1
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
2
|
Papait A, Perini G, Palmieri V, Cargnoni A, Vertua E, Pasotti A, Rosa E, De Spirito M, Silini AR, Papi M, Parolini O. Defining the immunological compatibility of graphene oxide-loaded PLGA scaffolds for biomedical applications. BIOMATERIALS ADVANCES 2024; 165:214024. [PMID: 39232353 DOI: 10.1016/j.bioadv.2024.214024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.
Collapse
Affiliation(s)
- Andrea Papait
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy.
| | - Giordano Perini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185 Rome, Italy
| | - Anna Cargnoni
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Anna Pasotti
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Enrico Rosa
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
3
|
Basler M, Schliehe C. In memory of Prof. Dr. Marcus Groettrup (1964-2022). Eur J Immunol 2024; 54:e2451341. [PMID: 39540575 DOI: 10.1002/eji.202451341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Michael Basler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Liu M, Lau CYJ, Cabello IT, Garssen J, Willemsen LEM, Hennink WE, van Nostrum CF. Live Cell Imaging by Förster Resonance Energy Transfer Fluorescence to Study Trafficking of PLGA Nanoparticles and the Release of a Loaded Peptide in Dendritic Cells. Pharmaceuticals (Basel) 2023; 16:818. [PMID: 37375766 DOI: 10.3390/ph16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Our previous study demonstrated that a selected β-lactoglobulin-derived peptide (BLG-Pep) loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles protected mice against cow's milk allergy development. However, the mechanism(s) responsible for the interaction of the peptide-loaded PLGA nanoparticles with dendritic cells (DCs) and their intracellular fate was/were elusive. Förster resonance energy transfer (FRET), a distance-dependent non-radioactive energy transfer process mediated from a donor to an acceptor fluorochrome, was used to investigate these processes. The ratio of the donor (Cyanine-3)-conjugated peptide and acceptor (Cyanine-5) labeled PLGA nanocarrier was fine-tuned for optimal (87%) FRET efficiency. The colloidal stability and FRET emission of prepared NPs were maintained upon 144 h incubation in PBS buffer and 6 h incubation in biorelevant simulated gastric fluid at 37 °C. A total of 73% of Pep-Cy3 NP was internalized by DCs as quantified using flow cytometry and confirmed using confocal fluorescence microscopy. By real-time monitoring of the change in the FRET signal of the internalized peptide-loaded nanoparticles, we observed prolonged retention (for 96 h) of the nanoparticles-encapsulated peptide as compared to 24 h retention of the free peptide in the DCs. The prolonged retention and intracellular antigen release of the BLG-Pep loaded in PLGA nanoparticles in murine DCs might facilitate antigen-specific tolerance induction.
Collapse
Affiliation(s)
- Mengshan Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Chun Yin Jerry Lau
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Irene Trillo Cabello
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Immunology, Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
5
|
Bödder J, Kok LM, Fauerbach JA, Flórez-Grau G, de Vries IJM. Tailored PGE2 Immunomodulation of moDCs by Nano-Encapsulated EP2/EP4 Antagonists. Int J Mol Sci 2023; 24:ijms24021392. [PMID: 36674907 PMCID: PMC9866164 DOI: 10.3390/ijms24021392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important maturation mediator for dendritic cells (DCs). However, increased PGE2 levels in the tumor exert immunosuppressive effects on DCs by signaling through two E-Prostanoid (EP) receptors: EP2 and EP4. Blocking EP-receptor signaling of PGE2 with antagonists is currently being investigated for clinical applications to enhance anti-tumor immunity. In this study, we investigated a new delivery approach by encapsulating EP2/EP4 antagonists in polymeric nanoparticles. The nanoparticles were characterized for size, antagonist loading, and release. The efficacy of the encapsulated antagonists to block PGE2 signaling was analyzed using monocyte-derived DCs (moDCs). The obtained nanoparticles were sized between 210 and 260 nm. The encapsulation efficacy of the EP2/EP4 antagonists was 20% and 17%, respectively, and was further increased with the co-encapsulation of both antagonists. The treatment of moDCs with co-encapsulation EP2/EP4 antagonists prevented PGE2-induced co-stimulatory marker expression. Even though both antagonists showed a burst release within 15 min at 37 °C, the nanoparticles executed the immunomodulatory effects on moDCs. In summary, we demonstrate the functionality of EP2/EP4 antagonist-loaded nanoparticles to overcome PGE2 modulation of moDCs.
Collapse
Affiliation(s)
- Johanna Bödder
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Leanne M. Kok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jonathan A. Fauerbach
- R&D Reagents, Chemical Biology Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
6
|
Söhling N, Ondreka M, Kontradowitz K, Reichel T, Marzi I, Henrich D. Early Immune Response in Foreign Body Reaction Is Implant/Material Specific. MATERIALS 2022; 15:ma15062195. [PMID: 35329646 PMCID: PMC8950904 DOI: 10.3390/ma15062195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The design of novel biomaterials should directly influence the host-immune system and steer it towards high biocompatibility. To date, new implants/materials have been tested for biocompatibility in vitro in cell cultures and in vivo in animal models. The current methods do not reflect reality (cell cultures) or are very time-consuming and deliver results only after weeks (animal model). In this proof-of-concept study, the suitability of a Whole Blood Stimulation Assay (WBSA) in combination with a Protein Profiler Array (PPA), as a readily available and cost-effective screening tool, was investigated. Three different biomaterials based on poly(lactic-co-glycolic acid (PLGA), calcium sulphate/-carbonate (CS) and poly(methyl methacrylate) (PMMA) were exposed to native whole blood from three volunteers and subsequently screened with a PPA. Individual reproducible protein profiles could be detected for all three materials after 24 h of incubation. The most intense reaction resulted from the use of PLGA, followed by CS. If even marginal differences in implants can be reflected in protein profiles, the combination of WBSA and PPA could serve as an early biocompatibility screening tool in the development of novel biomaterials. This may also lead to a reduction in costs and the amount of animal testing required.
Collapse
Affiliation(s)
- Nicolas Söhling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
- Correspondence: ; Tel.: +49-69-6301-7110
| | - Muriel Ondreka
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| | - Kerstin Kontradowitz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| | | | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| |
Collapse
|
7
|
Gaglio SC, Donini M, Denbaes PE, Dusi S, Perduca M. Oxyresveratrol Inhibits R848-Induced Pro-Inflammatory Mediators Release by Human Dendritic Cells Even When Embedded in PLGA Nanoparticles. Molecules 2021; 26:molecules26082106. [PMID: 33916909 PMCID: PMC8067564 DOI: 10.3390/molecules26082106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oxyresveratrol, a stilbene extracted from the plant Artocarpus lakoocha Roxb., has been reported to provide a considerable anti-inflammatory activity. Since the mechanisms of this therapeutic action have been poorly clarified, we investigated whether oxyresveratrol affects the release of the pro-inflammatory cytokines IL-12, IL-6, and TNF-α by human dendritic cells (DCs). We found that oxyresveratrol did not elicit per se the release of these cytokines, but inhibited their secretion induced upon DC stimulation with R848 (Resiquimod), a well-known immune cell activator engaging receptors recognizing RNA viruses. We then investigated whether the inclusion of oxyresveratrol into nanoparticles promoting its ingestion by DCs could favor its effects on cytokine release. For this purpose we synthesized and characterized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on DCs. We found that bare PLGA nanoparticles did not affect cytokine secretion by resting DCs, but increased IL-12, IL-6, and TNF-α secretion by R848-stimulated DCs, an event known as “priming effect”. We then loaded PLGA nanoparticles with oxyresveratrol and we observed that oxyresveratrol-bearing particles did not stimulate the cytokine release by resting DCs and inhibited the PLGA-dependent enhancement of IL-12, IL-6, and TNF-α secretion by R848-stimulated DCs. The results herein reported indicate that oxyresveratrol suppresses the cytokine production by activated DCs, thus representing a good anti-inflammatory and immune-suppressive agent. Moreover, its inclusion into PLGA nanoparticles mitigates the pro-inflammatory effects due to cooperation between nanoparticles and R848 in cytokine release. Therefore, oxyresveratrol can be able to contrast the synergistic effects of nanoparticles with microorganisms that could be present in the patient tissues, therefore overcoming a condition unfavorable to the use of some nanoparticles in biological systems.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (S.C.G.); (P.E.D.)
