1
|
Chengalroyen MD. Current Perspectives and Challenges of MAIT Cell-Directed Therapy for Tuberculosis Infection. Pathogens 2023; 12:1343. [PMID: 38003807 PMCID: PMC10675005 DOI: 10.3390/pathogens12111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a distinct population of non-conventional T cells that have been preserved through evolution and possess properties of both innate and adaptive immune cells. They are activated through the recognition of antigens presented by non-polymorphic MR1 proteins or, alternately, can be stimulated by specific cytokines. These cells are multifaceted and exert robust antimicrobial activity against bacterial and viral infections, direct the immune response through the modulation of other immune cells, and exhibit a specialized tissue homeostasis and repair function. These distinct characteristics have instigated interest in MAIT cell biology for immunotherapy and vaccine development. This review describes the current understanding of MAIT cell activation, their role in infections and diseases with an emphasis on tuberculosis (TB) infection, and perspectives on the future use of MAIT cells in immune-mediated therapy.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
2
|
New insights into MAIT cells in autoimmune diseases. Biomed Pharmacother 2023; 159:114250. [PMID: 36652733 DOI: 10.1016/j.biopha.2023.114250] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are resident T cells that express semi-invariant TCR chains and are restricted by monomorphic major histocompatibility complex (MHC) class I-related molecules (MR1). MAIT cells can be activated by microbial-specific metabolites (MR1-dependent mode) or cytokines (MR1-independent mode). Activated MAIT cells produce chemokines, cytotoxic molecules (granzyme B and perforin), and proinflammatory cytokines (IFN-γ, TNF-α, and IL-17), to clear pathogens and target infected cells involved in the pro-inflammatory, migratory, and cytolytic properties of MAIT cells. MAIT cells produce pro-inflammatory cytokines in the target organs of autoimmune diseases and contribute to the development and progression of autoimmune diseases. This article reviews the biological characteristics, activation mechanism, dynamic migration, and dual functions of MAIT cells, and focuses on the mechanism and potential application of MAIT cells in the early diagnosis, disease activity monitoring, and therapeutic targets of autoimmune diseases, to lay a foundation for future research.
Collapse
|
3
|
Tim-3 expression is induced by mycobacterial antigens and identifies tissue-resident subsets of MAIT cells from patients with tuberculosis. Microbes Infect 2023; 25:105021. [PMID: 35811063 DOI: 10.1016/j.micinf.2022.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
Tissue-resident MAIT cells in tuberculous pleural effusions, the site of tuberculosis infection, were investigated in the study. Tim-3+CD69+CD103+ and CD39+CD69+CD103+ tissue-resident MAIT cell subsets were identified in tuberculous pleural effusions. Tim-3 expression in MAIT cells was greatly induced and CD39 expression was elevated following ex vivo stimulation with Mycobacterium tuberculosis antigens. Mycobacterial antigen-stimulated Tim-3+CD69+CD103+ tissue-resident MAIT cells had higher frequency of IFN-γ- and granzyme B-producing cells than Tim-3-CD69+CD103+ subset, while CD39+CD69+CD103+ MAIT cells had similar frequency of IFN-γ-positive cells but higher ratio of granzyme B-producing cells than CD39-CD69+CD103+ subset. Blocking of IL-2, IL-12p70 or IL-18 but not IL-15 led to significantly reduced expression of Tim-3 compared with isotype antibody control. In contrast, CD39 expression was not influenced by any of the cytokines tested. Tim-3+ MAIT cells had higher levels of lipid uptake and lipid content than Tim-3- cells. It is concluded that Tim-3+CD69+CD103+ tissue-resident MAIT cells were elevated in tuberculous pleural effusions and had higher capacity to produce effector molecules of IFN-γ and granzyme B.
Collapse
|
4
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate T cells that recognize bacterial metabolites and secrete cytokines and cytolytic enzymes to destroy infected target cells. This makes MAIT cells promising targets for immunotherapy to combat bacterial infections. Here, we analyzed the effects of an immunotherapeutic agent, the IL-15 superagonist N-803, on MAIT cell activation, trafficking, and cytolytic function in macaques. We found that N-803 could activate MAIT cells in vitro and increase their ability to produce IFN-γ in response to bacterial stimulation. To expand upon this, we examined the phenotypes and functions of MAIT cells present in samples collected from PBMC, airways (bronchoalveolar lavage [BAL] fluid), and lymph nodes (LN) from rhesus macaques that were treated in vivo with N-803. N-803 treatment led to a transient 6 to 7-fold decrease in the total number of MAIT cells in the peripheral blood, relative to pre N-803 time points. Concurrent with the decrease in cells in the peripheral blood, we observed a rapid decline in the frequency of CXCR3+CCR6+ MAITs. This corresponded with an increase in the frequency of CCR6+ MAITs in the BAL fluid, and higher frequencies of ki-67+ and granzyme B+ MAITs in the blood, LN, and BAL fluid. Finally, N-803 improved the ability of MAIT cells collected from PBMC and airways to produce IFN-γ in response to bacterial stimulation. Overall, N-803 shows the potential to transiently alter the phenotypes and functions of MAIT cells, which could be combined with other strategies to combat bacterial infections.
Collapse
|
5
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
7
|
Xiong K, Sun W, Wang H, Xie J, Su B, Fan L. The frequency and dynamics of CD4 + mucosal-associated invariant T (MAIT) cells in active pulmonary tuberculosis. Cell Immunol 2021; 365:104381. [PMID: 34049011 DOI: 10.1016/j.cellimm.2021.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
MAIT cells are unconventional innate-like T lymphocytes contributing to host immune protection against Mycobacteria tuberculosis (Mtb) infection. CD4- MAIT cells play a major role in immune protection against tuberculosis (TB), however, the role of CD4+ MAIT cells was elusive due to their low abundance. We firstly investigated the frequency and functions of CD4+ MAIT cells in pulmonary tuberculosis (PTB) patients before and after anti-TB treatment. We found that the frequency of Mtb-reactive CD4+ MAIT cells and IFN-γ, granzyme B (GrzB), CD69 expression on them were increased while LAG-3+ cells of them were decreased in PTB patients. After the treatment, the frequency of Mtb-reactive CD4+ MAIT cells and CD69, IFN-γ, GrzB expression on them were decreased while LAG-3 increased. The results indicated the expression profile is distinct between CD4+ MAIT cells and CD4- MAIT cells in PTB patients, the increased IFN-γ and GrzB expression of CD4+ MAIT cells play a role in anti-TB immunity.
