1
|
Perveen S, Pal S, Sharma R. Breaking the energy chain: importance of ATP synthase in Mycobacterium tuberculosis and its potential as a drug target. RSC Med Chem 2025:d4md00829d. [PMID: 39790127 PMCID: PMC11707528 DOI: 10.1039/d4md00829d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of Mycobacterium tuberculosis marks ATP synthase as an important complex of the electron transport chain. This review focuses on the importance and unique characteristics of mycobacterial ATP synthase. Understanding these distinctions enables the targeting of ATP synthase subunits for drug discovery, without aiming at the mammalian counterpart. Furthermore, a brief comparison of the structural differences between mycobacterial and mitochondrial ATP synthase is discussed. Being a complex multi-subunit protein, ATP synthase offers multiple sites for potential inhibitors, including the a, c, ε, γ, and δ subunits. Inhibitors targeting these subunits are critically reviewed, providing insight into the design of better and more potent chemical entities with the potential for effective treatment regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sunny Pal
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Jammu-180001 India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
2
|
Snobre J, Meehan CJ, Mulders W, Rigouts L, Buyl R, de Jong BC, Van Rie A, Tzfadia O. Frameshift mutations in the mmpR5 gene can have a bedaquiline-susceptible phenotype by retaining a protein structure and function similar to wild-type Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0085424. [PMID: 39445816 PMCID: PMC11619236 DOI: 10.1128/aac.00854-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Bedaquiline (BDQ) is crucial for the treatment of rifampicin-resistant tuberculosis, yet resistance threatens its effectiveness, mainly linked to mutations in the mmpR5 (Rv0678) gene. While frameshift mutations are thought to produce non-functional proteins, we hypothesize that they can result in conserved proteins through late-stop codons or alternative reading frames and remain BDQ susceptible. We extracted 512 isolates harboring frameshift mutations in mmpR5 from the World Health Organization (WHO) catalog and 68 isolates with minimum inhibitory concentration (MIC) in mycobacterial growth indicator tube (MGIT) through a literature review. Using BioPython and AlphaFold2 we computed open (ORF) and alternative reading frames (ARFs) sequences and protein structures and assessed similarity to the wild type using an alignment and template modeling (TM)-score. Among the WHO 512 isolates, 24.8% were BDQ-sensitive. Out of 184 unique frameshift mutations with available nucleotide information, a late-stop codon in the ORF occurred for 32% of the mutations. Also, 40.7% resulted in a conserved sequence, through the ORF or one of the forward ARFs. In 68 isolates with available MGIT MIC data, the presence of late-stop codons in the ORF (OR 4.71, 95% CI 1.36-19.3) or a conserved reading frame (OR 10.4, 95% CI 2.07-102.9) were associated with BDQ sensitivity. Protein structures from the conserved sequences showed high similarity (TM > 0.8). We show that frameshift mutations may retain BDQ susceptibility through late-stop codons in the ORF or conserved ARFs. These findings could improve the prediction of the BDQ phenotype from genomic data and have important implications for treatment decisions. Research Foundation-Flanders, Academy of Medical Sciences, the Wellcome Trust, the Government Department of Business, Energy and Industrial Strategy, the British Heart Foundation and Diabetes UK, and the Global Challenges Research Fund.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis, remains the deadliest infectious disease and is particularly challenging to treat when it becomes drug-resistant. Bedaquiline (BDQ) is a recently recommended core drug for treating drug-resistant TB. However, resistance to bedaquiline is already emerging, primarily due to mutations in the mmpR5 gene. Identifying which mutations cause resistance and which do not is a critical knowledge gap. In particular, little is known about the effect of frameshift mutations, typically thought to make TB bacteria resistant to bedaquiline by producing non-functional proteins. Yet, one-quarter of isolates with a frameshift mutation are still susceptible to bedaquiline. How the bacteria produce a functional protein despite the frameshift mutation is unknown. We analyzed over 500 frameshift mutations using computational methods to model their effects on protein structure and bedaquiline resistance. Our findings revealed that some frameshift mutations can still produce functional proteins, allowing bacteria to remain sensitive to bedaquiline. Specifically, bacteria can produce a functional protein despite frameshift mutations if the mutation occurs near the end of the protein or if an alternative reading frame is available. These insights improve our ability to interpret mutations associated with bedaquiline, the most important drug for drug-resistant TB, allowing more accurate and effective treatment decisions.
Collapse
Affiliation(s)
- J. Snobre
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - C. J. Meehan
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - W. Mulders
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - L. Rigouts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - R. Buyl
- Vrije Universiteit Brussel, Brussels, Belgium
| | - B. C. de Jong
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A. Van Rie
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - O. Tzfadia
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Wang S, Xiao X, Dong S, Cao J, Wang S, Xiong H, Li X, Shao G, Hu Y, Shen X. Analysis of genetic characteristics associated with reduced bedaquiline susceptibility in multidrug-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 2024; 149:102572. [PMID: 39504872 DOI: 10.1016/j.tube.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Bedaquiline (BDQ) has shown efficacy in shortening treatment duration and enhancing treatment success rates for multidrug-resistant tuberculosis (MDR-TB), thereby prompting widespread adoption. However, resistance to BDQ has emerged. This study aimed to identify genetic characteristics associated with decreased susceptibility to BDQ, using a public database to aid in the detection of resistant strains. Seventy-one BDQ-resistant and 929 BDQ-susceptible isolates from the open-source CRyPTIC database were selected for analysis. Variant calling was conducted via the clockwork pipeline. Univariate logistic regression was performed for each gene mutation, followed by LASSO regression for further variant selection. Ultimately, a multiple linear regression model was developed using log2-transformed Minimum Inhibitory Concentration values as the dependent variable, with variant selection refined through stepwise regression based on the Akaike Information Criterion. Ten gene mutations were significantly associated with reduced BDQ susceptibility, including two key gene mutations: Rv0678_141_ins_1 and Rv1979c_D249E, with effect estimates of 1.76 (95 % CI: 0.67-2.84) and 1.69 (95 % CI: 0.22-3.17), respectively. Other implicated genes included Rv2699c_-84_del_1, hsaB_I179T, mmpL9_T241A, pncA_C14R, Rv0373c_G621S, Rv0893c_L27F, Rv1770_A4D, and Rv3428c_S327C. This study identified ten gene mutations linked to decreased susceptibility to BDQ, providing a reference for developing a comprehensive catalog of BDQ-resistant genes.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Xiao Xiao
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Shulan Dong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Jiayi Cao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Sainan Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Haiyan Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Xuliang Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Ge Shao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Yi Hu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Xin Shen
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| |
Collapse
|
4
|
Li Q, Feng H, Tian Q, Xiang Y, Wang X, He YX, Zhu K. Discovery of antibacterial diketones against gram-positive bacteria. Cell Chem Biol 2024; 31:1874-1884.e6. [PMID: 39089260 DOI: 10.1016/j.chembiol.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 08/03/2024]
Abstract
The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.