| | - Marta Donini
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| | - Piyachat Evelyn Denbaes
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (S.C.G.); (P.E.D.)
| | - Stefano Dusi
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
- Correspondence: (S.D.); (M.P.); Tel.: +39-045-802-7124 (S.D.); +39-045-802-7984 (M.P.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (S.C.G.); (P.E.D.)
- Correspondence: (S.D.); (M.P.); Tel.: +39-045-802-7124 (S.D.); +39-045-802-7984 (M.P.)
| |
Collapse
|
8
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
9
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
10
|
Barillet S, Fattal E, Mura S, Tsapis N, Pallardy M, Hillaireau H, Kerdine-Römer S. Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation. Nanotoxicology 2019; 13:606-622. [DOI: 10.1080/17435390.2018.1564078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S. Barillet
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - E. Fattal
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - S. Mura
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - N. Tsapis
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - M. Pallardy
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - H. Hillaireau
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - S. Kerdine-Römer
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
11
|
AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, Köksal F. Does the Development of Vaccines Advance Solutions for Tuberculosis? Curr Mol Pharmacol 2018; 12:83-104. [PMID: 30474542 DOI: 10.2174/1874467212666181126151948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial. OBJECTIVE The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Department of Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Kuantan, Malaysia
| | - Husam AlMandeal
- Freiburg Universität, Moltkestraße 90, 76133 karlsruhe Augenklinik, Germany
| | - Emel Eker
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
12
|
Yan S, Xu K, Li L, Gu W, Rolfe BE, Xu ZP. The Pathways for Layered Double Hydroxide Nanoparticles to Enhance Antigen (Cross)-Presentation on Immune Cells as Adjuvants for Protein Vaccines. Front Pharmacol 2018; 9:1060. [PMID: 30294273 PMCID: PMC6158326 DOI: 10.3389/fphar.2018.01060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles (NPs) are intensively investigated as adjuvants in new generation vaccines, while how these NPs promote the immune responses has not been well understood. In this research, we have tried to elucidate the possible pathways for layered double hydroxide (LDH) NPs to provoke immune responses. As previously reported, LDH NPs efficiently deliver antigens to antigen presenting cells (APCs). In this research, we have found that these internalized LDH NPs are not released by these APCs within 8 h. We have for the first time found that macrophage cells exchange the internalized LDH NPs with other surrounding ones, which may promote immune responses in an additional way. Moreover, the internalized LDH-antigen NPs significantly facilitate the maturation of immature DCs and enhance cross-presentation of epitope/MHC class I complexes on the DC surface. This research would help understand the NP adjuvant mechanism and further assist the design of new specific NPs as more efficient nano-adjuvants.
Collapse
Affiliation(s)
- Shiyu Yan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Kewei Xu
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Barbara E. Rolfe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Zhi P. Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Hardin MO, Vreeland TJ, Clifton GT, Hale DF, Herbert GS, Greene JM, Jackson DO, Berry JE, Nichols P, Yin S, Yu X, Wagner TE, Peoples GE. Tumor lysate particle loaded dendritic cell vaccine: preclinical testing of a novel personalized cancer vaccine. Immunotherapy 2018; 10:373-382. [DOI: 10.2217/imt-2017-0114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We developed a novel approach to efficiently deliver autologous tumor antigens to the cytoplasm of dendritic cells (DC) using yeast cell wall particles (YCWP). Materials and Methods: Loading of YCWP, leakage of protein from loaded YCWP and cytoplasmic delivery of YCWP content was assessed using fluorescent-tagged experiments. Spectrophotometric analysis compared the epitope-specific T-cell responses following antigen presentation via YCWP versus exogenous loading. The in vivo effectiveness of tumor lysate (TL) particle loaded DC (TLPLDC) vaccine was assessed using murine melanoma models. Results: In fluorescence-tagged experiments, YCWP efficiently delivered antigen to the cytoplasm of DC. TLPLDC loading was more effective than conventional exogenous loading of DC. Finally, in murine melanoma models, TLPLDC outperformed an analogous dendritoma vaccine. Conclusion: The TLPLDC vaccine is commercially scalable and holds the potential of producing personalized vaccines.
Collapse
Affiliation(s)
- Mark O Hardin
- Department of Surgery, Madigan Army Medical Center, Ft. Lewis, WA 98431, USA
| | - Timothy J Vreeland
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guy T Clifton
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diane F Hale
- Department of Surgery, San Antonio Military Medical Center, Ft. Sam Houston, TX 78234, USA
| | - Garth S Herbert
- Department of Surgery, San Antonio Military Medical Center, Ft. Sam Houston, TX 78234, USA
| | - Julia M Greene
- Department of Surgery, San Antonio Military Medical Center, Ft. Sam Houston, TX 78234, USA
| | - Doreen O Jackson
- Department of Surgery, San Antonio Military Medical Center, Ft. Sam Houston, TX 78234, USA
| | - John E Berry
- Department of Surgery, San Antonio Military Medical Center, Ft. Sam Houston, TX 78234, USA
| | | | - Sook Yin
- Perseus PCI, George Town, Grand Cayman, Cayman Islands
| | - Xianzhong Yu
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | | | - George E Peoples
- Orbis Health Solutions, Greenville, SC 29607, USA
- Cancer Vaccine Development Program, San Antonio, TX 78234, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
14
|
Allen RP, Bolandparvaz A, Ma JA, Manickam VA, Lewis JS. Latent, Immunosuppressive Nature of Poly(lactic- co-glycolic acid) Microparticles. ACS Biomater Sci Eng 2018; 4:900-918. [PMID: 30555893 PMCID: PMC6290919 DOI: 10.1021/acsbiomaterials.7b00831] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Use of biomaterials to spatiotemporally control the activation of immune cells is at the forefront of biomedical engineering research. As more biomaterial strategies are employed for immunomodulation, understanding the immunogenicity of biodegradable materials and their byproducts is paramount in tailoring systems for immune activation or suppression. Poly(D,L-lactic-co-glycolic acid) (PLGA), one of the most commonly studied polymers in tissue engineering and drug delivery, has been previously described on one hand as an immune adjuvant, and on the other as a nonactivating material. In this study, the effect of PLGA microparticles (MPs) on the maturation status of murine bone marrow-derived dendritic cells (DCs), the primary initiators of adaptive immunity, was investigated to decipher the immunomodulatory properties of this biomaterial. Treatment of bone marrow-derived DCs from C57BL/6 mice with PLGA MPs led to a time dependent decrease in the maturation level of these cells, as quantified by decreased expression of the positive stimulatory molecules MHCII, CD80, and CD86 as well as the ability to resist maturation following challenge with lipopolysaccharide (LPS). Moreover, this immunosuppression was dependent on the molecular weight of the PLGA used to fabricate the MPs, as higher molecular weight polymers required longer incubation to produce comparable dampening of maturation molecules. These phenomena were correlated to an increase in lactic acid both intracellularly and extracellularly during DC/PLGA MP coculture, which is postulated to be the primary agent behind the observed immune inhibition. This hypothesis is supported by our results demonstrating that resistance to LPS stimulation may be due to the ability of PLGA MP-derived lactic acid to inhibit the phosphorylation of TAK1 and therefore prevent NF-κB activation. This work is significant as it begins to elucidate how PLGA, a prominent biomaterial with broad applications ranging from tissue engineering to pharmaceutics, could modulate the local immune environment and offers insight on engineering PLGA to exploit its evolving immunogenicity.
