1
|
Miyauchi S, Arimoto KI, Liu M, Zhang Y, Zhang DE. Protocol to study the immune profile of syngeneic mouse tumor models. STAR Protoc 2024; 5:103139. [PMID: 38878286 PMCID: PMC11234017 DOI: 10.1016/j.xpro.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Flow cytometry, single-cell RNA sequencing, and other analyses enable us to capture immune profiles of the tumor microenvironment. Here, we present a protocol to characterize the immune profile of tumor-bearing mice. We describe steps for establishing mouse models and preparing single-cell suspensions from tumor tissue and other immune-related organs, which can be further analyzed by flow cytometry and other omics assays. We then detail procedures for staining, flow cytometry analysis, and phenotyping of the immune cell populations. For complete details on the use and execution of this protocol, please refer to Miyauchi et al.1.
Collapse
Affiliation(s)
- Sayuri Miyauchi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kei-Ichiro Arimoto
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yue Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Arlt E, Kindermann A, Fritsche AK, Navarrete Santos A, Kielstein H, Bazwinsky-Wutschke I. A Flow Cytometry-Based Examination of the Mouse White Blood Cell Differential in the Context of Age and Sex. Cells 2024; 13:1583. [PMID: 39329764 PMCID: PMC11430320 DOI: 10.3390/cells13181583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Analysis of the white blood cell differential as part of a flow cytometry-based approach is a common routine diagnostic tool used in clinics and research. For human blood, the methodological approach, suitable markers, and gating strategies are well-established. However, there is a lack of information regarding the mouse blood count. In this article, we deliver a fast and easy protocol for reprocessing mouse blood for the purpose of flow cytometric analysis, as well as suitable markers and gating strategies. We also present two possible applications: for the analysis of the whole blood count, with blood from a cardiac puncture, and for the analysis of a certain leukocyte subset at multiple time points in the framework of a mouse experiment, using blood from the facial vein. Additionally, we provide orientation values by applying the method to 3-month-old and 24-month-old male and female C57BL/6J mice. Our analyses demonstrate differences in the leukocyte fractions depending on age and sex. We discuss the influencing factors and limitations that can affect the results and that, therefore, need to be considered when applying this method. The present study fills the gap in the knowledge related to the rare information on flow cytometric analysis of mouse blood and, thus, lays the foundation for further investigations in this area.
Collapse
Affiliation(s)
- Elise Arlt
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| | - Andrea Kindermann
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| | - Anne-Kristin Fritsche
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
- Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Alexander Navarrete Santos
- Core Facility Flow Cytometry, Center for Basic Medical Research, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; (A.K.); (A.-K.F.); (H.K.); (I.B.-W.)
| |
Collapse
|
3
|
Smith HL, Goodlett BL, Navaneethabalakrishnan S, Mitchell BM. Elevated Salt or Angiotensin II Levels Induce CD38+ Innate Immune Cells in the Presence of Granulocyte-Macrophage Colony Stimulating Factor. Cells 2024; 13:1302. [PMID: 39120331 PMCID: PMC11311366 DOI: 10.3390/cells13151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Hypertension (HTN) impacts almost half of adults, predisposing them to cardiovascular disease and renal damage. Salt-sensitive HTN (SSHTN) and angiotensin II (A2)-induced HTN (A2HTN) both involve immune system activation and renal innate immune cell infiltration. Subpopulations of activated [Cluster of differentiation 38 (CD38)] innate immune cells, such as macrophages and dendritic cells (DCs), play distinct roles in modulating renal function and blood pressure. It is unknown how these cells become CD38+ or which subtypes are pro-hypertensive. When bone marrow-derived monocytes (BMDMs) were grown in granulocyte-macrophage colony stimulating factor (GM-CSF) and treated with salt or A2, CD38+ macrophages and CD38+ DCs increased. The adoptive transfer of GM-CSF-primed BMDMs into mice with either SSHTN or A2HTN increased renal CD38+ macrophages and CD38+ DCs. Flow cytometry revealed increased renal M1 macrophages and type-2 conventional DCs (cDC2s), along with their CD38+ counterparts, in mice with either SSHTN or A2HTN. These results were replicable in vitro. Either salt or A2 treatment of GM-CSF-primed BMDMs significantly increased bone marrow-derived (BMD)-M1 macrophages, CD38+ BMD-M1 macrophages, BMD-cDC2s, and CD38+ BMD-cDC2s. Overall, these data suggest that GM-CSF is necessary for the salt or A2 induction of CD38+ innate immune cells, and that CD38 distinguishes pro-hypertensive immune cells. Further investigation of CD38+ M1 macrophages and CD38+ cDC2s could provide new therapeutic targets for both SSHTN and A2HTN.
