1
|
Ohta A, Sato Y, Isono K, Kajino T, Tanaka K, Taji T, Kuhara A. The intron binding protein EMB-4 is an opposite regulator of cold and high temperature tolerance in Caenorhabditis elegans. PNAS NEXUS 2024; 3:pgae293. [PMID: 39118835 PMCID: PMC11309393 DOI: 10.1093/pnasnexus/pgae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Adaptation and tolerance to changes in heat and cold temperature are essential for survival and proliferation in plants and animals. However, there is no clear information regarding the common molecules between animals and plants. In this study, we found that heat, and cold tolerance of the nematode Caenorhabditis elegans is oppositely regulated by the RNA-binding protein EMB-4, whose plant homolog contains polymorphism causing heat tolerance diversity. Caenorhabditis elegans alters its cold and heat tolerance depending on the previous cultivation temperature, wherein EMB-4 respectively acts as a positive and negative controller of heat and cold tolerance by altering gene expression. Among the genes whose expression is regulated by EMB-4, a phospholipid scramblase, and an acid sphingomyelinase, which are involved in membrane lipid metabolism, were found to play essential roles in the negative regulation of heat tolerance.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
| | - Yuki Sato
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
| | - Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
2
|
ROS and cGMP signaling modulate persistent escape from hypoxia in Caenorhabditis elegans. PLoS Biol 2022; 20:e3001684. [PMID: 35727855 PMCID: PMC9249223 DOI: 10.1371/journal.pbio.3001684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans. The ability to detect and respond to acute oxygen shortages is indispensable to aerobic life, but the molecular mechanisms underlying this capacity are poorly understood. This study reveals that high levels of cGMP and reactive oxygen species (ROS) prevent the nematode Caenorhabditis elegans from escaping hypoxia.
Collapse
|
3
|
Albarqi MMY, Ryder SP. The endogenous mex-3 3´UTR is required for germline repression and contributes to optimal fecundity in C. elegans. PLoS Genet 2021; 17:e1009775. [PMID: 34424904 PMCID: PMC8412283 DOI: 10.1371/journal.pgen.1009775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised. In sexually reproducing organisms, germ cells undergo meiosis and differentiate to form oocytes or sperm. Coordination of this process requires a gene regulatory program that acts while the genome is undergoing chromatin condensation. As such, RNA regulatory pathways are an important contributor. The germline of the nematode Caenorhabditis elegans is a suitable model system to study germ cell differentiation. Several RNA-binding proteins (RBPs) coordinate each transition in the germline such as the transition from mitosis to meiosis. MEX-3 is a conserved RNA-binding protein found in most animals including humans. In C. elegans, MEX-3 displays a highly restricted pattern of expression. Here, we define the importance of the 3´UTR in regulating MEX-3 expression pattern in vivo and characterize the RNA-binding proteins involved in this regulation. Our results show that deleting various mex-3 3´UTR regions alter the pattern of expression in the germline in various ways. These mutations also reduced—but did not eliminate—reproductive capacity. Finally, we demonstrate that multiple post-transcriptional mechanisms control MEX-3 levels in different domains of the germline. Our data suggest that coordination of MEX-3 activity requires multiple layers of regulation to ensure reproductive robustness.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Kazatskaya A, Yuan L, Amin-Wetzel N, Philbrook A, de Bono M, Sengupta P. The URX oxygen-sensing neurons in C. elegans are ciliated. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000303. [PMID: 33005885 PMCID: PMC7520127 DOI: 10.17912/micropub.biology.000303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Affiliation(s)
| | - Lisa Yuan
- Brandeis University, Waltham, MA 02454
| | - Niko Amin-Wetzel
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Mario de Bono
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | |
Collapse
|
5
|
Soens ZT, Li Y, Zhao L, Eblimit A, Dharmat R, Li Y, Chen Y, Naqeeb M, Fajardo N, Lopez I, Sun Z, Koenekoop RK, Chen R. Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1. Genet Med 2016; 18:1044-51. [PMID: 26820066 PMCID: PMC4965339 DOI: 10.1038/gim.2015.205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/04/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is an early-onset form of retinal degeneration. Six of the 22 known LCA genes encode photoreceptor ciliary proteins. Despite the identification of 22 LCA genes, the genetic basis of ~30% of LCA patients remains unknown. We sought to investigate the cause of disease in the remaining 30% by examining cilia-associated genes. METHODS Whole-exome sequencing was performed on an LCA cohort of 212 unsolved probands previously screened for mutations in known retinal-disease genes. Immunohistochemistry using mouse retinas was used to confirm protein localization and zebrafish were used to perform rescue experiments. RESULTS A homozygous nonsynonymous mutation was found in a single proband in CLUAP1, a gene required for ciliogenesis and cilia maintenance. Cluap1 knockout zebrafish exhibit photoreceptor cell death as early as 5 days after fertilization, and rescue experiments revealed that our proband's mutation is significantly hypomorphic. CONCLUSION Consistent with the knowledge that CLUAP1 plays an important role in cilia function and that cilia are critical to photoreceptor function, our results indicate that hypomorphic mutations in CLUAP1 can result in dysfunctional photoreceptors without systemic abnormalities. This is the first report linking mutations in CLUAP1 to human disease and establishes CLUAP1 as a candidate LCA gene.Genet Med 18 10, 1044-1051.