Collapse
Affiliation(s)
- Riley P. Allen
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Amir Bolandparvaz
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Vishal A. Manickam
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
15
|
Hafner AM, Corthésy B, Textor M, Merkle HP. Surface-assembled poly(I:C) on PEGylated PLGA microspheres as vaccine adjuvant: APC activation and bystander cell stimulation. Int J Pharm 2017; 514:176-188. [PMID: 27863662 DOI: 10.1016/j.ijpharm.2016.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022]
Abstract
Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres are potential vehicles to deliver antigens for vaccination. Because they lack the full capacity to activate professional antigen presenting cells (APCs), combination with an immunostimulatory adjuvant may be considered. A candidate is the synthetic TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), which drives cell-mediated immunity. However, poly(I:C) has also been linked to the pathogenesis of autoimmunity, as affected by widespread stimulation of non-hematopoietic bystander cells. To address this aspect, we propose to minimize the poly(I:C) dose as well as to control the stimulation of non-immune bystander cells by poly(I:C). To facilitate the maturation of APCs with minimal poly(I:C) doses, we surface-assembled poly(I:C) onto PLGA microspheres. The microspheres' surface was further modified by poly(ethylene glycol) (PEG) coronas with varying PEG-densities. PLGA microspheres loaded with tetanus toxoid (tt) as model antigen were manufactured by microextrusion-based solvent extraction. The negatively charged PLGA(tt) microspheres were coated with polycationic poly(l-lysine) (PLL) polymers, either PLL itself or PEG-grafted PLL (PLL-g-PEG) with varying grafting ratios (g=2.2 and g=10.1). Stable surface assembly of poly(I:C) was achieved by subsequent incubation of polymer-coated PLGA microspheres with aqueous poly(I:C) solutions. We evaluated the immunostimulatory potential of such PLGA(tt) microsphere formulations on monocyte-derived dendritic cells (MoDCs) as well as human foreskin fibroblasts (HFFs) as model for non-hematopoietic bystander cells. Formulations with surface-assembled poly(I:C) readily activated MoDCs with respect to the expression of maturation-related surface markers, proinflammatory cytokine secretion and directed migration. When surface-assembled, poly(I:C) enhanced its immunostimulatory activity by more than one order of magnitude as compared to free poly(I:C). On fibroblasts, surface-assembled poly(I:C) upregulated class I MHC but not class II MHC. Phagocytosis of PLGA(tt) microsphere formulations by MoDCs and HFFs remained mostly unaffected by PEG-grafted PLL coatings. In contrast, high concentrations of free poly(I:C) led to a marked drop of microsphere phagocytosis by HFFs. Overall, surface assembly on PEGylated PLGA microspheres holds promise to improve both efficacy and safety of poly(I:C) as vaccine adjuvant.
Collapse
Affiliation(s)
- Annina M Hafner
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Blaise Corthésy
- Division of Immunology and Allergy, CHUV, Lausanne 1005, Switzerland
| | - Marcus Textor
- Laboratory for Surface Science and Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Hans P Merkle
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
16
|
Keselowsky BG, Lewis JS. Dendritic cells in the host response to implanted materials. Semin Immunol 2017; 29:33-40. [PMID: 28487131 PMCID: PMC5612375 DOI: 10.1016/j.smim.2017.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/28/2022]
Abstract
The role of dendritic cells (DCs) and their targeted manipulation in the body's response to implanted materials is an important and developing area of investigation, and a large component of the emerging field of biomaterials-based immune engineering. The key position of DCs in the immune system, serving to bridge innate and adaptive immunity, is facilitated by rich diversity in type and function and places DCs as a critical mediator to biomaterials of both synthetic and natural origins. This review presents current views regarding DC biology and summarizes recent findings in DC responses to implanted biomaterials. Based on these findings, there is promise that the directed programming of application-specific DC responses to biomaterials can become a reality, enabling and enhancing applications almost as diverse as the larger field of biomaterials itself.
Collapse
Affiliation(s)
- Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 USA.
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Dawson E, Leleux JA, Pradhan P, Roy K. Surface-Presentation of CpG and Protein–Antigen on Pathogen-Like Polymer Particles Generate Strong Prophylactic and Therapeutic Antitumor Protection. ACS Biomater Sci Eng 2016; 3:169-178. [DOI: 10.1021/acsbiomaterials.6b00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eileen Dawson
- The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jardin A. Leleux
- The Wallace
H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, The Parker H. Petit Institute for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pallab Pradhan
- The Wallace
H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, The Parker H. Petit Institute for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Krishnendu Roy
- The Wallace
H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, The Parker H. Petit Institute for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Lewis JS, Allen RP. An introduction to biomaterial-based strategies for curbing autoimmunity. Exp Biol Med (Maywood) 2016; 241:1107-15. [PMID: 27229905 PMCID: PMC4950372 DOI: 10.1177/1535370216650294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recently, scientists have made significant progress in the development of immunotherapeutics that correct aberrant, autoimmune responses. Yet, concerns about the safety, efficacy, and wide scale applicability continue to hinder use of contemporary, immunology-based strategies. There is a clear need for therapies that finely control molecular and cellular elements of the immune system. Biomaterial engineers have taken up this challenge to develop therapeutics with selective spatial and temporal control of immune cells. In this review, we introduce the immunology of autoimmune disorders, survey the current therapeutic strategies for autoimmune diseases, and highlight the ongoing research efforts to engineer the immune system using biomaterials, for positive therapeutic outcomes in treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Riley P Allen
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Herrmann VL, Wieland DE, Legler DF, Wittmann V, Groettrup M. The STEAP1(262-270) peptide encapsulated into PLGA microspheres elicits strong cytotoxic T cell immunity in HLA-A*0201 transgenic mice--A new approach to immunotherapy against prostate carcinoma. Prostate 2016; 76:456-68. [PMID: 26715028 DOI: 10.1002/pros.23136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND PLGA microsphere-based vaccination has been proven to be effective in immunotherapy of syngeneic model tumors in mice. The critical step for the translation to humans is the identification of immunogenic tumor antigens and potent vaccine formulations to overcome immune tolerance. METHODS HLA-A*0201 transgenic mice were immunized with eight different human prostate cancer peptide antigens co-encapsulated with TLR ligands into PLGA microspheres and analyzed for antigen-specific and functional cytotoxic T lymphocyte responses. RESULTS Only vaccination with STEAP1(262-270) peptide encapsulated in PLGA MS could effectively crossprime CTLs in vivo. These CTLs recognized STEAP1(262-270) /HLA-A*0201 complexes on human dendritic cells and prostate cancer cell lines and specifically lysed target cells in vivo. Vaccination with PLGA microspheres was much more potent than with incomplete Freund's adjuvant. CONCLUSIONS Our data suggests that there exist great differences in the immunogenicity of human PCa peptide antigens despite comparable MHC class I binding characteristics. Immunogenic STEAP1(262-270) peptide encapsulated into PLGA microspheres however was able to induce vigorous and functional antigen-specific CTLs and therefore is a promising novel approach for immunotherapy against advanced stage prostate cancer.
