1
|
Zhao J, Han X, Li H, Luo Y, Fang Y, Wang Y, Gao J, Zhao Y, Han J, Qian F. Analysis of the Immune Response by Standardized Whole-Blood Stimulation with Metabolism Modulation. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:81-89. [PMID: 38605904 PMCID: PMC11003932 DOI: 10.1007/s43657-023-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 04/13/2024]
Abstract
The immune system defends the body from infection and plays a vital role in a wide range of health conditions. Metabolism affects a series of physiological processes, including those linked to the function of human immune system. Cellular metabolism modulates immune cell activation and cytokine production. Understanding the relationship between metabolism and immune response has important implications for the development of immune-based therapeutics. However, the deployment of large-scale functional assays to investigate the metabolic regulation of immune response has been limited by the lack of standardized procedures. Here, we present a protocol for the analysis of immune response using standardized whole-blood stimulation with metabolism modulation. Diverse immune stimuli including pattern recognition receptor (PRR) ligands and microbial stimuli were incubated with fresh human whole blood. The metabolic inhibitors were used to modulate metabolic status in the immune cells. The variable immune responses after metabolic interventions were evaluated. We described in detail the main steps involved in the whole-blood stimulation and cytokines quantification, namely, collection and treatment of whole blood, preparation of samples and controls, cytokines detection, and stimulation with metabolic interventions. The metabolic inhibitors for anabolic pathways and catabolic pathways exert selective effects on the production of cytokines from immune cells. In addition to a robust and accurate assessment of immune response in cohort studies, the standardized whole-blood stimulation with metabolic regulation might provide new insights for modulating immunity. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00114-0.
Collapse
Affiliation(s)
- Jialin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xuling Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Helian Li
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yali Luo
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan Fang
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yun Wang
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yiran Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jingxuan Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Institute of Immunophenome, International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| |
Collapse
|
2
|
Inthawong M, Pinthong N, Thaiprakhong A, Wangrangsimakul T, Sunyakumthorn P, Hill J, Sonthayanon P, Paris DH, Dunachie SJ, Kronsteiner B. A whole blood intracellular cytokine assay optimised for field site studies demonstrates polyfunctionality of CD4+ T cells in acute scrub typhus. PLoS Negl Trop Dis 2023; 17:e0010905. [PMID: 36961865 PMCID: PMC10075457 DOI: 10.1371/journal.pntd.0010905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/05/2023] [Accepted: 02/25/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Assessment of cellular immune responses by combining intracellular cytokine staining and immunophenotyping using flow cytometry enables the simultaneous measurement of T cell phenotype and effector function in response to pathogens and vaccines. The use of whole blood samples rather than peripheral blood mononuclear cells avoids both the need for immediate processing and loss of functional antigen presenting cells due to processing and cryopreservation. Using whole blood provides the possibility to stimulate peripheral T cells in situ, and is more suitable for studies where sample volume is limited, such as those involving children, the elderly and critically ill patients. The aim of this study was to provide a robust tool for the assessment of antigen-specific T cell responses in a field site setting with limited resources. METHODOLOGY/PRINCIPLE FINDINGS We optimised a flow cytometry-based whole blood intracellular cytokine assay (WBA) with respect to duration of antigen stimulation and intracellular protein retention time. We demonstrate the ability of the WBA to capture polyfunctional T cell responses in the context of acute scrub typhus infection, by measuring IFN-γ, TNF and IL-2 in CD4+ and CD8+ T cells in response to the causative agent O. tsutsugamushi (OT). Using an optimised OT antigen preparation, we demonstrate the presence of polyfunctional antigen-specific memory CD4+ T cells in the blood of scrub typhus patients. CONCLUSIONS/SIGNIFICANCE In conclusion, this flow cytometry-based WBA is well-suited for use at field study sites, and enables the assessment of polyfunctional T cell responses to infectious agents and vaccines through delineation of antigen-specific cytokine secretion at the single cell level.
Collapse
Affiliation(s)
- Manutsanun Inthawong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nattapon Pinthong
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Areerat Thaiprakhong
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tri Wangrangsimakul
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Jennifer Hill
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel H. Paris
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Barbara Kronsteiner
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
de Rivero Vaccari JP, Mim C, Hadad R, Cyr B, Stefansdottir TA, Keane RW. Mechanism of action of IC 100, a humanized IgG4 monoclonal antibody targeting apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Transl Res 2023; 251:27-40. [PMID: 35793783 PMCID: PMC10615563 DOI: 10.1016/j.trsl.2022.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammasomes are multiprotein complexes of the innate immune response that recognize a diverse range of intracellular sensors of infection or cell damage and recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) into an inflammasome signaling complex. The recruitment, polymerization and cross-linking of ASC is upstream of caspase-1 activation and interleukin-1β release. Here we provide evidence that IC 100, a humanized IgG4κ monoclonal antibody against ASC, is internalized into the cell and localizes with endosomes, while another part is recycled and redistributed out of the cell. IC 100 binds intracellular ASC and blocks interleukin-1β release in a human whole blood cell inflammasome assay. In vitro studies demonstrate that IC 100 interferes with ASC polymerization and assembly of ASC specks. In vivo bioluminescence imaging showed that IC 100 has broad tissue distribution, crosses the blood brain barrier, and readily penetrates the brain and spinal cord parenchyma. Confocal microscopy of fluorescent-labeled IC 100 revealed that IC 100 is rapidly taken up by macrophages via a mechanism utilizing the Fc region of IC 100. Coimmunoprecipitation experiments and confocal immunohistochemistry showed that IC 100 binds to ASC and to the atypical antibody receptor Tripartite motif-containing protein-21 (TRIM21). In A549 WT and TRIM21 KO cells treated with either IC 100 or IgG4κ isotype control, the levels of intracellular IC 100 were higher than in the IgG4κ-treated controls at 2 hours, 1 day and 3 days after administration, indicating that IC 100 escapes degradation by the proteasome. Lastly, electron microscopy studies demonstrate that IC 100 binds to ASC filaments and alters the architecture of ASC filaments. Thus, IC 100 readily penetrates a variety of cell types, and it binds to intracellular ASC, but it is not degraded by the TRIM21 antibody-dependent intracellular neutralization pathway.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Kungliga Tekniska Högscholan (Royal Institute of Technology), Sweden
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Brianna Cyr
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Thorunn Anna Stefansdottir
- Department of Biomedical Engineering and Health Systems, Kungliga Tekniska Högscholan (Royal Institute of Technology), Sweden
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
4
|
Mattoo SUS, Aganja RP, Kim SC, Jeong CG, Nazki S, Khatun A, Kim WI, Lee SM. A standardized method to study immune responses using porcine whole blood. J Vet Sci 2023; 24:e11. [PMID: 36726276 PMCID: PMC9899947 DOI: 10.4142/jvs.22210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Peripheral blood mononuclear cells (PBMCs) are commonly used to assess in vitro immune responses. However, PBMC isolation is a time-consuming procedure, introduces technical variability, and requires a relatively large volume of blood. By contrast, whole blood assay (WBA) is faster, cheaper, maintains more physiological conditions, and requires less sample volume, laboratory training, and equipment. OBJECTIVES Herein, this study aimed to develop a porcine WBA for in vitro evaluation of immune responses. METHODS Heparinized whole blood (WB) was diluted (non-diluted, 1/2, 1/8, and 1/16) in RPMI-1640 media, followed by phorbol myristate acetate and ionomycin. After 24 h, cells were stained for interferon (IFN)-γ secreting T-cells followed by flow cytometry, and the supernatant was analyzed for tumor necrosis factor (TNF)-α. In addition, diluted WB was stimulated by lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C), reference strain KCTC3557 (RS), field isolate (FI), of heat-killed (HK) Streptococcus suis, and porcine reproductive and respiratory syndrome virus (PRRSV). RESULTS The frequency of IFN-γ+CD3+ T-cells and concentration of TNF-α in the supernatant of WB increased with increasing dilution factor and were optimal at 1/8. WB TNF-α and interleukin (IL)-10 cytokine levels increased significantly following stimulation with LPS or poly I:C. Further, FI and RS induced IL-10 production in WB. Additionally, PRRSV strains increased the frequency of IFN-γ+CD4-CD8+ cells, and IFN-γ was non-significantly induced in the supernatant of re-stimulated samples. CONCLUSIONS We propose that the WBA is a rapid, reliable, and simple method to evaluate immune responses and WB should be diluted to trigger immune cells.