Collapse
Affiliation(s)
- Kunlong Xiong
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenwen Sun
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongxiu Wang
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| | - Bo Su
- Lab Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lin Fan
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Wen X, Zhang X, Nian S, Wei G, Guo X, Yu H, Xie X, Ye Y, Yuan Q. Title of article: Mucosal-associated invariant T cells in lung diseases. Int Immunopharmacol 2021; 94:107485. [PMID: 33647824 PMCID: PMC7909906 DOI: 10.1016/j.intimp.2021.107485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
The lungs are directly connected to the external environment, which makes them more vulnerable to infection and injury. They are protected by the respiratory epithelium and immune cells to maintain a dynamic balance. Both innate and adaptive immune cells are involved in the pathogenesis of lung diseases. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells, which have attracted increasing attention in recent years. Although MAIT cells account for a small part of the total immune cells in the lungs, evidence suggests that these cells are activated by T cell receptors and/or cytokine receptors and mediate immune response. They play an important role in immunosurveillance and immunity against microbial infection, and recent studies have shown that subsets of MAIT cells play a role in promoting pulmonary inflammation. Emerging data indicate that MAIT cells are involved in the immune response against SARS-CoV-2 and possible immunopathogenesis in COVID-19. Here, we introduce MAIT cell biology to clarify their role in the immune response. Then we review MAIT cells in human and murine lung diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, pulmonary tuberculosis and lung cancer, and discuss their possible protective and pathological effects. MAIT cells represent an attractive marker and potential therapeutic target for disease progression, thus providing new strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Xue Wen
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xingli Zhang
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Gang Wei
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiang Xie
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
9
|
Balfour A, Schutz C, Goliath R, Wilkinson KA, Sayed S, Sossen B, Kanyik JP, Ward A, Ndzhukule R, Gela A, Lewinsohn DM, Lewinsohn DA, Meintjes G, Shey M. Functional and Activation Profiles of Mucosal-Associated Invariant T Cells in Patients With Tuberculosis and HIV in a High Endemic Setting. Front Immunol 2021; 12:648216. [PMID: 33828558 PMCID: PMC8019701 DOI: 10.3389/fimmu.2021.648216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: MAIT cells are non-classically restricted T lymphocytes that recognize and rapidly respond to microbial metabolites or cytokines and have the capacity to kill bacteria-infected cells. Circulating MAIT cell numbers generally decrease in patients with active TB and HIV infection, but findings regarding functional changes differ. Methods: We conducted a cross-sectional study on the effect of HIV, TB, and HIV-associated TB (HIV-TB) on MAIT cell frequencies, activation and functional profile in a high TB endemic setting in South Africa. Blood was collected from (i) healthy controls (HC, n = 26), 24 of whom had LTBI, (ii) individuals with active TB (aTB, n = 36), (iii) individuals with HIV infection (HIV, n = 50), 37 of whom had LTBI, and (iv) individuals with HIV-associated TB (HIV-TB, n = 26). All TB participants were newly diagnosed and sampled before treatment, additional samples were also collected from 18 participants in the aTB group after 10 weeks of TB treatment. Peripheral blood mononuclear cells (PBMC) stimulated with BCG-expressing GFP (BCG-GFP) and heat-killed (HK) Mycobacterium tuberculosis (M.tb) were analyzed using flow cytometry. MAIT cells were defined as CD3+ CD161+ Vα7.2+ T cells. Results: Circulating MAIT cell frequencies were depleted in individuals with HIV infection (p = 0.009). MAIT cells showed reduced CD107a expression in aTB (p = 0.006), and reduced IFNγ expression in aTB (p < 0.001) and in HIV-TB (p < 0.001) in response to BCG-GFP stimulation. This functional impairment was coupled with a significant increase in activation (defined by HLA-DR expression) in resting MAIT cells from HIV (p < 0.001), aTB (p = 0.019), and HIV-TB (p = 0.005) patients, and higher HLA-DR expression in MAIT cells expressing IFNγ in aTB (p = 0.009) and HIV-TB (p = 0.002) after stimulation with BCG-GFP and HK-M.tb. After 10 weeks of TB treatment, there was reversion in the observed functional impairment in total MAIT cells, with increases in CD107a (p = 0.020) and IFNγ (p = 0.010) expression. Conclusions: Frequencies and functional profile of MAIT cells in response to mycobacterial stimulation are significantly decreased in HIV infected persons, active TB and HIV-associated TB, with a concomitant increase in MAIT cell activation. These alterations may reduce the capacity of MAIT cells to play a protective role in the immune response to these two pathogens.
Collapse
Affiliation(s)
- Avuyonke Balfour
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Charlotte Schutz
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Rene Goliath
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Sumaya Sayed
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Bianca Sossen
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Kanyik
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Rhandzu Ndzhukule
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - David M Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deborah A Lewinsohn
- Division of Infectious Diseases, Department of Paediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Graeme Meintjes
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Suliman S, Gela A, Mendelsohn SC, Iwany SK, Tamara KL, Mabwe S, Bilek N, Darboe F, Fisher M, Corbett AJ, Kjer-Nielsen L, Eckle SBG, Huang CC, Zhang Z, Lewinsohn DM, McCluskey J, Rossjohn J, Hatherill M, León SR, Calderon RI, Lecca L, Murray M, Scriba TJ, Van Rhijn I, Moody DB. Peripheral Blood Mucosal-Associated Invariant T Cells in Tuberculosis Patients and Healthy Mycobacterium tuberculosis-Exposed Controls. J Infect Dis 2021; 222:995-1007. [PMID: 32267943 DOI: 10.1093/infdis/jiaa173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In human blood, mucosal-associated invariant T (MAIT) cells are abundant T cells that recognize antigens presented on non-polymorphic major histocompatibility complex-related 1 (MR1) molecules. The MAIT cells are activated by mycobacteria, and prior human studies indicate that blood frequencies of MAIT cells, defined by cell surface markers, decline during tuberculosis (TB) disease, consistent with redistribution to the lungs. METHODS We tested whether frequencies of blood MAIT cells were altered in patients with TB disease relative to healthy Mycobacterium tuberculosis-exposed controls from Peru and South Africa. We quantified their frequencies using MR1 tetramers loaded with 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. RESULTS Unlike findings from prior studies, frequencies of blood MAIT cells were similar among patients with TB disease and latent and uninfected controls. In both cohorts, frequencies of MAIT cells defined by MR1-tetramer staining and coexpression of CD161 and the T-cell receptor alpha variable gene TRAV1-2 were strongly correlated. Disease severity captured by body mass index or TB disease transcriptional signatures did not correlate with MAIT cell frequencies in patients with TB. CONCLUSIONS Major histocompatibility complex (MHC)-related 1-restrictied MAIT cells are detected at similar levels with tetramers or surface markers. Unlike MHC-restricted T cells, blood frequencies of MAIT cells are poor correlates of TB disease but may play a role in pathophysiology.
Collapse
Affiliation(s)
- Sara Suliman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sarah K Iwany
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kattya Lopez Tamara
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Socios En Salud Sucursal Peru, Lima, Peru
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zibiao Zhang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Lewinsohn
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland VA Medical Center, Portland, Oregon, USA
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | - Leonid Lecca
- Socios En Salud Sucursal Peru, Lima, Peru.,Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Augmentation of the Riboflavin-Biosynthetic Pathway Enhances Mucosa-Associated Invariant T (MAIT) Cell Activation and Diminishes Mycobacterium tuberculosis Virulence. mBio 2021; 13:e0386521. [PMID: 35164552 PMCID: PMC8844931 DOI: 10.1128/mbio.03865-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells play a critical role in antimicrobial defense. Despite increased understanding of their mycobacterial ligands and the clinical association of MAIT cells with tuberculosis (TB), their function in protection against Mycobacterium tuberculosis infection remains unclear. Here, we show that overexpressing key genes of the riboflavin-biosynthetic pathway potentiates MAIT cell activation and results in attenuation of M. tuberculosis virulence in vivo. Further, we observed greater control of M. tuberculosis infection in MAIThi CAST/EiJ mice than in MAITlo C57BL/6J mice, highlighting the protective role of MAIT cells against TB. We also endogenously adjuvanted Mycobacterium bovis BCG with MR1 ligands via overexpression of the lumazine synthase gene ribH and evaluated its protective efficacy in the mouse model of M. tuberculosis infection. Altogether, our findings demonstrate that MAIT cells confer host protection against TB and that overexpression of genes in the riboflavin-biosynthetic pathway attenuates M. tuberculosis virulence. Enhancing MAIT cell-mediated immunity may also offer a novel approach toward improved vaccines against TB. IMPORTANCE Mucosa-associated invariant T (MAIT) cells are an important subset of innate lymphocytes that recognize microbial ligands derived from the riboflavin biosynthesis pathway and mediate antimicrobial immune responses. Modulated MAIT cell responses have been noted in different forms of tuberculosis. However, it has been unclear if increased MAIT cell abundance is protective against TB disease. In this study, we show that augmentation of the mycobacterial MAIT cell ligands leads to higher MAIT cell activation with reduced M. tuberculosis virulence and that elevated MAIT cell abundance confers greater control of M. tuberculosis infection. Our study also highlights the potential of endogenously adjuvanting the traditional BCG vaccine with MR1 ligands to augment MAIT cell activation. This study increases current knowledge on the roles of the riboflavin-biosynthetic pathway and MAIT cell activation in M. tuberculosis virulence and host immunity against TB.