Collapse
Affiliation(s)
- Valerie L Herrmann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Daniel E Wieland
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
20
|
Lawlor C, O’Connor G, O’Leary S, Gallagher PJ, Cryan SA, Keane J, O’Sullivan MP. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing. PLoS One 2016; 11:e0149167. [PMID: 26894562 PMCID: PMC4760758 DOI: 10.1371/journal.pone.0149167] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/08/2016] [Indexed: 12/28/2022] Open
Abstract
The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such “added value” could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.
Collapse
Affiliation(s)
- Ciaran Lawlor
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, and St. James’ Hospital, Dublin, Ireland
| | - Gemma O’Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, and St. James’ Hospital, Dublin, Ireland
| | - Seonadh O’Leary
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, and St. James’ Hospital, Dublin, Ireland
| | - Paul J. Gallagher
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, and St. James’ Hospital, Dublin, Ireland
| | - Mary P. O’Sullivan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, and St. James’ Hospital, Dublin, Ireland
- * E-mail:
| |
Collapse
|
21
|
Versatile polyion complex micelles for peptide and siRNA vectorization to engineer tolerogenic dendritic cells. Eur J Pharm Biopharm 2015; 92:216-27. [DOI: 10.1016/j.ejpb.2015.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
|
22
|
Hauptmann N, Pion M, Wehner R, Muñoz-Fernández MÁ, Schmitz M, Voit B, Appelhans D. Potential of Ni(II)-NTA-Modified Poly(ethylene imine) Glycopolymers as Carrier System for Future Dendritic Cell-Based Immunotherapy. Biomacromolecules 2014; 15:957-67. [DOI: 10.1021/bm401845b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- N. Hauptmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - M. Pion
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - R. Wehner
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - M.-Á. Muñoz-Fernández
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - M. Schmitz
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - B. Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - D. Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
23
|
Hafner AM, Corthésy B, Merkle HP. Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 2013; 65:1386-99. [PMID: 23751781 DOI: 10.1016/j.addr.2013.05.013] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Collapse
|
24
|
Hauptmann N, Pion M, Muñoz-Fernández MÁ, Komber H, Werner C, Voit B, Appelhans D. Ni(II)-NTA Modified Poly(ethylene imine) Glycopolymers: Physicochemical Properties and First In Vitro Study of Polyplexes Formed with HIV-Derived Peptides. Macromol Biosci 2013; 13:531-8. [DOI: 10.1002/mabi.201200449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/22/2013] [Indexed: 11/12/2022]
|
25
|
Wischke C, Mathew S, Roch T, Frentsch M, Lendlein A. Potential of NOD receptor ligands as immunomodulators in particulate vaccine carriers. J Control Release 2012; 164:299-306. [DOI: 10.1016/j.jconrel.2012.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/13/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|
26
|
Mueller M, Reichardt W, Koerner J, Groettrup M. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 2012; 162:159-66. [PMID: 22709589 DOI: 10.1016/j.jconrel.2012.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 01/26/2023]
Abstract
Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres (MS) deliver antigens and toll like receptor (TLR) ligands to antigen presenting cells (APC) in vitro and in vivo. PLGA-MS-microencapsulated model antigens are efficiently presented on MHC class I and II molecules of dendritic cells and stimulate strong cytotoxic and T helper cell responses enabling the eradication of pre-existing model tumors. The application of tumor lysates as a source of antigen for immunotherapy has so far not been very successful also due to a lack of suitable delivery systems. In this study we used PLGA-MS with co-encapsulated tumor lysates and CpG oligodeoxynucleotides (CpG-ODN) as well as microencapsulated polyI:C in order to elicit anti-tumor responses. Immunization of mice with such mixtures of MS yielded substantial cytotoxic T cell (CTL) responses and interfered with tumor growth in TRAMP mice, a pre-clinical transgenic mouse model of prostate carcinoma, which has previously resisted dendritic cell-based therapy. As an important step towards clinical application of PLGA-MS, we could show that γ-irradiation of PLGA-MS sterilized the MS, without reducing their efficacy in eliciting CTL and anti-tumor responses in subcutaneous tumor grafts. Since PLGA is approved for clinical application, sterilized PLGA-MS containing tumor lysates and TLR ligands hold promise as anti-tumor vaccines against prostate carcinoma in humans.
Collapse
Affiliation(s)
- Marc Mueller
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
27
|
Schliehe C, Redaelli C, Engelhardt S, Fehlings M, Mueller M, van Rooijen N, Thiry M, Hildner K, Weller H, Groettrup M. CD8− Dendritic Cells and Macrophages Cross-Present Poly(D,L-lactate-co-glycolate) Acid Microsphere-Encapsulated Antigen In Vivo. THE JOURNAL OF IMMUNOLOGY 2011; 187:2112-21. [DOI: 10.4049/jimmunol.1002084] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Mueller M, Schlosser E, Gander B, Groettrup M. Tumor eradication by immunotherapy with biodegradable PLGA microspheres--an alternative to incomplete Freund's adjuvant. Int J Cancer 2011; 129:407-16. [PMID: 21207410 DOI: 10.1002/ijc.25914] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 12/20/2010] [Indexed: 01/21/2023]
Abstract
In experimental tumor immunotherapy, incomplete Freund's adjuvant (IFA) has been considered as the "gold standard" for T-cell vaccination in mice and humans in spite of its considerable adverse effects. Recently, we succeeded in eliciting strong CTL responses in mice after vaccination with biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres (MS). In our study, we compared the immune response to IFA and PLGA-MS containing ovalbumin (OVA) and CpG-oligodeoxynucleotide (MS-OVA/CpG) or we used a mixture of MS-OVA/CpG and MS-polyI:C. A single vaccination with MS-OVA/CpG elicited long-lasting titers of IgG1 and IgG2a, but only low IgE titers, and also the T-cell response was biased toward Th(1) differentiation. Antigen presentation to CD4(+) and CD8(+) cells and activation of a cytotoxic T-cell response in mice vaccinated with PLGA-MS and IFA lasted for over 3 weeks. Preconditioning of the injection site with TNF-α and heterologous prime-boost regimen further enhanced the cytotoxic response. PLGA-MS were as efficient or superior to IFA in eradication of preexisting tumors and suppression of lung metastases. Taken together, PLGA-MS are well-defined, biodegradable and clinically compatible antigen carrier systems that compare favorably with IFA in their efficacy of tumor immunotherapy in mouse models and hence deserve to be tested for their effectiveness against human malignant diseases.