Collapse
Affiliation(s)
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Salik Nazki
- The Pirbright Institute, Pirbright, GU24 0NF, United Kingdom
| | - Amina Khatun
- Department of Veterinary Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea.
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
5
|
Lesueur J, Walachowski S, Barbey S, Cebron N, Lefebvre R, Launay F, Boichard D, Germon P, Corbiere F, Foucras G. Standardized Whole Blood Assay and Bead-Based Cytokine Profiling Reveal Commonalities and Diversity of the Response to Bacteria and TLR Ligands in Cattle. Front Immunol 2022; 13:871780. [PMID: 35677047 PMCID: PMC9169910 DOI: 10.3389/fimmu.2022.871780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022] Open
Abstract
Recent developments in multiplex technologies enable the determination of a large nu\mber of soluble proteins such as cytokines in various biological samples. More than a one-by-one determination of the concentration of immune mediators, they permit the establishment of secretion profiles for a more accurate description of conditions related to infectious diseases or vaccination. Cytokine profiling has recently been made available for bovine species with the development of a Luminex® technology-based 15-plex assay. Independently from the manufacturer, we evaluated the bovine cytokine/chemokine multiplex assay for limits of detection, recovery rate, and reproducibility. Furthermore, we assessed cytokine secretion in blood samples from 107 cows upon stimulation with heat-killed bacteria and TLR2/4 ligands compared to a null condition. Secretion patterns were analyzed either using the absolute concentration of cytokines or using their relative concentration with respect to the overall secretion level induced by each stimulus. Using Partial Least Square-Discriminant Analysis, we show that the 15-cytokine profile is different under Escherichia coli, Staphylococcus aureus, and Streptococcus uberis conditions, and that IFN-γ, IL-1β, and TNF-α contribute the most to differentiate these conditions. LPS and E. coli induced largely overlapping biological responses, but S. aureus and S. uberis were associated with distinct cytokine profiles than their respective TLR ligands. Finally, results based on adjusted or absolute cytokine levels yielded similar discriminative power, but led to different stimuli-related signatures.
Collapse
Affiliation(s)
- Jérémy Lesueur
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Sarah Barbey
- Unité Expérimentale du Pin, INRAE, Borculo, Le Pin au Haras, France
| | - Nathan Cebron
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Rachel Lefebvre
- GABI, Université de Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Frédéric Launay
- Unité Expérimentale du Pin, INRAE, Borculo, Le Pin au Haras, France
| | - Didier Boichard
- GABI, Université de Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- *Correspondence: Gilles Foucras,
| |
Collapse
|
6
|
Kronsten VT, Woodhouse CA, Zamalloa A, Lim TY, Edwards LA, Martinez-Llordella M, Sanchez-Fueyo A, Shawcross DL. Exaggerated inflammatory response to bacterial products in decompensated cirrhotic patients is orchestrated by interferons IL-6 and IL-8. Am J Physiol Gastrointest Liver Physiol 2022; 322:G489-G499. [PMID: 35195033 PMCID: PMC8993594 DOI: 10.1152/ajpgi.00012.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cirrhosis-associated immune dysfunction (CAID) contributes to disease progression and organ failure development. We interrogated immune system function in nonseptic compensated and decompensated cirrhotic patients using the TruCulture whole blood stimulation system, a novel technique that allows a more accurate representation than traditional methods, such as peripheral blood mononuclear cell culture, of the immune response in vivo. Thirty cirrhotics (21 decompensated and 9 compensated) and seven healthy controls (HCs) were recruited. Whole blood was drawn directly into three TruCulture tubes [unstimulated to preloaded with heat-killed Escherichia coli 0111:B4 (HKEB) or lipopolysaccharide (LPS)] and incubated in dry heat blocks at 37°C for 24 h. Cytokine analysis of the supernatant was performed by multiplex assay. Cirrhotic patients exhibited a robust proinflammatory response to HKEB compared with HCs, with increased production of interferon-γ-induced protein 10 (IP-10) and IFN-λ1, and to LPS, with increased production of IFN-λ1. Decompensated patients demonstrated an augmented immune response compared with compensated patients, orchestrated by an increase in type I, II, and III interferons, and higher levels of IL-1β, IL-6, and IL-8 post-LPS stimulation. IL-1β, TNF-α, and IP-10 post-HKEB stimulation and IP-10 post-LPS stimulation negatively correlated with biochemical markers of liver disease severity and liver disease severity scores. Cirrhotic patients exposed to bacterial products exhibit an exaggerated inflammatory response orchestrated by IFNs, IL-6, and IL-8. Poststimulation levels of a number of proinflammatory cytokines negatively correlate with markers of liver disease severity raising the possibility that the switch to an immunodeficient phenotype in CAID may commence earlier in the course of advanced liver disease. NEW & NOTEWORTHY Decompensated cirrhotic patients, compared with compensated patients, exhibit a greater exaggerated inflammatory response to bacterial products orchestrated by interferons, IL-6, and IL-8. Postbacterial product stimulation levels of a number of pro-inflammatory cytokines negatively correlate with liver disease severity biomarkers and liver disease severity scores raising the possibility that the switch to an immunodeficient phenotype in cirrhosis-associated immune dysfunction may commence earlier in the course of advanced liver disease.