Collapse
|
12
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Reijneveld JF, Holzheimer M, Young DC, Lopez K, Suliman S, Jimenez J, Calderon R, Lecca L, Murray MB, Ishikawa E, Yamasaki S, Minnaard AJ, Moody DB, Van Rhijn I. Synthetic mycobacterial diacyl trehaloses reveal differential recognition by human T cell receptors and the C-type lectin Mincle. Sci Rep 2021; 11:2010. [PMID: 33479373 PMCID: PMC7820438 DOI: 10.1038/s41598-021-81474-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis is composed of diverse glycolipids which potentially interact with the human immune system. To overcome difficulties in obtaining pure compounds from bacterial extracts, we recently synthesized three forms of mycobacterial diacyltrehalose (DAT) that differ in their fatty acid composition, DAT1, DAT2, and DAT3. To study the potential recognition of DATs by human T cells, we treated the lipid-binding antigen presenting molecule CD1b with synthetic DATs and looked for T cells that bound the complex. DAT1- and DAT2-treated CD1b tetramers were recognized by T cells, but DAT3-treated CD1b tetramers were not. A T cell line derived using CD1b-DAT2 tetramers showed that there is no cross-reactivity between DATs in an IFN-γ release assay, suggesting that the chemical structure of the fatty acid at the 3-position determines recognition by T cells. In contrast with the lack of recognition of DAT3 by human T cells, DAT3, but not DAT1 or DAT2, activates Mincle. Thus, we show that the mycobacterial lipid DAT can be both an antigen for T cells and an agonist for the innate Mincle receptor, and that small chemical differences determine recognition by different parts of the immune system.
Collapse
Affiliation(s)
- Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - David C Young
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Kattya Lopez
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.,Socios En Salud, Lima, Peru
| | - Sara Suliman
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | | | | | | | - Megan B Murray
- Division of Global Health Equity, Department of Global Health and Social Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA. .,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Efficient 5-OP-RU-Induced Enrichment of Mucosa-Associated Invariant T Cells in the Murine Lung Does Not Enhance Control of Aerosol Mycobacterium tuberculosis Infection. Infect Immun 2020; 89:IAI.00524-20. [PMID: 33077620 DOI: 10.1128/iai.00524-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are an innate-like T cell subset in mammals that recognize microbial vitamin B metabolites presented by the evolutionarily conserved major histocompatibility complex class I (MHC I)-related molecule, MR1. Emerging data suggest that MAIT cells may be an attractive target for vaccine-induced protection against bacterial infections because of their rapid cytotoxic responses at mucosal services to a widely conserved bacterial ligand. In this study, we tested whether a MAIT cell priming strategy could protect against aerosol Mycobacterium tuberculosis infection in mice. Intranasal costimulation with the lipopeptide Toll-like receptor (TLR)2/6 agonist, Pam2Cys (P2C), and the synthetic MR1 ligand, 5-OP-RU, resulted in robust expansion of MAIT cells in the lung. Although MAIT cell priming significantly enhanced MAIT cell activation and expansion early after M. tuberculosis challenge, these MAIT cells did not restrict M. tuberculosis bacterial load. MAIT cells were depleted by the onset of the adaptive immune response, with decreased detection of granzyme B+ and gamma interferon (IFN-γ)+ MAIT cells relative to that in uninfected P2C/5-OP-RU-treated mice. Decreasing the infectious inoculum, varying the time between priming and aerosol infection, and testing MAIT cell priming in nitric oxide synthase 2 (NOS2)-deficient mice all failed to reveal an effect of P2C/5-OP-RU-induced MAIT cells on M. tuberculosis control. We conclude that intranasal MAIT cell priming in mice induces early MAIT cell activation and expansion after M. tuberculosis exposure, without attenuating M. tuberculosis growth, suggesting that MAIT cell enrichment in the lung is not sufficient to control M. tuberculosis infection.
Collapse
|
15
|
La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol 2020; 11:2107. [PMID: 33013888 PMCID: PMC7497315 DOI: 10.3389/fimmu.2020.02107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Even if the incidence of tuberculosis (TB) has been decreasing over the last years, the number of patients with TB is increasing worldwide. The emergence of multidrug-resistant and extensively drug-resistant TB is making control of TB more difficult. Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary TB in adults, and there is an urgent need for a vaccine that is also effective in patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed immunotherapies could offer therapeutic strategies for patients with drug-resistant TB or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after hematopoietic stem cell transplantation has emerged as a new strategy in the cure of hematologic malignancies in order to induce graft-versus leukemia and graft-versus-infection effects. Moreover, adoptive therapy has proven to be effective in controlling cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a heterogeneous group of T lymphocytes with limited diversity. One of their characteristics is that antigen recognition is not restricted by the classical major histocompatibility complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent, they are also termed “donor unrestricted” T cells. The combined features of low donor diversity and the lack of genetic restriction make these cells suitable candidates for T cell–based immunotherapy of TB.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Bickett TE, McLean J, Creissen E, Izzo L, Hagan C, Izzo AJ, Silva Angulo F, Izzo AA. Characterizing the BCG Induced Macrophage and Neutrophil Mechanisms for Defense Against Mycobacterium tuberculosis. Front Immunol 2020; 11:1202. [PMID: 32625209 PMCID: PMC7314953 DOI: 10.3389/fimmu.2020.01202] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The live attenuated Mycobacterium bovis strain, Bacille Calmette Guérin (BCG) is a potent innate immune stimulator. In the C57BL/6 mouse model of tuberculosis, BCG vaccination leads to a significant reduction of Mycobacterium tuberculosis burden after aerogenic infection. Our studies indicated that BCG induced protection against pulmonary tuberculosis was independent of T cells and present as early as 7 days after vaccination. This protection showed longevity, as it did not wane when conventional T cell and TNF-α deficient mice were infected 30 days post-vaccination. As BCG induced mycobacterial killing after 7 days, this study investigated the contributions of the innate immune system after BCG vaccination to better understand mechanisms required for mycobacterial killing. Subcutaneous BCG inoculation resulted in significant CD11b+F4/80+ monocyte subset recruitment into the lungs within 7 days. Further studies revealed that killing of mycobacteria was dependent on the viability of BCG, because irradiated BCG did not have the same effect. Although others have identified BCG as a facilitator of trained innate immunity, we found that BCG reduced the mycobacterial burden in the absence of mechanisms required for trained innate immunity, highlighting a role for macrophages and neutrophils for vaccine induced killing of M. tuberculosis.
Collapse
Affiliation(s)
- Thomas E Bickett
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jennifer McLean
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth Creissen
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Linda Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Cassidy Hagan
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Antonio J Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Fabiola Silva Angulo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Angelo A Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Abstract
Mycobacterium tuberculosis remains the leading cause of death attributed to a single infectious organism. Bacillus Calmette-Guerin (BCG), the standard vaccine against M. tuberculosis, is thought to prevent only 5% of all vaccine-preventable deaths due to tuberculosis, thus an alternative vaccine is required. One of the principal barriers to vaccine development against M. tuberculosis is the complexity of the immune response to infection, with uncertainty as to what constitutes an immunological correlate of protection. In this paper, we seek to give an overview of the immunology of M. tuberculosis infection, and by doing so, investigate possible targets of vaccine development. This encompasses the innate, adaptive, mucosal and humoral immune systems. Though MVA85A did not improve protection compared with BCG alone in a large-scale clinical trial, the correlates of protection this has revealed, in addition to promising results from candidate such as VPM1002, M72/ASO1E and H56:IC31 point to a brighter future in the field of TB vaccine development.
Collapse
Affiliation(s)
- Benedict Brazier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| |
Collapse
|
18
|
Abstract
Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.