Collapse
Affiliation(s)
- Marc Mueller
- Division of Immunology, Department of Biology, Universität Konstanz, Konstanz, Germany
| | | | | | | |
Collapse
|
29
|
Powell TJ, Palath N, DeRome ME, Tang J, Jacobs A, Boyd JG. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo. Vaccine 2011; 29:558-69. [DOI: 10.1016/j.vaccine.2010.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/14/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
|
30
|
De Koker S, Lambrecht BN, Willart MA, van Kooyk Y, Grooten J, Vervaet C, Remon JP, De Geest BG. Designing polymeric particles for antigen delivery. Chem Soc Rev 2011; 40:320-39. [PMID: 21060941 DOI: 10.1039/b914943k] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
By targeting dendritic cells, polymeric carriers in the nano to lower micron range constitute very interesting tools for antigen delivery. In this critical review, we review how new immunological insights can be exploited to design new carriers allowing one to tune immune responses and to further increase vaccine potency (137 references).
Collapse
Affiliation(s)
- Stefaan De Koker
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Weber C, Drogoz A, David L, Domard A, Charles MH, Verrier B, Delair T. Polysaccharide-based vaccine delivery systems: Macromolecular assembly, interactions with antigen presenting cells, and in vivo immunomonitoring. J Biomed Mater Res A 2010; 93:1322-34. [PMID: 19859973 DOI: 10.1002/jbm.a.32605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using a strategy of macromolecular assembly, a colloidal vaccine delivery system was obtained from chitosan and dextran sulfate and loaded with an antigenic protein (p24, the capsid protein of HIV-1). The colloidal polyelectrolyte complexes (PECs) were obtained by charge neutralization of the polyanion and polycation at a charge ratio (n(+)/n(-)) of 2 (CHDS). The conditions of assembly were tuned to maintain the colloidal properties of the carrier in high salt environment. The relative molar masses of the two polyions and the degree of acetylation (DA) of chitosan were essential parameters to achieve this goal, and this could be related to the nanometric scale organization of the colloids observed by Small Angle X-rays Scattering experiments. The binding of p24 to the colloidal carrier was achieved and the release of the antigen was investigated. Antigen presenting cells [dendritic cells (DCs)], obtained from monocytes, could internalize the colloids. Immature DCs (iDCs) were not matured by the colloidal PECs either loaded or not loaded with p24, as proved by Fluorescent Activated Cell Sorting (FACS) analysis. Despite this lack of in vitro interaction, a specific immune response was observed in mice with a high production of antibodies, after subcutaneous injection. The analysis of the interleukin production shows that both the cellular and the humoral responses were stimulated. This work brings a physico-chemical insight on polysaccharide-based antigen delivery systems and opens up new perspectives for their use as vaccine carriers.
Collapse
Affiliation(s)
- Caroline Weber
- Institut de Biologie et Chimie des Protéines, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Alshamsan A, Haddadi A, Hamdy S, Samuel J, El-Kadi AOS, Uludağ H, Lavasanifar A. STAT3 Silencing in Dendritic Cells by siRNA Polyplexes Encapsulated in PLGA Nanoparticles for the Modulation of Anticancer Immune Response. Mol Pharm 2010; 7:1643-54. [DOI: 10.1021/mp100067u] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aws Alshamsan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Azita Haddadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Samar Hamdy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - John Samuel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|
33
|
Delivery of Exogenous Antigens to Induce Cytotoxic CD8+ T Lymphocyte Responses. J Biomed Biotechnol 2010; 2010:218752. [PMID: 20508846 PMCID: PMC2874933 DOI: 10.1155/2010/218752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/09/2010] [Indexed: 02/06/2023] Open
Abstract
Vaccines intended to induce a cytotoxic CD8+ T-cell response are highly sought after. However, some of these vaccines can be problematic if they replicate in the host. An alternative strategy is to exploit cross-presentation of exogenous antigens to express peptides on major histocompatibility complex (MHC) class I molecules. During cross-presentation, the delivered exogenous antigen can be taken up and processed through diverse mechanisms. Here, we will discuss the recent advances regarding the complex nature of the cross-priming process and the models that reflect its relevance in vivo. Moreover, we summarize current data that explore potential adjuvants and vaccine vectors that deliver antigens to activate CD8+ T cells relying on cross-presentation.
Collapse
|
34
|
De Haes W, De Koker S, Pollard C, Atkinson D, Vlieghe E, Hoste J, Rejman J, De Smedt S, Grooten J, Vanham G, Van Gulck E. Polyelectrolyte capsules-containing HIV-1 p24 and poly I:C modulate dendritic cells to stimulate HIV-1-specific immune responses. Mol Ther 2010; 18:1408-16. [PMID: 20461059 DOI: 10.1038/mt.2010.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyelectrolyte microcapsules (MCs) are potent protein delivery vehicles which can be tailored with ligands to stimulate maturation of dendritic cells (DCs). We investigated the immune stimulatory capacity of monocyte-derived DC (Mo-DC) loaded with these MCs, containing p24 antigen from human immunodeficiency virus type 1 (HIV-1) alone [p24-containing MC (MCp24)] or with the Toll-like receptor ligand 3 (TLR3) ligand poly I:C (MCp24pIC) as a maturation factor. MO-DC, loaded with MCp24pIC, upregulated CCR7, CD80, CD83, and CD86 and produced high amounts of interleukin-12 (IL-12) cytokine, to a similar extent as MCp24 in the presence of an optimized cytokine cocktail. MO-DC from HIV-infected patients under highly active antiretroviral therapy (HAART) exposed to MCp24 together with cytokine cocktail or to MCp24pIC expanded autologous p24-specific CD4(+) and CD8(+) T-cell responses as measured by interferon-gamma (IFN-gamma) and IL-2 cytokine production and secretion. In vivo relevance was shown by immunizing C57BL/6 mice with MCp24pIC, which induced both humoral and cellular p24-specific immune responses. Together these data provide a proof of principle that both antigen and DC maturation signal can be delivered as a complex with polyelectrolyte capsules to stimulate virus-specific T cells both in vitro and in vivo. Polyelectrolyte MCs could be useful for in vivo immunization in HIV-1 and other infections.