Collapse
Affiliation(s)
- Qian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanzhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Tian
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Peng Y, Li C, Hui X, Huo X, Shumuyed NA, Jia Z. Phenotypic and genotypic analysis of drug resistance in M. tuberculosis isolates in Gansu, China. PLoS One 2024; 19:e0311042. [PMID: 39331607 PMCID: PMC11432870 DOI: 10.1371/journal.pone.0311042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Tuberculosis has posed a serious threat to human health. It is imperative to investigate the geographic prevalence of tuberculosis and medication resistance, as this information is essential for informing strategies for its prevention and treatment. Drug resistance was identified using a proportion method. Drug-resistant genes and pathways were predicted using whole genome sequencing. The drug resistance range of bedaquiline was identified using the microporous plate two-fold dilution method, and drug resistance genes were studied using sequencing. The study revealed that 19.99% of the tuberculosis cases had multidrug resistance. The genes of M. tuberculosis are predominantly involved in the synthesis of ABC transporters, two-component systems, and bacterial secretion systems, as well as in energy production and conversion, and lipid transport and metabolism. The genes encode for 82.45% of carbohydrate-related enzymes such as glycoside hydrolases, glycosyl transferases, and carbohydrate esterases. The minimum inhibitory concentration (MIC) of bedaquiline against clinical strains was approximately 0.06 μg/mL, with identified mutations in drug-resistant genes Rv0678, atpE, and pepQ, specifically V152A, P62A, and T222N, respectively. The multidrug resistance tuberculosis development was attributed to the strong medication resistance exhibited. It was concluded that tuberculosis had presented a high level of drug resistance. Phenotypic resistance was related to genes, existing potential genetic resistance in M. tuberculosis. Bedaquiline was found to possess effective antibacterial properties against M. tuberculosis.
Collapse
Affiliation(s)
- Yousheng Peng
- Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chenchen Li
- Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xueke Hui
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Xiaoning Huo
- The Third People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Nigus Abebe Shumuyed
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhong Jia
- Gansu Agricultural University, Lanzhou, Gansu, China
- The Second People's Hospital of Lanzhou City, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Bhanushali A, Atre S, Nair P, Thandaseery GA, Shah S, Kuruwa S, Zade A, Nikam C, Gomare M, Chatterjee A. Whole-genome sequencing of clinical isolates from tuberculosis patients in India: real-world data indicates a high proportion of pre-XDR cases. Microbiol Spectr 2024; 12:e0277023. [PMID: 38597637 PMCID: PMC11064594 DOI: 10.1128/spectrum.02770-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Treatment decisions for tuberculosis (TB) in the absence of full drug-susceptibility data can result in amplifying resistance and may compromise treatment outcomes. Genomics of Mycobacterium tuberculosis (M.tb) from clinical samples enables detection of drug resistance to multiple drugs. We performed whole-genome sequencing (WGS) for 600 clinical samples from patients with tuberculosis to identify the drug-resistance profile and mutation spectrum. We documented the reasons reported by clinicians for referral. WGS identified a high proportion (51%) of pre-extensively drug-resistant (pre-XDR) cases followed by multidrug-resistant tuberculosis (MDR-TB) (15.5%). This correlates with the primary reason for referral, as non-response to the first-line treatment (67%) and treatment failure or rifampicin resistance (14%). Multivariate analysis indicated that all young age groups (P < 0.05), male gender (P < 0.05), and Beijing strain (P < 0.01) were significant independent predictors of MDR-TB or MDR-TB+ [pre-extensively drug-resistant tuberculosis (XDR-TB) and XDR-TB]. Ser315Thr (72.5%) in the inhA gene and Ser450Leu in the rpoB gene (65.5%) were the most prevalent mutations, as were resistance-conferring mutations to pyrazinamide (41%) and streptomycin (61.33%). Mutations outside the rifampicin resistance-determining region (RRDR), Ile491Phe and Val170Phe, were seen in 1.3% of cases; disputed mutations in rpoB (Asp435Tyr, His445Asn, His445Leu, and Leu430Pro) were seen in 6% of cases, and mutations to newer drugs such as bedaquiline and linezolid in 1.0% and 7.5% of cases, respectively. This study on clinical samples highlights that there is a high proportion of pre-XDR cases and emerging resistance to newer drugs; ongoing transmission of these strains can cause serious threat to public health; and whole-genome sequencing can effectively identify and support precision medicine for TB. IMPORTANCE The current study is based on real-world data on the TB drug-resistance profile by whole-genome sequencing of 600 clinical samples from patients with TB in India. This study indicates the clinicians' reasons for sending samples for WGS, which is for difficult-to-treat cases and/or relapse and treatment failure. The study reports a significant proportion of cases with pre-XDR-TB strains that warrant policy makers' attention. It reflects the current iterative nature of the diagnostic tests under programmatic conditions that leads to delays in appropriate diagnosis and empirical treatment. India had an estimated burden of 2.95 million TB cases in 2020 and 135,000 multidrug-resistant cases. However, WGS profiles of M.tb from India remains disproportionately poorly represented. This study adds a significant body of data on the mutation profiles seen in M.tb isolated from patients with TB in India, mutations outside the RRDR, disputed mutations, and resistance-conferring mutations to newer drugs such as bedaquiline and linezolid.
Collapse
Affiliation(s)
| | - Sachin Atre
- Dr. D.Y. Patil Medical College Hospital and Research Centre, Pune, India
| | - Preethi Nair
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | - Sanchi Shah
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | - Amrutraj Zade
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | | | | |
Collapse
|
7
|
Li S, Tan Y, Deng Y, Bai G, Huang M, Shang Y, Wang Y, Xue Z, Zhang X, Wang W, Pan J, Pang Y. The emerging threat of fluroquinolone-, bedaquiline-, and linezolid-resistant Mycobacterium tuberculosis in China: Observations on surveillance data. J Infect Public Health 2024; 17:137-142. [PMID: 38000314 DOI: 10.1016/j.jiph.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (TB), especially multidrug-resistant tuberculosis (MDR-TB), constitutes a major obstacle to fulfill end TB strategy globally. Although fluoroquinolones (FQs), linezolid (LZD) and bedaquiline (BDQ) were classified as Group A drugs for MDR-TB treatment, our knowledge of the prevalence of TB which were resistant to Group A drugs in China is quite limited. METHODS In this study, we conducted a prospective multicenter surveillance study in China to determine the proportion of TB patients that were resistant to Group A drugs. A total of 1877 TB patients were enrolled from 2022 at four TB specialized hospitals. The drug susceptibility of isolated strains was conducted using the MGIT 960 system and the molecular mechanisms conferring drug resistance were investigated by Sanger sequencing. RESULTS 12.9% of isolates were resistant to levofloxacin (LFX), 13.2% were resistant to moxifloxacin (MOX), 0.2% were resistant to bedaquiline (BDQ), and 0.8% were resistant to linezolid (LZD). Totally, 14.0% and 0.4% were classified as multidrug resistant- (MDR-) and extensively drug resistant- (XDR-) TB. The drug resistance was more common in retreated TB cases compared to new cases. In addition, 70.0% of fluoroquinolone (FQ)-resistant isolates harbored mutations in the gyrA and gyrB gene. By contrast, the common drug-resistant mutations were only found in 50% BDQ-resistant and 20% LZD-resistant isolates. CONCLUSIONS Our data demonstrate that approximate half of MDR -TB patients are resistant to fluoroquinolones, with extremely low prevalence of initial BDQ and LZD resistance. Findings from this study provide important implications for the current management of MDR-TB patients.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Yaoju Tan
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, PR China
| | - Yufeng Deng
- Katharine Hsu International Research Center of Human Infectious Diseases, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, PR China
| | - Guanghong Bai
- Department of Clinical Laboratory, Shaanxi Provincial Tuberculosis Institute, Xi'an, PR China
| | - Mingxiang Huang
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, PR China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Yufeng Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Zhongtan Xue
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Junhua Pan
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China.
| |
Collapse
|
8
|
Tong E, Zhou Y, Liu Z, Zhu Y, Zhang M, Wu K, Pan J, Jiang J. Bedaquiline Resistance and Molecular Characterization of Rifampicin-Resistant Mycobacterium Tuberculosis Isolates in Zhejiang, China. Infect Drug Resist 2023; 16:6951-6963. [PMID: 37928607 PMCID: PMC10625375 DOI: 10.2147/idr.s429003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose This study aimed to determine the prevalence and molecular characterization of bedaquiline (BDQ) resistance among rifampicin-resistant tuberculosis (RR-TB) isolates collected from Zhejiang, China. Patients and Methods A total of 245 RR-TB isolates were collected from 19 municipal TB hospitals in Zhejiang province, China between January and December 2021. Microplate assays were used to determine the minimum inhibitory concentrations (MIC) of BDQ. Whole-genome sequencing (WGS) was performed on isolates with MIC values for BDQ ≥ 0.25 μg/mL. Results Five (2.04%) BDQ-resistant strains were isolated from 245 tuberculosis patients. The resistance rate of BDQ was not correlated to the sex, age, treatment history, or occupation of patients. Four BDQ-resistant isolates and three BDQ-sensitive isolates were found to carry Rv0678 mutations, and one BDQ-resistant strain carried both Rv0678 and pepQ mutations. No mutations within the atpE and Rv1979c genes were observed. Conclusion BDQ demonstrated strong in vitro antibacterial activity against RR-TB isolates, and the Rv0678 gene was identified as the primary mechanism contributing to BDQ resistance among RR-TB isolates from Zhejiang, China. Furthermore, in addition to the four currently known resistance-associated genes (atpE, Rv0678, Rv1979c, and pepQ), other mechanisms of resistance to BDQ may exist that need further study.