Collapse
Affiliation(s)
- Victoria T. Kronsten
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Charlotte A. Woodhouse
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Tiong Yeng Lim
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lindsey A. Edwards
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Marc Martinez-Llordella
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Debbie L. Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Lee SI, Jeong CG, Ul Salam Mattoo S, Nazki S, Prasad Aganja R, Kim SC, Khatun A, Oh Y, Noh SH, Lee SM, Kim WI. Protective immunity induced by concurrent intradermal injection of porcine circovirus type 2 and Mycoplasma hyopneumoniae inactivated vaccines in pigs. Vaccine 2021; 39:6691-6699. [PMID: 34538524 DOI: 10.1016/j.vaccine.2021.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022]
Abstract
Vaccines against porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (Mhp) are routinely used by intramuscular injection. However, since intramuscular vaccination causes stress and increases the risk of cross-contamination among pigs, research on intradermal vaccination is currently being actively conducted. This study was designed to evaluate the efficacy of intradermally administered inactivated vaccines against PCV2 and Mhp in pigs. Three-week-old specific pathogen-free pigs were divided into three groups (5 pigs per group). Pigs in the two groups were intradermally vaccinated with the PCV2 or Mhp vaccine using a needle-free injector. Pigs in the third group were kept as nonvaccinated controls. At 21 days post-vaccination, pigs in one of these vaccinated groups and the nonvaccinated group were intranasally challenged with PCV2b and Mhp, while the other vaccinated group pigs were maintained as vaccine controls. Vaccine efficacy was evaluated by observing weight gain, pathogen load, pathological changes, and humoral or cellular immune responses. As a result, vaccinated pigs revealed significantly higher body weight gain, with lower clinical scores. Vaccinated pigs also showed higher antibody responses but lower PCV2b or Mhp loads in sera, nasal swabs, or lungs than nonvaccinated pigs. Intriguingly, vaccinated pigs upregulated cytotoxic T cells (CTLs), helper T type 1 cells (Th1 cells), and helper T type 17 cells (Th17 cells) after immunization and showed significantly higher levels of CTLs, Th1 and Th17 cells at 14 days post-challenge than nonvaccinated and challenged pigs. This study demonstrated that protective immune responses against PCV2 and Mhp could be efficiently induced in pigs using a relatively small volume of intradermal vaccines, probably due to effective antigen delivery to antigen-presenting cells in the dermis.
Collapse
Affiliation(s)
- Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | | | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea; The Pirbright Institute, Ash Road, Pirbright-GU24 0NF, Woking, United Kingdom.
| | - Ram Prasad Aganja
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea.
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea; Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Yeonsu Oh
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sang-Hyun Noh
- MSD Animal Health Korea Ltd., Seoul 04637, Republic of Korea.
| | - Sang-Myeong Lee
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| |
Collapse
|
8
|
IL-5 mediates monocyte phenotype and pain outcomes in fibromyalgia. Pain 2021; 162:1468-1482. [PMID: 33003107 PMCID: PMC7987864 DOI: 10.1097/j.pain.0000000000002089] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023]
Abstract
ABSTRACT Fibromyalgia (FM) is characterized by widespread chronic pain, fatigue, and somatic symptoms. The influence of phenotypic changes in monocytes on symptoms associated with FM is not fully understood. The primary aim of this study was to take a comprehensive whole-body to molecular approach in characterizing relationships between monocyte phenotype and FM symptoms in relevant clinical populations. Lipopolysaccharide-evoked and spontaneous secretion of IL-5 and other select cytokines from circulating monocytes was higher in women with FM compared to women without pain. In addition, greater secretion of IL-5 was significantly associated with pain and other clinically relevant psychological and somatic symptoms of FM. Furthermore, higher levels of pain and pain-related symptoms were associated with a lower percentage of intermediate monocytes (CD14++/CD16+) and a greater percentage of nonclassical monocytes (CD14+/CD16++) in women with FM. Based on findings from individuals with FM, we examined the role of IL-5, an atypical cytokine secreted from monocytes, in an animal model of widespread muscle pain. Results from the animal model show that IL-5 produces analgesia and polarizes monocytes toward an anti-inflammatory phenotype (CD206+). Taken together, our data suggest that monocyte phenotype and their cytokine profiles are associated with pain-related symptoms in individuals with FM. Furthermore, our data show that IL-5 has a potential role in analgesia in an animal model of FM. Thus, targeting anti-inflammatory cytokines such as IL-5 secreted by circulating leukocytes could serve as a promising intervention to control pain and other somatic symptoms associated with FM.
Collapse
|
9
|
Levin G, Boyd JG, Day A, Hunt M, Maslove DM, Norman P, O'Callaghan N, Sibley S, Muscedere J. The relationship between immune status as measured by stimulated ex-vivo tumour necrosis factor alpha levels and the acquisition of nosocomial infections in critically ill mechanically ventilated patients. Intensive Care Med Exp 2020; 8:55. [PMID: 32936371 PMCID: PMC7494693 DOI: 10.1186/s40635-020-00344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Immunological dysfunction is common in critically ill patients but its clinical significance and the optimal method to measure it are unknown. The level of tumor necrosis factor alpha (TNF-α) after ex-vivo whole blood stimulation with lipopolysaccharide (LPS) has been proposed as a possible method to quantify immunological function. We hypothesized that in a cohort of critically ill patients, those with a lower post-stimulation TNF-α level would have increased rates of nosocomial infections (NIs) and worse clinical outcomes. Methods A secondary analysis of a phase 2 randomized, multi-centre, double-blinded placebo-controlled trial. As there was no difference between treatment and control arms in outcomes and NI rate, all the patients were analyzed as one cohort. On enrolment, day 4, 7, and weekly until day 28, whole blood was incubated with LPS ex-vivo and subsequent TNF-α level was measured. Patients were grouped in tertiles according to delta and peak TNF-α level. The primary outcome was the association between NIs and tertiles of TNF-α level post LPS stimulation; secondary outcomes included ICU and 90-day mortality, and ICU and hospital length of stay. Results Data was available for 201 patients. Neither the post LPS stimulation delta TNF-α group nor the peak TNF-α post-stimulation group were associated with the development of NIs or clinical outcomes. Patients in the highest tertile for post LPS stimulation delta TNF-α compared to the lowest tertile were younger [61.1 years ± 15.7 vs. 68.6 years ± 12.8 standard deviations (SD) in the lowest tertile], had lower acuity of illness (APACHE II 25.0 ± 9.7 vs. 26.7 ± 6.1) and had lower baseline TNF-α (9.9 pg/mL ± 19.0 vs. 31.0 pg/mL ± 68.5). When grouped according to peak post-stimulation TNF-α levels, patients in the highest tertile had higher serum TNF-α at baseline (21.3 pg/mL ± 66.7 compared to 6.5 pg/mL ± 9.0 in the lowest tertile). Conclusion In this prospective multicenter study, ex-vivo stimulated TNF-α level was not associated with the occurrence of NIs or clinical outcomes. Further study is required to better ascertain whether TNF levels and ex-vivo stimulation can be used to characterize immune function in critical illness and if other assays might be better suited to this task.