Collapse
Affiliation(s)
- Zachry T. Soens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Li Zhao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Rachayata Dharmat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yiyun Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mohammed Naqeeb
- Department of Ophthalmology, Um Al Qura University Medical School, Makkah, Saudi Arabia
| | - Norma Fajardo
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Robert K. Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
- Program of Developmental Biology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
6
|
Taschner M, Weber K, Mourão A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 2016; 35:773-90. [PMID: 26912722 PMCID: PMC4818760 DOI: 10.15252/embj.201593164] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Mayanka Awasthi
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Marc Stiegler
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
7
|
Lee C, Wallingford JB, Gross JM. Cluap1 is essential for ciliogenesis and photoreceptor maintenance in the vertebrate eye. Invest Ophthalmol Vis Sci 2014; 55:4585-92. [PMID: 24970261 DOI: 10.1167/iovs.14-14888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify the mutation and cell biological underpinnings of photoreceptor defects in zebrafish au5 mutants. METHODS Whole genome sequencing and SNP mapping were used to determine the genomic interval that harbors the au5 mutation. A candidate mutation was cloned and sequenced, and mRNA rescue used to validate that the affected gene was correctly identified. In situ hybridization, immunohistochemistry, and confocal imaging were used to determine the effects on photoreceptor development and maintenance in mutant retinae, and to determine if ciliogenesis or cilia-dependent development was affected in mutant embryos. Expression of tagged proteins and high-speed in vivo confocal imaging was used to quantify intraflagellar transport (IFT) and IFT particle localization within multiciliated cells of the Xenopus epidermis. RESULTS The au5 mutants possess a nonsense mutation in cluap1, which encodes a component of the IFT machinery. Photoreceptor defects result from degeneration of photoreceptors, and defects in ciliogenesis precede degeneration. Cilia in the olfactory pit are absent, and left-right heart positioning is aberrant, consistent with a role for cluap1 during ciliogenesis and cilia-dependent development. High-speed in vivo imaging demonstrates that cluap1 undergoes IFT and that it moves along the cilium bidirectionally, with similar localization and kinetics as IFT20, an IFT-B complex component. CONCLUSIONS We identified a novel mutation in cluap1 and determined that photoreceptor maintenance is dependent on cluap1. Imaging data support a model in which cluap1 is a component of the IFT-B complex, and cilia formation requires cluap1 function. These data may provide new insights into the mechanism of photoreceptor degeneration in retinal ciliopathies.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States
| | - John B Wallingford
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, United States
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
8
|
Botilde Y, Yoshiba S, Shinohara K, Hasegawa T, Nishimura H, Shiratori H, Hamada H. Cluap1 localizes preferentially to the base and tip of cilia and is required for ciliogenesis in the mouse embryo. Dev Biol 2013; 381:203-12. [DOI: 10.1016/j.ydbio.2013.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/18/2013] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
|
9
|
Coussa RG, Otto EA, Gee HY, Arthurs P, Ren H, Lopez I, Keser V, Fu Q, Faingold R, Khan A, Schwartzentruber J, Majewski J, Hildebrandt F, Koenekoop RK. WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. Clin Genet 2013; 84:150-9. [PMID: 23683095 PMCID: PMC3904424 DOI: 10.1111/cge.12196] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/30/2023]
Abstract
Autosomal recessive retinitis pigmentosa (arRP) is a clinically and genetically heterogeneous retinal disease that causes blindness. Our purpose was to identify the causal gene, describe the phenotype and delineate the mutation spectrum in a consanguineous Quebec arRP family. We performed Arrayed Primer Extension (APEX) technology to exclude ∼500 arRP mutations in ∼20 genes. Homozygosity mapping [single nucleotide polymorphism (SNP) genotyping] identified 10 novel significant homozygous regions. We performed next generation sequencing and whole exome capture. Sanger sequencing provided cosegregation. We screened another 150 retinitis pigmentosa (RP) and 200 patients with Senior-Løken Syndrome (SLS). We identified a novel missense mutation in WDR19, c.2129T>C which lead to a p.Leu710Ser. We found the same mutation in a second Quebec arRP family. Interestingly, two of seven affected members of the original family developed 'sub-clinical' renal cysts. We hypothesized that more severe WDR19 mutations may lead to severe ciliopathies and found seven WDR19 mutations in five SLS families. We identified a new gene for both arRP and SLS. WDR19 is a ciliary protein associated with the intraflagellar transport machinery. We are currently investigating the full extent of the mutation spectrum. Our findings are crucial in expanding the understanding of childhood blindness and identifying new genes.
Collapse
Affiliation(s)
- R G Coussa
- Department of Paediatric Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sassa T, Murayama T, Maruyama IN. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neurosci Lett 2013; 555:248-52. [PMID: 23769685 DOI: 10.1016/j.neulet.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022]
Abstract
High pH is a noxious stimulus to animals, and their ability to avoid dangerously alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. The nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. In contrast, C. elegans mutants with structurally, developmentally, and/or functionally abnormal sensory cilia fail to avoid high pH, suggesting that sensory neurons in the cilia participate in sensing. Genetic rescue of the mutants indicates that ASH polymodal sensory neurons play a vital role in the process. Consistently, specific laser ablation of ASH neurons made animals insensitive to high pH. Furthermore, avoidance assays of other mutants also indicated that transient receptor potential vanilloid type (TRPV) ion channels encoded by osm-9 and ocr-2 are involved in sensing. Indeed, genetic rescue of osm-9 mutants by specifically expressing OSM-9 in ASH showed that TRPV channels play an essential role in sensing of high pH. Ca(2+) imaging in vivo also revealed that ASH neurons were activated by high pH stimulation, but ASH of osm-9 or ocr-2 mutants were not. These results demonstrate that in C. elegans, high pH is sensed by ASH nociceptors through opening of OSM-9/OCR-2 TRPV channels.
Collapse
Affiliation(s)
- Toshihiro Sassa
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | | | | |
Collapse
|
11
|
Murayama T, Takayama J, Fujiwara M, Maruyama IN. Environmental alkalinity sensing mediated by the transmembrane guanylyl cyclase GCY-14 in C. elegans. Curr Biol 2013; 23:1007-12. [PMID: 23664973 DOI: 10.1016/j.cub.2013.04.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Survival requires that living organisms continuously monitor environmental and tissue pH. Animals sense acidic pH using ion channels and G-protein-coupled receptors (GPCRs), but monitoring of alkaline pH is not well understood. We report here that in the nematode Caenorhabditis elegans, a transmembrane receptor-type guanylyl cyclase (RGC), GCY-14, of the ASEL gustatory neuron, plays an essential role in the sensing of extracellular alkalinity. Activation of GCY-14 opens a cGMP-gated cation channel encoded by tax-2 and tax-4, resulting in Ca(2+) entry into ASEL. Ectopic expression of GCY-14 in other neurons indicates that it accounts for the alkalinity sensing capability. Domain-swapping and site-directed mutagenesis of GCY-14 reveal that GCY-14 functions as a homodimer, in which histidine of the extracellular domains plays a crucial role in alkalinity detection. These results argue that in addition to ion channels and GPCRs, RGCs also play a role in pH sensation in neurons.