Collapse
Affiliation(s)
| | | | | | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX 77807, USA; (H.L.S.)
| |
Collapse
|
4
|
de la Visitación N, Chen W, Krishnan J, Van Beusecum JP, Amarnath V, Hennen EM, Zhao S, Saleem M, Ao M, Dikalov SI, Dikalova AE, Harrison DG, Patrick DM. Immunoproteasomal Processing of IsoLG-Adducted Proteins Is Essential for Hypertension. Circ Res 2024; 134:1276-1291. [PMID: 38623763 PMCID: PMC11081850 DOI: 10.1161/circresaha.124.324068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.
Collapse
Affiliation(s)
- Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jaya Krishnan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Charleston South Carolina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Venkataraman Amarnath
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Shilin Zhao
- Vanderbilt Center for Quantitative Science, Vanderbilt University Medical Center
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergey I. Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna E. Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
5
|
Brendle SA, Li JJ, Walter V, Schell TD, Kozak M, Balogh KK, Lu S, Christensen ND, Zhu Y, El-Bayoumy K, Hu J. Immune Responses in Oral Papillomavirus Clearance in the MmuPV1 Mouse Model. Pathogens 2023; 12:1452. [PMID: 38133335 PMCID: PMC10745854 DOI: 10.3390/pathogens12121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV)-induced oropharyngeal cancer now exceeds HPV-induced cervical cancer, with a noticeable sex bias. Although it is well established that women have a more proficient immune system, it remains unclear whether immune control of oral papillomavirus infections differs between sexes. In the current study, we use genetically modified mice to target CCR2 and Stat1 pathways, with the aim of investigating the role of both innate and adaptive immune responses in clearing oral papillomavirus, using our established papillomavirus (MmuPV1) infection model. Persistent oral MmuPV1 infection was detected in Rag1ko mice with T and B cell deficiencies. Meanwhile, other tested mice were susceptible to MmuPV1 infections but were able to clear the virus. We found sex differences in key myeloid cells, including macrophages, neutrophils, and dendritic cells in the infected tongues of wild type and Stat1ko mice but these differences were not observed in CCR2ko mice. Intriguingly, we also observed a sex difference in anti-MmuPV1 E4 antibody levels, especially for two IgG isotypes: IgG2b and IgG3. However, we found comparable numbers of interferon-gamma-producing CD8 T cells stimulated by E6 and E7 in both sexes. These findings suggest that males and females may use different components of innate and adaptive immune responses to control papillomavirus infections in the MmuPV1 mouse model. The observed sex difference in immune responses, especially in myeloid cells including dendritic cell (DC) subsets, may have potential diagnostic and prognostic values for HPV-associated oropharyngeal cancer.
Collapse
Affiliation(s)
- Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.W.); (K.E.-B.)
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Todd D. Schell
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Song Lu
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Yusheng Zhu
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.W.); (K.E.-B.)
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| |
Collapse
|
6
|
Zhou X, Chen X, Zhang L, Yuan J, Lin H, Zhu M, Xu X, Dong G, Fu J, Wu W. Mannose-Binding Lectin Reduces Oxidized Low-Density Lipoprotein Induced Vascular Endothelial Cells Injury by Inhibiting LOX1-ox-LDL Binding and Modulating Autophagy. Biomedicines 2023; 11:1743. [PMID: 37371838 DOI: 10.3390/biomedicines11061743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Objective: To investigate the role of mannose-binding lectin (MBL) in modulating autophagy and protecting endothelial cells (ECs) from oxidized low-density lipoprotein (ox-LDL)-induced injury. Methods: Serum MBL concentration and carotid intima-media thickness (cIMT) were measured in 94 obese and 105 healthy children. ECs were transfected with MBL over-expression plasmid, LOX1 was knocked-down to explore the protective role of MBL in ox-LDL induced ECs injury. Dendritic cells (DCs) were co-cultured with ECs, and inflammatory factors, DC maturation, and autophagy was assessed. WT and ApoE-/- mice were fed with a high fat diet (HFD) with or without MBL-adenovirus injection for 16 weeks and aortic vascular endothelial tissue was isolated, then atherosclerotic plaque, cell injury and autophagy were analyzed. Results: Serum MBL concentration in obese children was lower than healthy controls and was negatively correlated with cIMT. The uptake of ox-LDL was decreased in LOX1 knock-down ECs. MBL over-expression in vitro inhibited LOX1-ox-LDL binding. Both LOX1 knock-down and MBL over-expression can ameliorate EC autophagy and cell injury. MBL over-expression in vivo alleviated atherosclerotic plaque formation, influenced DC maturation and down-regulated IL-6, IL-12, and TNF-a levels. Conclusions: MBL exerts a protective role in ox-LDL-induced EC injury by modulating DC maturation and EC autophagy via inhibiting LOX1-ox-LDL binding.