Collapse
Affiliation(s)
| | - J Gordon Boyd
- Department of Critical Care Medicine, Queen's University, Watkins C, 76 Stuart Street, Kingston, Ontario, K7L 2V3, Canada
| | - Andrew Day
- Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Miranda Hunt
- Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - David M Maslove
- Department of Critical Care Medicine, Queen's University, Watkins C, 76 Stuart Street, Kingston, Ontario, K7L 2V3, Canada
| | - Patrick Norman
- Kingston Health Sciences Center, Kingston, Ontario, Canada
| | | | | | - John Muscedere
- Department of Critical Care Medicine, Queen's University, Watkins C, 76 Stuart Street, Kingston, Ontario, K7L 2V3, Canada.
| |
Collapse
|
10
|
Chetaille Nézondet AL, Poubelle PE, Pelletier M. The evaluation of cytokines to help establish diagnosis and guide treatment of autoinflammatory and autoimmune diseases. J Leukoc Biol 2020; 108:647-657. [PMID: 32040246 DOI: 10.1002/jlb.5mr0120-218rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
Our knowledge of the role of cytokines in pathologic conditions has increased considerably with the emergence of molecular and genetic studies, particularly in the case of autoinflammatory monogenic diseases. Many rare disorders, considered orphan until recently, are directly related to abnormal gene regulation, and the treatment with biologic agents (biologics) targeting cytokine receptors, intracellular signaling or specific cytokines improve the symptoms of an increasing number of chronic inflammatory diseases. As it is currently impossible to systematically conduct genetic studies for all patients with autoinflammatory and autoimmune diseases, the evaluation of cytokines can be seen as a simple, less time consuming, and less expensive alternative. This approach could be especially useful when the diagnosis of syndromes of diseases of unknown etiology remains problematic. The evaluation of cytokines could also help avoid the current trial-and-error approach, which has the disadvantages of exposing patients to ineffective drugs with possible unnecessary side effects and permanent organ damages. In this review, we discuss the various possibilities, as well as the limitations of evaluating the cytokine profiles of patients suffering from autoinflammatory and autoimmune diseases, with methods such as direct detection of cytokines in the plasma/serum or following ex vivo stimulation of PBMCs leading to the production of their cytokine secretome. The patients' secretome, combined with biomarkers ranging from genetic and epigenetic analyses to immunologic biomarkers, may help not only the diagnosis but also guide the choice of biologics for more efficient and rapid treatments.
Collapse
Affiliation(s)
- Anne-Laure Chetaille Nézondet
- Department of Medicine, Faculty of Medicine, Laval University, Québec, Canada.,Reproduction, Mother and Youth Health Axis, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Patrice E Poubelle
- Department of Medicine, Faculty of Medicine, Laval University, Québec, Canada.,Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, Québec, Canada.,Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada.,ARThrite Research Center, Laval University, Québec, Canada
| |
Collapse
|
11
|
Tran TAT, Grievink HW, Lipinska K, Kluft C, Burggraaf J, Moerland M, Tasev D, Malone KE. Whole blood assay as a model for in vitro evaluation of inflammasome activation and subsequent caspase-mediated interleukin-1 beta release. PLoS One 2019; 14:e0214999. [PMID: 30958862 PMCID: PMC6453527 DOI: 10.1371/journal.pone.0214999] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
Processing of pro-interleukin (IL)-1β and IL-18 is regulated by multiprotein complexes, known as inflammasomes. Inflammasome activation results in generation of bioactive IL-1β and IL-18, which can exert potent pro-inflammatory effects. Our aim was to develop a whole blood-based assay to study the inflammasome in vitro and that also can be used as an assay in clinical studies. We show whole blood is a suitable milieu to study inflammasome activation in primary human monocytes. We demonstrated that unprocessed human blood cells can be stimulated to activate the inflammasome by the addition of adenosine 5'-triphosphate (ATP) within a narrow timeframe following lipopolysaccharide (LPS) priming. Stimulation with LPS resulted in IL-1β release; however, addition of ATP is necessary for "full-blown" inflammasome stimulation resulting in high IL-1β and IL-18 release. Intracellular cytokine staining demonstrated monocytes are the major producers of IL-1β in human whole blood cultures, and this was associated with activation of caspase-1/4/5, as detected by a fluorescently labelled caspase-1/4/5 probe. By applying caspase inhibitors, we show that both the canonical inflammasome pathway (via caspase-1) as well as the non-canonical inflammasome pathway (via caspases-4 and 5) can be studied using this whole blood-based model.
Collapse
|
12
|
Nesseler N, Martin-Chouly C, Perrichet H, Ross JT, Rousseau C, Sinha P, Isslame S, Masseret E, Mallédant Y, Launey Y, Seguin P. Low interleukin-10 release after ex vivo stimulation of whole blood is associated with persistent organ dysfunction in sepsis: A prospective observational study. Anaesth Crit Care Pain Med 2019; 38:485-491. [PMID: 30797048 DOI: 10.1016/j.accpm.2019.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Sepsis profoundly alters immune homeostasis. Cytokine release after whole blood lipopolysaccharide (LPS)-stimulation reflects cell function across multiple immune cell classes and represents the immune response to LPS. The main goal of this study was to evaluate the prognostic value of ex vivo stimulation of whole blood with LPS in sepsis. METHODS Blood was drawn on day 1 and day 7 after admission, and stimulated ex vivo with LPS. Tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 were measured with and without stimulation. Our primary outcome measure was the persistence of at least one organ dysfunction at day 7. Organ dysfunction was defined according to the SOFA components by a score ≥ 2. RESULTS Forty-nine patients with sepsis from a 21-bed intensive care unit, and 23 healthy volunteers were enrolled. The blood of septic patients was less responsive to ex vivo stimulation with LPS than that of healthy controls at day 1 and 7, as demonstrated by lower TNF-α, IL-1β, IL-6 and IL-10 release. Persistent organ dysfunction was more frequent in patients with lower IL-10 release at day 1 but such an association was not found for pro-inflammatory cytokines. A persistent low IL-10 release at day 7 was also associated with persistent organ dysfunction. CONCLUSION These data suggest that the capacity to produce IL-10 in response to whole blood ex vivo stimulation early in sepsis, as well as persistent low IL-10 response over time, may help in prognostication and patient stratification. These results will need to be confirmed in future studies.