Collapse
Affiliation(s)
- Takashi Murayama
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | | | | | | |
Collapse
|
12
|
Pasek RC, Berbari NF, Lewis WR, Kesterson RA, Yoder BK. Mammalian Clusterin associated protein 1 is an evolutionarily conserved protein required for ciliogenesis. Cilia 2012; 1:20. [PMID: 23351563 PMCID: PMC3556011 DOI: 10.1186/2046-2530-1-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/07/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Clusterin associated protein 1 (CLUAP1) was initially characterized as a protein that interacts with clusterin, and whose gene is frequently upregulated in colon cancer. Although the consequences of these observations remain unclear, research of CLUAP1 homologs in C. elegans and zebrafish indicates that it is needed for cilia assembly and maintenance in these models. To begin evaluating whether Cluap1 has an evolutionarily conserved role in cilia in mammalian systems and to explore the association of Cluap1 with disease pathogenesis and developmental abnormalities, we generated Cluap1 mutant mice. METHODS Cluap1 mutant embryos were generated and examined for gross morphological and anatomical defects using light microscopy. Reverse transcription PCR, β-galactosidase staining assays, and immunofluorescence analysis were used to determine the expression of the gene and localization of the protein in vivo and in cultured cell lines. We also used immunofluorescence analysis and qRT-PCR to examine defects in the Sonic hedgehog signaling pathway in mutant embryos. RESULTS Cluap1 mutant embryos die in mid-gestation, indicating that it is necessary for proper development. Mutant phenotypes include a failure of embryonic turning, an enlarged pericardial sac, and defects in neural tube development. Consistent with the diverse phenotypes, Cluap1 is widely expressed. Furthermore, the Cluap1 protein localizes to primary cilia, and mutant embryos were found to lack cilia at embryonic day 9.5. The phenotypes observed in Cluap1 mutant mice are indicative of defects in Sonic hedgehog signaling. This was confirmed by analyzing hedgehog signaling activity in Cluap1 mutants, which revealed that the pathway is repressed. CONCLUSIONS These data indicate that the function of Cluap1 is evolutionarily conserved with regard to ciliogenesis. Further, the results implicate mammalian Cluap1 as a key regulator of hedgehog signaling and as an intraflagellar transport B complex protein. Future studies on mammalian Cluap1 utilizing this mouse model may provide insights into the role for Cluap1 in intraflagellar transport and the association with colon cancer and cystic kidney disorders.
Collapse
Affiliation(s)
- Raymond C Pasek
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd,, Birmingham, AL, 35294, USA.
| | | | | | | | | |
Collapse
|
13
|
Burghoorn J, Piasecki BP, Crona F, Phirke P, Jeppsson KE, Swoboda P. The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Dev Biol 2012; 368:415-26. [PMID: 22683808 DOI: 10.1016/j.ydbio.2012.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/23/2012] [Accepted: 05/25/2012] [Indexed: 11/26/2022]
Abstract
At the core of the primary transcriptional network regulating ciliary gene expression in Caenorhabditis elegans sensory neurons is the RFX/DAF-19 transcription factor, which binds and thereby positively regulates 13-15 bp X-box promoter motifs found in the cis-regulatory regions of many ciliary genes. However, the variable expression of direct RFX-target genes in various sets of ciliated sensory neurons (CSNs) occurs through as of yet uncharacterized mechanisms. In this study the cis-regulatory regions of 41 direct RFX-target genes are compared using in vivo genetic analyses and computational comparisons of orthologous nematode sequences. We find that neither the proximity to the translational start site nor the exact sequence composition of the X-box promoter motif of the respective ciliary gene can explain the variation in expression patterns observed among different direct RFX-target genes. Instead, a novel enhancer element appears to co-regulate ciliary genes in a DAF-19 dependent manner. This cytosine- and thymidine-rich sequence, the C-box, was found in the cis-regulatory regions in close proximity to the respective X-box motif for 84% of the most broadly expressed direct RFX-target genes sampled in this study. Molecular characterization confirmed that these 8-11 bp C-box sequences act as strong enhancer elements for direct RFX-target genes. An artificial promoter containing only an X-box promoter motif and two of the C-box enhancer elements was able to drive strong expression of a GFP reporter construct in many C. elegans CSNs. These data provide a much-improved understanding of how direct RFX-target genes are differentially regulated in C. elegans and will provide a molecular model for uncovering the transcriptional network mediating ciliary gene expression in animals.
Collapse
Affiliation(s)
- Jan Burghoorn
- Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, Hälsovägen 7, S-141 83 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2011; 83:S12-22. [PMID: 22118932 DOI: 10.1016/j.diff.2011.11.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/25/2023]
Abstract
Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.
Collapse
Affiliation(s)
- Michael Taschner
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
15
|
Li J, Sun Z. Qilin is essential for cilia assembly and normal kidney development in zebrafish. PLoS One 2011; 6:e27365. [PMID: 22102889 PMCID: PMC3216947 DOI: 10.1371/journal.pone.0027365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/15/2011] [Indexed: 02/06/2023] Open
Abstract
Defects in the cilium, a once thought vestigial organelle, have recently been implicated in many human diseases, including a number of cystic kidney diseases such as polycystic kidney disease (PKD), Bardet Bieldl Syndrome, and Meckel-Gruber Syndrome. In a forward genetic screen, qilin was identified as a novel gene important in the pathogenesis of kidney cysts in zebrafish. In this paper we characterized qilin(hi3959A) mutant's phenotypes in detail, investigated cilia formation in this mutant and performed structural and functional analysis of the Qilin protein. Results reveal Qilin's essential role in cilia assembly and maintenance in multiple organs, including the kidney, the lateral line organ, and the outer segment of the photoreceptor cell. In addition, rescue experiments suggest that defective pronephric cilia correlate with the formation of kidney cysts in qilin(hi3959A) mutants. Further, genetic analysis suggests that qilin interacts with multiple intraflagellar transport (IFT) complex B genes, which is supported by the striking phenotypic similarities between qilin(hi3959A) and IFT complex B mutants. Finally, through deletion analysis we provide evidence that the well-conserved N-terminus and the coiled-coil domain of Qilin are both essential and sufficient for its function. Taken all the observations together, we propose that Qilin acts in a similar role as IFT complex B proteins in cilia assembly, maintenance and kidney development in zebrafish.
Collapse
Affiliation(s)
- Jade Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Chu JSC, Tarailo-Graovac M, Zhang D, Wang J, Uyar B, Tu D, Trinh J, Baillie DL, Chen N. Fine tuning of RFX/DAF-19-regulated target gene expression through binding to multiple sites in Caenorhabditis elegans. Nucleic Acids Res 2011; 40:53-64. [PMID: 21908398 PMCID: PMC3245922 DOI: 10.1093/nar/gkr690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In humans, mutations of a growing list of regulatory factor X (RFX) target genes have been associated with devastating genetics disease conditions including ciliopathies. However, mechanisms underlying RFX transcription factors (TFs)-mediated gene expression regulation, especially differential gene expression regulation, are largely unknown. In this study, we explore the functional significance of the co-existence of multiple X-box motifs in regulating differential gene expression in Caenorhabditis elegans. We hypothesize that the effect of multiple X-box motifs is not a simple summation of binding effect to individual X-box motifs located within a same gene. To test this hypothesis, we identified eight C. elegans genes that contain two or more X-box motifs using comparative genomics. We examined one of these genes, F25B4.2, which contains two 15-bp X-box motifs. F25B4.2 expression in ciliated neurons is driven by the proximal motif and its expression is repressed by the distal motif. Our data suggest that two X-box motifs cooperate together to regulate the expression of F25B4.2 in location and intensity. We propose that multiple X-box motifs might be required to tune specific expression level. Our identification of genes with multiple X-box motifs will also improve our understanding of RFX/DAF-19-mediated regulation in C. elegans and in other organisms including humans.
