
Collapse
|
25
|
Marques M, Gonçalves LFFF, Martins CI, Vale M, Duarte FM. Effect of polymer type on the properties of polypropylene composites with high loads of spent coffee grounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:232-244. [PMID: 36274433 DOI: 10.1016/j.wasman.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/29/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The main focus of this work is to study the processability and characteristics of highly loaded spent coffee grounds (SCG) thermoplastic polymer composites, for sustainable applications. SCG powder was characterized in terms of size distribution, moisture, morphology and thermal stability. Polymer/SCG composites were prepared by extrusion compounding. Polypropylene (PP) homopolymer and copolymer were used as the polymeric matrix. Upon compounding by extrusion composites were injection moulded and characterized for its physical, morphological and mechanical properties in order to determine the effect of polymer type and filler content. Morphological characteristics of the composites were investigated using optical microscopy and SEM analysis. The results for PP homopolymer showed little deterioration of the mechanical properties when using the highest SCG load. In the case of PP homopolymer, the greatest variations occurred when increasing from 0 to 20 %. With higher SCG loads, the measured properties changed little. PP copolymer showed a more continuous pattern of properties decay with increasing SCG load, especially for tensile strength, elongation at break and impact strength. Regarding PP copolymer, with maximum SCG load, the tensile strength decreased from 26.8 GPa (neat PP) to 10.8 GPa, the elongation at break showed a drop of more than 95 %, while the Young's modulus increased from 800 MPa to 1160 MPa. This research work has shown that SCG can be used as fillers in the preparation of environmentally friendly composites with SCG load up to 60 wt% thus contributing to the reuse of waste generated by the coffee industry.
Collapse
Affiliation(s)
- Mariana Marques
- IPC-Institute of Polymer and Composites, University of Minho, 4804-533 Guimarães, Portugal
| | - Luis F F F Gonçalves
- IPC-Institute of Polymer and Composites, University of Minho, 4804-533 Guimarães, Portugal.
| | - Carla I Martins
- IPC-Institute of Polymer and Composites, University of Minho, 4804-533 Guimarães, Portugal
| | - Mário Vale
- IPC-Institute of Polymer and Composites, University of Minho, 4804-533 Guimarães, Portugal
| | - Fernando M Duarte
- IPC-Institute of Polymer and Composites, University of Minho, 4804-533 Guimarães, Portugal
| |
Collapse
|
26
|
Andrade C, Perestrelo R, Câmara JS. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022; 27:molecules27217504. [PMID: 36364330 PMCID: PMC9654447 DOI: 10.3390/molecules27217504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Coffee is one of the world’s most popular beverages, and its consumption generates copious amounts of waste. The most relevant by-product of the coffee industry is the spent coffee grounds, with 6 million tons being produced worldwide per year. Although generally treated as waste, spent coffee grounds are a rich source of several bioactive compounds with applications in diverse industrial fields. The present work aimed at the analysis of spent coffee grounds from different geographical origins (Guatemala, Colombia, Brazil, Timor, and Ethiopia) for the identification of bioactive compounds with industrial interest. For this purpose, the identification and quantification of the bioactive compounds responsible for the antioxidant activity attributed to the spent coffee grounds were attempted using miniaturized solid-phase extraction (µ-SPEed), combined with ultrahigh-performance liquid chromatography with photodiode array detection (UHPLC-PDA). After validation of the µ-SPEed/UHPLC-PDA method, this allowed us to conclude that caffeine and 5-caffeoylquinic acid (5-CQA) are the most abundant bioactive compounds in all samples studied. The total phenolic content (TPC) and antioxidant activity are highest in Brazilian samples. The results obtained show that spent coffee grounds are a rich source of bioactive compounds, supporting its bioprospection based on the circular economy concept closing the loop of the coffee value chain, toward the valorization of coffee by-products.