Collapse
Affiliation(s)
- Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou, 311100, People’s Republic of China
| | - Ying Zhou
- School of Public Health, Hangzhou Normal University, Hangzhou, 311100, People’s Republic of China
| | - Zhengwei Liu
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Yelei Zhu
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Mingwu Zhang
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Kunyang Wu
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Junhang Pan
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Jianmin Jiang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311100, People’s Republic of China
- Tuberculosis Control Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, 310051, People’s Republic of China
| |
Collapse
|
9
|
An Q, Lin R, Yang Q, Wang C, Wang D. Evaluation of genetic mutations associated with phenotypic resistance to fluoroquinolones, bedaquiline, and linezolid in clinical Mycobacterium tuberculosis: A systematic review and meta-analysis. J Glob Antimicrob Resist 2023; 34:214-226. [PMID: 37172764 DOI: 10.1016/j.jgar.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES The aim of the study was to update the classification of drugs used in multidrug-resistant tuberculosis (MDR-TB) regimens. Group A drugs (fluoroquinolones, bedaquiline (BDQ), and linezolid (LZD)) are crucial drugs for the control of MDR-TB. Molecular drug resistance assays could facilitate the effective use of Group A drugs. METHODS We summarised the evidence implicating specific genetic mutations in resistance to Group A drugs. We searched PubMed, Embase, MEDLINE, and the Cochrane Library for studies published from the inception of each database until July 1, 2022. Using a random-effects model, we calculated the odds ratios and 95% confidence intervals as our measures of association. RESULTS A total of 5001 clinical isolates were included in 47 studies. Mutations in gyrA A90V, D94G, D94N, and D94Y were significantly associated with an increased risk of a levofloxacin (LFX)-resistant phenotype. In addition, mutations in gyrA G88C, A90V, D94G, D94H, D94N, and D94Y were significantly associated with an increased risk of a moxifloxacin (MFX)-resistant phenotype. In only one study, the majority of gene loci (n = 126, 90.65%) in BDQ-resistant isolates were observed to have unique mutations in atpE, Rv0678, mmpL5, pepQ, and Rv1979c. The most common mutations occurred at four sites in the rrl gene (g2061t, g2270c, g2270t, and g2814t) and at one site in rplC (C154R) in LZD-resistant isolates. Our meta-analysis demonstrated that there were no mutations associated with BDQ- or LZD-resistant phenotypes. CONCLUSION The mutations detected by rapid molecular assay were correlated with phenotypic resistance to LFX and MFX. The absence of mutation-phenotype associations for BDQ and LZD hindered the development of a rapid molecular assay.
Collapse
Affiliation(s)
- Qi An
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Rui Lin
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Qing Yang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China.
| | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Xu J, Li D, Shi J, Wang B, Ge F, Guo Z, Mu X, Nuermberger E, Lu Y. Bedquiline Resistance Mutations: Correlations with Drug Exposures and Impact on the Proteome in M. tuberculosis. Antimicrob Agents Chemother 2023; 67:e0153222. [PMID: 37255473 PMCID: PMC10353445 DOI: 10.1128/aac.01532-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Bedaquiline (BDQ) is an effective drug for the treatment of drug-resistant tuberculosis. Mutations in atpE, which encodes the target of BDQ, are associated with large increases in MICs. Mutations in Rv0678 that derepress the transcription of the MmpL5-MmpS5 efflux transporter are associated with smaller increases in MICs. However, Rv0678 mutations are the most common mutations that are associated with BDQ resistance in clinical isolates, and they also confer cross-resistance to clofazimine (CFZ). To investigate the mechanism of BDQ resistance and the correlation between Rv0678 mutations and target-based atpE mutations, M. tuberculosis strains were exposed to different concentrations of BDQ or CFZ to select Rv0678 mutations and atpE mutations. Gene overexpression strains were constructed to illustrate the roles of MmpL5 and MmpS5. A quantitative proteome analysis was performed to compare the BDQ-resistant mutants to the isogenic strain H37Rv. Here, we report that the Rv0678 mutations were more readily selected than were the atpE mutations at low concentrations of BDQ or CFZ. The atpE mutations were selected by high concentrations of BDQ exposure. The overexpression of both mmpL5 and mmpS5 reduced the susceptibility of Mycobacterium tuberculosis to BDQ and CFZ. Secreted immunogenic proteins and proteins involved in the biosynthesis and transport of phthiocerol dimycocerosates were associated with Rv0678 mutations conferring BDQ resistance in the proteome analysis. In conclusion, exposure to different bedaquiline concentrations resulted in the selection of different mutations. The coexpression of MmpL5 and MmpS5 contributed to drug resistance and upregulated pathogenic proteins in M. tuberculosis, suggesting MmpL5-MmpS5 as a new potential target for antituberculosis drug development. These results warrant further surveillance for the evolution of BDQ resistance during clinical usage.