Collapse
Affiliation(s)
- Jeffery S C Chu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The cilium is a complex organelle, the assembly of which requires the coordination of motor-driven intraflagellar transport (IFT), membrane trafficking and selective import of cilium-specific proteins through a barrier at the ciliary transition zone. Recent findings provide insights into how cilia assemble and disassemble in synchrony with the cell cycle and how the balance of ciliary assembly and disassembly determines the steady-state ciliary length, with the inherent length-dependence of IFT rendering the ciliary assembly rate a decreasing function of length. As cilia are important in sensing and processing developmental signals and directing the flow of fluids such as mucus, defects in ciliogenesis and length control are likely to underlie a range of cilium-related human diseases.
Collapse
|
18
|
Boldt K, Mans DA, Won J, van Reeuwijk J, Vogt A, Kinkl N, Letteboer SJF, Hicks WL, Hurd RE, Naggert JK, Texier Y, den Hollander AI, Koenekoop RK, Bennett J, Cremers FPM, Gloeckner CJ, Nishina PM, Roepman R, Ueffing M. Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J Clin Invest 2011; 121:2169-80. [PMID: 21606596 DOI: 10.1172/jci45627] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/12/2011] [Indexed: 01/19/2023] Open
Abstract
The mutations that cause Leber congenital amaurosis (LCA) lead to photoreceptor cell death at an early age, causing childhood blindness. To unravel the molecular basis of LCA, we analyzed how mutations in LCA5 affect the connectivity of the encoded protein lebercilin at the interactome level. In photoreceptors, lebercilin is uniquely localized at the cilium that bridges the inner and outer segments. Using a generally applicable affinity proteomics approach, we showed that lebercilin specifically interacted with the intraflagellar transport (IFT) machinery in HEK293T cells. This interaction disappeared when 2 human LCA-associated lebercilin mutations were introduced, implicating a specific disruption of IFT-dependent protein transport, an evolutionarily conserved basic mechanism found in all cilia. Lca5 inactivation in mice led to partial displacement of opsins and light-induced translocation of arrestin from photoreceptor outer segments. This was consistent with a defect in IFT at the connecting cilium, leading to failure of proper outer segment formation and subsequent photoreceptor degeneration. These data suggest that lebercilin functions as an integral element of selective protein transport through photoreceptor cilia and provide a molecular demonstration that disrupted IFT can lead to LCA.
Collapse
Affiliation(s)
- Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Masyukova SV, Winkelbauer ME, Williams CL, Pieczynski JN, Yoder BK. Assessing the pathogenic potential of human Nephronophthisis disease-associated NPHP-4 missense mutations in C. elegans. Hum Mol Genet 2011; 20:2942-54. [PMID: 21546380 DOI: 10.1093/hmg/ddr198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A spectrum of complex oligogenic disorders called the ciliopathies have been connected to dysfunction of cilia. Among the ciliopathies are Nephronophthisis (NPHP), characterized by cystic kidney disease and retinal degeneration, and Meckel-Gruber syndrome (MKS), a gestational lethal condition with skeletal abnormalities, cystic kidneys and CNS malformation. Mutations in multiple genes have been identified in NPHP and MKS patients, and an unexpected finding has been that mutations within the same gene can cause either disorder. Further, there is minimal genotype-phenotype correlation and despite recessive inheritance, numerous patients were identified as having a single heterozygous mutation. This has made it difficult to determine the significance of these mutations on disease pathogenesis and led to the hypothesis that clinical presentation in an individual will be determined by genetic interactions between mutations in multiple cilia-related genes. Here we utilize Caenorhabditis elegans and cilia-associated behavioral and morphologic assays to evaluate the pathogenic potential of eight previously reported human NPHP4 missense mutations. We assess the impact of these mutations on C. elegans NPHP-4 function, localization and evaluate potential interactions with mutations in MKS complex genes, mksr-2 and mksr-1. Six out of eight nphp-4 mutations analyzed alter ciliary function, and three of these modify the severity of the phenotypes caused by disruption of mksr-2 and mksr-1. Collectively, our studies demonstrate the utility of C. elegans as a tool to assess the pathogenicity of mutations in ciliopathy genes and provide insights into the complex genetic interactions contributing to the diversity of phenotypes associated with cilia disorders.
Collapse
Affiliation(s)
- Svetlana V Masyukova
- Department of Cell Biology, University of Alabama at Birmingham Medical School, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
20
|
Franklin JB, Ullu E. Biochemical analysis of PIFTC3, the Trypanosoma brucei orthologue of nematode DYF-13, reveals interactions with established and putative intraflagellar transport components. Mol Microbiol 2011; 78:173-86. [PMID: 20923419 DOI: 10.1111/j.1365-2958.2010.07322.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DYF-13, originally identified in Caenorhabditis elegans within a collection of dye-filling chemosensory mutants, is one of several proteins that have been classified as putatively involved in intraflagellar transport (IFT), the bidirectional movement of protein complexes along cilia and flagella and specifically in anterograde IFT. Although genetic studies have highlighted a fundamental role of DYF-13 in nematode sensory cilium and trypanosome flagellum biogenesis, biochemical studies on DYF-13 have lagged behind. Here, we show that in Trypanosoma brucei the orthologue to DYF-13, PIFTC3, participates in a macromolecular complex of approximately 660 kDa. Mass spectroscopy of affinity-purified PIFTC3 revealed several components of IFT complex B as well as orthologues of putative IFT factors DYF-1, DYF-3, DYF-11/Elipsa and IFTA-2. DYF-11 was further analysed and shown to be concentrated near the basal bodies and in the flagellum, and to be required for flagellum elongation. In addition, by coimmunoprecipitation we detected an interaction between DYF-13 and IFT122, a component of IFT complex A, which is required for retrograde transport. Thus, our biochemical analysis supports the model, proposed by genetic analysis in C. elegans, that the trypanosome orthologue of DYF-13 plays a central role in the IFT mechanism.