Collapse
|
19
|
Jiang J, Cao Z, Qu J, Liu H, Han H, Cheng X. PD-1-expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13. Scand J Immunol 2020; 91:e12858. [PMID: 31833092 DOI: 10.1111/sji.12858] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
To understand functional role of PD-1-expressing MAIT cells during tuberculosis infection in humans, sorted PD-1+ and PD-1- MAIT cells from pleural effusions of patients with pleural tuberculosis were subjected to transcriptome sequencing. PD-1-expressing MAIT cells were analysed by flow cytometry and their phenotypic and functional features were investigated. Transcriptome sequencing identified 144 genes that were differentially expressed between PD-1+ and PD-1- MAIT cells from tuberculous pleural effusions and CXCL13 was the gene with highest fold difference. The level of PD-1-expressing MAIT cells was associated with extent of TB infection in humans. PD-1-expressing MAIT cells had increased production of CXCL13 and IL-21 as determined by flow cytometry. PD-1high CXCR5- MAIT cells were significantly expanded in pleural effusions from patients with pleural tuberculosis as compared with those from peripheral blood of both patients with tuberculosis and healthy controls. Although PD-1high CXCR5- MAIT cells from tuberculous pleural effusions had reduced IFN-γ level and increased expression of Tim-3 and GITR, they showed activated phenotype and had higher glucose uptake and lipid content. It is concluded that PD-1-expressing MAIT cells had reduced IFN-γ level but increased production of both CXCL13 and IL-21.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Zhihong Cao
- Division of Research, Institute of Tuberculosis, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiuxin Qu
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Houming Liu
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Hongxing Han
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Xiaoxing Cheng
- Division of Research, Institute of Tuberculosis, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol 2019; 20:1110-1128. [PMID: 31406380 DOI: 10.1038/s41590-019-0444-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/25/2023]
Abstract
In recent years, a population of unconventional T cells called 'mucosal-associated invariant T cells' (MAIT cells) has captured the attention of immunologists and clinicians due to their abundance in humans, their involvement in a broad range of infectious and non-infectious diseases and their unusual specificity for microbial riboflavin-derivative antigens presented by the major histocompatibility complex (MHC) class I-like protein MR1. MAIT cells use a limited T cell antigen receptor (TCR) repertoire with public antigen specificities that are conserved across species. They can be activated by TCR-dependent and TCR-independent mechanisms and exhibit rapid, innate-like effector responses. Here we review evidence showing that MAIT cells are a key component of the immune system and discuss their basic biology, development, role in disease and immunotherapeutic potential.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Anil N. Mucosal-associated invariant T cells: new players in CF lung disease? Inflamm Res 2019; 68:633-638. [PMID: 31201438 DOI: 10.1007/s00011-019-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022] Open
Abstract
The past decade has witnessed a surge in research centered around exploring the role of the enigmatic innate immune-like lymphocyte MAIT cell in human disease. Recent evidence has led to the elucidation of its role as a potent defender at mucosal surfaces including lungs due to its capacity to mount a formidable immediate response to bacterial pathogens. MAIT cells have a unique attribute of recognizing microbial ligands in conjunction with non-classical MHC-related protein MR1. Recent studies have demonstrated their contribution in the pathogenesis of chronic pulmonary disorders including asthma and chronic obstructive pulmonary disease. Several cellular players including innate immune cells are active contributors in the immune imbalance present in cystic fibrosis(CF) lung. This immune dysregulation serves as a central pivot in disease pathogenesis, responsible for causing immense structural damage in the CF lung. The present review focuses on understanding the role of MAIT cells in CF lung disease. Future studies directed at understanding the possible relationship between MAIT cells and regulatory T cells (Tregs) in CF lung disease could unravel a holistic picture where a combination of antimicrobial effects of MAIT cells and anti-inflammatory effects of Tregs could be exploited in synergy to alleviate the rapid deterioration of lung function in CF lung disease due to the underlying complex interplay between persistent infection and inflammation.
Collapse
Affiliation(s)
- Nidhi Anil
- Centre For Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India.
| |
Collapse
|
22
|
Li W, Lin EL, Liangpunsakul S, Lan J, Chalasani S, Rane S, Puri P, Kamath PS, Sanyal AJ, Shah VH, Radaeva S, Crabb DW, Chalasani N, Yu Q. Alcohol Abstinence Does Not Fully Reverse Abnormalities of Mucosal-Associated Invariant T Cells in the Blood of Patients With Alcoholic Hepatitis. Clin Transl Gastroenterol 2019; 10:e00052. [PMID: 31211759 PMCID: PMC6613857 DOI: 10.14309/ctg.0000000000000052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Alcoholic hepatitis (AH) develops in approximately 30% of chronic heavy drinkers. The immune system of patients with AH is hyperactivated, yet ineffective against infectious diseases. Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that are highly enriched in liver, mucosa, and peripheral blood and contribute to antimicrobial immunity. We aimed to determine whether MAIT cells were dysregulated in heavy drinkers with and without AH and the effects of alcohol abstinence on MAIT cell recovery. METHODS MR1 tetramers loaded with a potent MAIT cell ligand 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil were used in multiparameter flow cytometry to analyze peripheral blood MAIT cells in 59 healthy controls (HC), 56 patients with AH, and 45 heavy drinkers without overt liver disease (HDC) at baseline and 6- and 12-month follow-ups. Multiplex immunoassays were used to quantify plasma levels of cytokines related to MAIT cell activation. Kinetic Turbidimetric Limulus Amebocyte Lysate Assay and ELISA were performed to measure circulating levels of 2 surrogate markers for bacterial translocation (lipopolysaccharide and CD14), respectively. RESULTS At baseline, patients with AH had a significantly lower frequency of MAIT cells than HDC and HC. HDC also had less MAIT cells than HC (median 0.16% in AH, 0.56% in HDC, and 1.25% in HC). Further, the residual MAIT cells in patients with AH expressed higher levels of activation markers (CD69, CD38, and human leukocyte antigen [HLA]-DR), the effector molecule granzyme B, and the immune exhaustion molecule PD-1. Plasma levels of lipopolysaccharide and CD14 and several cytokines related to MAIT cell activation were elevated in patients with AH (interferon [IFN]-α, interleukin [IL]-7, IL-15, IL-17, IL-18, IL-23, IFN-γ, and tumor necrosis factor α). Decreased MAIT cell frequency and upregulated CD38, CD69, and HLA-DR correlated negatively and positively, respectively, with aspartate aminotransferase level. MAIT cell frequency negatively correlated with IL-18. HLA-DR and CD38 levels correlated with several cytokines. At follow-ups, abstinent patients with AH had increased MAIT cell frequency and decreased MAIT cell activation. However, MAIT cell frequency was not fully normalized in patients with AH (median 0.31%). DISCUSSION We showed that HDC had a reduction of blood MAIT cells despite showing little evidence of immune activation, whereas patients with AH had a severe depletion of blood MAIT cells and the residual cells were highly activated. Alcohol abstinence partially reversed those abnormalities.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Edward L. Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jie Lan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sai Chalasani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sushmita Rane
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Puneet Puri
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Patrick S. Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arun J. Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA
| | - David W. Crabb
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Internal Medicine, Eskenazi Health, Indianapolis, Indiana, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Bucsan AN, Rout N, Foreman TW, Khader SA, Rengarajan J, Kaushal D. Mucosal-activated invariant T cells do not exhibit significant lung recruitment and proliferation profiles in macaques in response to infection with Mycobacterium tuberculosis CDC1551. Tuberculosis (Edinb) 2019; 116S:S11-S18. [PMID: 31072689 PMCID: PMC7050191 DOI: 10.1016/j.tube.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022]
Abstract
TB is a catastrophic infectious disease, affecting roughly one third of the world's population. Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize vitamin B metabolites produced by bacteria, possess effector memory phenotype, and express tissue-homing markers driving migration to sites of infection. Previous research in both Mtb and HIV infections has shown that MAIT cells are depleted in the human periphery, possibly migrating to the tissue sites of infection. We investigated this hypothesis using rhesus macaques (RMs) with active TB, latent TB (LTBI), and SIV-coinfection to explore the effects of different disease states on the MAIT cell populations in vivo. Early in infection, we observed that MAIT cells increased in the blood and bronchoalveolar lavage fluid (BAL) of all infected RMs, irrespective of clinical outcome. However, the frequency of MAIT cells rapidly normalized such that they had returned to baseline levels prior to endpoint. Furthermore, following infection, the chemokines expressed on MAIT cells reflected a strong shift towards a Th1 phenotype from a shared Th1/Th17 phenotype. In conclusion, MAIT cells with enhanced Th1 functions migrating to the site of Mtb-infection. The anti-mycobacterial effector functions of MAIT cells, particularly during the early stages of Mtb infection, had been of interest in promoting protective long-term TB immunity. Our research shows, however, that they have relatively short-acting responses in the host.