Collapse
Affiliation(s)
- Nicolas Nesseler
- Intensive care unit, anaesthesia and critical care department, Pontchaillou, university hospital of Rennes, 35000 Rennes, France; Rennes 1 university, Rennes, France; Inserm, UMR 1214 NuMeCan, Pontchaillou, university hospital of Rennes, 35000 Rennes, France; Clinical investigation centre, inserm unit 1414, Pontchaillou, university hospital of Rennes, 35000 Rennes, France.
| | - Corinne Martin-Chouly
- Rennes 1 university, Rennes, France; Inserm, UMR 1085 IRSET, research institute for environmental and occupational health, Rennes, France
| | - Harmonie Perrichet
- Intensive care unit, anaesthesia and critical care department, Pontchaillou, university hospital of Rennes, 35000 Rennes, France; Rennes 1 university, Rennes, France
| | - James T Ross
- Department of surgery, university of California, San Francisco, USA
| | - Chloé Rousseau
- Clinical investigation centre, inserm unit 1414, Pontchaillou, university hospital of Rennes, 35000 Rennes, France
| | - Pratik Sinha
- Department of medicine and anesthesia, division of pulmonary and critical care, university of California, San Francisco, USA
| | - Sonia Isslame
- Intensive care unit, anaesthesia and critical care department, Pontchaillou, university hospital of Rennes, 35000 Rennes, France
| | - Elodie Masseret
- Intensive care unit, anaesthesia and critical care department, Pontchaillou, university hospital of Rennes, 35000 Rennes, France
| | - Yannick Mallédant
- Intensive care unit, anaesthesia and critical care department, Pontchaillou, university hospital of Rennes, 35000 Rennes, France; Rennes 1 university, Rennes, France; Inserm, UMR 1214 NuMeCan, Pontchaillou, university hospital of Rennes, 35000 Rennes, France
| | - Yoann Launey
- Intensive care unit, anaesthesia and critical care department, Pontchaillou, university hospital of Rennes, 35000 Rennes, France; Rennes 1 university, Rennes, France; Inserm, UMR 1214 NuMeCan, Pontchaillou, university hospital of Rennes, 35000 Rennes, France
| | - Philippe Seguin
- Intensive care unit, anaesthesia and critical care department, Pontchaillou, university hospital of Rennes, 35000 Rennes, France; Rennes 1 university, Rennes, France; Inserm, UMR 1214 NuMeCan, Pontchaillou, university hospital of Rennes, 35000 Rennes, France; Clinical investigation centre, inserm unit 1414, Pontchaillou, university hospital of Rennes, 35000 Rennes, France
| |
Collapse
|
13
|
Masoumi F, Ghorbani S, Talebi F, Branton WG, Rajaei S, Power C, Noorbakhsh F. Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 328:50-59. [PMID: 30583215 DOI: 10.1016/j.jneuroim.2018.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the contributions of the MALAT1 long noncoding RNA to autoimmune neuroinflammation in central nervous system tissues from patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE). Expression of MALAT1 was decreased in the spinal cords of EAE mice as well as in stimulated splenocytes and primary macrophages. MALAT1 downregulation by specific siRNAs enhanced the polarization of macrophages towards the M1 phenotype. Interestingly, siRNA-mediated MALAT1 downregulation shifted the pattern of T-cell differentiation towards a Th1/Th17 cell profile and decreased differentiation towards a Tregs phenotype. Proliferation of T-cells was also increased following MALAT1 downregulation. These data point to a potential anti-inflammatory effect for MALAT1 in the context of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Farimah Masoumi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada; Multiple Sclerosis Centre, University of Alberta, Edmonton, AB, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Sloan RP, Shapiro PA, McKinley PS, Bartels M, Shimbo D, Lauriola V, Karmally W, Pavlicova M, Choi CJ, Choo T, Scodes JM, Flood P, Tracey KJ. Aerobic Exercise Training and Inducible Inflammation: Results of a Randomized Controlled Trial in Healthy, Young Adults. J Am Heart Assoc 2018; 7:e010201. [PMID: 30371169 PMCID: PMC6201415 DOI: 10.1161/jaha.118.010201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Background Consensus panels regularly recommend aerobic exercise for its health-promoting properties, due in part to presumed anti-inflammatory effects, but many studies show no such effect, possibly related to study differences in participants, interventions, inflammatory markers, and statistical approaches. This variability makes an unequivocal determination of the anti-inflammatory effects of aerobic training elusive. Methods and Results We conducted a randomized controlled trial of 12 weeks of aerobic exercise training or a wait list control condition followed by 4 weeks of sedentary deconditioning on lipopolysaccharide (0, 0.1, and 1.0 ng/mL)-inducible tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and on toll-like receptor 4 in 119 healthy, sedentary young adults. Aerobic capacity by cardiopulmonary exercise testing was measured at study entry (T1) and after training (T2) and deconditioning (T3). Despite a 15% increase in maximal oxygen consumption, there were no changes in inflammatory markers. Additional analyses revealed a differential longitudinal aerobic exercise training effect by lipopolysaccharide level in inducible TNF -α ( P=0.08) and IL-6 ( P=0.011), showing T1 to T2 increases rather than decreases in inducible (lipopolysaccharide 0.1, 1.0 versus 0.0 ng/mL) TNF- α (51% increase, P=0.041) and IL-6 (42% increase, P=0.11), and significant T2 to T3 decreases in inducible TNF- α (54% decrease, P=0.007) and IL-6 (55% decrease, P<0.001). There were no significant changes in either group at the 0.0 ng/mL lipopolysaccharide level for TNF- α or IL-6. Conclusions The failure to support the primary hypotheses and the unexpected post hoc findings of an exercise-training-induced proinflammatory response raise questions about whether and under what conditions exercise training has anti-inflammatory effects. Clinical Trial Registration URL : http://www.clinicaltrials.gov . Unique identifier: NCT 01335737.