Collapse
Affiliation(s)
- Jian Xu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dongshuo Li
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghua Shi
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Ge
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhenyong Guo
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaopan Mu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Perumal R, Khan A, Naidoo K, Ngema SL, Nandlal L, Padayatchi N, Dookie N. Mycobacterium tuberculosis Intra-Host Evolution Among Drug-Resistant Tuberculosis Patients Failing Treatment. Infect Drug Resist 2023; 16:2849-2859. [PMID: 37193296 PMCID: PMC10182815 DOI: 10.2147/idr.s408976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023] Open
Abstract
Background Understanding Mycobacterium tuberculosis (Mtb) intra-host evolution of drug resistance is important for successful drug-resistant tuberculosis (DR-TB) treatment and control strategies. This study aimed to characterise the acquisition of genetic mutations and low-frequency variants associated with treatment-emergent Mtb drug resistance in longitudinally profiled clinical isolates from patients who experienced DR-TB treatment failure. Patients and Methods We performed deep Whole Genome Sequencing on 23 clinical isolates obtained longitudinally across nine timepoints from five patients who experienced DR-TB treatment failure enrolled in the CAPRISA 020 InDEX study. The minimum inhibitory concentrations (MICs) were established on the BACTEC™ MGIT 960™ instrument on 15/23 longitudinal clinical isolates for eight anti-TB drugs (rifampicin, isoniazid, ethambutol, levofloxacin, moxifloxacin, linezolid, clofazimine, bedaquiline). Results In total, 22 resistance associated mutations/variants were detected. We observed four treatment-emergent mutations in two out of the five patients. Emerging resistance to the fluoroquinolones was associated with 16- and 64-fold elevated levofloxacin (2-8 mg/L) and moxifloxacin (1-2 mg/L) MICs, respectively, resulting from the D94G/N and A90V variants in the gyrA gene. We identified two novel mutations associated with elevated bedaquiline MICs (>66-fold): an emerging frameshift variant (D165) on the Rv0678 gene and R409Q variant on the Rv1979c gene present from baseline. Conclusion Genotypic and phenotypic resistance to the fluoroquinolones and bedaquiline was acquired in two out of five patients who experienced DR-TB treatment failure. Deep sequencing of multiple longitudinal clinical isolates for resistance-associated mutations coupled with phenotypic MIC testing confirmed intra-host Mtb evolution.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Senamile L Ngema
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
12
|
Shao G, Bao Z, Davies Forsman L, Paues J, Werngren J, Niward K, Schön T, Bruchfeld J, Alffenaar JW, Hu Y. Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients. Front Pharmacol 2023; 14:1022090. [PMID: 37050904 PMCID: PMC10083270 DOI: 10.3389/fphar.2023.1022090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Aims: Bedaquiline is now recommended to all patients in the treatment of multidrug-resistant tuberculosis (MDR-TB) using standard dosing regimens. As the ability to measure blood drug concentrations is very limited, little is known about drug exposure and treatment outcome. Thus, this study aimed to model the population pharmacokinetics as well as to evaluate the currently recommended dosage.Methodology: A bedaquiline population pharmacokinetic (PK) model was developed based on samples collected from the development cohort before and 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 h after drug intake on week 2 and week 4 of treatment. In a prospective validation cohort of patients with MDR-TB, treated with bedaquiline-containing standardized regimen, drug exposure was assessed using the developed population PK model and thresholds were identified by relating to 2-month and 6-month sputum culture conversion and final treatment outcome using classification and regression tree analysis. In an exploratory analysis by the probability of target attainment (PTA) analysis, we evaluated the recommended dosage at different MIC levels by Middlebrook 7H11 agar dilution (7H11).Results: Bedaquiline pharmacokinetic data from 55 patients with MDR-TB were best described by a three-compartment model with dual zero-order input. Body weight was a covariate of the clearance and the central volume of distribution, albumin was a covariate of the clearance. In the validation cohort, we enrolled 159 patients with MDR-TB. The 7H11 MIC mode (range) of bedaquiline was 0.06 mg (0.008–0.25 mg/L). The study participants with AUC0-24h/MIC above 175.5 had a higher probability of culture conversion after 2-month treatment (adjusted relative risk, aRR:16.4; 95%CI: 5.3–50.4). Similarly, those with AUC0-24h/MIC above 118.2 had a higher probability of culture conversion after 6-month treatment (aRR:20.1; 95%CI: 2.9–139.4), and those with AUC0-24h/MIC above 74.6 had a higher probability of successful treatment outcome (aRR:9.7; 95%CI: 1.5–64.8). Based on the identified thresholds, simulations showed that the WHO recommended dosage (400 mg once daily for 14 days followed by 200 mg thrice weekly) resulted in PTA >90% for the majority of isolates (94%; MICs ≤0.125 mg/L).Conclusion: We established a population PK model for bedaquiline in patients with MDR-TB in China. Based on the thresholds and MIC distribution derived in a clinical study, the recommended dosage of bedaquiline is sufficient for the treatment of MDR-TB.
Collapse
Affiliation(s)
- Ge Shao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ziwei Bao
- The Fifth People’s Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, Suzhou, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Jakob Paues
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
| | - Jim Werngren
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Katarina Niward
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
| | - Thomas Schön
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
- *Correspondence: Yi Hu,
| |
Collapse
|
13
|
Hu Y, Fan J, Zhu D, Liu W, Li F, Li T, Zheng H. Investigation of bedaquiline resistance and genetic mutations in multi-drug resistant Mycobacterium tuberculosis clinical isolates in Chongqing, China. Ann Clin Microbiol Antimicrob 2023; 22:19. [PMID: 36855179 PMCID: PMC9976417 DOI: 10.1186/s12941-023-00568-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND To investigate the prevalence and molecular characterization of bedaquiline resistance among MDR-TB isolates collected from Chongqing, China. METHODS A total of 205 MDR-TB isolates were collected from Chongqing Tuberculosis Control Institute between March 2019 and June 2020. The MICs of BDQ were determined by microplate alamarblue assay. All strains were genotyped by melting curve spoligotyping, and were subjected to WGS. RESULTS Among the 205 MDR isolates, the resistance rate of BDQ was 4.4% (9/205). The 55 (26.8%) were from male patients and 50 (24.4%) were new cases. Furthermore, 81 (39.5%) of these patients exhibited lung cavitation, 13 (6.3%) patients afflicted with diabetes mellitus, and 170 (82.9%) isolates belonged to Beijing family. However, the distribution of BDQ resistant isolates showed no significant difference among these characteristics. Of the 86 OFX resistant isolates, 8 isolates were XDR (9.3%, 8/86). Six BDQ resistant isolates (66.7%, 6/9) and two BDQ susceptible isolates (1.0%, 2/196) carried mutations in Rv0678. A total of 4 mutations types were identified in BDQ resistant isolates, including mutation in A152G (50%, 3/6), T56C (16.7%, 1/6), GA492 insertion (16.7%, 1/6), and A274 insertion (16.7%, 1/6). BDQ showed excellent activity against MDR-TB in Chongqing. CONCLUSIONS BDQ showed excellent activity against MDR-TB in Chongqing. The resistance rate of BDQ was not related to demographic and clinical characteristics. Mutations in Rv0678 gene were the major mechanism to BDQ resistance, with A152G as the most common mutation type. WGS has a good popularize value and application prospect in the rapid detection of BDQ resistance.
Collapse
Affiliation(s)
- Yan Hu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Chongqing, China
| | - Jun Fan
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Chongqing, China
| | - Damin Zhu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Chongqing, China
| | - Wenguo Liu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Chongqing, China
| | - Feina Li
- grid.411609.b0000 0004 1758 4735Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045 China
| | - Tongxin Li
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, 400036, China.
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
14
|
Variants in Bedaquiline-Candidate-Resistance Genes: Prevalence in Bedaquiline-Naive Patients, Effect on MIC, and Association with Mycobacterium tuberculosis Lineage. Antimicrob Agents Chemother 2022; 66:e0032222. [PMID: 35758754 PMCID: PMC9295546 DOI: 10.1128/aac.00322-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Studies have shown that variants in bedaquiline-resistance genes can occur in isolates from bedaquiline-naive patients. We assessed the prevalence of variants in all bedaquiline-candidate-resistance genes in bedaquiline-naive patients, investigated the association between these variants and lineage, and the effect on phenotype. We used whole-genome sequencing to identify variants in bedaquiline-resistance genes in isolates from 509 bedaquiline treatment naive South African tuberculosis patients. A phylogenetic tree was constructed to investigate the association with the isolate lineage background. Bedaquiline MIC was determined using the UKMYC6 microtiter assay. Variants were identified in 502 of 509 isolates (98.6%), with the highest (85%) prevalence of variants in the Rv0676c (mmpL5) gene. We identified 36 unique variants, including 19 variants not reported previously. Only four isolates had a bedaquiline MIC equal to or above the epidemiological cut-off value of 0.25 μg/mL. Phylogenetic analysis showed that 14 of the 15 variants observed more than once occurred monophyletically in one Mycobacterium tuberculosis (sub)lineage. The bedaquiline MIC differed between isolates belonging to lineage 2 and 4 (Fisher's exact test, P = 0.0004). The prevalence of variants in bedaquiline-resistance genes in isolates from bedaquiline-naive patients is high, but very few (<2%) isolates were phenotypically resistant. We found an association between variants in bedaquiline resistance genes and Mycobacterium tuberculosis (sub)lineage, resulting in a lineage-dependent difference in bedaquiline phenotype. Future studies should investigate the impact of the presence of variants on bedaquiline-resistance acquisition and treatment outcome.