Collapse
Affiliation(s)
- Winni De Haes
- Institute of Tropical Medicine of Antwerp, Department of Microbiology, Unit Virology, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tel J, Lambeck AJA, Cruz LJ, Tacken PJ, de Vries IJM, Figdor CG. Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen. THE JOURNAL OF IMMUNOLOGY 2010; 184:4276-83. [PMID: 20304825 DOI: 10.4049/jimmunol.0903286] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) play a major role in shaping both innate and adaptive immune responses, mainly via their production of large amounts of type I IFNs. pDCs are considered to primarily present endogenous Ags and are thought not to participate in the uptake and presentation of Ags from the extracellular environment, in contrast to their myeloid counterparts, which efficiently endocytose extracellular particulates. In this study, we show that human pDCs are able to phagocytose and process particulate forms of Ag entrapped in poly(lactic-coglycolic acid) microparticles. Furthermore, pDCs were also able to sense TLR ligands (TLR-Ls) incorporated in these particles, resulting in rapid pDC activation and high IFN-alpha secretion. Combining a tetanus toxoid peptide and TLR-Ls (CpG C and R848) in these microparticles resulted in efficient pDC activation and concomitant Ag-specific T cell stimulation. Moreover, particulate Ag was phagocytosed and presented more efficiently than soluble Ag, indicating that microparticles can be exploited to facilitate efficient delivery of antigenic cargo and immunostimulatory molecules to pDCs. Together, our results show that in addition to their potency to stimulate innate immunity, pDCs can polarize adaptive immune responses against exogenous particulate Ag. These results may have important consequences for the development of new immunotherapeutic strategies exploiting Ag and TLR-Ls encapsulated in microparticles to target APC subsets.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, , Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Vicente S, Prego C, Csaba N, Alonso M. From single-dose vaccine delivery systems to nanovaccines. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50044-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Li A, Qin L, Zhu D, Zhu R, Sun J, Wang S. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials 2009; 31:748-56. [PMID: 19853910 DOI: 10.1016/j.biomaterials.2009.09.095] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/29/2009] [Indexed: 12/18/2022]
Abstract
Layered double hydroxide (LDH) nanoparticles are attractive as potential drug vectors for the targeting not only of tissues, but also of intracellular organelles, and particularly the acidic endolysosomes created after cell endocytosis. The purpose of this study was to investigate the ability of LDH nanoparticles designed as vectors to activate dendritic cells (DCs), as measured by various cellular functions. The study also explored the possible signaling pathway through which the LDH nanoparticles exerted their effects on the cellular functions of DCs. First, LDH nanoparticles with different ratios of Mg(OH)(2) to Al(OH)(3) (1:1, 2:1 and 3:1, called R1, R2 and R3 respectively) were optimized and had a hydrodynamic diameter of 57 nm with a zeta potential of +35 mV. Then, the efficient endocytosis of the optimized LDH nanoparticles by bone marrow-derived dendritic cells (MDDCs) was monitored by fluorescence-activated cell sorting. The effect of R1, R2 and R3 on the expression of the pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, and IL-12) and the co-stimulatory molecules (CD40, CD80, CD86, and MHC class II) in MDDCs was examined. The exposure of R1 caused a dose-dependent increase in the expression of TNF-alpha, IL-12, CD86 and CD40, while R2 and R3 did not up-regulate these cytokines and co-stimulatory molecules. Migration assays showed that R1 could increase the migration capacity of DCs to CCL21 and up-regulate the expression of CCR7. Furthermore, we found that R1 significantly increased the NF-kappaB expression in the nucleus (in a dose-dependent manner) and promoted the degradation of total IkappaBalpha levels, indicating that the NF-kappaB signaling pathway might involve in an R1-induced DC activation. Our results suggested that LDH nanoparticles, in the future, may function as a useful vector for ex vivo engineering to promote vaccine delivery in immune cells.
Collapse
Affiliation(s)
- Ang Li
- Shanghai key laboratory of cell signaling and diseases, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009; 9:325-41. [PMID: 19435455 DOI: 10.1586/erm.09.15] [Citation(s) in RCA: 582] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E DeBakey Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 2009; 98:1278-316. [PMID: 18704954 PMCID: PMC8092333 DOI: 10.1002/jps.21523] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For humans, companion animals, and food producing animals, vaccination has been touted as the most successful medical intervention for the prevention of disease in the twentieth century. However, vaccination is not without problems. With the development of new and less reactogenic vaccine antigens, which take advantage of molecular recombinant technologies, also comes the need for more effective adjuvants that will facilitate the induction of adaptive immune responses. Furthermore, current vaccine adjuvants are successful at generating humoral or antibody mediated protection but many diseases currently plaguing humans and animals, such as tuberculosis and malaria, require cell mediated immunity for adequate protection. A comprehensive discussion is presented of current vaccine adjuvants, their effects on the induction of immune responses, and vaccine adjuvants that have shown promise in recent literature.
Collapse
Affiliation(s)
- Jennifer H Wilson-Welder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
40
|
Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 2008; 26:612-30. [PMID: 19085091 DOI: 10.1007/s11095-008-9802-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed.
Collapse
|
41
|
Marzocchetti A, Lima M, Tompkins T, Kavanagh DG, Gandhi RT, O'Neill DW, Bhardwaj N, Koralnik IJ. Efficient in vitro expansion of JC virus-specific CD8(+) T-cell responses by JCV peptide-stimulated dendritic cells from patients with progressive multifocal leukoencephalopathy. Virology 2008; 383:173-7. [PMID: 19062062 DOI: 10.1016/j.virol.2008.10.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/15/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the brain caused by JC virus (JCV) for which there is no cure. PML patients who have JCV-specific CD8(+) cytotoxic T lymphocytes (CTL) in their blood have a better clinical outcome. We compared JCV-specific CTL responses in vitro elicited either by JCV peptide-loaded dendritic cells (DC) or by direct peptide stimulation of lymphocytes from 20 HLA-A0201(+) healthy controls, HIV(+) and PML patients. JCV peptide-loaded DC elicited a stronger CTL expansion in 13/15 responders. DC can induce a potent JCV-specific CTL response in vitro, and may constitute a promising approach for PML immunotherapy.
Collapse
Affiliation(s)
- Angela Marzocchetti
- Div. of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wischke C, Borchert HH. Influence of the primary emulsification procedure on the characteristics of small protein-loaded PLGA microparticles for antigen delivery. J Microencapsul 2008; 23:435-48. [PMID: 16854818 DOI: 10.1080/02652040600612512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Microparticles prepared from poly(lactic-co-glycolic acid) (PLGA) using a W1/O/W2 double emulsion solvent evaporation method are suitable vehicles for the delivery of proteins to antigen presenting cells, e.g. dendritic cells. In this study, the influence of different techniques for the preparation of the primary W1/O emulsion was investigated with respect to the protein localization within the microparticles, morphological characteristics of these particles, protein burst release and the native state of the released protein. Bovine serum albumin bearing fluorescein isothiocyanate (FITC-BSA) was used as model protein. A static micromixer was applied for the preparation of the W1/O/W2 double emulsion. Employing a rotor-stator homogenizer (Ultra-Turrax) for primary emulsification, microcapsules with a high burst release were produced, because nearly all FITC-BSA was attached to the outside of the particle wall. Using a high pressure homogenizer or an ultrasonic procedure resulted in the formation of microspheres with homogeneous protein distribution and a reduced burst release.