Collapse
Affiliation(s)
- Richard P. Sloan
- Division of Behavioral MedicineDepartment of PsychiatryColumbia University Medical CenterNew YorkNY
- New York State Psychiatric InstituteNew YorkNY
| | - Peter A. Shapiro
- Division of Consultation/Liaison PsychiatryDepartment of PsychiatryColumbia University Medical CenterNew YorkNY
| | - Paula S. McKinley
- Division of Behavioral MedicineDepartment of PsychiatryColumbia University Medical CenterNew YorkNY
| | - Matthew Bartels
- Department of Rehabilitation MedicineColumbia University Medical CenterNew YorkNY
| | - Daichi Shimbo
- Department of MedicineColumbia University Medical CenterNew YorkNY
| | - Vincenzo Lauriola
- Division of Behavioral MedicineDepartment of PsychiatryColumbia University Medical CenterNew YorkNY
| | - Wahida Karmally
- Irving Institute for Clinical and Translational ResearchColumbia University Medical CenterNew YorkNY
| | - Martina Pavlicova
- Department of BiostatisticsMailman School of Public HealthColumbia University Medical CenterNew YorkNY
| | | | | | | | - Pamela Flood
- Department of AnesthesiologyColumbia University Medical CenterNew YorkNY
| | - Kevin J. Tracey
- The Feinstein Institute for Medical ResearchNorthwell HealthManhassettNY
| |
Collapse
|
15
|
Biomarker-guided stratification of autoimmune patients for biologic therapy. Curr Opin Immunol 2017; 49:56-63. [DOI: 10.1016/j.coi.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
|
16
|
Talebi F, Ghorbani S, Chan WF, Boghozian R, Masoumi F, Ghasemi S, Vojgani M, Power C, Noorbakhsh F. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation 2017; 14:55. [PMID: 28302134 PMCID: PMC5356264 DOI: 10.1186/s12974-017-0832-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background MicroRNAs have emerged as an important class of modulators of gene expression. These molecules influence protein synthesis through translational repression or degradation of mRNA transcripts. Herein, we investigated the potential role of miR-142a isoforms, miR-142a-3p and miR-142a-5p, in the context of autoimmune neuroinflammation. Methods The expression levels of two mature isoforms of miR-142 were measured in the brains of patients with multiple sclerosis (MS) and the CNS tissues from mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Expression analyses were also performed in mitogen and antigen-stimulated splenocytes, as well as macrophages and astrocytes using real-time RT-PCR. The role of the mature miRNAs was then investigated in T cell differentiation by transfection of CD4+ T cells, followed by flow cytometric analysis of intracellular cytokines. Luciferase assays using vectors containing the 3′UTR of predicted targets were performed to confirm the interaction of miRNA sequences with transcripts. Expression of targets were then analyzed in activated splenocytes and MS/EAE tissues. Results Expression of miR-142-5p was significantly increased in the frontal white matter from MS patients compared with white matter from non-MS controls. Likewise, expression levels of miR-142a-5p and miR-142a-3p showed significant upregulation in the spinal cords of EAE mice at days 15 and 25 post disease induction. Splenocytes stimulated with myelin oligodendrocyte glycoprotein (MOG) peptide or anti-CD3/anti-CD28 antibodies showed upregulation of miR-142a-5p and miR-142a-3p isoforms, whereas stimulated bone marrow-derived macrophages and primary astrocytes did not show any significant changes in miRNA expression levels. miR-142a-5p overexpression in activated lymphocytes shifted the pattern of T cell differentiation towards Th1 cells. Luciferase assays revealed SOCS1 and TGFBR1 as direct targets of miR-142a-5p and miR-142a-3p, respectively, and overexpression of miRNA mimic sequences suppressed the expression of these target transcripts in lymphocytes. SOCS1 levels were also diminished in MS white matter and EAE spinal cords. Conclusions Our findings suggest that increased expression of miR-142 isoforms might be involved in the pathogenesis of autoimmune neuroinflammation by influencing T cell differentiation, and this effect could be mediated by interaction of miR-142 isoforms with SOCS1 and TGFBR-1 transcripts. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0832-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Wing Fuk Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Roobina Boghozian
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farimah Masoumi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Ghasemi
- Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Mohammed Vojgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada.,Multiple Sclerosis Centre, University of Alberta, Edmonton, AB, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Hakimi J, Aboutorabian S, To F, Ausar SF, Rahman N, Brookes RH. Screening Vaccine Formulations in Fresh Human Whole Blood. Methods Mol Biol 2017; 1494:295-304. [PMID: 27718203 DOI: 10.1007/978-1-4939-6445-1_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Monitoring the immunological functionality of vaccine formulations is critical for vaccine development. While the traditional approach using established animal models has been relatively effective, the use of animals is costly and cumbersome, and animal models are not always reflective of a human response. The development of a human-based approach would be a major step forward in understanding how vaccine formulations might behave in humans. Here, we describe a platform methodology using fresh human whole blood (hWB) to monitor adjuvant-modulated, antigen-specific responses to vaccine formulations, which is amenable to analysis by standard immunoassays as well as a variety of other analytical techniques.
Collapse
Affiliation(s)
- Jalil Hakimi
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Sepideh Aboutorabian
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Frederick To
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Salvador F Ausar
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Nausheen Rahman
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Roger H Brookes
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4.
| |
Collapse
|
18
|
Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cellsin vitro. Immunol Invest 2016; 45:205-22. [DOI: 10.3109/08820139.2015.1122613] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-chain fatty acids produced by synbiotic mixtures in skim milk differentially regulate proliferation and cytokine production in peripheral blood mononuclear cells. Int J Food Sci Nutr 2015; 66:755-65. [DOI: 10.3109/09637486.2015.1088935] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci Rep 2015; 5:13886. [PMID: 26358827 PMCID: PMC4566081 DOI: 10.1038/srep13886] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Given the importance of monocytes in pathogenesis of infectious and other inflammatory disorders, delineating functional and phenotypic characterization of monocyte subsets has emerged as a critical requirement. Although human monocytes have been subdivided into three different populations based on surface expression of CD14 and CD16, published reports suffer from contradictions with respect to subset phenotypes and function. This has been attributed to discrepancies in reliable gating strategies for flow cytometric characterization and purification protocols contributing to significant changes in receptor expression. By using a combination of multicolour flow cytometry and a high-dimensional automated clustering algorithm to confirm robustness of gating strategy and analysis of ex-vivo activation of whole blood with LPS we demonstrate the following: a. ‘Classical’ monocytes are phagocytic with no inflammatory attributes, b. ‘Non-classical’ subtype display ‘inflammatory’ characteristics on activation and display properties for antigen presentation and c. ‘Intermediate’ subtype that constitutes a very small percentage in circulation (under physiological conditions) appear to be transitional monocytes that display both phagocytic and inflammatory function. Analysis of blood from patients with Sepsis, a pathogen driven acute inflammatory disease and Systemic Lupus Erythmatosus (SLE), a chronic inflammatory disorder validated the broad conclusions drawn in the study.
Collapse
|
21
|
Blankley S, Graham CM, Howes A, Bloom CI, Berry MPR, Chaussabel D, Pascual V, Banchereau J, Lipman M, O’Garra A. Identification of the key differential transcriptional responses of human whole blood following TLR2 or TLR4 ligation in-vitro. PLoS One 2014; 9:e97702. [PMID: 24842522 PMCID: PMC4026482 DOI: 10.1371/journal.pone.0097702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 01/01/2023] Open
Abstract
The use of human whole blood for transcriptomic analysis has potential advantages over the use of isolated immune cells for studying the transcriptional response to pathogens and their products. Whole blood stimulation can be carried out in a laboratory without the expertise or equipment to isolate immune cells from blood, with the added advantage of being able to undertake experiments using very small volumes of blood. Toll like receptors (TLRs) are a family of pattern recognition receptors which recognise highly conserved microbial products. Using the TLR2 ligand (Pam3CSK4) and the TLR4 ligand (LPS), human whole blood was stimulated for 0, 1, 3, 6, 12 or 24 hours at which times mRNA was isolated and a comparative microarray was undertaken. A common NFκB transcriptional programme was identified following both TLR2 and TLR4 ligation which peaked at between 3 to 6 hours including upregulation of many of the NFκB family members. In contrast an interferon transcriptional response was observed following TLR4 but not TLR2 ligation as early as 1 hour post stimulation and peaking at 6 hours. These results recapitulate the findings observed in previously published studies using isolated murine and human myeloid cells indicating that in vitro stimulated human whole blood can be used to interrogate the early transcriptional kinetic response of innate cells to TLR ligands. Our study demonstrates that a transcriptomic analysis of mRNA isolated from human whole blood can delineate both the temporal response and the key transcriptional differences following TLR2 and TLR4 ligation.