Collapse
Affiliation(s)
| | - Namita Rout
- Tulane National Primate Research Centre, Covington, LA, USA
| | | | | | | | - Deepak Kaushal
- Tulane National Primate Research Centre, Covington, LA, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
24
|
Chen P, Deng W, Li D, Zeng T, Huang L, Wang Q, Wang J, Zhang W, Yu X, Duan D, Wang J, Xia H, Chen H, Huang W, Li J, Zhang D, Zhong XP, Gao J. Circulating Mucosal-Associated Invariant T Cells in a Large Cohort of Healthy Chinese Individuals From Newborn to Elderly. Front Immunol 2019; 10:260. [PMID: 30838000 PMCID: PMC6389679 DOI: 10.3389/fimmu.2019.00260] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, which are enriched in human blood and express a semi-invariant TCR chain, play important roles in conditions such as infectious diseases and cancer. The influence of age on levels and functional characteristics of circulating MAIT cells have not been fully addressed. Here we have collected blood samples from a large cohort of healthy Chinese individuals from newborn (cord blood) to the elderly and assessed the levels of circulating MAIT cells as well as their phenotype, activation and apoptosis status, and cytokine expression profiles after in vitro stimulation. We found that the frequencies of circulating MAIT cells gradually increased in blood from newborns as they progressed into adulthood (20–40 years old) but then decreased during further progression toward old age (>60 years old). The lowered numbers of circulating MAIT cells in the elderly was correlated with a gradual increase of apoptosis. A majority of circulating MAIT cells expressed the chemokine receptors CCR5 and CCR6, and most also expressed CD8 and CD45RO. Few expressed CD69 in cord blood, but the frequency increased with age. Upon in vitro activation with PMA plus ionomycin or IL12 plus IL18, fewer MAIT cells isolated from the young adult group expressed IFN-γ, IL17A and Granzyme B then cells from other age groups while the proportion of cells that expressed TNF-α was similar. Taken together, our data provide information for guiding the assessment of normal levels and phenotypes of MAIT cells at different ages in healthy individuals and patients.
Collapse
Affiliation(s)
- Pengcheng Chen
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhai Deng
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dandan Li
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tai Zeng
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ling Huang
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qun Wang
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinli Wang
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiguang Zhang
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Yu
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Deming Duan
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinle Wang
- Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, China
| | - Hong Xia
- First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Hanbin Chen
- First Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Wesley Huang
- San Marino High School, San Marino, CA, United States
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiao-Ping Zhong
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Jimin Gao
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Bernal I, Hofmann JD, Bulitta B, Klawonn F, Michel AM, Jahn D, Neumann-Schaal M, Bruder D, Jänsch L. Clostridioides difficile Activates Human Mucosal-Associated Invariant T Cells. Front Microbiol 2018; 9:2532. [PMID: 30410474 PMCID: PMC6209678 DOI: 10.3389/fmicb.2018.02532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile infection (CDI) causes severe inflammatory responses at the intestinal mucosa but the immunological mechanisms underlying CDI-related immunopathology are still incompletely characterized. Here we identified for the first time that both, non-toxigenic strains as well as the hypervirulent ribotypes RT027 and RT023 of Clostridioides difficile (formerly Clostridium difficile), induced an effector phenotype in mucosal-associated invariant T (MAIT) cells. MAIT cells can directly respond to bacterial infections by recognizing MR1-presented metabolites derived from the riboflavin synthesis pathway constituting a novel class of antigens. We confirmed functional riboflavin synthesis of C. difficile and found fixed bacteria capable of activating primary human MAIT cells in a dose-dependent manner. C. difficile-activated MAIT cells showed an increased and MR1-dependent expression of CD69, proinflammatory IFNγ, and the lytic granule components granzyme B and perforin. Effector protein expression was accompanied by the release of lytic granules, which, in contrast to other effector functions, was mainly induced by IL-12 and IL-18. Notably, this study revealed hypervirulent C. difficile strains to be most competent in provoking MAIT cell responses suggesting MAIT cell activation to be instrumental for the immunopathology observed in C. difficile-associated colitis. In conclusion, we provide first evidence for a link between C. difficile metabolism and innate T cell-mediated immunity in humans.
Collapse
Affiliation(s)
- Isabel Bernal
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,ESF Graduate School ABINEP, Magdeburg, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | | | - Frank Klawonn
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Annika-Marisa Michel
- Department of Microbiology, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Department of Microbiology, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
26
|
Vorkas CK, Wipperman MF, Li K, Bean J, Bhattarai SK, Adamow M, Wong P, Aubé J, Juste MAJ, Bucci V, Fitzgerald DW, Glickman MS. Mucosal-associated invariant and γδ T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight 2018; 3:121899. [PMID: 30282828 PMCID: PMC6237486 DOI: 10.1172/jci.insight.121899] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Innate immune responses that control early Mtb infection are poorly understood, but understanding these responses may inform vaccination and immunotherapy strategies. Innate T cells that respond to conserved bacterial ligands such as mucosal-associated invariant T (MAIT) and γδ T cells are prime candidates to mediate these early innate responses but have not been examined in subjects who have been recently exposed to Mtb. We recruited a cohort living in the same household with an active tuberculosis (TB) case and examined the abundance and functional phenotypes of 3 innate T cell populations reactive to M. tuberculosis: γδ T, invariant NK T (iNKT), and MAIT cells. Both MAIT and γδ T cells from subjects with Mtb exposure display ex vivo phenotypes consistent with recent activation. However, both MAIT and γδ T cell subsets have distinct response profiles, with CD4+ MAIT and γδ T cells accumulating after infection. Examination of exposed but uninfected contacts demonstrates that resistance to initial infection is accompanied by robust MAIT cell CD25 expression and granzyme B production coupled with a depressed CD69 and IFNγ response. Finally, we demonstrate that MAIT cell abundance and function correlate with the abundance of specific gut microbes, suggesting that responses to initial infection may be modulated by the intestinal microbiome.
Collapse
Affiliation(s)
- Charles Kyriakos Vorkas
- Division of Infectious Diseases, Weill Cornell Medicine (WCM), New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Matthew F. Wipperman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Clinical and Translational Science Center, WCM, New York, New York, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James Bean
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shakti K. Bhattarai
- Department of Bioengineering, University of Massachusetts, Dartmouth, North Dartmouth, Massachusetts, USA
| | - Matthew Adamow
- Immune Monitoring Core Facility, Ludwig Center for Cancer Immunotherapy, Sloan Kettering Institute, MSKCC, New York, New York, USA
| | - Phillip Wong
- Immune Monitoring Core Facility, Ludwig Center for Cancer Immunotherapy, Sloan Kettering Institute, MSKCC, New York, New York, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Vanni Bucci
- Department of Bioengineering, University of Massachusetts, Dartmouth, North Dartmouth, Massachusetts, USA
| | - Daniel W. Fitzgerald
- Division of Infectious Diseases, Weill Cornell Medicine (WCM), New York, New York, USA
- GHESKIO Centers, Port-au-Prince, Haiti
- Center for Global Health, WCM, New York, New York, USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Division of Infectious Diseases, MSKCC, New York, New York, USA
| |
Collapse
|
27
|
Kjer-Nielsen L, Corbett AJ, Chen Z, Liu L, Mak JY, Godfrey DI, Rossjohn J, Fairlie DP, McCluskey J, Eckle SB. An overview on the identification of MAIT cell antigens. Immunol Cell Biol 2018; 96:573-587. [PMID: 29656544 DOI: 10.1111/imcb.12057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Mucosal associated invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and small molecule chemistry, we discovered MR1 ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil, were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αβ T-cell receptors, and here we recount this discovery.