Collapse
|
15
|
Meier-Credo J, Preiss L, Wüllenweber I, Resemann A, Nordmann C, Zabret J, Suckau D, Michel H, Nowaczyk MM, Meier T, Langer JD. Top-Down Identification and Sequence Analysis of Small Membrane Proteins Using MALDI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1293-1302. [PMID: 35758524 PMCID: PMC9264385 DOI: 10.1021/jasms.2c00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification and sequence determination by mass spectrometry have become routine analyses for soluble proteins. Membrane proteins, however, remain challenging targets due to their hydrophobicity and poor annotation. In particular small membrane proteins often remain unnoticed as they are largely inaccessible to Bottom-Up proteomics. Recent advances in structural biology, though, have led to multiple membrane protein complex structures being determined at sufficiently high resolution to detect uncharacterized, small subunits. In this work we offer a guide for the mass spectrometric characterization of solvent extraction-based purifications of small membrane proteins isolated from protein complexes and cellular membranes. We first demonstrate our Top-Down MALDI-MS/MS approach on a Photosystem II preparation, analyzing target protein masses between 2.5 and 9 kDa with high accuracy and sensitivity. Then we apply our technique to purify and sequence the mycobacterial ATP synthase c subunit, the molecular target of the antibiotic drug bedaquiline. We show that our approach can be used to directly track and pinpoint single amino acid mutations that lead to antibiotic resistance in only 4 h. While not applicable as a high-throughput pipeline, our MALDI-MS/MS and ISD-based approach can identify and provide valuable sequence information on small membrane proteins, which are inaccessible to conventional Bottom-Up techniques. We show that our approach can be used to unambiguously identify single-point mutations leading to antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Jakob Meier-Credo
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
- Proteomics, Max
Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural
Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Imke Wüllenweber
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
- Proteomics, Max
Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| | - Anja Resemann
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Christoph Nordmann
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Jure Zabret
- Department
of Plant Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Detlev Suckau
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Hartmut Michel
- Molecular
Membrane Biology, Max Planck Institute of
Biophysics, Max-von-Laue-Strasse
3, 60438 Frankfurt
am Main, Germany
| | - Marc M. Nowaczyk
- Department
of Plant Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Thomas Meier
- Department
of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Julian D. Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
- Proteomics, Max
Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Nair P, Hasan T, Zaw KK, Allamuratova S, Ismailov A, Mendonca P, Bekbaev Z, Parpieva N, Singh J, Sitali N, Bermudez-Aza E, Sinha A. Acquired bedaquiline resistance in Karakalpakstan, Uzbekistan. Int J Tuberc Lung Dis 2022; 26:658-663. [PMID: 35768925 PMCID: PMC9272738 DOI: 10.5588/ijtld.21.0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: The WHO recommends the use of bedaquiline (BDQ) in longer, as well as shorter, multidrug-resistant TB (MDR-TB) treatment regimens. However, resistance to this new drug is now emerging. We aimed to describe the characteristics of patients in Karakalpakstan, Uzbekistan, who were treated for MDR-TB and acquired BDQ resistance during treatment.METHODS: We performed a retrospective study of routinely collected data for patients treated for MDR-TB in Karakalpakstan between January 2015 and December 2020. We included patients on BDQ-containing regimens with baseline susceptibility to BDQ who developed BDQ resistance at any point after treatment initiation. Patients resistant to BDQ at baseline or with no confirmed susceptibility to BDQ at baseline were excluded.RESULTS: Of the 523 patients who received BDQ-containing regimens during the study period, BDQ resistance was detected in 31 patients (5.9%); 20 patients were excluded-16 with no prior confirmation of BDQ susceptibility and 4 who were resistant at baseline. Eleven patients with acquired BDQ resistance were identified. We discuss demographic variables, resistance profiles, treatment-related variables and risk factors for unfavourable outcomes for these patients.CONCLUSION: Our programmatic data demonstrated the acquisition of BDQ resistance during or subsequent to receiving a BDQ-containing regimen in a patient cohort from Uzbekistan. We highlight the need for individualised treatment regimens with optimised clinical and laboratory follow up to prevent resistance acquisition.
Collapse
Affiliation(s)
- P Nair
- Médecins Sans Frontières (MSF) Holland, Amsterdam
| | - T Hasan
- Médecins Sans Frontières (MSF) Holland, Amsterdam
| | - K K Zaw
- Médecins Sans Frontières (MSF) Holland, Amsterdam
| | | | - A Ismailov
- Médecins Sans Frontières (MSF) Holland, Amsterdam
| | - P Mendonca
- Médecins Sans Frontières (MSF) Holland, Amsterdam
| | - Z Bekbaev
- Republican Center of Tuberculosis and Pulmonology, Nukus, Uzbekistan
| | - N Parpieva
- Republican Specialized Scientific and Practical Medical Center of Tuberculosis and Pulmonology, Tashkent, Uzbekistan
| | - J Singh
- Médecins Sans Frontières (MSF) Holland, Amsterdam
| | | | | | | |
Collapse
|
17
|
Kaniga K, Lounis N, Zhuo S, Bakare N, Andries K. Impact of Rv0678 mutations on patients with drug-resistant TB treated with bedaquiline. Int J Tuberc Lung Dis 2022; 26:571-573. [PMID: 35650698 PMCID: PMC9165736 DOI: 10.5588/ijtld.21.0670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- K Kaniga
- Johnson & Johnson Global Public Health, Titusville, NJ, USA
| | - N Lounis
- Janssen Pharmaceutica, Beerse, Belgium
| | - S Zhuo
- Janssen Research & Development, Titusville, NJ, USA, IQVIA, Durham, NC, USA
| | - N Bakare
- Janssen Research & Development, Titusville, NJ, USA
| | - K Andries
- Janssen Pharmaceutica, Beerse, Belgium
| |
Collapse
|
18
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
19
|
Le Ray LF, Aubry A, Sougakoff W, Revest M, Robert J, Bonnet I, Veziris N, Morel F. atpE Mutation in Mycobacterium tuberculosis Not Always Predictive of Bedaquiline Treatment Failure. Emerg Infect Dis 2022; 28:1062-1064. [PMID: 35447056 PMCID: PMC9045433 DOI: 10.3201/eid2805.212517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We report the emergence of an atpE mutation in a clinical Mycobacterium tuberculosis strain. Genotypic and phenotypic bedaquiline susceptibility testing displayed variable results over time and ultimately were not predictive of treatment outcome. This observation highlights the limits of current genotypic and phenotypic methods for detection of bedaquiline resistance.