Collapse
Affiliation(s)
- Carolina Andrade
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence: ; Tel.: +351-291-705-112
| |
Collapse
|
27
|
Raju G, Shaban MM, Farag RK, Karunakaran T, Khalid M. Structure, morphology, thermal, and sorption characteristics of epoxidized natural rubber conjugated spent coffee via
one‐pot
synthesis. J Appl Polym Sci 2022. [DOI: 10.1002/app.53286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gunasunderi Raju
- School of Distance Education Universiti Sains Malaysia Penang Malaysia
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology Sunway University Petaling Jaya Selangor Malaysia
| | - Mahmoud M. Shaban
- Department of Petroleum Applications Egyptian Petroleum Research Institute Cairo Egypt
| | - Reem K. Farag
- Department of Petroleum Applications Egyptian Petroleum Research Institute Cairo Egypt
| | | | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology Sunway University Petaling Jaya Selangor Malaysia
| |
Collapse
|
28
|
Jeníček L, Tunklová B, Malaťák J, Neškudla M, Velebil J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6722. [PMID: 36234063 PMCID: PMC9570971 DOI: 10.3390/ma15196722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Spent coffee ground is a massively produced coffee industry waste product whose reusage is beneficial. Proximate and ultimate and stochiometric analysis of torrefied spent coffee ground were performed and results were analyzed and compared with other research and materials. Spent coffee ground is a material with high content of carbon (above 50%) and therefore high calorific value (above 20 MJ·kg-1). Torrefaction improves the properties of the material, raising its calorific value up to 32 MJ·kg-1. Next, the phytotoxicity of the aqueous extract was tested using the cress test. The non-torrefied sample and the sample treated at 250 °C were the most toxic. The sample treated at 250 °C adversely affected the germination of the cress seeds due to residual caffeine, tannins and sulfur release. The sample treated at 350 °C performed best of all the tested samples. The sample treated at 350 °C can be applied to the soil as the germination index was higher than 50% and can be used as an alternative fuel with net calorific value comparable to fossil fuels.
Collapse
Affiliation(s)
- Lukáš Jeníček
- Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Barbora Tunklová
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Jan Malaťák
- Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Michal Neškudla
- Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Jan Velebil
- Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
29
|
Park SS, Woo SW, Lee JS, Yun YM, Lee DE. Evaluation of Recycled Spent Coffee Material Treated with Animal Glue, Starch, and Red Clay as Acid Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6622. [PMID: 36233963 PMCID: PMC9573250 DOI: 10.3390/ma15196622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Annual coffee consumption has increased to 10 million tons. Of the coffee consumed, 65% is discarded as spent coffee grounds (SCG). However, most SCG are buried in the ground as organic waste. The more coffee consumption increases, the more land is used for disposing of spent coffee. SCG recycling has gotten considerable attention as a solution involved in these issues. The construction community has studied means and methods to recycle SCG as construction materials, such as bricks, subgrade fillers, thermal insulators, etc. This paper presents a new method, which recycles SCG as a construction material, maximally using its acidity. The SCG were hardened with natural binders (i.e., animal glue (AG) and starch (S)) and red clay (RC). The SCG mixtures were pressed with 2 MPa in a cylindrical mold and cured for 7 days. Then, the strength, durability, and pH tests were measured. The AG- and RC-treated SCG sample, which outputs 1933 kPa of strength and a 4.9 pH value, is identified as the optimal sampling method among the acid materials produced in this study. The optimal sample decreases the pH to approximately 7 of water where 68% weight of Ordinary Portland cement was soaked in.
Collapse
Affiliation(s)
- Sung-Sik Park
- Department of Civil Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
| | - Seung-Wook Woo
- Department of Civil Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
| | - Jung-Shin Lee
- Intelligent Construction Automation Center, Kyungpook National University, Global-plaza 905, 80 Daehakro, Bukgu, Daegu 41566, Korea
| | - Young-Mook Yun
- Department of Civil Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
| | - Dong-Eun Lee
- School of Architecture, Civil, Environment and Energy Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
| |
Collapse
|
30
|
Pereira J, Cachinho A, de Melo MMR, Silva CM, Lemos PC, Xavier AMRB, Serafim LS. Enzymatic Potential of Filamentous Fungi as a Biological Pretreatment for Acidogenic Fermentation of Coffee Waste. Biomolecules 2022; 12:biom12091284. [PMID: 36139123 PMCID: PMC9496503 DOI: 10.3390/biom12091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
Spent coffee grounds (SCGs) are a promising substrate that can be valorized by biotechnological processes, such as for short-chain organic acid (SCOA) production, but their complex structure implies the application of a pretreatment step to increase their biodegradability. Physicochemical pretreatments are widely studied but have multiple drawbacks. An alternative is the application of biological pretreatments that include using fungi Trametes versicolor and Paecilomyces variotii that naturally can degrade complex substrates such as SCGs. This study intended to compare acidic and basic hydrolysis and supercritical CO2 extraction with the application of these fungi. The highest concentration of SCOAs, 2.52 gCOD/L, was achieved after the acidification of SCGs pretreated with acid hydrolysis, but a very similar result, 2.44 gCOD/L, was obtained after submerged fermentation of SCGs by T. versicolor. This pretreatment also resulted in the best acidification degree, 48%, a very promising result compared to the 13% obtained with the control, untreated SCGs, highlighting the potential of biological pretreatments.