Collapse
Affiliation(s)
- Simon Blankley
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| | - Christine M. Graham
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| | - Ashleigh Howes
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| | - Chloe I. Bloom
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| | - Matthew P. R. Berry
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
- Department of Respiratory Medicine, Imperial College Healthcare NHS trust, London, United Kingdom
| | - Damien Chaussabel
- Baylor Institute for Immunology Research/ANRS Center for Human Vaccines, INSERM, Dallas, Texas, United States of America
- Systems Immunology, Benaroya Research Institute, Seattle, Washington, United States of America
| | - Virginia Pascual
- Baylor Institute for Immunology Research/ANRS Center for Human Vaccines, INSERM, Dallas, Texas, United States of America
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
| | - Marc Lipman
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, University College London, London, United Kingdom
| | - Anne O’Garra
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
- Department of Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
22
|
Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, Urrutia A, Bisiaux A, Labrie ST, Dubois A, Boneca IG, Delval C, Thomas S, Rogge L, Schmolz M, Quintana-Murci L, Albert ML. Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity 2014; 40:436-50. [PMID: 24656047 DOI: 10.1016/j.immuni.2014.03.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/15/2014] [Indexed: 12/24/2022]
Abstract
Standardization of immunophenotyping procedures has become a high priority. We have developed a suite of whole-blood, syringe-based assay systems that can be used to reproducibly assess induced innate or adaptive immune responses. By eliminating preanalytical errors associated with immune monitoring, we have defined the protein signatures induced by (1) medically relevant bacteria, fungi, and viruses; (2) agonists specific for defined host sensors; (3) clinically employed cytokines; and (4) activators of T cell immunity. Our results provide an initial assessment of healthy donor reference values for induced cytokines and chemokines and we report the failure to release interleukin-1α as a common immunological phenotype. The observed naturally occurring variation of the immune response may help to explain differential susceptibility to disease or response to therapeutic intervention. The implementation of a general solution for assessment of functional immune responses will help support harmonization of clinical studies and data sharing.
Collapse
Affiliation(s)
- Darragh Duffy
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Vincent Rouilly
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; Center for Bioinformatics, Institut Pasteur, 75015 Paris, France
| | - Valentina Libri
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Milena Hasan
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Benoit Beitz
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Mikael David
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France
| | - Alejandra Urrutia
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Aurélie Bisiaux
- INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | | | - Annick Dubois
- Center for the Integration of Clinical Research, Institut Pasteur, 75015 Paris, France
| | - Ivo G Boneca
- Laboratory of Biology & Genetics of the Bacterial Cell Wall, Department of Microbiology, Institut Pasteur, 75015 Paris, France; INSERM, Equipe Avenir, 75015 Paris, France
| | - Cécile Delval
- Center for the Integration of Clinical Research, Institut Pasteur, 75015 Paris, France
| | - Stéphanie Thomas
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Lars Rogge
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; Laboratory of Immunoregulation, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Manfred Schmolz
- Myriad Rules Based Medicine, Inc., 72770 Reutlingen, Germany
| | - Lluis Quintana-Murci
- Laboratory of Human Evolutionary Genetics, Department of Genomes & Genetics, Institut Pasteur, 75015 Paris, France; CNRS URA3012, 75015 Paris, France.
| | - Matthew L Albert
- Center for Human Immunology, Institut Pasteur, 75015 Paris, France; INSERM U818, 75015 Paris, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015 Paris, France; INSERM UMS20, 75015 Paris, France.
| | | |
Collapse
|
23
|
Brookes RH, Hakimi J, Ha Y, Aboutorabian S, Ausar SF, Hasija M, Smith SG, Todryk SM, Dockrell HM, Rahman N. Screening vaccine formulations for biological activity using fresh human whole blood. Hum Vaccin Immunother 2014; 10:1129-35. [PMID: 24401565 PMCID: PMC4896559 DOI: 10.4161/hv.27657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired.
During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans.
For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety.
The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression.
Collapse
Affiliation(s)
- Roger H Brookes
- Department of Bioprocess Research and Development; Formulation and Stability Platform; Sanofi Pasteur; Toronto, ON Canada
| | - Jalil Hakimi
- Department of Bioprocess Research and Development; Formulation and Stability Platform; Sanofi Pasteur; Toronto, ON Canada
| | - Yukyung Ha
- Department of Bioprocess Research and Development; Formulation and Stability Platform; Sanofi Pasteur; Toronto, ON Canada
| | - Sepideh Aboutorabian
- Department of Bioprocess Research and Development; Formulation and Stability Platform; Sanofi Pasteur; Toronto, ON Canada
| | - Salvador F Ausar
- Department of Bioprocess Research and Development; Formulation and Stability Platform; Sanofi Pasteur; Toronto, ON Canada
| | - Manvi Hasija
- Department of Bioprocess Research and Development; Formulation and Stability Platform; Sanofi Pasteur; Toronto, ON Canada
| | - Steven G Smith
- Faculty of Infectious and Tropical Diseases; Department of Immunology and Infection; London School of Hygiene and Tropical Medicine; London, UK
| | - Stephen M Todryk
- Department of Applied Sciences; Faculty of Health & Life Sciences; Northumbria University; Newcastle upon Tyne, UK
| | - Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases; Department of Immunology and Infection; London School of Hygiene and Tropical Medicine; London, UK
| | - Nausheen Rahman
- Department of Bioprocess Research and Development; Formulation and Stability Platform; Sanofi Pasteur; Toronto, ON Canada
| |
Collapse
|
24
|
van Dooren FH, Duijvis NW, te Velde AA. Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. J Immunol Methods 2013; 396:128-33. [PMID: 23994257 DOI: 10.1016/j.jim.2013.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Cytokines are immunomodulating proteins involved in cellular communication. The levels of different cytokines reflect the immune capabilities of a person. In literature both whole blood and peripheral blood mononuclear cells (PBMCs) are used, which might lead to different results. The choice between these different sources is not always explained. The goal of our experiments is to determine the cytokine response of whole blood, PBMCs and polymorphonuclear cells (PMNs) after stimulation with lipopolysaccharide (LPS). We used a multiplex analysis to determine a difference in cytokine secretion patterns. In general, PBMCs demonstrated the highest cytokine production and PMNs have an overall low cytokine production. CCL11 and interleukin-23 (IL-23) (and IL-12p40) were exclusively expressed in whole blood. IL-20, VEGF and GM-CSF were expressed only by PBMCs. This difference in expression could be explained by the bioactive components in serum, presence and interaction with granulocytes or platelets in whole blood, the anticoagulant heparin in whole blood and others. The expression of cytokines by cells is dependent on the microenvironment. Different conditions lead to different results. We recommend a thorough examination of the conditions before performing experiments.