Collapse
Affiliation(s)
- Lars Kjer-Nielsen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jeffrey Yw Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Sidonia Bg Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| |
Collapse
|
28
|
Riva A, Patel V, Kurioka A, Jeffery HC, Wright G, Tarff S, Shawcross D, Ryan JM, Evans A, Azarian S, Bajaj JS, Fagan A, Patel V, Mehta K, Lopez C, Simonova M, Katzarov K, Hadzhiolova T, Pavlova S, Wendon JA, Oo YH, Klenerman P, Williams R, Chokshi S. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018; 67:918-930. [PMID: 29097439 PMCID: PMC5890654 DOI: 10.1136/gutjnl-2017-314458] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Intestinal permeability with systemic distribution of bacterial products are central in the immunopathogenesis of alcoholic liver disease (ALD), yet links with intestinal immunity remain elusive. Mucosa-associated invariant T cells (MAIT) are found in liver, blood and intestinal mucosa and are a key component of antibacterial host defences. Their role in ALD is unknown. METHODS/DESIGN We analysed frequency, phenotype, transcriptional regulation and function of blood MAIT cells in severe alcoholic hepatitis (SAH), alcohol-related cirrhosis (ARC) and healthy controls (HC). We also examined direct impact of ethanol, bacterial products from faecal extracts and antigenic hyperstimulation on MAIT cell functionality. Presence of MAIT cells in colon and liver was assessed by quantitative PCR and immunohistochemistry/gene expression respectively. RESULTS In ARC and SAH, blood MAIT cells were dramatically depleted, hyperactivated and displayed defective antibacterial cytokine/cytotoxic responses. These correlated with suppression of lineage-specific transcription factors and hyperexpression of homing receptors in the liver with intrahepatic preservation of MAIT cells in ALD. These alterations were stronger in SAH, where surrogate markers of bacterial infection and microbial translocation were higher than ARC. Ethanol exposure in vitro, in vivo alcohol withdrawal and treatment with Escherichia coli had no effect on MAIT cell frequencies, whereas exposure to faecal bacteria/antigens induced functional impairments comparable with blood MAIT cells from ALD and significant MAIT cell depletion, which was not observed in other T cell compartments. CONCLUSIONS In ALD, the antibacterial potency of MAIT cells is compromised as a consequence of contact with microbial products and microbiota, suggesting that the 'leaky' gut observed in ALD drives MAIT cell dysfunction and susceptibility to infection in these patients.
Collapse
Affiliation(s)
- Antonio Riva
- Institute of Hepatology London, Foundation for Liver Research, London, UK,Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Vishal Patel
- Institute of Hepatology London, Foundation for Liver Research, London, UK,Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, UK,Institute of Liver Studies, King’s College London, London, UK
| | - Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Hannah C Jeffery
- Centre for Liver Research and NIHR BRU in Liver Disease, University of Birmingham, Birmingham, UK
| | - Gavin Wright
- Department of Gastroenterology, Basildon University Hospital, Basildon, UK
| | - Sarah Tarff
- Department of Gastroenterology, Basildon University Hospital, Basildon, UK
| | - Debbie Shawcross
- Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, UK,Institute of Liver Studies, King’s College London, London, UK
| | - Jennifer M Ryan
- Institute of Liver Studies, King’s College London, London, UK
| | - Alexander Evans
- Department of Gastroenterology, Royal Berkshire Hospital, Reading, UK
| | - Sarah Azarian
- Institute of Hepatology London, Foundation for Liver Research, London, UK
| | - Jasmohan S Bajaj
- Department of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VAMC, Richmond, Virginia, USA
| | - Andrew Fagan
- Department of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VAMC, Richmond, Virginia, USA
| | - Vinood Patel
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Kosha Mehta
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Carlos Lopez
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Marieta Simonova
- Department of Gastroenterology, Military Medical Academy, Sofia, Bulgaria
| | - Krum Katzarov
- Department of Gastroenterology, Military Medical Academy, Sofia, Bulgaria
| | - Tanya Hadzhiolova
- Department of Gastroenterology, Military Medical Academy, Sofia, Bulgaria
| | - Slava Pavlova
- Department of Gastroenterology, Military Medical Academy, Sofia, Bulgaria
| | - Julia A Wendon
- Institute of Liver Studies, King’s College London, London, UK
| | - Ye Htun Oo
- Centre for Liver Research and NIHR BRU in Liver Disease, University of Birmingham, Birmingham, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Roger Williams
- Institute of Hepatology London, Foundation for Liver Research, London, UK,Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Shilpa Chokshi
- Institute of Hepatology London, Foundation for Liver Research, London, UK,Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
29
|
Rudak PT, Choi J, Haeryfar SMM. MAIT cell-mediated cytotoxicity: Roles in host defense and therapeutic potentials in infectious diseases and cancer. J Leukoc Biol 2018; 104:473-486. [PMID: 29668066 DOI: 10.1002/jlb.4ri0118-023r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 01/15/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are unconventional, innate-like T lymphocytes that sense the presence of MHC-related protein 1 (MR1)-restricted ligands and select inflammatory cues. Consequently, they release potent immunomodulatory mediators, including IFN-γ, TNF-α, and/or IL-17. MAIT cells can also be viewed as killer cells. They display several NK cell-associated receptors, carry granules containing cytotoxic effector molecules, and swiftly upregulate perforin and granzymes upon activation. Accordingly, MAIT cells are capable of lysing MR1-expressing cells infected with a variety of pathogenic bacteria in in vitro settings and may also mount cytotoxic responses during microbial infections in vivo. Of note, MAIT cell hyperactivation during certain infections may impede their ability to elicit inflammatory and/or cytotoxic responses to secondary stimuli. In addition, MAIT cells isolated from within and from the margin of tumor masses exhibit diminished functions. We propose that MAIT cell-mediated cytotoxicity can be induced, bolstered, or restored to assist in clearing infections and potentially in reducing tumor loads. In this review, we discuss our current understanding of MAIT cells' lytic functions and highlight the pressing questions that need to be addressed in future investigations. We also offer a picture, however hypothetical at this point, of how harnessing the full cytotoxic potentials of MAIT cells may be a valuable approach in the immunotherapy of infectious and malignant diseases.
Collapse
Affiliation(s)
- Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
30
|
Gupta N, Kumar R, Agrawal B. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells. Front Immunol 2018; 9:709. [PMID: 29692778 PMCID: PMC5902499 DOI: 10.3389/fimmu.2018.00709] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB.