Collapse
|
20
|
Dookie N, Khan A, Padayatchi N, Naidoo K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Front Microbiol 2022; 13:775030. [PMID: 35401475 PMCID: PMC8988194 DOI: 10.3389/fmicb.2022.775030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
The World Health Organization’s End TB Strategy prioritizes universal access to an early diagnosis and comprehensive drug susceptibility testing (DST) for all individuals with tuberculosis (TB) as a key component of integrated, patient-centered TB care. Next generation whole genome sequencing (WGS) and its associated technology has demonstrated exceptional potential for reliable and comprehensive resistance prediction for Mycobacterium tuberculosis isolates, allowing for accurate clinical decisions. This review presents a descriptive analysis of research describing the potential of WGS to accelerate delivery of individualized care, recent advances in sputum-based WGS technology and the role of targeted sequencing for resistance detection. We provide an update on recent research describing the mechanisms of resistance to new and repurposed drugs and the dynamics of mixed infections and its potential implication on TB diagnosis and treatment. Whilst the studies reviewed here have greatly improved our understanding of recent advances in this arena, it highlights significant challenges that remain. The wide-spread introduction of new drugs in the absence of standardized DST has led to rapid emergence of drug resistance. This review highlights apparent gaps in our knowledge of the mechanisms contributing to resistance for these new drugs and challenges that limit the clinical utility of next generation sequencing techniques. It is recommended that a combination of genotypic and phenotypic techniques is warranted to monitor treatment response, curb emerging resistance and further dissemination of drug resistance.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Navisha Dookie,
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
21
|
Mallick JS, Nair P, Abbew ET, Van Deun A, Decroo T. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac029. [PMID: 35356403 PMCID: PMC8963286 DOI: 10.1093/jacamr/dlac029] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Drug-resistant tuberculosis (DR-TB) is considered to be a public health threat and is difficult to cure, requiring a lengthy treatment with potent, potentially toxic drugs. The novel antimicrobial agent bedaquiline has shown promising results for patients with DR-TB, improving the rate of culture conversion and reducing TB-related mortality. However, increasing numbers of cases with acquired bedaquiline resistance (ABR) have been reported in recent years. Methods This systematic review aimed to assess the frequency of ABR and characteristics of patients acquiring it. Studies showing data on sequential bedaquiline drug-susceptibility testing in patients treated with a bedaquiline-containing regimen were included. The databases CENTRAL, PubMed and Embase were manually searched, and 866 unique records identified, eventually leading to the inclusion of 13 studies. Phenotypic ABR was assessed based on predefined MIC thresholds and genotypic ABR based on the emergence of resistance-associated variants. Results The median (IQR) frequency of phenotypic ABR was 2.2% (1.1%–4.6%) and 4.4% (1.8%–5.8%) for genotypic ABR. Among the studies reporting individual data of patients with ABR, the median number of likely effective drugs in a treatment regimen was five, in accordance with WHO recommendations. In regard to the utilization of important companion drugs with high and early bactericidal activity, linezolid was included in the regimen of most ABR patients, whereas the usage of other group A (fluoroquinolones) and former group B drugs (second-line injectable drugs) was rare. Conclusions Our findings suggest a relevant frequency of ABR, urging for a better protection against it. Therefore, treatment regimens should include drugs with high resistance-preventing capacity through high and early bactericidal activity.
Collapse
Affiliation(s)
- Jahan Saeed Mallick
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
- Corresponding author. E-mail:
| | - Parvati Nair
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
| | - Elizabeth Tabitha Abbew
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
- Cape Coast Teaching Hospital, Interberton Road, Cape Coast, Ghana
| | | | - Tom Decroo
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
| |
Collapse
|
22
|
Black TA, Buchwald UK. The pipeline of new molecules and regimens against drug-resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2021; 25:100285. [PMID: 34816020 PMCID: PMC8593651 DOI: 10.1016/j.jctube.2021.100285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The clinical development and regulatory approval of bedaquiline, delamanid and pretomanid over the last decade brought about significant progress in the management of drug-resistant tuberculosis, providing all-oral regimens with favorable safety profiles. The Nix-TB and ZeNix trials of a bedaquiline - pretomanid - linezolid regimen demonstrated for the first time that certain forms of drug-resistant tuberculosis can be cured in the majority of patients within 6 months. Ongoing Phase 3 studies containing these drugs may further advance optimized regimen compositions. Investigational drugs in clinical development that target clinically validated mechanisms, such as second generation oxazolidinones (sutezolid, delpazolid, TBI-223) and diarylquinolines (TBAJ-876 and TBAJ-587) promise improved potency and/or safety compared to the first-in-class drugs. Compounds with novel targets involved in diverse bacterial functions such as cell wall synthesis (DrpE1, MmpL3), electron transport, DNA synthesis (GyrB), cholesterol metabolism and transcriptional regulation of ethionamide bioactivation pathways have advanced to early clinical studies with the potential to enhance antibacterial activity when added to new or established anti-TB drug regimens. Clinical validation of preclinical in vitro and animal model predictions of new anti-TB regimens may further improve the translational value of these models to identify optimal anti-TB therapies.
Collapse
Affiliation(s)
- Todd A. Black
- Global Alliance for TB Drug Development, 40 Wall Street, 24th Floor, New York, NY 10005, USA
| | - Ulrike K. Buchwald
- Global Alliance for TB Drug Development, 40 Wall Street, 24th Floor, New York, NY 10005, USA
| |
Collapse
|
23
|
Comparative Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant Rv0678 Mutant in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0141221. [PMID: 34570644 PMCID: PMC8597756 DOI: 10.1128/aac.01412-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bedaquiline (BDQ, B) is the first-in-class diarylquinoline to be approved for treatment of tuberculosis (TB). Recent guidelines recommend its use in treatment of multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB). The newly approved regimen combining BDQ with pretomanid and linezolid is the first 6-month oral regimen proven to be effective against MDR/XDR-TB. However, the emergence of BDQ resistance, primarily due to inactivating mutations in the Rv0678 gene encoding a repressor of the MmpS5-MmpL5 transporter, threatens to undermine the efficacy of new BDQ-containing regimens. Since the shift in MIC due to these mutations is relatively small (2–8×), safer, and more potent, diarylquinoline analogues may be more effective than BDQ. TBAJ-876, which is in phase 1 trials, has more potent in vitro activity and a superior pre-clinical safety profile than BDQ. Using a murine model of TB, we evaluated the dose-dependent activity of TBAJ-876 compared to BDQ against the wild-type H37Rv strain and an isogenic Rv0678 loss-of-function mutant. Although the mutation affected the MIC of both drugs, the MIC of TBAJ-876 against the mutant was 10-fold lower than that of BDQ. TBAJ-876 at doses ≥6.25 mg/kg had greater efficacy against both strains compared to BDQ at 25 mg/kg, when administered alone or in combination with pretomanid and linezolid. Likewise, no selective amplification of BDQ-resistant bacteria was observed at TBAJ-876 doses ≥6.25 mg/kg. These results indicate that replacing BDQ with TBAJ-876 may shorten the duration of TB treatment and be more effective in treating and preventing infections caused by Rv0678 mutants.
Collapse
|
24
|
Ismail N, Rivière E, Limberis J, Huo S, Metcalfe JZ, Warren RM, Van Rie A. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. THE LANCET MICROBE 2021; 2:e604-e616. [PMID: 34796339 PMCID: PMC8597953 DOI: 10.1016/s2666-5247(21)00175-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
25
|
Bedaquiline Drug Resistance Emergence Assessment in MDR-TB (DREAM): a 5-Year Prospective In-Vitro Surveillance Study of Bedaquiline and Other Second-Line Drug-Susceptibility Testing in MDR-TB Isolates. J Clin Microbiol 2021; 60:e0291920. [PMID: 34705538 PMCID: PMC8769720 DOI: 10.1128/jcm.02919-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline Drug Resistance Emergence Assessment in Multidrug-resistant-tuberculosis (MDR-TB) (DREAM) was a 5-year (2015-2019) phenotypic drug-resistance surveillance study across 11 countries. DREAM assessed the susceptibility of 5036 MDR-TB isolates of bedaquiline-treatment-naïve patients to bedaquiline and other anti-tuberculosis drugs by the 7H9 broth microdilution (BMD) and 7H10/7H11 agar dilution (AD) minimal inhibitory concentration (MIC) methods. Bedaquiline AD MIC quality control (QC) range for the H37Rv reference strain was unchanged, but the BMD MIC QC range (0.015-0.12 μg/ml) was adjusted compared with ranges from a multilaboratory, multicountry reproducibility study conforming to Clinical and Laboratory Standards Institute Tier-2 criteria. Epidemiological cut-off values of 0.12 μg/ml by BMD and 0.25 μg/ml by AD were consistent with previous bedaquiline breakpoints. An area of technical uncertainty or Intermediate category was set at 0.25 μg/ml and 0.5 μg/ml for BMD and AD, respectively. When applied to the 5036 MDR-TB isolates, bedaquiline-susceptible, intermediate and bedaquiline-resistant rates were 97.9%, 1.5% and 0.6%, respectively, for BMD, and 98.8%, 0.8% and 0.4% for AD. Resistance rates were: ofloxacin 35.1%, levofloxacin 34.2%, moxifloxacin 33.3%, 1.5% linezolid and 2% clofazimine. Phenotypic cross resistance between bedaquiline and clofazimine was 0.4% in MDR-TB and 1% in pre-extensively drug-resistant (pre-XDR-TB)/XDR-TB populations. Co-resistance to bedaquiline and linezolid, and clofazimine and linezolid, were 0.1% and 0.3%, respectively, in MDR-TB, and 0.2% and 0.4% in pre-XDR-TB/XDR-TB populations. Resistance rates to bedaquiline appear to be low in the bedaquiline-treatment-naïve population. No treatment-limiting patterns for cross-resistance and co-resistance have been identified with key TB drugs to date.