Collapse
Affiliation(s)
- Xuelian Zhou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Xuefeng Chen
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Li Zhang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Jinna Yuan
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Hu Lin
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Mingqiang Zhu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Xiaoqin Xu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Wei Wu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| |
Collapse
|
7
|
Qiao H, Mei J, Yuan K, Zhang K, Zhou F, Tang T, Zhao J. Immune-regulating strategy against rheumatoid arthritis by inducing tolerogenic dendritic cells with modified zinc peroxide nanoparticles. J Nanobiotechnology 2022; 20:323. [PMID: 35836178 PMCID: PMC9281050 DOI: 10.1186/s12951-022-01536-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
In hypoxic dendritic cells (DCs), a low level of Zn2+ can induce the activation of immunogenic DCs (igDCs), thereby triggering an active T-cell response to propel the immune progression of rheumatoid arthritis (RA). This finding indicates the crucial roles of zinc and oxygen homeostasis in DCs during the pathogenesis of RA. However, very few studies have focused on the modulation of zinc and oxygen homeostasis in DCs during RA treatment. Proposed herein is a DC-targeting immune-regulating strategy to induce igDCs into tolerogenic DCs (tDCs) and inhibit subsequent T-cell activation, referred to as ZnO2/Catalase@liposome-Mannose nanoparticles (ZnCM NPs). ZnCM NPs displayed targeted intracellular delivery of Zn2+ and O2 towards igDCs in a pH-responsive manner. After inactivating OTUB1 deubiquitination, the ZnCM NPs promoted CCL5 degradation via NF-κB signalling, thereby inducing the igDC-tDC transition to further inhibit CD4+ T-cell homeostasis. In collagen-induced arthritis (CIA) mice, this nanoimmunoplatform showed significant accumulation in the spleen, where immature DCs (imDCs) differentiated into igDCs. Splenic tDCs were induced to alleviate ankle swelling, improve walking posture and safely inhibit ankle/spleen inflammation. Our work pioneers the combination of DC-targeting nanoplatforms with RA treatments and highlights the significance of zinc and oxygen homeostasis for the immunoregulation of RA by inducing tDCs with modified ZnO2 NPs, which provides novel insight into ion homeostasis regulation for the treatment of immune diseases with a larger variety of distinct metal or nonmetal ions. The DC-targeting immune-regulating nanostrategy was firstly employed to treat RA. The complex immune regulating effects was realized through a portable, convenient and green nanomaterial. Highlighting the significance of zinc and oxygen homeostasis for the immunoregulation of RA by inducing tDCs with modified ZnO2 NPs. Expanding the notion of ion homeostasis regulation with a larger variety of distinct metal or nonmetal ions.
Collapse
Affiliation(s)
- Han Qiao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jingtian Mei
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Yuan
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Zhang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Tingting Tang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jie Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Dendritic Cell Tumor Vaccination via Fc Gamma Receptor Targeting: Lessons Learned from Pre-Clinical and Translational Studies. Vaccines (Basel) 2021; 9:vaccines9040409. [PMID: 33924183 PMCID: PMC8074394 DOI: 10.3390/vaccines9040409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant recent improvements in the field of immunotherapy, cancer remains a heavy burden on patients and healthcare systems. In recent years, immunotherapies have led to remarkable strides in treating certain cancers. However, despite the success of checkpoint inhibitors and the advent of cellular therapies, novel strategies need to be explored to (1) improve treatment in patients where these approaches fail and (2) make such treatments widely and financially accessible. Vaccines based on tumor antigens (Ag) have emerged as an innovative strategy with the potential to address these areas. Here, we review the fundamental aspects relevant for the development of cancer vaccines and the critical role of dendritic cells (DCs) in this process. We first offer a general overview of DC biology and routes of Ag presentation eliciting effective T cell-mediated immune responses. We then present new therapeutic avenues specifically targeting Fc gamma receptors (FcγR) as a means to deliver antigen selectively to DCs and its effects on T-cell activation. We present an overview of the mechanistic aspects of FcγR-mediated DC targeting, as well as potential tumor vaccination strategies based on preclinical and translational studies. In particular, we highlight recent developments in the field of recombinant immune complex-like large molecules and their potential for DC-mediated tumor vaccination in the clinic. These findings go beyond cancer research and may be of relevance for other disease areas that could benefit from FcγR-targeted antigen delivery, such as autoimmunity and infectious diseases.