Collapse
Affiliation(s)
- Joana Pereira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Cachinho
- Department of Chemistry, CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Marcelo M. R. de Melo
- Department of Chemistry, CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos M. Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo C. Lemos
- LAQV-REQUIMTE, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana M. R. B. Xavier
- Department of Chemistry, CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luísa S. Serafim
- Department of Chemistry, CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
31
|
Xiao Z, Hou X, Hwang S, Li H. The biocomposites properties of compounded poly(lactic acid) with untreated and treated spent coffee grounds. J Appl Polym Sci 2022. [DOI: 10.1002/app.53092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi‐Hua Xiao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Xu‐Qin Hou
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Shyh‐Shin Hwang
- Department of Mechanical Engineering Chien Hsin University of Science and Technology Taoyuan Taiwan
| | - Hai‐Mei Li
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
32
|
Optimized cell growth and poly(3-hydroxybutyrate) synthesis from saponified spent coffee grounds oil. Appl Microbiol Biotechnol 2022; 106:6033-6045. [PMID: 36028634 PMCID: PMC9468064 DOI: 10.1007/s00253-022-12093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/04/2022]
Abstract
Abstract
Spent coffee ground (SCG) oil is an ideal substrate for the biosynthesis of polyhydroxyalkanoates (PHAs) by Cupriavidus necator. The immiscibility of lipids with water limits their bioavailability, but this can be resolved by saponifying the oil with potassium hydroxide to form water-soluble fatty acid potassium salts and glycerol. Total saponification was achieved with 0.5 mol/L of KOH at 50 °C for 90 min. The relationship between the initial carbon substrate concentration (C0) and the specific growth rate (µ) of C. necator DSM 545 was evaluated in shake flask cultivations; crude and saponified SCG oils were supplied at matching initial carbon concentrations (C0 = 2.9–23.0 g/L). The Han-Levenspiel model provided the closest fit to the experimental data and accurately described complete growth inhibition at 32.9 g/L (C0 = 19.1 g/L) saponified SCG oil. Peak µ-values of 0.139 h−1 and 0.145 h−1 were obtained with 11.99 g/L crude and 17.40 g/L saponified SCG oil, respectively. Further improvement to biomass production was achieved by mixing the crude and saponified substrates together in a carbon ratio of 75:25% (w/w), respectively. In bioreactors, C. necator initially grew faster on the mixed substrates (µ = 0.35 h−1) than on the crude SCG oil (µ = 0.23 h−1). After harvesting, cells grown on crude SCG oil obtained a total biomass concentration of 7.8 g/L and contained 77.8% (w/w) PHA, whereas cells grown on the mixed substrates produced 8.5 g/L of total biomass and accumulated 84.4% (w/w) of PHA. Key points • The bioavailability of plant oil substrates can be improved via saponification. • Cell growth and inhibition were accurately described by the Han-Levenpsiel model. • Mixing crude and saponified oils enable variation of free fatty acid content.
Collapse
|
33
|
Contreras E, Flores R, Gutiérrez A, Cerro D, Sepúlveda LA. Agro-industrial wastes revalorization as feedstock: production of lignin-modifying enzymes extracts by solid-state fermentation using white rot fungi. Prep Biochem Biotechnol 2022; 53:488-499. [PMID: 35980820 DOI: 10.1080/10826068.2022.2109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The purpose of the study was to evaluate the production of lignin-modifying enzyme extracts and delignified biomass from agro-industrial wastes using white rot fungi (Inonotus sp. Sp2, Stereum hirsutum Ru-104, Bjerkandera sp. BOS55, Pleurotus eryngii IJFM 169 and Phanerochaete chrysosporium BKM-F-1767). These were screened based on their adaptability and colonization ability on different substrates, as well as by the Laccase, Manganese peroxidase, and Lignin peroxidase enzymatic production. Native strains (Inonotus sp. Sp2 and S. hirsutum Ru-104) showed the highest growth kinetics under the solid-substrate fermentation conditions and the growth rate parameters of the kinetic logistic model for the different substrates were between 0.39-0.81 (1/d) and 0.42-0.83 (1/d), respectively; the determination coefficients were ≥0.99. Inonotus sp. Sp2 was subsequently cultured in static flasks to produce crude enzyme extracts, obtaining manganese peroxidase activity levels of 18.5 and 31.3 (U/g) when growing in corn cob husk and spent tea leaves, respectively. Besides, it was to establish that the best conditions for lignin-modifying enzymes production using corn cob husk are 70% of initial moisture and 2.12 mm of particle size; reaching after 30 incubation days a manganese peroxidase activity of 21 ± 6 (U/g) under these conditions; enzyme that showed a suitable thermostability.