Collapse
Affiliation(s)
- Joseph B Franklin
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06536, USA
| | | |
Collapse
|
21
|
Smith KR, Kieserman EK, Wang PI, Basten SG, Giles RH, Marcotte EM, Wallingford JB. A role for central spindle proteins in cilia structure and function. Cytoskeleton (Hoboken) 2011; 68:112-24. [PMID: 21246755 DOI: 10.1002/cm.20498] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/28/2010] [Indexed: 12/29/2022]
Abstract
Cytokinesis and ciliogenesis are fundamental cellular processes that require strict coordination of microtubule organization and directed membrane trafficking. These processes have been intensely studied, but there has been little indication that regulatory machinery might be extensively shared between them. Here, we show that several central spindle/midbody proteins (PRC1, MKLP-1, INCENP, centriolin) also localize in specific patterns at the basal body complex in vertebrate ciliated epithelial cells. Moreover, bioinformatic comparisons of midbody and cilia proteomes reveal a highly significant degree of overlap. Finally, we used temperature-sensitive alleles of PRC1/spd-1 and MKLP-1/zen-4 in C. elegans to assess ciliary functions while bypassing these proteins' early role in cell division. These mutants displayed defects in both cilia function and cilia morphology. Together, these data suggest the conserved reuse of a surprisingly large number of proteins in the cytokinetic apparatus and in cilia.
Collapse
Affiliation(s)
- Katherine R Smith
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Bug22p, a conserved centrosomal/ciliary protein also present in higher plants, is required for an effective ciliary stroke in Paramecium. EUKARYOTIC CELL 2010; 9:645-55. [PMID: 20118210 DOI: 10.1128/ec.00368-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centrioles, cilia, and flagella are ancestral conserved organelles of eukaryotic cells. Among the proteins identified in the proteomics of ciliary proteins in Paramecium, we focus here on a protein, Bug22p, previously detected by cilia and basal-body high-throughput studies but never analyzed per se. Remarkably, this protein is also present in plants, which lack centrioles and cilia. Bug22p sequence alignments revealed consensus positions that distinguish species with centrioles/cilia from plants. In Paramecium, antibody and green fluorescent protein (GFP) fusion labeling localized Bug22p in basal bodies and cilia, and electron microscopy immunolabeling refined the localization to the terminal plate of the basal bodies, the transition zone, and spots along the axoneme, preferentially between the membrane and the microtubules. RNA interference (RNAi) depletion of Bug22p provoked a strong decrease in swimming speed, followed by cell death after a few days. High-speed video microscopy and morphological analysis of Bug22p-depleted cells showed that the protein plays an important role in the efficiency of ciliary movement by participating in the stroke shape and rigidity of cilia. The defects in cell swimming and growth provoked by RNAi can be complemented by expression of human Bug22p. This is the first reported case of complementation by a human gene in a ciliate.
Collapse
|
23
|
Hao L, Acar S, Evans J, Ou G, Scholey JM. Analysis of intraflagellar transport in C. elegans sensory cilia. Methods Cell Biol 2009; 93:235-66. [PMID: 20409821 DOI: 10.1016/s0091-679x(08)93013-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia are assembled and maintained by intraflagellar transport (IFT), the motor-dependent, bidirectional movement of multiprotein complexes, called IFT particles, along the axoneme. The sensory cilia of Caenorhabditis elegans represent very useful objects for studying IFT because of the availability of in vivo time-lapse fluorescence microscopy assays of IFT and multiple ciliary mutants. In this system there are 60 sensory neurons, each having sensory cilia on the endings of their dendrites, and most components of the IFT machinery operating in these structures have been identified using forward and reverse genetic approaches. By analyzing the rate of IFT along cilia within living wild-type and mutant animals, two anterograde and one retrograde IFT motors were identified, the functional coordination of the two anterograde kinesin-2 motors was established and the transport properties of all the known IFT particle components have been characterized. The anterograde kinesin motors have been heterologously expressed and purified, and their biochemical properties have been characterized using MT gliding and single molecule motility assays. In this chapter, we summarize how the tools of genetics, cell biology, electron microscopy, and biochemistry are being used to dissect the composition and mechanism of action of IFT motors and IFT particles in C. elegans.
Collapse
Affiliation(s)
- Limin Hao
- Molecular and Cell Biology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
24
|
Inglis PN, Blacque OE, Leroux MR. Functional genomics of intraflagellar transport-associated proteins in C. elegans. Methods Cell Biol 2009; 93:267-304. [PMID: 20409822 DOI: 10.1016/s0091-679x(08)93014-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nematode Caenorhabditis elegans presents numerous advantages for the identification and molecular analysis of intraflagellar transport (IFT)-associated proteins, which play a critical role in the formation of cilia. Many proteins were first described as participating in IFT in this organism, including IFTA-1 (IFT121), DYF-1 (fleer/IFT70), DYF-2 (IFT144), DYF-3 (Qilin), DYF-11 (MIP-T3/IFT54), DYF-13, XBX-1 (dynein light intermediate chain), XBX-2 (dynein light chain), CHE-13 (IFT57/HIPPI), orthologs of Bardet-Biedl syndrome proteins, and potential regulatory protein, IFTA-2 (RABL5/IFT22). Transgenic animals bearing green fluorescent protein (GFP)-tagged proteins can be generated with ease, and in vivo imaging of IFT in both wild-type and cilia mutant strains can be performed quickly. The analyses permit detailed information on the localization and dynamic properties (velocities along the ciliary axoneme) of the relevant proteins, providing insights into their potential functions in processes such as anterograde and retrograde transport and cilium formation, as well as association with distinct modules of the IFT machinery (e.g., IFT subcomplexes A or B). Behavioral studies of the corresponding IFT-associated gene mutants further enable an understanding of the ciliary role of the proteins-e.g., in chemosensation, lipid homeostasis, lifespan control, and signaling-in a multicellular animal. In this chapter, we discuss how C. elegans can be used for the identification and characterization of IFT-associated proteins, focusing on methods for the generation of GFP-tagged IFT reporter strains, time-lapse microscopy, and IFT rate measurements.