Collapse
|
9
|
Oyewole-Said D, Konduri V, Vazquez-Perez J, Weldon SA, Levitt JM, Decker WK. Beyond T-Cells: Functional Characterization of CTLA-4 Expression in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:608024. [PMID: 33384695 PMCID: PMC7770141 DOI: 10.3389/fimmu.2020.608024] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
The immune response consists of a finely-tuned program, the activation of which must be coupled with inhibitory mechanisms whenever initiated. This ensures tight control of beneficial anti-pathogen and anti-tumor responses while preserving tissue integrity, promoting tissue repair, and safeguarding against autoimmunity. A cogent example of this binary response is in the mobilization of co-stimulatory and co-inhibitory signaling in regulating the strength and type of a T-cell response. Of particular importance is the costimulatory molecule CD28 which is countered by CTLA-4. While the role of CD28 in the immune response has been thoroughly elucidated, many aspects of CTLA-4 biology remain controversial. The expression of CD28 is largely constrained to constitutive expression in T-cells and as such, teasing out its function has been somewhat simplified by a limited and specific expression profile. The expression of CTLA-4, on the other hand, while reported predominantly in T-cells, has also been described on a diverse repertoire of cells within both lymphoid and myeloid lineages as well as on the surface of tumors. Nonetheless, the function of CTLA-4 has been mostly described within the context of T-cell biology. The focus on T-cell biology may be a direct result of the high degree of amino acid sequence homology and the co-expression pattern of CD28 and CTLA-4, which initially led to the discovery of CTLA-4 as a counter receptor to CD28 (for which a T-cell-activating role had already been described). Furthermore, observations of the outsized role of CTLA-4 in Treg-mediated immune suppression and the striking phenotype of T-cell hyperproliferation and resultant disease in CTLA-4−/− mice contribute to an appropriate T-cell-centric focus in the study of CTLA-4. Complete elucidation of CTLA-4 biology, however, may require a more nuanced understanding of its role in a context other than that of T-cells. This makes particular sense in light of the remarkable, yet limited utility of anti-CTLA-4 antibodies in the treatment of cancers and of CTLA-4-Ig in autoimmune disorders like rheumatoid arthritis. By fully deducing the biology of CTLA-4-regulated immune homeostasis, bottlenecks that hinder the widespread applicability of CTLA-4-based immunotherapies can be resolved.
Collapse
Affiliation(s)
- Damilola Oyewole-Said
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Scott A Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Rodrigues KB, Dufort MJ, Llibre A, Speake C, Rahman MJ, Bondet V, Quiel J, Linsley PS, Greenbaum CJ, Duffy D, Tarbell KV. Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia 2020; 63:1576-1587. [PMID: 32500289 PMCID: PMC10091865 DOI: 10.1007/s00125-020-05179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this. METHODS The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured. RESULTS Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different. CONCLUSIONS/INTERPRETATION Our study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway. DATA AVAILABILITY Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452 ). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338 ). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia . Graphical abstract.
Collapse
Affiliation(s)
- Kameron B Rodrigues
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Pathology Department, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alba Llibre
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Cate Speake
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Vincent Bondet
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Juan Quiel
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Darragh Duffy
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France.
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
- Amgen Discovery Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
11
|
Mahiddine K, Hassel C, Murat C, Girard M, Guerder S. Tissue-Specific Factors Differentially Regulate the Expression of Antigen-Processing Enzymes During Dendritic Cell Ontogeny. Front Immunol 2020; 11:453. [PMID: 32296417 PMCID: PMC7136460 DOI: 10.3389/fimmu.2020.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) form a collection of antigen-presenting cells (APCs) that are distributed throughout the body. Conventional DCs (cDCs), which include the cDC1 and cDC2 subsets, and plasmacytoid DCs (pDCs) constitute the two major ontogenically distinct DC populations. The pDCs complete their differentiation in the bone marrow (BM), whereas the cDC subsets derive from pre-committed BM precursors, the pre-cDC, that seed lymphoid and non-lymphoid tissues where they further differentiate into mature cDC1 and cDC2. Within different tissues, cDCs express distinct phenotype and function. Notably, cDCs in the thymus are exquisitely efficient at processing and presenting antigens in the class II pathway, whereas in the spleen they do so only upon maturation induced by danger signals. To appraise this functional heterogeneity, we examined the regulation of the expression of distinct antigen-processing enzymes during DC ontogeny. We analyzed the expression of cathepsin S (CTSS), cathepsin L (CTSL), and thymus-specific serine protease (TSSP), three major antigen-processing enzymes regulating class II presentation in cDC, by DC BM precursors and immature and mature cDCs from the spleen and thymus. We found that pre-cDCs in the BM express relatively high levels of these different proteases. Then, their expression is modulated in a tissue-specific and subset-specific manner with immature and mature thymic cDCs expressing overall higher levels than immature splenic cDCs. On the other hand, the TSSP expression level is selectively down-regulated in spleen pDCs, whereas CTSS and CTSL are both increased in thymic and splenic pDCs. Hence, tissue-specific factors program the expression levels of these different proteases during DC differentiation, thus conferring tissue-specific function to the different DC subsets.