Collapse
Affiliation(s)
- Nancy Gupta
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Shey MS, Balfour A, Wilkinson KA, Meintjes G. Contribution of APCs to mucosal-associated invariant T cell activation in infectious disease and cancer. Innate Immun 2018; 24:192-202. [PMID: 29631470 PMCID: PMC6139754 DOI: 10.1177/1753425918768695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
APCs such as monocytes and dendritic cells are among the first cells to recognize
invading pathogens and initiate an immune response. The innate response can
either eliminate the pathogen directly, or through presentation of Ags to T
cells, which can help to clear the infection. Mucosal-associated invariant T
(MAIT) cells are among the unconventional T cells whose activation does not
involve the classical co-stimulation during Ag presentation. MAIT cells can be
activated either via presentation of unconventional Ags (such as riboflavin
metabolites) through the evolutionarily conserved major histocompatibility class
I-like molecule, MR1, or directly by cytokines such as IL-12 and IL-18. Given
that APCs produce cytokines and can express MR1, these cells can play an
important role in both pathways of MAIT cell activation. In this review, we
summarize evidence on the role of APCs in MAIT cell activation in infectious
disease and cancer. A better understanding of the interactions between APCs and
MAIT cells is important in further elucidating the role of MAIT cells in
infectious diseases, which may facilitate the design of novel interventions such
as vaccines.
Collapse
Affiliation(s)
- Muki Shehu Shey
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Avuyonke Balfour
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Katalin Andrea Wilkinson
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa.,3 The Francis Crick Institute, Midland Road, London, NW1 2AT
| | - Graeme Meintjes
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
32
|
Jiang J, Cao Z, Shan W, Liu H, Cheng X. 4-1BB expression on MAIT cells is associated with enhanced IFN-γ production and depends on IL-2. Cell Immunol 2018; 328:58-69. [PMID: 29631725 DOI: 10.1016/j.cellimm.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 01/07/2023]
Abstract
The role of MAIT cells in immunity against Mycobacterium tuberculosis infection in humans is still largely unexplored. In this study, we investigated the functional role of 4-1BB on MAIT cells. We found that 4-1BB was highly up-regulated on MAIT cells from tuberculous pleural effusions following Mtb antigen stimulation and its level of expression correlated with IFN-γ and IL-17 production. 4-1BB expression on MAIT cells in response to Mtb antigens was partially dependent on IL-2 and was associated with common γ chain receptor. By transcriptome sequencing, we identified numerous differentially expressed genes between 4-1BB- and 4-1BB+ MAIT cells. GO enrichment and KEGG pathway analysis of differentially expressed genes identified enriched pathways that included T-cell receptor and NF-κB signaling pathways. It is concluded that 4-1BB has the potential to be used as a biomarker to identify MAIT cells with enhanced IFN-γ and IL-17 responses that might be associated with tuberculosis infection control.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, Guangdong, China.
| | - Zhihong Cao
- Division of Research, Institute of Tuberculosis, 309(th) Hospital, Beijing, China
| | - Wanshui Shan
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Houming Liu
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Xiaoxing Cheng
- Division of Research, Institute of Tuberculosis, 309(th) Hospital, Beijing, China.
| |
Collapse
|
33
|
Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun 2018; 10:487-501. [PMID: 29439264 DOI: 10.1159/000487057] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract.
Collapse
Affiliation(s)
- Dominik Hartl
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, .,Roche Pharma Research and Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Basel,
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - David Habiel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
34
|
Li K, Vorkas CK, Chaudhry A, Bell DL, Willis RA, Rudensky A, Altman JD, Glickman MS, Aubé J. Synthesis, stabilization, and characterization of the MR1 ligand precursor 5-amino-6-D-ribitylaminouracil (5-A-RU). PLoS One 2018; 13:e0191837. [PMID: 29401462 PMCID: PMC5798775 DOI: 10.1371/journal.pone.0191837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant class of innate T cells restricted by the MHC I-related molecule MR1. MAIT cells can recognize bacterially-derived metabolic intermediates from the riboflavin pathway presented by MR1 and are postulated to play a role in innate antibacterial immunity through production of cytokines and direct bacterial killing. MR1 tetramers, typically stabilized by the adduct of 5-amino-6-D-ribitylaminouracil (5-A-RU) and methylglyoxal (MeG), are important tools for the study of MAIT cells. A long-standing problem with 5-A-RU is that it is unstable upon storage. Herein we report an efficient synthetic approach to the HCl salt of this ligand, which has improved stability during storage. We also show that synthetic 5-A-RU•HCl produced by this method may be used in protocols for the stimulation of human MAIT cells and production of both human and mouse MR1 tetramers for MAIT cell identification.
Collapse
Affiliation(s)
- Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Charles K. Vorkas
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Ashutosh Chaudhry
- Immunology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Donielle L. Bell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard A. Willis
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Alexander Rudensky
- Immunology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michael S. Glickman
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, New York, New York, United States of America
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
35
|
Ghazarian L, Caillat-Zucman S, Houdouin V. Mucosal-Associated Invariant T Cell Interactions with Commensal and Pathogenic Bacteria: Potential Role in Antimicrobial Immunity in the Child. Front Immunol 2017; 8:1837. [PMID: 29326714 PMCID: PMC5736530 DOI: 10.3389/fimmu.2017.01837] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional CD3+CD161high T lymphocytes that recognize vitamin B2 (riboflavin) biosynthesis precursor derivatives presented by the MHC-I related protein, MR1. In humans, their T cell receptor is composed of a Vα7.2-Jα33/20/12 chain, combined with a restricted set of Vβ chains. MAIT cells are very abundant in the liver (up to 40% of resident T cells) and in mucosal tissues, such as the lung and gut. In adult peripheral blood, they represent up to 10% of circulating T cells, whereas they are very few in cord blood. This large number of MAIT cells in the adult likely results from their gradual expansion with age following repeated encounters with riboflavin-producing microbes. Upon recognition of MR1 ligands, MAIT cells have the capacity to rapidly eliminate bacterially infected cells through the production of inflammatory cytokines (IFNγ, TNFα, and IL-17) and cytotoxic effector molecules (perforin and granzyme B). Thus, MAIT cells may play a crucial role in antimicrobial defense, in particular at mucosal sites. In addition, MAIT cells have been implicated in diseases of non-microbial etiology, including autoimmunity and other inflammatory diseases. Although their participation in various clinical settings has received increased attention in adults, data in children are scarce. Due to their innate-like characteristics, MAIT cells might be particularly important to control microbial infections in the young age, when long-term protective adaptive immunity is not fully developed. Herein, we review the data showing how MAIT cells may control microbial infections and how they discriminate pathogens from commensals, with a focus on models relevant for childhood infections.
Collapse
Affiliation(s)
- Liana Ghazarian
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Laboratoire d'Immunologie, Hôpital Saint Louis, AP-HP, Paris, France
| | - Véronique Houdouin
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Service des Maladies Digestives et Respiratoires de l'Enfant, Hôpital Robert Debré, AP-HP, Paris, France
| |
Collapse
|
36
|
Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game. Int Rev Immunol 2017; 37:90-110. [PMID: 29106304 DOI: 10.1080/08830185.2017.1380199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current advances in immunology have led to the identification of a population of novel innate immune T cells, called mucosa-associated invariant T (MAIT) cells. The cells in humans express an invariant TCRα chain (Vα7.2-Jα33) paired with a limited subset of TCRβ chains (Vβ2, 13 and 22), are restricted by the MHC class I (MH1)-related (MR)-1, and recognize molecules that are produced in the bacterial riboflavin (vitamin B2) biosynthetic pathway. They are present in the circulation, liver and at various mucosal sites (i.e. intestine, lungs and female reproductive tract, etc.). They kill host cells infected with bacteria and yeast, and secrete soluble mediators such as TNF-α, IFN-γ, IL-17, etc. The cells regulate immune responses and inflammation associated with a wide spectrum of acute and chronic diseases in humans. Since their discovery in 1993, significant advances have been made in understanding biology of MAIT cells and the potential role of these cells in the pathogenesis of autoimmune, inflammatory and infectious diseases as well as cancer in humans. The purpose of this review is to provide a current state of our knowledge about MAIT cell biology and delineate their role in autoimmune and inflammatory diseases (sterile or caused by infectious agents) and cancer in humans. A better understanding of the role of MAIT cells in human diseases may lead to novel ways of immunotherapies.