Collapse
Affiliation(s)
- Elsa Contreras
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Flores
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Aníbal Gutiérrez
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Cerro
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Luisa A Sepúlveda
- Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
34
|
Pereira J, de Melo MMR, Silva CM, Lemos PC, Serafim LS. Impact of a Pretreatment Step on the Acidogenic Fermentation of Spent Coffee Grounds. Bioengineering (Basel) 2022; 9:362. [PMID: 36004887 PMCID: PMC9404928 DOI: 10.3390/bioengineering9080362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/26/2022] Open
Abstract
Acidogenic fermentation (AF) is often applied to wastes to produce short-chain organic acids (SCOAs)-molecules with applications in many industries. Spent coffee grounds (SCGs) are a residue from the coffee industry that is rich in carbohydrates, having the potential to be valorized by this process. However, given the recalcitrant nature of this waste, the addition of a pretreatment step can significantly improve AF. In this work, several pretreatment strategies were applied to SCGs (acidic hydrolysis, basic hydrolysis, hydrothermal, microwave, ultrasounds, and supercritical CO2 extraction), evaluated in terms of sugar and inhibitors release, and used in AF. Despite the low yields of sugar extracted, almost all pretreatments increased SCOAs production. Milder extraction conditions also resulted in lower concentrations of inhibitory compounds and, consequently, in a higher concentration of SCOAs. The best results were obtained with acidic hydrolysis of 5%, leading to a production of 1.33 gSCOAs/L, an increase of 185% compared with untreated SCGs.
Collapse
Affiliation(s)
- Joana Pereira
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Marcelo M. R. de Melo
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Carlos M. Silva
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Paulo C. Lemos
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Luísa S. Serafim
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| |
Collapse
|
35
|
Green Synthesis of Silver Nanoparticles Using Spent Coffee Ground Extracts: Process Modelling and Optimization. NANOMATERIALS 2022; 12:nano12152597. [PMID: 35957027 PMCID: PMC9370399 DOI: 10.3390/nano12152597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Large amounts of spent coffee grounds (SCGs) are produced annually worldwide. SCGs contain high levels of phenolics and other bioactive compounds that make them a potential source of reducing and stabilizing agents for the synthesis of metal nanoparticles. This study investigates the use of SCG extracts as a green strategy to produce silver nanoparticles (AgNPs). SCG extracts were obtained using aqueous ethanol as the solvent and then contacted with a silver nitrate solution under the selected conditions. A central composite design coupled with response surface methodology was used to evaluate the effects of solvent composition (C = 30–70% v/v), silver-to-phenolic ratio (R = 3–7 mol/mol), temperature (T = 25–55 °C) and pH (10–12) on the production of AgNPs. Characterization of AgNPs by DLS, TEM and XRD techniques showed that they were highly crystalline with a narrow size distribution. Under optimal reaction conditions, AgNPs with an average size of about 10 nm and a zeta potential of −30.5 to −20.7 mV were obtained. Overall, the results of this study indicate that SCGs are a promising material for the green synthesis of small-sized and stable AgNPs.