Collapse
Affiliation(s)
- Karim Mahiddine
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Chervin Hassel
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Claire Murat
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Maeva Girard
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Paul Sabatier Toulouse III, Toulouse, France
| |
Collapse
|
12
|
ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, Huang X, Day M, Koehn B, Lee SW, Silva Morales M, Hogquist KA, Jameson SC, Mueller D, Rothstein J, Blazar BR, Cheng C, Noelle RJ. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science 2020; 367:eaay0524. [PMID: 31949051 PMCID: PMC7391053 DOI: 10.1126/science.aay0524] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yanding Zhao
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elizabeth Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Evelien Schaafsma
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Sabrina Ceeraz
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA, USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Changwei Peng
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Xin Huang
- ImmuNext Corporation, Lebanon, NH, USA
| | - Maria Day
- ImmuNext Corporation, Lebanon, NH, USA
| | - Brent Koehn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Sam W Lee
- Yale University School of Medicine, New Haven, CT, USA
| | - Milagros Silva Morales
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Stephen C Jameson
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Mueller
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R Blazar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chao Cheng
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- ImmuNext Corporation, Lebanon, NH, USA
| |
Collapse
|
13
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
14
|
Schloss J, Ali R, Babad J, Guerrero-Ros I, Pongsachai J, He LZ, Keler T, DiLorenzo TP. Development and Characterization of a Preclinical Model for the Evaluation of CD205-Mediated Antigen Delivery Therapeutics in Type 1 Diabetes. Immunohorizons 2019; 3:236-253. [PMID: 31356169 DOI: 10.4049/immunohorizons.1900014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) are crucial for the production of adaptive immune responses to disease-causing microbes. However, in the steady state (i.e., in the absence of an infection or when Ags are experimentally delivered without a DC-activating adjuvant), DCs present Ags to T cells in a tolerogenic manner and are important for the establishment of peripheral tolerance. Delivery of islet Ags to DCs using Ag-linked Abs to the DC endocytic receptor CD205 has shown promise in the NOD mouse model of type 1 diabetes (T1D). It is important to note, however, that all myeloid DCs express CD205 in humans, whereas in mice, only one of the classical DC subsets does (classical DC1; CD8α+ in spleen). Thus, the evaluation of CD205-targeted treatments in mice will likely not accurately predict the results observed in humans. To overcome this challenge, we have developed and characterized a novel NOD mouse model in which all myeloid DCs transgenically express human CD205 (hCD205). This NOD.hCD205 strain displays a similar T1D incidence profile to standard NOD mice. The presence of the transgene does not alter DC development, phenotype, or function. Importantly, the DCs are able to process and present Ags delivered via hCD205. Because Ags taken up via hCD205 can be presented on both class I and class II MHC, both CD4+ and CD8+ T cells can be modulated. As both T cell subsets are important for T1D pathogenesis, NOD.hCD205 mice represent a unique, patient-relevant tool for the development and optimization of DC-directed T1D therapies.
Collapse
Affiliation(s)
- Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Jillamika Pongsachai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Li-Zhen He
- Celldex Therapeutics Inc., Hampton, NJ 08827
| | - Tibor Keler
- Celldex Therapeutics Inc., Hampton, NJ 08827
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461.,Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and.,The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
15
|
Mattner J, Mohammed JP, Fusakio ME, Giessler C, Hackstein CP, Opoka R, Wrage M, Schey R, Clark J, Fraser HI, Rainbow DB, Wicker LS. Genetic and functional data identifying Cd101 as a type 1 diabetes (T1D) susceptibility gene in nonobese diabetic (NOD) mice. PLoS Genet 2019; 15:e1008178. [PMID: 31199784 PMCID: PMC6568395 DOI: 10.1371/journal.pgen.1008178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-β mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.
Collapse
Affiliation(s)
- Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Javid P Mohammed
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Michael E Fusakio
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Claudia Giessler
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carl-Philipp Hackstein
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Opoka
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Marius Wrage
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Schey
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Clark
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Heather I Fraser
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Jung SR, Suprunenko T, Ashhurst TM, King NJC, Hofer MJ. Collateral Damage: What Effect Does Anti-CD4 and Anti-CD8α Antibody-Mediated Depletion Have on Leukocyte Populations? THE JOURNAL OF IMMUNOLOGY 2018; 201:2176-2186. [PMID: 30143586 DOI: 10.4049/jimmunol.1800339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
Anti-CD4 or anti-CD8α Ab-mediated depletion strategies are widely used to determine the role of T cell subsets. However, surface expression of CD4 and CD8α is not limited to T cells and occurs on other leukocyte populations as well. Using both unbiased t-distributed stochastic neighbor embedding of flow cytometry data and conventional gating strategies, we assessed the impact of anti-CD4 and anti-CD8α Ab-mediated depletion on non-T cell populations in mice. Our results show that anti-CD4 and anti-CD8α Ab injections not only resulted in depletion of T cells but also led to depletion of specific dendritic cell subsets in a dose-dependent manner. Importantly, the extent of this effect varied between mock- and virus-infected mice. We also demonstrate the importance of using a second, noncompeting Ab (clone CT-CD8α) to detect CD8α+ cells following depletion with anti-CD8α Ab clone 2.43. Our study provides a necessary caution to carefully consider the effects on nontarget cells when using Ab injections for leukocyte depletion in all experimental conditions.