Collapse
Affiliation(s)
- Vijay Kumar
- a Department of Paediatrics and Child Care , Children's Health Queensland Clinical unit School of Medicine, Mater Research, Faculty of Medicine and Biomedical Sciences, University of Queensland , ST Lucia, Brisbane , Queensland , Australia
| | - Ali Ahmad
- b Laboratory of Innate Immunity, CHU Ste-Justine/Department of Microbiology , Infectious Diseases & Immunology, University of Montreal , Montreal , Quebec , Canada
| |
Collapse
|
37
|
Salou M, Franciszkiewicz K, Lantz O. MAIT cells in infectious diseases. Curr Opin Immunol 2017; 48:7-14. [DOI: 10.1016/j.coi.2017.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 01/03/2023]
|
38
|
Izzo AA. Tuberculosis vaccines - perspectives from the NIH/NIAID Mycobacteria vaccine testing program. Curr Opin Immunol 2017; 47:78-84. [PMID: 28750280 PMCID: PMC5626602 DOI: 10.1016/j.coi.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
The development of novel vaccine candidates against infections with Mycobacterium tuberculosis has highlighted our limited understanding of immune mechanisms required to kill M. tuberculosis. The induction of a Th1 immunity is vital, but new studies are required to identify other mechanisms that may be necessary. Novel vaccines formulations that invoke effector cells such as innate lymphoid cells may provide an environment that promote effector mechanisms including T cell and B cell mediated immunity. Identifying pathways associated with killing this highly successful infectious agent has become critical to achieving the goal of reducing the global tuberculosis burden.
Collapse
Affiliation(s)
- Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology & Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
39
|
Moreira MDL, Tsuji M, Corbett AJ, Araújo MSS, Teixeira-Carvalho A, Martins-Filho OA, Peruhype-Magalhães V, Coelho-Dos-Reis JG. MAIT-cells: A tailor-made mate in the ancient battle against infectious diseases? Immunol Lett 2017; 187:53-60. [PMID: 28526582 DOI: 10.1016/j.imlet.2017.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
It has been almost two decades since the discovery of mucosal-associated invariant T (MAIT)-cells. Several advances in the field have been made such as the discovery of the antimicrobial activity of MAIT-cells, the abundance of these cells in human mucosa and in liver and the discovery of ligands able to bind MR1 and activate MAIT-cells. MAIT-cells are a unique subset of innate-like T-cells that express a canonical T-cell receptor with the alpha chain containing hAV7S2 and AJ33 in humans (TCRVα7.2Jα33) and respond to bacterial/fungus vitamin B2 metabolites by an MR1-dependent pathway. Indirect activation is also observed during chronic viral infections by and IL-12/IL-18 pathway. In this review, the mechanisms of activation, the timeline of MAIT-cell development in humans as well as their role in human infection are discussed. On the whole, we believe that harnessing the anti-microbial ability of MAIT-cells could contribute for the design of potent immunotherapies and vaccines against "hard-to-kill" infectious agents that remain as public health threats worldwide.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Alexandra Jane Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Andréa Teixeira-Carvalho
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
40
|
Wong EB, Ndung'u T, Kasprowicz VO. The role of mucosal-associated invariant T cells in infectious diseases. Immunology 2016; 150:45-54. [PMID: 27633333 DOI: 10.1111/imm.12673] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are donor-unrestricted lymphocytes that are surprisingly abundant in humans, representing 1-10% of circulating T cells and further enriched in mucosal tissues. MAIT cells recognize and are activated by small molecule ligands produced by microbes and presented by MR1, a highly conserved MHC-related antigen-presenting protein that is ubiquitously expressed in human cells. Increasing evidence suggests that MAIT cells play a protective role in anti-bacterial immunity at mucosal interfaces. Some fungi are known to produce MAIT-activating ligands, but the role of MAIT cells in fungal infections has not yet been investigated. In viral infections, specifically HIV, which has received the most study, MAIT cell biology is clearly altered, but the mechanisms explaining these alterations and their clinical significance are not yet understood. Many questions remain unanswered about the potential of MAIT cells for protection or pathogenesis in infectious diseases. Because they interact with the universal, donor-unrestricted ligand-presenting MR1 molecule, MAIT cells may be attractive immunotherapy or vaccine targets. New tools, including the development of MR1-ligand tetramers and next-generation T-cell receptor sequencing, have the potential to accelerate MAIT cell research and lead to new insights into the role of this unique set of lymphocytes in infectious diseases.
Collapse
Affiliation(s)
- Emily B Wong
- African Health Research Institute, Durban, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- African Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA, USA.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Victoria O Kasprowicz
- African Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
41
|
Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep 2016; 6:32320. [PMID: 27586092 PMCID: PMC5009363 DOI: 10.1038/srep32320] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
The functions of MAIT cells at the site of Mycobacterium tuberculosis infection in humans are still largely unknown. In this study, the phenotypes and immune response of MAIT cells from tuberculous pleural effusions and peripheral blood were investigated. MAIT cells in tuberculous pleural effusions had greatly enhanced IFN-γ, IL-17F and granzyme B response compared with those in peripheral blood. The level of IFN-γ response in MAIT cells from tuberculous pleural effusions was inversely correlated with the extent of tuberculosis infection (p = 0.0006). To determine whether cytokines drive the immune responses of MAIT cells at the site of tuberculosis infection, the role of IL-1β, IL-2, IL-7, IL-12, IL-15 and IL-18 was investigated. Blockade of IL-2, IL-12 or IL-18 led to significantly reduced production of IFN-γ and/or granzyme B in MAIT cells from tuberculous pleural effusions. Majority of IL-2-producing cells (94.50%) in tuberculous pleural effusions had phenotype of CD3+CD4+, and most IL-12p40-producing cells (91.39%) were CD14+ cells. MAIT cells had significantly elevated expression of γc receptor which correlated with enhanced immune responses of MAIT cells. It is concluded that MAIT cells from tuberculous pleural effusions exhibited highly elevated immune response to Mtb antigens, which are controlled by cytokines produced by innate/adaptive immune cells.
Collapse
Affiliation(s)
- Jing Jiang
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, Guangdong, China.,Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China.,Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinchun Chen
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, Guangdong, China.,Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Hongjuan An
- Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Bingfen Yang
- Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Fuping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxing Cheng
- Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| |
Collapse
|
42
|
Hengst J, Strunz B, Deterding K, Ljunggren H, Leeansyah E, Manns MP, Cornberg M, Sandberg JK, Wedemeyer H, Björkström NK. Nonreversible MAIT cell‐dysfunction in chronic hepatitis C virus infection despite successful interferon‐free therapy. Eur J Immunol 2016; 46:2204-10. [DOI: 10.1002/eji.201646447] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Julia Hengst
- Center for Infectious MedicineDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical School Hannover Germany
| | - Benedikt Strunz
- Center for Infectious MedicineDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Katja Deterding
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical School Hannover Germany
| | - Hans‐Gustaf Ljunggren
- Center for Infectious MedicineDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Edwin Leeansyah
- Center for Infectious MedicineDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
- Program in Emerging Infectious DiseasesDuke–National University of Singapore Medical School Singapore Singapore
| | - Michael P. Manns
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical School Hannover Germany
- German Center for Infection Research partner site Hannover‐Braunschweig, Germany
| | - Markus Cornberg
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical School Hannover Germany
- German Center for Infection Research partner site Hannover‐Braunschweig, Germany
| | - Johan K. Sandberg
- Center for Infectious MedicineDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Heiner Wedemeyer
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical School Hannover Germany
- German Center for Infection Research partner site Hannover‐Braunschweig, Germany
| | - Niklas K. Björkström
- Center for Infectious MedicineDepartment of Medicine HuddingeKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| |
Collapse
|
43
|
Mondot S, Boudinot P, Lantz O. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules? Immunogenetics 2016; 68:537-48. [DOI: 10.1007/s00251-016-0927-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
|