Collapse
|
26
|
Wu SH, Chan HH, Hsiao HC, Jou R. Primary Bedaquiline Resistance Among Cases of Drug-Resistant Tuberculosis in Taiwan. Front Microbiol 2021; 12:754249. [PMID: 34745058 PMCID: PMC8569445 DOI: 10.3389/fmicb.2021.754249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Bedaquiline (BDQ), which is recommended for the treatment of drug-resistant tuberculosis (DR-TB), was introduced in Taiwan in 2014. Due to the alarming emergence of BDQ resistance, we conducted BDQ resistance analyses to strengthen our DR-TB management program. This retrospective population-based study included initial Mycobacterium tuberculosis isolates from 898 rifampicin-resistant (RR) or multidrug-resistant (MDR) TB cases never exposed to BDQ during 2008-2019. We randomly selected 65 isolates and identified 28 isolates with BDQ MIC<0.25μg/ml and MIC≥0.25μg/ml as the control and study groups, respectively. BDQ drug susceptibility testing (DST) using the MGIT960 system and Sanger sequencing of the atpE, Rv0678, and pepQ genes was conducted. Notably, 18 isolates with BDQ MIC=0.25μg/ml, 38.9% (7/18), and 61.1% (11/18) isolates were MGIT-BDQ resistant and susceptible, respectively. Consequently, we recommended redefining MIC=0.25μg/ml as an intermediate-susceptible category to resolve discordance between different DST methods. Of the 93 isolates, 22 isolates were MGIT-BDQ-resistant and 77.3% (17/22) of MGIT-BDQ-resistant isolates harbored Rv0678 mutations. After excluding 2 MGIT-BDQ-resistant isolates with borderline resistance (GU400growth control-GU100BDQ≤1day), 100% (15/15) harbored Rv0678 gene mutations, including seven novel mutations [g-14a, Ile80Ser (N=2), Phe100Tyr, Ala102Val, Ins g 181-182 frameshift mutation (N=2), Del 11-63 frameshift mutation, and whole gene deletion (N=2)]. Since the other 22.7% (5/22) MGIT-BDQ-resistant isolates with borderline resistance (GU400growth control-GU100BDQ≤1day) had no mutation in three analyzed genes. For isolates with phenotypic MGIT-BDQ borderline resistance, checking for GU differences or conducting genotypic analyses are suggested for ruling out BDQ resistance. In addition, we observed favorable outcomes among patients with BDQ-resistant isolates who received BDQ-containing regimens regardless of Rv0678 mutations. We concluded that based on MIC≥0.25μg/ml, 3.1% (28/898) of drug-resistant TB cases without BDQ exposure showed BDQ resistance, Rv0678 was not a robust marker of BDQ resistance, and its mutations were not associated with treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Ruwen Jou
- Taiwan Centers for Disease Control, Taipei, Taiwan
| |
Collapse
|
27
|
Vargas R, Freschi L, Spitaleri A, Tahseen S, Barilar I, Niemann S, Miotto P, Cirillo DM, Köser CU, Farhat MR. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resistance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother 2021; 65:e0116421. [PMID: 34460306 PMCID: PMC8522733 DOI: 10.1128/aac.01164-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance among bacterial pathogens poses a major global health threat. Mycobacterium tuberculosis complex (MTBC) is estimated to have the highest resistance rates of any pathogen globally. Given the low growth rate and the need for a biosafety level 3 laboratory, the only realistic avenue to scale up drug susceptibility testing (DST) for this pathogen is to rely on genotypic techniques. This raises the fundamental question of whether a mutation is a reliable surrogate for phenotypic resistance or whether the presence of a second mutation can completely counteract its effect, resulting in major diagnostic errors (i.e., systematic false resistance results). To date, such epistatic interactions have only been reported for streptomycin that is now rarely used. By analyzing more than 31,000 MTBC genomes, we demonstrated that the eis C-14T promoter mutation, which is interrogated by several genotypic DST assays endorsed by the World Health Organization, cannot confer resistance to amikacin and kanamycin if it coincides with loss-of-function (LoF) mutations in the coding region of eis. To our knowledge, this represents the first definitive example of antibiotic reversion in MTBC. Moreover, we raise the possibility that mmpR (Rv0678) mutations are not valid markers of resistance to bedaquiline and clofazimine if these coincide with an LoF mutation in the efflux pump encoded by mmpS5 (Rv0677c) and mmpL5 (Rv0676c).
Collapse
Affiliation(s)
- Roger Vargas
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabira Tahseen
- National TB Reference Laboratory, National TB Control Program, Islamabad, Pakistan
| | - Ivan Barilar
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep 2021; 11:19431. [PMID: 34593898 PMCID: PMC8484543 DOI: 10.1038/s41598-021-98862-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest infectious diseases worldwide. Multidrug and extensively drug-resistant strains are making disease control difficult, and exhausting treatment options. New anti-TB drugs bedaquiline (BDQ), delamanid (DLM) and pretomanid (PTM) have been approved for the treatment of multi-drug resistant TB, but there is increasing resistance to them. Nine genetic loci strongly linked to resistance have been identified (mmpR5, atpE, and pepQ for BDQ; ddn, fgd1, fbiA, fbiB, fbiC, and fbiD for DLM/PTM). Here we investigated the genetic diversity of these loci across >33,000 M. tuberculosis isolates. In addition, epistatic mutations in mmpL5-mmpS5 as well as variants in ndh, implicated for DLM/PTM resistance in M. smegmatis, were explored. Our analysis revealed 1,227 variants across the nine genes, with the majority (78%) present in isolates collected prior to the roll-out of BDQ and DLM/PTM. We identified phylogenetically-related mutations, which are unlikely to be resistance associated, but also high-impact variants such as frameshifts (e.g. in mmpR5, ddn) with likely functional effects, as well as non-synonymous mutations predominantly in MDR-/XDR-TB strains with predicted protein destabilising effects. Overall, our work provides a comprehensive mutational catalogue for BDQ and DLM/PTM associated genes, which will assist with establishing associations with phenotypic resistance; thereby, improving the understanding of the causative mechanisms of resistance for these drugs, leading to better treatment outcomes.