Collapse
Affiliation(s)
- So Ri Jung
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tamara Suprunenko
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Ashhurst
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Cytometry, Core Facility of The University of Sydney and Centenary Institute, Sydney, New South Wales 2006, Australia; and.,Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicholas J C King
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Cytometry, Core Facility of The University of Sydney and Centenary Institute, Sydney, New South Wales 2006, Australia; and.,Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; .,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Pigni M, Ashok D, Stevanin M, Acha-Orbea H. Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line. Front Immunol 2018; 9:1912. [PMID: 30197645 PMCID: PMC6117413 DOI: 10.3389/fimmu.2018.01912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen presenting cells and possess an incomparable ability to activate and instruct T cells, which makes them one of the cornerstones in the regulation of the cross-talk between innate and adaptive immunity. Therefore, a deep understanding of DC biology lays the foundations to describe and to harness the mechanisms that regulate the development of the adaptive response, with clear implications in a vast array of fields such as the study of autoimmune diseases and the development of new vaccines. However, the great difficulty to obtain large quantities of viable non-activated DCs for experimentation have considerably hindered the progress of DC research. Several strategies have been proposed to overcome these limitations by promoting an increase of DC abundance in vivo, by inducing DC development from DC progenitors in vitro and by generating stable DC lines. In the past years, we have described a method to derive immortalized stable DC lines, named MutuDCs, from the spleens of Mushi1 mice, a transgenic mouse strain that express the simian virus 40 Large T-oncogene in the DCs. The comparison of these DC lines with the vast variety of DC subsets described in vivo has shown that all the MutuDC lines that we have generated so far have phenotypic and functional features of type 1 conventional DCs (cDC1s). With the purpose of deriving DC lines with characteristics of type 2 conventional DCs (cDC2s), we bred a new Batf3-/- Mushi1 murine line in which the development of the cDC1 subset is severely defective. The new MutuDC line that we generated from Batf3-/- Mushi1 mice was phenotypically and functionally characterized in this work. Our results demonstrated that all the tested characteristics of this new cell line, including the expression of subset-determining transcription factors, the profile of cytokine production and the ability to present antigens, are comparable with the features of splenic CD4- cDC2s. Therefore, we concluded that our new cell line, that we named CD4- MutuDC2 line, represents a valuable model for the CD4- cDC2 subset.
Collapse
Affiliation(s)
| | | | | | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
18
|
Santana-Magal N, Rasoulouniriana D, Saperia C, Gutwillig A, Rider P, Engleman EG, Carmi Y. Isolation Protocol of Mouse Monocyte-derived Dendritic Cells and Their Subsequent In Vitro Activation with Tumor Immune Complexes. J Vis Exp 2018. [PMID: 29912184 DOI: 10.3791/57188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) are heterogeneous cell populations that differ in their cell membrane markers, migration patterns and distribution, and in their antigen presentation and T cell activation capacities. Since most vaccinations of experimental tumor models require millions of DC, they are widely isolated from the bone marrow or spleen. However, these DC significantly differ from blood and tumor DC in their responses to immune complexes (IC), and presumably to other Syk-coupled lectin receptors. Importantly, given the sensitivity of DC to danger-associated molecules, the presence of endotoxins or antibodies that crosslink activation receptors in one of the isolating steps could result in the priming of DC and thus affect the parameters, or at least the dosage, required to activate them. Therefore, here we describe a detailed protocol for isolating MoDC from blood and tumors while avoiding their premature activation. In addition, a protocol is provided for MoDC activation with tumor IC, and their subsequent analyses.
Collapse
Affiliation(s)
| | | | - Corey Saperia
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University
| | - Amit Gutwillig
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University
| | - Peleg Rider
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University
| | - Edgar G Engleman
- Department of Pathology, School of Medicine, Stanford University
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University;
| |
Collapse
|
19
|
Rahman MJ, Rodrigues KB, Quiel JA, Liu Y, Bhargava V, Zhao Y, Hotta-Iwamura C, Shih HY, Lau-Kilby AW, Malloy AM, Thoner TW, Tarbell KV. Restoration of the type I IFN-IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice. JCI Insight 2018; 3:97843. [PMID: 29415894 DOI: 10.1172/jci.insight.97843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1-associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.