Collapse
Affiliation(s)
- C Wischke
- Department of Pharmacy, Free University of Berlin, Germany
| | | |
Collapse
|
43
|
Lin P, Lu YR, Zhang J, Wei YQ, Wang XJ, Li SF, Wang Q, Xiong ZJ, Ning QZ, Lei S, Mao YQ, Cheng JQ. Antitumor effect of lung cancer vaccine with umbilical blood dendritic cells in reconstituted SCID mice. Cancer Biother Radiopharm 2008; 23:321-31. [PMID: 18593365 DOI: 10.1089/cbr.2008.0463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are important cells in initiating an immune response. A generation of functional DCs has potential clinical use in treating cancer. However, the source of DCs and patient immunodeficiency with cancer have been hindrances in clinical therapy. We generated DCs from human umbilical cord blood mononuclear cells (UBMCs) with recombinant human granulocyte-macrophage colony stimulating factor, recombinant human interleukin-4, and recombinant human tumor necrosis factor-alpha. The mature DC-A549 lung cancer vaccine (AgL-DC) was prepared through loading A549 lysate, treating with lipopolysaccharide (LPS) and positive selecting with CD83 magnetic beads. AgL-DC can secrete interleukin (IL)-12 and IL-1. Further in vitro analysis showed that AgL-DC notably induced human UBMC lymphocyte proliferation (p < 0.01) by 3-(4,5-dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, increased the cytotoxic T-lymphocyte (CTL) activity of UBMC lymphocytes against A549 cells (p < 0.05, at effector cells:target cells ratios of 50:1 and 100:1) by lactate dehydrogenase (LDH) cytotoxic assay, and improved production of IL-6 and tumor necrosis factor-beta (p < 0.01, p < 0.05) by enzyme-linked immunosorbent assay. Subsequently, the reconstitute immunity model in severe combined immunodeficiencies (SCID) mice has been established using human UBMC transplantation, and similar trends to results of UBMC in vitro experiments have been shown in lymphocyte proliferation, CTL activity, and IL-6 and tumor necrosis factor-beta secretion levels in these models. AgL-DC also significantly (p < 0.01) increased the antitumor effect in vivo. The tumor infiltrating immunocytes were positively expressed human CD83 and CD3 molecules, and they were negatively expressed in tumor tissue treated with control. These results have demonstrated that umbilical cord DCs are a useful source of vaccine cells for augmenting CTL-mediated cytotoxicity and have potential usefulness in cellular therapy for human cancer in a new vaccination strategy.
Collapse
Affiliation(s)
- Ping Lin
- Division of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 2008; 26:1626-37. [PMID: 18295941 DOI: 10.1016/j.vaccine.2008.01.030] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 12/17/2007] [Accepted: 01/17/2008] [Indexed: 01/04/2023]
Abstract
Dendritic cells phagocytose pathogens leading to maturation and cross-presentation on MHC class I. We found that the efficiency of cross-priming in mice after vaccination with biodegradable poly(D,L-lactide-co-glycolide) microspheres (MSs) was enhanced when ovalbumin was coencapsulated together with either a CpG oligonucleotide or polyI:C as compared to co-inoculation of ovalbumin-bearing MS with soluble or separately encapsulated adjuvants. A single immunization with MS containing coencaspsulated CpG and ovalbumin yielded 9% SIINFEKL/H-2K(b) tetramer positive CTLs, production of IFN-gamma, efficient cytolysis, and protection from vaccinia virus infection. Taken together, coencapsulation of adjuvant and antigen is an important paradigm for the generation of potent CTL responses.
Collapse
Affiliation(s)
- Eva Schlosser
- Division of Immunology, Department of Biology, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 2007; 28:5344-57. [PMID: 17825905 DOI: 10.1016/j.biomaterials.2007.08.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 08/07/2007] [Indexed: 11/21/2022]
Abstract
Size of the polymeric particulate antigen delivery system and its interactions with antigen-presenting cells (APCs) influence the immune response both qualitatively and quantitatively. In this paper, we report that antigen-loaded polymeric microparticles elicit antibody titers without being phagocytosed by macrophages; and size of the antigen-loaded particles modulates immune response from single-point immunization. Antibody titers varied significantly from single-point immunization with different sized polylactide (PLA) particles entrapping hepatitis B surface antigen. Nanoparticles (200-600 nm) were efficiently taken up by macrophages and elicited lower antibody titers in comparison to microparticles (2-8 microm). PLA microparticles that elicited highest and long-lasting antibody titers from single-point immunization were not taken up by the macrophages and found attached to the surface of the macrophages. Immunization with nanoparticles (200-600 nm) was associated with higher levels of IFN-gamma production, upregulation of MHC class I molecules along with antibody isotypes favoring Th1-type immune response. Immunization with microparticles (2-8 microm size) promoted IL-4 secretion, upregulated MHC class II molecules and favored Th2-type immune response. Western blot analysis showed that release of HBsAg from surface-attached microparticles into macrophages increased with time, but was more or less constant in case of nanoparticles. Our results suggest that continuous release of high concentration of antigen from cell surface-attached PLA microparticles into APCs results in improved antibody response from single-point immunization. It also offers an exciting possibility of designing size-based polymer particle delivery system to modulate immune response.
Collapse
Affiliation(s)
- Vibhu Kanchan
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
46
|
Mimura K, Kono K, Takahashi A, Kawaguchi Y, Fujii H. Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol Immunother 2007; 56:761-70. [PMID: 17086423 PMCID: PMC11030780 DOI: 10.1007/s00262-006-0234-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 10/10/2006] [Indexed: 10/24/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells and play a central role in the host-antitumor immunity. Since it has been reported that vascular endothelial growth factor (VEGF) inhibits the functional maturation of immature-DCs and impairs DC differentiation, it is important to elucidate the mechanisms of VEGF-induced DC-dysfunction. To investigate the effects of VEGF against human mature DCs, we investigated how VEGF affects mature DCs with regards to phenotype, induction of apoptosis, IL-12(p70) production and the antigen-presenting function evaluated by allogeneic mixed leukocyte reaction (allo-MLR). We generated monocyte-derived DCs matured with lipopolysaccharide, OK-432 or pro-inflammatory cytokine cocktails. As a result, VEGF treatment did not alter the mature DCs with regard to phenotype, IL-12(p70) production and induction of apoptosis. As a novel and important finding, VEGF inhibited the ability of mature DCs to stimulate allogeneic T cells. Furthermore, this VEGF-induced DC dysfunction was mainly mediated by VEGF receptor-2 (VEGF R2). These observations were confirmed by the findings that the VEGF-induced DC dysfunction was recovered by anti-human VEGF neutralizing mAb or anti-human VEGF R2 blocking mAb, and that placenta growth factor (PlGF), VEGF R1-specific ligand, did not have any effect against mature DCs. Some modalities aiming at reversing mature-DC dysfunction induced by VEGF will be needed in order to induce the effective antitumor immunity.