Collapse
|
36
|
Franca AS, Oliveira LS. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022; 11:foods11142064. [PMID: 35885305 PMCID: PMC9316316 DOI: 10.3390/foods11142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
Collapse
|
37
|
Tapangnoi P, Sae-Oui P, Naebpetch W, Siriwong C. Preparation of purified spent coffee ground and its reinforcement in natural rubber composite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
38
|
Bijla L, Aissa R, Laknifli A, Bouyahya A, Harhar H, Gharby S. Spent coffee grounds: A sustainable approach toward novel perspectives of valorization. J Food Biochem 2022; 46:e14190. [PMID: 35553079 DOI: 10.1111/jfbc.14190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
Coffee is one of the most popular and preferred drinks in the world, being consumed for its refreshing and energizing properties. As a result, the consumption of coffee generates millions of tons of waste, in particular, spent coffee grounds (SCG). On the contrary, food waste recovery is an incredibly sustainable and convenient solution to the growing need for materials, fuels, and chemicals. SCG has been developed as a precious resource of several high value-added products (oil, proteins, minerals, fatty acids, sterols….). Thus, a transformative pathway to a circular economy that involves the valorization of coffee wastes and by-products is currently attracting the attention of researchers worldwide. The potential growth of scientific papers and publications promotes a comprehensive review to determine the research hotspots, knowledge structure, and to consider future avenues and challenges. Therefore, in this paper, we conducted a systematic review based on 275 indexed papers on the composition and valorization of SCG as a prospective environmental source. PRACTICAL APPLICATIONS: SCG can be applied in agro-food industries.
Collapse
Affiliation(s)
- Laila Bijla
- Laboratory Biotechnology, Materials and Environment Team, LBME, Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Rabha Aissa
- Bioprocesses and Environment Team, LASIME, Ecole Supérieure de Technologie d'Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdellatif Laknifli
- Laboratory Biotechnology, Materials and Environment Team, LBME, Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Abdelhakim Bouyahya
- Laboratoire de Materiaux, Nanotechnologie et Environnement LMNE, Faculte des Sciences, Universite Mohammed V de rabat, Rabat, Morocco
| | - Hicham Harhar
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - Said Gharby
- Laboratory Biotechnology, Materials and Environment Team, LBME, Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Agadir, Morocco
| |
Collapse
|
39
|
Johnson K, Liu Y, Lu M. A Review of Recent Advances in Spent Coffee Grounds Upcycle Technologies and Practices. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.838605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coffee is the world’s second largest beverage only next to water. After coffee consumption, spent coffee grounds (SCGs) are usually thrown away and eventually end up in landfills. In recent years, technologies and policies are actively under development to change this century old practice, and develop SCGs into value added energy and materials. In this paper, technologies and practices are classified into two categories, those reuses SCGs entirely, and those breakdown SCGs and reuse by components. This article provided a brief review of various ways to reuse SCGs published after 2017, and provided more information on SCG quantity, SCG biochar development for pollutant removal and using SCG upcycle cases for education. SCG upcycle efforts align the best with the UN Sustainable Development Goals (SDG) #12 “ensure sustainable consumption and production patterns,” the resultant fuel products contribute to SDG #7 “affordable and clean energy,” and the resultant biochar products contribute to SDG #6, “clean water and sanitation.”
Collapse
|
40
|
da Silva Araújo C, Vimercati WC, Macedo LL, Pimenta CJ. Effect of solvent, method, time and temperature of extraction on the recovery of phenolic compounds and antioxidants from spent coffee grounds. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The spent coffee grounds (SCG) are one of the byproducts generated in large volume by the coffee industry. Thus, this study aimed to evaluate solvents and methods of extraction of bioactive compounds from SCG and optimize the process. The solvent and the extraction method had a significant effect on the extraction yield of the bioactive compounds. Through the extraction kinetics, it was verified that 90 min was a sufficient time for the recovery of phenolic compounds. In general, the pure solvents had a lower extraction yield than the ethanol/water mixture and the rise in temperature, along with an ethanol/water mixture, proved to be favorable to the extraction process. Under optimized conditions it was possible to obtain 9.15 (mg GAE/g SCGd.b), 0.58 (mg QE/g SCGd.b), 255.55 (g SCGd.b/g DPPH) and 0.042 (mM Fe(II)/g SCGd.b) for TPC, flavonoids, antioxidant capacity (DPPH) and antioxidant capacity (FRAP), respectively.