Collapse
|
29
|
Xu J, Converse PJ, Upton AM, Mdluli K, Fotouhi N, Nuermberger EL. Comparative Efficacy of the Novel Diarylquinoline TBAJ-587 and Bedaquiline against a Resistant Rv0678 Mutant in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2021; 65:e02418-20. [PMID: 33526488 PMCID: PMC8097419 DOI: 10.1128/aac.02418-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Since its conditional approval in 2012, bedaquiline (BDQ) has been a valuable tool for treatment of drug-resistant tuberculosis. More recently, a novel short-course regimen combining BDQ with pretomanid and linezolid won approval to treat highly drug-resistant tuberculosis. Clinical reports of emerging BDQ resistance have identified mutations in Rv0678 that derepress the expression of the MmpL5/MmpS5 efflux transporter as the most common cause. Because the effect of these mutations on bacterial susceptibility to BDQ is relatively small (e.g., 2 to 8× MIC shift), increasing the BDQ dose would increase antibacterial activity but also pose potential safety concerns, including QTc prolongation. Substitution of BDQ with another diarylquinoline with superior potency and/or safety has the potential to overcome these limitations. TBAJ-587 has greater in vitro potency than BDQ, including against Rv0678 mutants, and may offer a larger safety margin. Using a mouse model of tuberculosis and different doses of BDQ and TBAJ-587, we found that against wild-type M. tuberculosis H37Rv and an isogenic Rv0678 mutant, TBAJ-587 has greater efficacy against both strains than BDQ, whether alone or in combination with pretomanid and either linezolid or moxifloxacin and pyrazinamide. TBAJ-587 also reduced the emergence of resistance to diarylquinolines and pretomanid.
Collapse
Affiliation(s)
- Jian Xu
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna M Upton
- Global Alliance for TB Drug Development, New York, New York, USA
| | - Khisimuzi Mdluli
- Global Alliance for TB Drug Development, New York, New York, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, New York, USA
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Martín-García M, Esteban J. Evaluating bedaquiline as a treatment option for multidrug-resistant tuberculosis. Expert Opin Pharmacother 2021; 22:535-541. [PMID: 33393406 DOI: 10.1080/14656566.2020.1867538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Despite efforts to the contrary, tuberculosis remains one of the leading causes of death in the world. The appearance of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis has increased the need for new therapeutic options against these strains.Areas covered: This review covers the in vitro susceptibility, pharmacokinetics, and pharmacodynamics of bedaquiline, a new drug shown to be active against M. tuberculosis-resistant strains. The authors further review clinical data concerning its use against MDR and XDR strains, discussing recent clinical guidelines from different international societies.Expert opinion: Available data demonstrate the usefulness of bedaquiline against resistant M. tuberculosis. Despite the difficulty in analyzing multidrug therapies, the use of bedaquiline in MDR and XDR tuberculosis increases success rates, allowing shortened treatments and lower drug use than previously recommended regimens. Moreover, the fact that MDR and XDR strains are common in many places creates a need to include this drug in the currently available protocols. It is essential to overcome the substantial barriers that some countries encounter in obtaining bedaquiline, as doing so will make therapeutic regimens including this drug available for all patients.
Collapse
Affiliation(s)
- Marta Martín-García
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
31
|
Ismail NA, Aono A, Borroni E, Cirillo DM, Desmaretz C, Hasan R, Mitarai S, Shakoor S, Torrea G, Kaniga K, Omar SV. A Multimethod, Multicountry Evaluation of Breakpoints for Bedaquiline Resistance Determination. Antimicrob Agents Chemother 2020; 64:e00479-20. [PMID: 32660992 PMCID: PMC7449194 DOI: 10.1128/aac.00479-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/03/2020] [Indexed: 11/20/2022] Open
Abstract
Criteria defining bedaquiline resistance for tuberculosis have been proposed addressing an emerging concern. We evaluated bedaquiline phenotypic drug susceptibility testing (pDST) criteria using drug-resistant tuberculosis clinical isolates tested at five reference laboratories. Isolates were tested at the proposed bedaquiline MGIT960 and 7H11 agar proportion (AP) critical concentrations and also at higher dilutions. The epidemiological cutoff value for the broth microdilution (BMD) plates (frozen and dry) was investigated. Sanger sequencing was performed (atpE and Rv0678 genes) for any isolate testing resistant. The composite reference standard (CRS) defined susceptibility or resistance as is if all pDST methods agreed. If the pDST result was discordant, sequencing results were used for final classification. Geographically diverse and bedaquiline-unexposed isolates were tested (n = 495). The epidemiological cutoff value for BMD was confirmed to be 0.12 μg/ml. The majority of isolates were determined to be susceptible by all methods (467/495; 94.3%), and 28 were determined to be resistant by at least one method; 4 of these were determined to be resistant by all methods. Of the 28 resistant isolates, 12 harbored Rv0678 mutations exclusively. Isolates with insertions/deletions were more likely to be determined to be resistant by more than one method (5/7) compared to isolates with a single nucleotide polymorphism (1/5). Applying the CRS to 24 discordant pDST, BMD dry correctly detected most (15/24; 63%), followed by MGIT960 and BMD frozen (13/24; 61%) and lastly AP (12/24; 50%). Applying the CRS, the prevalence of bedaquiline resistance was 2.2% and ranged from 1.4 to 3.4%, depending on the method used. All methods performed well for bedaquiline susceptibility determination; however, resistance detected should be investigated by a second, alternative method.
Collapse
Affiliation(s)
- Nazir Ahmed Ismail
- Center for Tuberculosis and WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, Kiyose, Japan
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Christel Desmaretz
- Department of Biomedical Sciences, Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
- Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, Kiyose, Japan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Gabriela Torrea
- Department of Biomedical Sciences, Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koné Kaniga
- Johnson & Johnson Global Public Health, Titusville, New Jersey, USA
| | - Shaheed V Omar
- Center for Tuberculosis and WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
32
|
Liu Y, Gao M, Du J, Wang L, Gao J, Shu W, Wang Y, Xue Z, Li L, Pang Y. Reduced susceptibility of Mycobacterium tuberculosis to bedaquiline during antituberculosis treatment and its correlation with clinical outcomes in China. Clin Infect Dis 2020; 73:e3391-e3397. [PMID: 32667984 DOI: 10.1093/cid/ciaa1002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND We aimed to assess the proportion of multidrug-resistant tuberculosis (MDR-TB) cases with initial bedaquiline (BDQ) resistance, monitored dynamics of BDQ susceptibility of Mycobacterium tuberculosis (MTB) isolates during therapy, and correlated susceptibility with MDR-TB patient clinical outcomes in China. METHODS A retrospective cohort study of MDR-TB patients was conducted, with positive cultures collected from cases at 13 sites. Patients with nontuberculous mycobacterial infection during anti-TB therapy were excluded. BDQ minimal inhibitory concentrations (MICs) were determined using a 7H9 Middlebrook broth-based microdilution method. Mutations conferring BDQ resistance were detected via Sanger sequencing. RESULTS 277 patients receiving BDQ treatment were studied, with BDQ resistance noted in isolates from 2.2% (6/277) of MDR-TB cases, sputum conversion observed in 5 cases, and culture conversion observed in 138 cases within 2 weeks. Another 15 and 30 isolates were excluded from final analysis due to failures in obtaining subcultures and serial isolates, respectively. Of 94 cases yielding serial isolates, 11 exhibited reduced BDQ susceptibility, while 3 of 5 cases with acquired resistance failed to culture convert. Sequence analysis revealed that 6 of 11 BDQ-resistant isolates harbored Rv0678 mutations; no mutations were detected in three other BDQ resistance-associated genes. No significant intergroup difference in culture conversion time was observed. CONCLUSIONS MDR-TB patients in China exhibited a low initial BDQ resistance rate. MDR-TB cases with acquired BDQ resistance were at greater risk of treatment failure relative to initially BDQ-resistant cases. Rv0678 mutations accounted for BDQ resistance in this cohort.
Collapse
Affiliation(s)
- Yuhong Liu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/ Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, P.R. China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, P.R. China
| | - Jian Du
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/ Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, P.R. China
| | - Lu Wang
- National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, P.R. China
| | - Jingtao Gao
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/ Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, P.R. China
| | - Wei Shu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/ Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, P.R. China
| | - Yufeng Wang
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, P.R. China
| | - Zhongtan Xue
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, P.R. China
| | - Liang Li
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University/ Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, P.R. China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, P.R. China.,Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, P.R. China
| |
Collapse
|