Collapse
Affiliation(s)
- Kousaku Mimura
- First Department of Surgery, University of Yamanashi, 1110 shimokato, Chuo-city, Yamanashi 409-3898 Japan
| | - Koji Kono
- First Department of Surgery, University of Yamanashi, 1110 shimokato, Chuo-city, Yamanashi 409-3898 Japan
| | - Akihiro Takahashi
- First Department of Surgery, University of Yamanashi, 1110 shimokato, Chuo-city, Yamanashi 409-3898 Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, University of Yamanashi, 1110 shimokato, Chuo-city, Yamanashi 409-3898 Japan
| | - Hideki Fujii
- First Department of Surgery, University of Yamanashi, 1110 shimokato, Chuo-city, Yamanashi 409-3898 Japan
| |
Collapse
|
47
|
Elamanchili P, Lutsiak CME, Hamdy S, Diwan M, Samuel J. “Pathogen-Mimicking” Nanoparticles for Vaccine Delivery to Dendritic Cells. J Immunother 2007; 30:378-95. [PMID: 17457213 DOI: 10.1097/cji.0b013e31802cf3e3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A clinically relevant delivery system that can efficiently target and deliver antigens and adjuvant to dendritic cells (DCs) is under active investigation. Immunization with antigens and immunomodulators encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles elicits potent cellular immune responses; but understanding how this mode of delivery affects DCs and priming of naive T cells needs further investigation. In the current study, we assessed the extent of maturation of DCs after treatment with monophosphoryl lipid A (MPLA) encapsulated in PLGA nanoparticles and the generation of primary T-cell immune responses elicited by DCs loaded with antigens using this approach. Results indicated that DCs up-regulated the expression of surface maturation markers and demonstrated an enhanced allostimulatory capacity after treatment with MPLA containing PLGA nanoparticles. Treatment of DCs with MPLA containing nanoparticles released high amounts of proinflammatory and TH1 (T helper 1) polarizing cytokines and chemokines greater than that achieved by MPLA in solution. The delivery of ovalbumin in PLGA nanoparticles to DCs induced potent in vitro and in vivo antigen-specific primary TH1 immune responses that were furthermore enhanced with codelivery of MPLA along with the antigen in the nanoparticle formulation. Delivery of MUC1 lipopeptide (BLP25, a cancer vaccine candidate) and MPLA in PLGA nanoparticles to human DCs induced proliferation of MUC1 reactive T cells in vitro demonstrating the break in tolerance to self-antigen MUC1. These results demonstrated that targeting antigens along with toll-like receptor ligands in PLGA nanoparticles to DCs is a promising approach for generating potent TH1 polarizing immune responses that can potentially override self-tolerance mechanisms and become beneficial in the immunotherapy of cancer and infectious diseases.
Collapse
Affiliation(s)
- Praveen Elamanchili
- Faculty of Pharmacy and Pharmaceutical Sciences, 3118, Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| | | | | | | | | |
Collapse
|
48
|
Yoshida M, Mata J, Babensee JE. Effect of poly(lactic-co-glycolic acid) contact on maturation of murine bone marrow-derived dendritic cells. J Biomed Mater Res A 2007; 80:7-12. [PMID: 16958042 DOI: 10.1002/jbm.a.30832] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding of biomaterial adjuvant effect and its mechanisms is essential for the effective design and selection of appropriate materials for specific applications. We have previously shown that poly(lactic-co-glycolic acid) (PLGA), one of the most commonly studied polymers in tissue engineering, supports an adjuvant effect as measured by enhanced immune response against a co-delivered model antigen, which was dependent on the form of the biomaterial. Furthermore, we have shown that PLGA induces the maturation of human peripheral blood mononuclear cell-derived dendritic cells (DCs) in vitro. In this study, the effect of PLGA contact on the maturation of murine bone marrow-derived DCs was investigated in part to explain the biomaterial adjuvant effect observed. Treatment of bone marrow-derived DCs from C57BL6 mice with PLGA microparticles or films lead to maturation of these cells as exemplified by increased expression of co-stimulatory molecules CD80 and CD86 and production of proinflammatory cytokines TNF-alpha and IL-6. These results suggest that PLGA contact induces maturation of murine DCs, supporting our observations with human DCs. With the techniques developed in this study and given the results, our future goal is to utilize transgenic murine models to delineate the mechanisms of biomaterial-induced DC maturation.
Collapse
Affiliation(s)
- Mutsumi Yoshida
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
49
|
Fischer S, Uetz-von Allmen E, Waeckerle-Men Y, Groettrup M, Merkle HP, Gander B. The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles. Biomaterials 2007; 28:994-1004. [PMID: 17118442 DOI: 10.1016/j.biomaterials.2006.10.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 10/31/2006] [Indexed: 11/29/2022]
Abstract
Biodegradable microparticles (MP) represent a promising and efficient delivery system for parenteral vaccination. Recently, MP have also been explored as tool for the ex vivo antigen loading of professional antigen-presenting cells such as dendritic cells (DC) to be used as cellular vaccines. The purpose of this study was to investigate various polycationic coatings on poly(lactide-co-glycolide) (PLGA) MP, with regard to their effect on phenotypic and functional maturation of monocyte-derived DC (MoDC) that had previously been loaded with the MP in vitro. The preparation and concomitant coating of the PLGA was performed by means of a solvent extraction/evaporation method using a recently developed microextrusion-based technique. The polyelectrolytes tested for MP coating encompassed aminodextran, chitosan, poly(ethylene imine) (PEI), poly(L-lysine) and protamine. Uncoated and differently coated PLGA MP were fed to immature MoDC, which ingested efficiently the different MP types irrespective of their surface coating. The MP-loaded immature MoDC were then matured with the help of a cytokine/PGE-2 maturation cocktail. Here, the presence of the ingested MP did not affect the MoDC maturation in terms of expression of the surface markers CD80, CD83, CD86, HLA-DR and MMR, irrespective of the MP surface coating. Importantly, none of the PLGA MP types alone induced significant maturation of MoDC in the absence of the maturation cocktail. MP-loaded and subsequently matured MoDC expressed high levels of the chemokine receptor CCR7, whose functional activity was evidenced by the migration of MoDC towards CCL21, irrespective of the presence of ingested MP. Further, MP-loaded and subsequently matured MoDC also secreted comparable amounts of IL-10 and IL-12p70, irrespective of the presence of ingested MP except for PEI-coated PLGA MP, which enhanced significantly the secretion of IL-12p70 in mature MoDC. In conclusion, phenotypic and functional maturation of MoDC by means of a maturation cocktail remained unchanged irrespective of the presence of previously ingested differently coated PLGA MP. This offers interesting perspectives for using these particulate systems together with entrapped antigens for ex vivo loading of MoDC in view of cellular immunotherapy.
Collapse
Affiliation(s)
- Stefan Fischer
- Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Dendritic cells (DCs) play a crucial role in the induction of antigen-specific T-cell responses, and therefore their use for the active immunotherapy of malignancies has been studied with considerable interest. More than a decade has passed since the publication of the first clinical data of DC-based vaccines, and through this and subsequent studies, a number of important developmental insights have been gleaned. These include the ideal source and type of DCs, the discovery of novel antigens and methods of loading DCs, the role of DC maturation, and the most efficient route of immunization. The generation of immune responses against tumor antigens after DC immunization has been demonstrated, and favorable clinical responses have been reported in some patients; however, it is difficult to pool the results as a whole, and thus the body of data remains inconclusive, in part because of varying DC preparation and vaccination protocols, the use of different forms of antigens, and, most importantly, a lack of rigorous criteria for defining clinical responses. As such, the standardization of clinical and immunologic criteria utilized, as well as DC preparations employed, will allow for the comparison of results across multiple clinical studies and is required in order for future trials to measure the true value and role of this treatment modality. In addition, issues regarding the optimal dose and clinical setting for the application of DC vaccines remain to be resolved, and recent clinical studies have been designed to begin to address these questions.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Program in Molecular Therapeutics, Comprehensive Cancer Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|