Collapse
Affiliation(s)
- Faas H van Dooren
- Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
Cellular and humoral immunity in chronic equine laminitis. Vet Immunol Immunopathol 2013; 153:217-26. [PMID: 23521925 DOI: 10.1016/j.vetimm.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
Abstract
Chronic equine laminitis causes persistent pain and lameness in affected animals and often necessitates euthanasia when pain management strategies become ineffective. Published studies as well as anecdotal reports suggest that this chronic inflammatory disease is associated with systemic alterations in immune responsiveness, perhaps involving an autoimmune component. We investigated this broad hypothesis by measuring a variety of immune indicators in healthy control horses (CON) and horses with chronic laminitis (LMN). We found that white blood cells from LMN horses produced more IFNγ than did cells from CON horses when stimulated in vitro with polyinosinic-polycytidylic acid [poly(I:C)], possibly due to an elevated number of circulating monocytes. No differences between groups were observed in plasma concentrations of IgG, IgA, IgM, IgE, or rheumatoid factor. Laminar tissue from LMN horses expressed elevated levels of keratinocyte damage-related genes as well as inflammatory cytokines and chemokines, which corresponded with a modest amount of neutrophil infiltration as shown by histological staining of fixed tissue and accumulation of neutrophil elastase protein. Taken together, our results do not support the hypothesis of an autoimmune component in chronic laminitis, although the strong induction of neutrophil chemokines and the presence of tissue neutrophils suggests that this cell type is likely involved in perpetuating the inflammation and tissue damage associated with this disease.
Collapse
|
26
|
Tuovinen E, Keto J, Nikkilä J, Mättö J, Lähteenmäki K. Cytokine response of human mononuclear cells induced by intestinal Clostridium species. Anaerobe 2013; 19:70-6. [DOI: 10.1016/j.anaerobe.2012.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 10/25/2012] [Accepted: 11/09/2012] [Indexed: 01/05/2023]
|
27
|
Uddin MJ, Nuro-Gyina PK, Islam MA, Tesfaye D, Tholen E, Looft C, Schellander K, Cinar MU. Expression dynamics of Toll-like receptors mRNA and cytokines in porcine peripheral blood mononuclear cells stimulated by bacterial lipopolysaccharide. Vet Immunol Immunopathol 2012; 147:211-22. [PMID: 22578850 PMCID: PMC11141511 DOI: 10.1016/j.vetimm.2012.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/07/2012] [Accepted: 04/20/2012] [Indexed: 01/25/2023]
Abstract
The Toll-like receptor (TLR)4 is critical for the recognition of Gram-negative bacterial lipopolysaccharide (LPS) but in porcine peripheral blood mononuclear cells (PBMCs) it may cooperate with other TLRs and lead to the production of inflammatory cytokines. Therefore, we analyzed TLR1-10 mRNA expression in porcine PBMCs stimulated with LPS over time (1-48 h) by using quantitative real-time PCR and cytokine proteins level by ELISA in culture supernatant. TLR1-10 mRNA was detectable in porcine PBMCs. When compared with the control (non-stimulated), TLR1 mRNA were increased (p<0.05) at 3 h after challenge with 1 μg/ml LPS, whereas TLR1 and TLR2 mRNA were increased (p<0.01) at 6 h after challenge with 10 μg/ml LPS. TLR4 increased (p<0.001) at 3h after challenge with LPS and remained constant. TLR5 and TLR6 mRNA increased (p<0.05) at 9 h and 1 h after of LPS stimulation, respectively. The mRNA of CD14 and MD2 were increased (p<0.001) at 1h after LPS stimulation. Additionally, at most of the time analyzed, the mRNA expression increased with the dose of LPS. The LPS concentration had influence (p<0.05) on all the TLRs expression except TLR10; whereas time had effect (p<0.05) on all TLRs expression except TLR2, 3, 6 and 10. When compared to the control, the cytokines IL1b, IL8 and TNFα proteins were increased (p<0.001) immediately at 1 h after LPS stimulation and remained constant till 48 h. IL12b was increased (p<0.001) 12 h after challenge with 10 μg/ml of LPS. Although IL8 level was the highest, the higher (p<0.05) expression of all these inflammatory cytokines indicate that upon interacting with TLRs, LPS exerted inflammatory response in PBMCs through the production of Th1 type cytokines. The production of cytokines was influenced (p<0.001) by both the dose of LPS and the stimulation time. Hence, the porcine PBMCs are likely able to express all members of TLRs.
Collapse
Affiliation(s)
- Muhammad Jasim Uddin
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Walker MR, Makropoulos DA, Achuthanandam R, Van Arsdell S, Bugelski PJ. Development of a human whole blood assay for prediction of cytokine release similar to anti-CD28 superagonists using multiplex cytokine and hierarchical cluster analysis. Int Immunopharmacol 2011; 11:1697-705. [PMID: 21689786 DOI: 10.1016/j.intimp.2011.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/23/2023]
Abstract
Anti-CD28 superagonist (SA) mediated cytokine release syndrome (CRS), an adverse event resulting in systemic release of cytokines, is an emergent issue in drug development. CRS is of potential concern for all monoclonal antibodies (mAbs) particularly those directed against cell surface targets on lymphocytes. Concern regarding patient safety requires development of novel methods to predict these adverse reactions. Due to the inability of animal studies to predict CRS, we have developed a whole blood in vitro screen to support First in Human studies and assess the potential for mAbs to cause anti-CD28 SA-like CRS. For this purpose we have immobilized marketed mAbs, whose potential for causing CRS and milder infusion reactions is known, on Protein A beads and used these beads to stimulate cytokine release. After culture, supernatants are harvested and frozen for later multiplex analysis of cytokines using Searchlight™ technology. We have employed hierarchicalluster analysis (HCA) to allow comparison of 12 different cytokine levels across numerous donors, treatments, and experiments. Results conclusively distinguish test mAb responses from an anti-CD28 superagonist mAb response. As part of a global analysis of preclinical data, the results of this assay can facilitate entry into First in Human clinical trials, help with selection of starting doses and may allow more rapid dose escalation using smaller cohorts.
Collapse
Affiliation(s)
- Mindi R Walker
- Biologics Toxicology, Center of Excellence in Biotechnology, Centocor R&D Inc., Radnor, PA 19087, United States.
| | | | | | | | | |
Collapse
|