Collapse
Affiliation(s)
- Cintia da Silva Araújo
- Department of Food Science , Federal University of Lavras , 37200-900 , Lavras , Minas Gerais , Brazil
| | - Wallaf Costa Vimercati
- Department of Food Science , Federal University of Lavras , 37200-900 , Lavras , Minas Gerais , Brazil
| | - Leandro Levate Macedo
- Department of Food Science , Federal University of Lavras , 37200-900 , Lavras , Minas Gerais , Brazil
| | - Carlos José Pimenta
- Department of Food Science , Federal University of Lavras , 37200-900 , Lavras , Minas Gerais , Brazil
| |
Collapse
|
41
|
Oliveira Batista J, Car Cordeiro C, Klososki SJ, Mongruel Eleutério Dos Santos C, Leão GMC, Pimentel TC, Rosset M. Spent Coffee Grounds Improve the Nutritional Value and Technological Properties of Gluten-free Cookies. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2026266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | | | | | | | - Michele Rosset
- Campus Colombo, Federal Institute of Paraná, Colombo, Brazil
| |
Collapse
|
42
|
Chen XE, Mangindaan D, Chien HW. Green sustainable photothermal materials by spent coffee grounds. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods 2022; 11:foods11030409. [PMID: 35159559 PMCID: PMC8834226 DOI: 10.3390/foods11030409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
One of the major challenges in sustainable waste management in the agri-food industry following the “zero waste” model is the application of the circular economy strategy, including the development of innovative waste utilization techniques. The conversion of agri-food waste into carriers for the immobilization of enzymes is one such technique. Replacing chemical catalysts with immobilized enzymes (i.e., immobilized/heterogeneous biocatalysts) could help reduce the energy efficiency and environmental sustainability problems of existing chemically catalysed processes. On the other hand, the economics of the process strongly depend on the price of the immobilized enzyme. The conversion of agricultural and food wastes into low-cost enzyme carriers could lead to the development of immobilized enzymes with desirable operating characteristics and subsequently lower the price of immobilized enzymes for use in biocatalytic production. In this context, this review provides insight into the possibilities of reusing food industry wastes, namely, eggshells, coffee grounds, and brown onion skins, as carriers for lipase immobilization.
Collapse
|
44
|
de Bomfim ASC, de Oliveira DM, Voorwald HJC, Benini KCCDC, Dumont MJ, Rodrigue D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers (Basel) 2022; 14:437. [PMID: 35160428 PMCID: PMC8840223 DOI: 10.3390/polym14030437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Spent coffee grounds (SCG) are a current subject in many works since coffee is the second most consumed beverage worldwide; however, coffee generates a high amount of waste (SCG) and can cause environmental problems if not discarded properly. Therefore, several studies on SCG valorization have been published, highlighting its waste as a valuable resource for different applications, such as biofuel, energy, biopolymer precursors, and composite production. This review provides an overview of the works using SCG as biopolymer precursors and for polymer composite production. SCG are rich in carbohydrates, lipids, proteins, and minerals. In particular, carbohydrates (polysaccharides) can be extracted and fermented to synthesize lactic acid, succinic acid, or polyhydroxyalkanoate (PHA). On the other hand, it is possible to extract the coffee oil and to synthesize PHA from lipids. Moreover, SCG have been successfully used as a filler for composite production using different polymer matrices. The results show the reasonable mechanical, thermal, and rheological properties of SCG to support their applications, from food packaging to the automotive industry.
Collapse
Affiliation(s)
- Anne Shayene Campos de Bomfim
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Daniel Magalhães de Oliveira
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Herman Jacobus Cornelis Voorwald
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Kelly Cristina Coelho de Carvalho Benini
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Denis Rodrigue
- Department of Chemical Engineering and CERMA, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
45
|
Liu Y, Chua XY, Dong W, Lu Y, Liu SQ. Effects of sequential inoculation of Lachancea thermotolerans and Oenococcus oeni on chemical composition of spent coffee grounds hydrolysates. Curr Res Food Sci 2022; 5:1276-1286. [PMID: 36061409 PMCID: PMC9428858 DOI: 10.1016/j.crfs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Spent coffee grounds (SCG) disposal is an environmental problem. These residues from coffee brewing and instant coffee production have potential to produce novel alcoholic beverages. SCG valorization through sequential alcoholic and malolactic fermentation was investigated using a yeast, Lachancea thermotolerans Concerto and a lactic acid bacterium (LAB), Oenococcus oeni Lalvin 31 in this study. Our results showed that sequential inoculation prevented early death of yeast confronted when simultaneous inoculation was adopted, allowing for growth and persistence of both yeast and LAB till the end of fermentation. Adequate ethanol production (4.91 ± 0.13 %, v/v) with low residual sugar content was also attained. In addition, relatively lower levels of acetic, lactic, and succinic acids were produced by sequential inoculation than that of simultaneous inoculation. Furthermore, SCG hydrolysates fermented via sequential inoculation had the widest variety of volatiles (e.g. esters and ketones). Overall, our results indicated that sequential inoculation of L. thermotolerans and O. oeni in SCG hydrolysates might be a way to develop novel beverages with pleasant flavor profiles. L. thermotolerans and O. oeni were used in spent coffee grounds (SCG) hydrolysates fermentation. Sequential inoculation of O. oeni prevented early yeast cell death. Sequential inoculation produced desired content of ethanol. Sequential inoculation generated and/or retained the widest variety of volatiles.