Collapse
Affiliation(s)
- M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.,Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Kameron B Rodrigues
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Juan A Quiel
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Yi Liu
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Philadelphia, Pennsylvania, USA
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Han-Yu Shih
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Annie W Lau-Kilby
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Allison Mw Malloy
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Timothy W Thoner
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.,Amgen Discovery Research, Inflammation and Oncology, South San Francisco, California, USA
| |
Collapse
|
20
|
Li J, Zhang X, Liu Q, Yang M, Zhou Z, Ye Y, Zhou Z, He X, Wang L. Myeloid-derived suppressor cells accumulate among myeloid cells contributing to tumor growth in matrix metalloproteinase 12 knockout mice. Cell Immunol 2017; 327:1-12. [PMID: 29555056 DOI: 10.1016/j.cellimm.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are found frequently in patients and mice bearing tumors, which derived from immature myeloid cells. In healthy individuals, immature myeloid cells formed in the bone marrow differentiating to dendritic cells, macrophages and neutrophils. However, it is unclear whether some gene deficiency will lead to MDSCs accumulation in mice without bearing tumor. Here, we observed that MDSCs accumulated in the bone marrow of matrix metalloproteinase 12 knockout mice (MMP12-/- mice) compared with wild type mice (MMP12+/+ mice). And the number of CD4+ cells dramatically decreased, regulatory T cells was up-regulation and MDSCs function were determined. The results suggested that immune surveillance have been impaired in MMP12-/- transgenic mice. After intravenous administration of B16 murine melanoma cells, MMP12-/- mice developed more metastatic pulmonary nodules than MMP12+/+ mice. Meanwhile, more MDSCs appeared in the tumors of MMP12-/- mice compared with those of MMP12+/+ mice. Mechanistically, we performed a MDSC blocking assay, finding that blockade of MDSCs resulted in reducing growth of tumors in MMP12-/- mice. Furthermore, we ascertained that macrophages in MMP12-/- mice abundantly secrete IL-1β in bone marrow which induce the accumulation of MDSCs in the bone marrow. Together, these results demonstrated that the macrophages in MMP12-/- mice could crosstalk with myeloid cells through IL-1β, inducing MDSCs accumulation, then contributing to tumor growth. It has revealed that the critical roles of macrophage in myeloid cells differentiation.
Collapse
Affiliation(s)
- Jiangchao Li
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohan Zhang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Liu
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Yang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zijun Zhou
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxiang Ye
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeqi Zhou
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
21
|
O'Donnell JA, Lehman J, Roderick JE, Martinez-Marin D, Zelic M, Doran C, Hermance N, Lyle S, Pasparakis M, Fitzgerald KA, Marshak-Rothstein A, Kelliher MA. Dendritic Cell RIPK1 Maintains Immune Homeostasis by Preventing Inflammation and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2017; 200:737-748. [PMID: 29212904 DOI: 10.4049/jimmunol.1701229] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/31/2017] [Indexed: 01/14/2023]
Abstract
Necroptosis is a form of cell death associated with inflammation; however, the biological consequences of chronic necroptosis are unknown. Necroptosis is mediated by RIPK1, RIPK3, and MLKL kinases but in hematopoietic cells RIPK1 has anti-inflammatory roles and functions to prevent necroptosis. Here we interrogate the consequences of chronic necroptosis on immune homeostasis by deleting Ripk1 in mouse dendritic cells. We demonstrate that deregulated necroptosis results in systemic inflammation, tissue fibrosis, and autoimmunity. We show that inflammation and autoimmunity are prevented upon expression of kinase inactive RIPK1 or deletion of RIPK3 or MLKL. We provide evidence that the inflammation is not driven by microbial ligands, but depends on the release of danger-associated molecular patterns and MyD88-dependent signaling. Importantly, although the inflammation is independent of type I IFN and the nucleic acid sensing TLRs, blocking these pathways rescues the autoimmunity. These mouse genetic studies reveal that chronic necroptosis may underlie human fibrotic and autoimmune disorders.
Collapse
Affiliation(s)
- Joanne A O'Donnell
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jesse Lehman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Justine E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Dalia Martinez-Marin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Matija Zelic
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ciara Doran
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Nicole Hermance
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephen Lyle
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany; and
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ann Marshak-Rothstein
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
22
|
Klementowicz JE, Mahne AE, Spence A, Nguyen V, Satpathy AT, Murphy KM, Tang Q. Cutting Edge: Origins, Recruitment, and Regulation of CD11c + Cells in Inflamed Islets of Autoimmune Diabetes Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:27-32. [PMID: 28550204 DOI: 10.4049/jimmunol.1601062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/26/2017] [Indexed: 01/07/2023]
Abstract
In NOD mice, CD11c+ cells increase greatly with islet inflammation and contribute to autoimmune destruction of pancreatic β cells. In this study, we investigated their origin and mechanism of recruitment. CD11c+ cells in inflamed islets resembled classical dendritic cells based on their transcriptional profile. However, the majority of these cells were not from the Zbtb46-dependent dendritic-cell lineage. Instead, monocyte precursors could give rise to CD11c+ cells in inflamed islets. Chemokines Ccl5 and Ccl8 were persistently elevated in inflamed islets and the influx of CD11c+ cells was partially dependent on their receptor Ccr5. Treatment with islet Ag-specific regulatory T cells led to a marked decrease of Ccl5 and Ccl8, and a reduction of monocyte recruitment. These results implicate a monocytic origin of CD11c+ cells in inflamed islets and suggest that therapeutic regulatory T cells directly or indirectly regulate their influx by altering the chemotactic milieu in the islets.