Collapse
Affiliation(s)
- Peter N Inglis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A1S6, Canada
| | | | | |
Collapse
|
25
|
Follit JA, Xu F, Keady BT, Pazour GJ. Characterization of mouse IFT complex B. ACTA ACUST UNITED AC 2009; 66:457-68. [PMID: 19253336 DOI: 10.1002/cm.20346] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The primary cilium plays a key role in the development of mammals and in the maintenance of health. Primary cilia are assembled and maintained by the process of intraflagellar transport (IFT). In this work, we characterize mouse IFT complex B by identifying all of the mammalian orthologues of complex B and B-associated proteins previously identified in Chlamydomonas and Caenorhabditis and also identify a new component (IFT25/Hspb11) of complex B by database analysis. We tagged each of these proteins with the FLAG epitope and show that all except IFT172 and IFT20 localize to cilia and the peri-basal body or centrosomal region at the base of cilia. All of the proteins except IFT172 immunoprecipitate IFT88 indicating that they are co-assembled into a complex. IFT20 is the only complex B protein that localizes to the Golgi apparatus. However, overexpression of IFT54/Traf3ip1, the mouse orthologue of Dyf-11/Elipsa, displaces IFT20 from the Golgi apparatus. IFT54 does not localize to the Golgi complex nor does it interact with GMAP210, which is the protein that anchors IFT20 to the Golgi apparatus. This suggests that IFT54s effect on IFT20 is a dominant negative phenotype caused by its overexpression. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- John A Follit
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
26
|
Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii. Genetics 2009; 183:885-96. [PMID: 19720863 DOI: 10.1534/genetics.109.101915] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intraflagellar transport machinery is required for the assembly of cilia. It has been investigated by biochemical, genetic, and computational methods that have identified at least 21 proteins that assemble into two subcomplexes. It has been hypothesized that complex A is required for retrograde transport. Temperature-sensitive mutations in FLA15 and FLA17 show defects in retrograde intraflagellar transport (IFT) in Chlamydomonas. We show that IFT144 and IFT139, two complex A proteins, are encoded by FLA15 and FLA17, respectively. The fla15 allele is a missense mutation in a conserved cysteine and the fla17 allele is an in-frame deletion of three exons. The flagellar assembly defect of each mutant is rescued by the respective transgenes. In fla15 and fla17 mutants, bulges form in the distal one-third of the flagella at the permissive temperature and this phenotype is also rescued by the transgenes. These bulges contain the complex B component IFT74/72, but not alpha-tubulin or p28, a component of an inner dynein arm, which suggests specificity with respect to the proteins that accumulate in these bulges. IFT144 and IFT139 are likely to interact with each other and other proteins on the basis of three distinct genetic tests: (1) Double mutants display synthetic flagellar assembly defects at the permissive temperature, (2) heterozygous diploid strains exhibit second-site noncomplemention, and (3) transgenes confer two-copy suppression. Since these tests show different levels of phenotypic sensitivity, we propose they illustrate different gradations of gene interaction between complex A proteins themselves and with a complex B protein (IFT172).
Collapse
|
27
|
Kunitomo H, Iino Y. Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. Genes Cells 2008; 13:13-25. [PMID: 18173744 DOI: 10.1111/j.1365-2443.2007.01147.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cilia and flagella play critical roles in cell motility, development and sensory perception in animals. Formation and maintenance of cilia require a conserved protein transport system called intraflagellar transport (IFT). Here, we show that Caenorhabditis elegans dyf-11 encodes an evolutionarily conserved protein required for cilium biogenesis. dyf-11 is expressed in most of the ciliated neurons and is regulated by DAF-19, a crucial transcription factor for ciliary genes in C. elegans. dyf-11 mutants exhibit stunted cilia, fluorescent dye-filling defects (Dyf) of sensory neurons, and abnormal chemotaxis (Che). Cell- and stage-specific rescue experiments indicated that DYF-11 is required for formation and maintenance of sensory cilia in cell-autonomous manner. Fluorescent protein-tagged DYF-11 localizes to cilia and moves antero- and retrogradely via IFT. Analysis of DYF-11 movement in bbs mutants further suggested that DYF-11 is likely associated with IFT complex B. Domain analysis using DYF-11 deletion constructs revealed that the coiled-coil region is required for proper localization and ciliogenesis. We further show that Traf3ip1/MIP-T3, the mammalian orthologue of DYF-11, localizes to cilia in the MDCK renal epithelial cells.
Collapse
Affiliation(s)
- Hirofumi Kunitomo
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
28
|
Laurençon A, Dubruille R, Efimenko E, Grenier G, Bissett R, Cortier E, Rolland V, Swoboda P, Durand B. Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biol 2008; 8:R195. [PMID: 17875208 PMCID: PMC2375033 DOI: 10.1186/gb-2007-8-9-r195] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 01/02/2023] Open
Abstract
An RFX-binding site is shown to be conserved in the promoters of a subset of ciliary genes and a subsequent screen for this site in two Drosophila species identified novel RFX target genes that are involved in sensory ciliogenesis. Background Regulatory factor X (RFX) transcription factors play a key role in ciliary assembly in nematode, Drosophila and mouse. Using the tremendous advantages of comparative genomics in closely related species, we identified novel genes regulated by dRFX in Drosophila. Results We first demonstrate that a subset of known ciliary genes in Caenorhabditis elegans and Drosophila are regulated by dRFX and have a conserved RFX binding site (X-box) in their promoters in two highly divergent Drosophila species. We then designed an X-box consensus sequence and carried out a genome wide computer screen to identify novel genes under RFX control. We found 412 genes that share a conserved X-box upstream of the ATG in both species, with 83 genes presenting a more restricted consensus. We analyzed 25 of these 83 genes, 16 of which are indeed RFX target genes. Two of them have never been described as involved in ciliogenesis. In addition, reporter construct expression analysis revealed that three of the identified genes encode proteins specifically localized in ciliated endings of Drosophila sensory neurons. Conclusion Our X-box search strategy led to the identification of novel RFX target genes in Drosophila that are involved in sensory ciliogenesis. We also established a highly valuable Drosophila cilia and basal body dataset. These results demonstrate the accuracy of the X-box screen and will be useful for the identification of candidate genes for human ciliopathies, as several human homologs of RFX target genes are known to be involved in diseases, such as Bardet-Biedl syndrome.