Collapse
|
46
|
Hanc A, Hrebeckova T, Grasserova A, Cajthaml T. Conversion of spent coffee grounds into vermicompost. BIORESOURCE TECHNOLOGY 2021; 341:125925. [PMID: 34614558 DOI: 10.1016/j.biortech.2021.125925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The present study was focused on vermicomposting of spent coffee grounds (SCG) and its mixtures with straw pellets. The process was evaluated in terms of biological and physico-chemical properties. The greatest number and biomass of earthworms was found in the treatment with 25% vol. SCG + 75% vol. straw pellets. In this treatment, the upper youngest layer exhibited 1.6-fold and 4.5-fold greater earthworm number and biomass, respectively, than the bottom oldest layer. Earthworm weight decreased in direct proportion to the layer age. The oldest treatment layer was characterized by lesser contents of fungi and six hydrolytic enzymes, compared to the younger layers. Further, the oldest treatment layer had suitable agrochemical properties. Earthworms were able to substantially reduce the caffeine stimulant content, which is considered the most representative pharmaceutically active compound.
Collapse
Affiliation(s)
- Ales Hanc
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Czech Republic.
| | - Tereza Hrebeckova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Czech Republic
| | - Alena Grasserova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
47
|
New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Baratsas SG, Pistikopoulos EN, Avraamidou S. A systems engineering framework for the optimization of food supply chains under circular economy considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148726. [PMID: 34328124 DOI: 10.1016/j.scitotenv.2021.148726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The current linear "take-make-waste-extractive" model leads to the depletion of natural resources and environmental degradation. Circular Economy (CE) aims to address these impacts by building supply chains that are restorative, regenerative, and environmentally benign. This can be achieved through the re-utilization of products and materials, the extensive usage of renewable energy sources, and ultimately by closing any open material loops. Such a transition towards environmental, economic and social advancements requires analytical tools for quantitative evaluation of the alternative pathways. Here, we present a novel CE system engineering framework and decision-making tool for the modeling and optimization of food supply chains. First, the alternative pathways for the production of the desired product and the valorization of wastes and by-products are identified. Then, a Resource-Task-Network representation that captures all these pathways is utilized, based on which a mixed-integer linear programming model is developed. This approach allows the holistic modeling and optimization of the entire food supply chain, taking into account any of its special characteristics, potential constraints as well as different objectives. Considering that typically CE introduces multiple, often conflicting objectives, we deploy here a multi-objective optimization strategy for trade-off analysis. A representative case study for the supply chain of coffee is discussed, illustrating the steps and the applicability of the framework. Single and multi-objective optimization formulations under five different coffee-product demand scenarios are presented. The production of instant coffee as the only final product is shown to be the least energy and environmental efficient scenario. On the contrary, the production solely of whole beans sets a hypothetical upper bound on the optimal energy and environmental utilization. In both problems presented, the amount of energy generated is significant due to the utilization of waste generated for the production of excess energy.
Collapse
Affiliation(s)
- Stefanos G Baratsas
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, Jack E. Brown Chemical Engineering Building, 3122 TAMU, 100 Spence St., College Station, TX 77843, United States; Texas A&M Energy Institute, Texas A&M University, 1617 Research Pkwy, College Station, TX 77843, United States.
| | - Efstratios N Pistikopoulos
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, Jack E. Brown Chemical Engineering Building, 3122 TAMU, 100 Spence St., College Station, TX 77843, United States; Texas A&M Energy Institute, Texas A&M University, 1617 Research Pkwy, College Station, TX 77843, United States.
| | - Styliani Avraamidou
- Texas A&M Energy Institute, Texas A&M University, 1617 Research Pkwy, College Station, TX 77843, United States.
| |
Collapse
|
49
|
Gil A. Current insights into lignocellulose related waste valorization. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
50
|
Conventional and pressurized ethanolic extraction of oil from spent coffee grounds: Kinetics study and evaluation of lipid and defatted solid fractions. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|