Collapse
Affiliation(s)
- Joanna E Klementowicz
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Ashley E Mahne
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Allyson Spence
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143;
| |
Collapse
|
23
|
Hu Z, Chen J, Zhou S, Yang N, Duan S, Zhang Z, Su J, He J, Zhang Z, Lu X, Zhao Y. Mouse IP-10 Gene Delivered by Folate-modified Chitosan Nanoparticles and Dendritic/tumor Cells Fusion Vaccine Effectively Inhibit the Growth of Hepatocellular Carcinoma in Mice. Am J Cancer Res 2017. [PMID: 28638480 PMCID: PMC5479281 DOI: 10.7150/thno.16236] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) and tumor cell fusion vaccine (DC/tumor cell fusion vaccine) is considered an effective approach in cancer biotherapy. However, its therapeutic effects in early clinical trials have been suboptimal partially due to the immunosuppressive tumor environment. In this study, we used nanoparticles of folate (FA)-modified chitosan, a non-viral vector capable of targeting tumor cells with high expression of FA receptors. FA-chitosan nanoparticles were used as biological carriers for the expression plasmid of the mouse interferon-induced protein-10 (mIP-10) gene, a potent chemoattractant for cytotoxic T cells. The combination of FA-chitosan/mIP-10 and DC/tumor cell fusion vaccine against hepatocellular carcinoma (HCC) effectively inhibited the growth of implanted HCC tumors and prolonged the survival of mice. The combination therapy significantly reduced myeloid-derived suppressor cells (MDSC) in mouse spleen, local tumor, and bone marrow while increasing tumor-specific IFN-γ responses. Furthermore, the combination therapy significantly inhibited tumor cell proliferation while promoting their apoptosis. Taken together, our data illustrate that the mIP-10 enhances the anti-tumor effect of DC/tumor cell fusion vaccine by alleviating the immunosuppressive tumor environment.
Collapse
|
24
|
Affiliation(s)
- Kang Liu
- Departments of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille University UM2, Inserm, U1104, CNRS 10, UMR7280, F-13288 Marseille Cedex 09, France.
| |
Collapse
|
25
|
Rahman MJ, Rahir G, Dong MB, Zhao Y, Rodrigues KB, Hotta-Iwamura C, Chen Y, Guerrero A, Tarbell KV. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1. THE JOURNAL OF IMMUNOLOGY 2016; 196:2031-40. [PMID: 26826238 DOI: 10.4049/jimmunol.1501239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.
Collapse
Affiliation(s)
- M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Gwendoline Rahir
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Matthew B Dong
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kameron B Rodrigues
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ye Chen
- Bioinformatics and Systems Biology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Guerrero
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
26
|
Hotta-Iwamura C, Tarbell KV. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. J Leukoc Biol 2016; 100:65-80. [PMID: 26792821 DOI: 10.1189/jlb.3mr1115-500r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results from the defective induction or maintenance of T cell tolerance against islet β cell self-antigens. Under steady-state conditions, dendritic cells with tolerogenic properties are critical for peripheral immune tolerance. Tolerogenic dendritic cells can induce T cell anergy and deletion and, in some contexts, induce or expand regulatory T cells. Dendritic cells contribute to both immunomodulatory effects and triggering of pathogenesis in type 1 diabetes. This immune equilibrium is affected by both genetic and environmental factors that contribute to the development of type 1 diabetes. Genome-wide association studies and disease association studies have identified >50 polymorphic loci that lend susceptibility or resistance to insulin-dependent diabetes mellitus. In parallel, diabetes susceptibility regions known as insulin-dependent diabetes loci have been identified in the nonobese diabetic mouse, a model for human type 1 diabetes, providing a better understanding of potential immunomodulatory factors in type 1 diabetes risk. Most genetic candidates have annotated immune cell functions, but the focus has been on changes to T and B cells. However, it is likely that some of the genomic susceptibility in type 1 diabetes directly interrupts the tolerogenic potential of dendritic cells in the pathogenic context of ongoing autoimmunity. Here, we will review how gene polymorphisms associated with autoimmune diabetes may influence dendritic cell development and maturation processes that could lead to alterations in the tolerogenic function of dendritic cells. These insights into potential tolerogenic and pathogenic roles for dendritic cells have practical implications for the clinical manipulation of dendritic cells toward tolerance to prevent and treat type 1 diabetes.
Collapse
Affiliation(s)
- Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|