Collapse
Affiliation(s)
- Anne Laurençon
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Raphaëlle Dubruille
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
- University of Massachusetts Medical School, Department of Neurobiology, Worcester, MA 01605, USA
| | - Evgeni Efimenko
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Guillaume Grenier
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Ryan Bissett
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
- University of Glasgow, Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Infection and Immunity, Glasgow G12 8TA, UK
| | - Elisabeth Cortier
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Vivien Rolland
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Bénédicte Durand
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| |
Collapse
|
29
|
Li C, Inglis PN, Leitch CC, Efimenko E, Zaghloul NA, Mok CA, Davis EE, Bialas NJ, Healey MP, Héon E, Zhen M, Swoboda P, Katsanis N, Leroux MR. An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes. PLoS Genet 2008; 4:e1000044. [PMID: 18369462 PMCID: PMC2268012 DOI: 10.1371/journal.pgen.1000044] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 02/28/2008] [Indexed: 11/30/2022] Open
Abstract
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development. The transport of protein complexes and associated cargo along microtubule tracks represents an essential eukaryotic process responsible for a multitude of cellular functions, including cell division, vesicle movement to membranes, and trafficking along dendrites, axons, and cilia. The latter organelles are hair-like cellular appendages implicated in cell and fluid motility, sensing and transducing information from their environment, and development. Their biogenesis and maintenance depends on a kinesin- and dynein-mediated motility process termed intraflagellar transport (IFT). In addition to comprising these specialized molecular motors, the IFT machinery consists of large multisubunit complexes whose exact composition and organization has not been fully defined. Here we identify a protein, DYF-11/MIP-T3, that is conserved in all ciliated organisms and is associated with IFT in C. elegans. Disruption of C. elegans DYF-11 results in structurally compromised cilia, likely as a result of IFT motor and subunit misassembly. Animals lacking DYF-11 display chemosensory anomalies, consistent with a role for the protein in cilia-associated sensory processes. In zebrafish, MIP-T3 is essential for gastrulation movements during development, similar to that observed for other ciliary components, including Bardet-Biedl syndrome proteins. In conclusion, we have identified a novel IFT machinery component that is also essential for development in vertebrates.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter N. Inglis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carmen C. Leitch
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Evgeni Efimenko
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, Huddinge, Sweden
| | - Norann A. Zaghloul
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Calvin A. Mok
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Microbiology and Medical Genetics, University of Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Erica E. Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nathan J. Bialas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael P. Healey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Microbiology and Medical Genetics, University of Toronto, Ontario, Canada
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, Huddinge, Sweden
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
30
|
Williams CL, Winkelbauer ME, Schafer JC, Michaud EJ, Yoder BK. Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis. Mol Biol Cell 2008; 19:2154-68. [PMID: 18337471 DOI: 10.1091/mbc.e07-10-1070] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and Joubert syndrome (JBTS) are a group of heterogeneous cystic kidney disorders with partially overlapping loci. Many of the proteins associated with these diseases interact and localize to cilia and/or basal bodies. One of these proteins is MKS1, which is disrupted in some MKS patients and contains a B9 motif of unknown function that is found in two other mammalian proteins, B9D2 and B9D1. Caenorhabditis elegans also has three B9 proteins: XBX-7 (MKS1), TZA-1 (B9D2), and TZA-2 (B9D1). Herein, we report that the C. elegans B9 proteins form a complex that localizes to the base of cilia. Mutations in the B9 genes do not overtly affect cilia formation unless they are in combination with a mutation in nph-1 or nph-4, the homologues of human genes (NPHP1 and NPHP4, respectively) that are mutated in some NPHP patients. Our data indicate that the B9 proteins function redundantly with the nephrocystins to regulate the formation and/or maintenance of cilia and dendrites in the amphid and phasmid ciliated sensory neurons. Together, these data suggest that the human homologues of the novel B9 genes B9D2 and B9D1 will be strong candidate loci for pathologies in human MKS, NPHP, and JBTS.
Collapse
Affiliation(s)
- Corey L Williams
- Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
31
|
The conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans. Genetics 2008; 178:989-1002. [PMID: 18245347 DOI: 10.1534/genetics.107.082453] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentrate lipophilic dyes from their surroundings in sensory neurons and are chemotaxis defective. In che-12 mutants, sensory neuron cilia lack distal segments, while in dyf-11 animals, medial and distal segments are absent. CHE-12 and DYF-11 are conserved ciliary proteins that function cell-autonomously and are continuously required for maintenance of cilium morphology and function. CHE-12, composed primarily of HEAT repeats, may not be part of the intraflagellar transport (IFT) complex and is not required for the localization of some IFT components. DYF-11 undergoes IFT-like movement and may function at an early stage of IFT-B particle assembly. Intriguingly, while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is restricted to some amphid sensory neurons, suggesting a specific role in these neurons. Our results provide insight into general and neuron-specific aspects of cilium development and function.
Collapse
|
32
|
|
33
|
Absalon S, Blisnick T, Kohl L, Toutirais G, Doré G, Julkowska D, Tavenet A, Bastin P. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 2007; 19:929-44. [PMID: 18094047 DOI: 10.1091/mbc.e07-08-0749] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intraflagellar transport (IFT) is the bidirectional movement of protein complexes required for cilia and flagella formation. We investigated IFT by analyzing nine conventional IFT genes and five novel putative IFT genes (PIFT) in Trypanosoma brucei that maintain its existing flagellum while assembling a new flagellum. Immunostaining against IFT172 or expression of tagged IFT20 or green fluorescent protein GFP::IFT52 revealed the presence of IFT proteins along the axoneme and at the basal body and probasal body regions of both old and new flagella. IFT particles were detected by electron microscopy and exhibited a strict localization to axonemal microtubules 3-4 and 7-8, suggesting the existence of specific IFT tracks. Rapid (>3 microm/s) bidirectional intraflagellar movement of GFP::IFT52 was observed in old and new flagella. RNA interference silencing demonstrated that all individual IFT and PIFT genes are essential for new flagellum construction but the old flagellum remained present. Inhibition of IFTB proteins completely blocked axoneme construction. Absence of IFTA proteins (IFT122 and IFT140) led to formation of short flagella filled with IFT172, indicative of defects in retrograde transport. Two PIFT proteins turned out to be required for retrograde transport and three for anterograde transport. Finally, flagellum membrane elongation continues despite the absence of axonemal microtubules in all IFT/PIFT mutant.
Collapse
Affiliation(s)
- Sabrina Absalon
- Trypanosome Cell Biology Unit, Pasteur Institute and Centre National de la Recherche Scientifique, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen N, Mah A, Blacque OE, Chu J, Phgora K, Bakhoum MW, Hunt Newbury CR, Khattra J, Chan S, Go A, Efimenko E, Johnsen R, Phirke P, Swoboda P, Marra M, Moerman DG, Leroux MR, Baillie DL, Stein LD. Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biol 2007; 7:R126. [PMID: 17187676 PMCID: PMC1794439 DOI: 10.1186/gb-2006-7-12-r126] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/20/2006] [Accepted: 12/22/2006] [Indexed: 01/05/2023] Open
Abstract
Comparative genomic analysis of three nematode species identifies 93 genes that encode putative components of the ciliated neurons in C. elegans and are subject to the same regulatory control. Background The recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes. Results By screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes (including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of different tissue types and of daf-19(+) and daf-19(-) animals. Finally, we demonstrate that the dye-filling defect of dyf-5(mn400) animals, which is indicative of compromised exposure of cilia to the environment, is caused by a nonsense mutation in the serine/threonine protein kinase gene M04C9.5. Conclusion Our comparative genomics-based predictions may be useful for identifying genes involved in human ciliopathies, including Bardet-Biedl Syndrome (BBS), since the C. elegans orthologs of known human BBS genes contain X-box motifs and are required for normal dye filling in C. elegans ciliated neurons.
Collapse
Affiliation(s)
- Nansheng Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Allan Mah
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Oliver E Blacque
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeffrey Chu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Kiran Phgora
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Mathieu W Bakhoum
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - C Rebecca Hunt Newbury
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jaswinder Khattra
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Susanna Chan
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Anne Go
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Evgeni Efimenko
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Robert Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Prasad Phirke
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Marco Marra
- British Columbia Cancer Agency, Genome Sciences Centre, Vancouver, British Columbia, Canada V5Z 4S6
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Lincoln D Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
35
|
Ou G, Koga M, Blacque OE, Murayama T, Ohshima Y, Schafer JC, Li C, Yoder BK, Leroux MR, Scholey JM. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol Biol Cell 2007; 18:1554-69. [PMID: 17314406 PMCID: PMC1855012 DOI: 10.1091/mbc.e06-09-0805] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 02/02/2007] [Accepted: 02/07/2007] [Indexed: 01/06/2023] Open
Abstract
Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis.
Collapse
Affiliation(s)
- Guangshuo Ou
- *Center for Genetics and Development, Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Makato Koga
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Oliver E. Blacque
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- School of Biomolecular and Biomedical Science, University College Dublin Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; and
| | - Takashi Murayama
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yasumi Ohshima
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jenny C. Schafer
- Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Bradley K. Yoder
- Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jonathan M. Scholey
- *Center for Genetics and Development, Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
36
|
Blacque OE, Li C, Inglis PN, Esmail MA, Ou G, Mah AK, Baillie DL, Scholey JM, Leroux MR. The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport. Mol Biol Cell 2006; 17:5053-62. [PMID: 17021254 PMCID: PMC1679672 DOI: 10.1091/mbc.e06-06-0571] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/14/2006] [Accepted: 09/22/2006] [Indexed: 11/11/2022] Open
Abstract
The assembly and maintenance of cilia require intraflagellar transport (IFT), a microtubule-dependent bidirectional motility of multisubunit protein complexes along ciliary axonemes. Defects in IFT and the functions of motile or sensory cilia are associated with numerous human ailments, including polycystic kidney disease and Bardet-Biedl syndrome. Here, we identify a novel Caenorhabditis elegans IFT gene, IFT-associated gene 1 (ifta-1), which encodes a WD repeat-containing protein with strong homology to a mammalian protein of unknown function. Both the C. elegans and human IFTA-1 proteins localize to the base of cilia, and in C. elegans, IFTA-1 can be observed to undergo IFT. IFTA-1 is required for the function and assembly of cilia, because a C. elegans ifta-1 mutant displays chemosensory abnormalities and shortened cilia with prominent ciliary accumulations of core IFT machinery components that are indicative of retrograde transport defects. Analyses of C. elegans IFTA-1 localization/motility along bbs mutant cilia, where anterograde IFT assemblies are destabilized, and in a che-11 IFT gene mutant, demonstrate that IFTA-1 is closely associated with the IFT particle A subcomplex, which is implicated in retrograde IFT. Together, our data indicate that IFTA-1 is a novel IFT protein that is required for retrograde transport along ciliary axonemes.
Collapse
Affiliation(s)
- Oliver E. Blacque
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and
| | - Chunmei Li
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and
| | - Peter N. Inglis
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and
| | - Muneer A. Esmail
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and
| | - Guangshuo Ou
- Center for Genetics and Development, Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Allan K. Mah
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and
| | - David L. Baillie
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and
| | - Jonathan M. Scholey
- Center for Genetics and Development, Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Michel R. Leroux
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; and
| |
Collapse
|
37
|
Efimenko E, Blacque OE, Ou G, Haycraft CJ, Yoder BK, Scholey JM, Leroux MR, Swoboda P. Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia. Mol Biol Cell 2006; 17:4801-11. [PMID: 16957054 PMCID: PMC1635379 DOI: 10.1091/mbc.e06-04-0260] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intraflagellar transport (IFT) machinery required to build functional cilia consists of a multisubunit complex whose molecular composition, organization, and function are poorly understood. Here, we describe a novel tryptophan-aspartic acid (WD) repeat (WDR) containing IFT protein from Caenorhabditis elegans, DYF-2, that plays a critical role in maintaining the structural and functional integrity of the IFT machinery. We determined the identity of the dyf-2 gene by transgenic rescue of mutant phenotypes and by sequencing of mutant alleles. Loss of DYF-2 function selectively affects the assembly and motility of different IFT components and leads to defects in cilia structure and chemosensation in the nematode. Based on these observations, and the analysis of DYF-2 movement in a Bardet-Biedl syndrome mutant with partially disrupted IFT particles, we conclude that DYF-2 can associate with IFT particle complex B. At the same time, mutations in dyf-2 can interfere with the function of complex A components, suggesting an important role of this protein in the assembly of the IFT particle as a whole. Importantly, the mouse orthologue of DYF-2, WDR19, also localizes to cilia, pointing to an important evolutionarily conserved role for this WDR protein in cilia development and function.
Collapse
Affiliation(s)
- Evgeni Efimenko
- *Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Oliver E. Blacque
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Guangshuo Ou
- Center for Genetics and Development, Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616; and
| | - Courtney J. Haycraft
- Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294
| | - Bradley K. Yoder
- Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294
| | - Jonathan M. Scholey
- Center for Genetics and Development, Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616; and
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Peter Swoboda
- *Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| |
Collapse
|
38
|
Bell LR, Stone S, Yochem J, Shaw JE, Herman RK. The molecular identities of the Caenorhabditis elegans intraflagellar transport genes dyf-6, daf-10 and osm-1. Genetics 2006; 173:1275-86. [PMID: 16648645 PMCID: PMC1526656 DOI: 10.1534/genetics.106.056721] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Caenorhabditis elegans genes dyf-6, daf-10, and osm-1 are among the set of genes that affect chemotaxis and the ability of certain sensory neurons to take up fluorescent dyes from the environment. Some genes in this category are known to be required for intraflagellar transport (IFT), which is the bidirectional movement of raft-like particles along the axonemes of cilia and flagella. The cloning of dyf-6, daf-10, and osm-1 are described here. The daf-10 and osm-1 gene products resemble each other and contain WD and WAA repeats. DYF-6, the product of a complex locus, lacks known motifs, but orthologs are present in flies and mammals. Phenotypic analysis of dyf-6 mutants expressing an OSM-6::GFP reporter indicates that the cilia of the amphid and phasmid dendritic endings are foreshortened. Consistent with genetic mosaic analysis, which indicates that dyf-6 functions in neurons of the amphid sensilla, DYF-6::GFP is expressed in amphid and phasmid neurons. Movement of DYF-6::GFP within the ciliated endings of the neurons indicates that DYF-6 is involved in IFT. In addition, IFT can be observed in dauer larvae.
Collapse
Affiliation(s)
- Leslie R Bell
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
39
|
Ou G, Qin H, Rosenbaum JL, Scholey JM. The PKD protein qilin undergoes intraflagellar transport. Curr Biol 2005; 15:R410-1. [PMID: 15936258 DOI: 10.1016/j.cub.2005.05.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Guangshuo Ou
- Center for Genetics and Development and Section of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|