1
|
Chirayath TW, Ollivier M, Kayatekin M, Rubera I, Pham CN, Friard J, Linck N, Hirbec H, Combes C, Zarka M, Lioté F, Richette P, Rassendren F, Compan V, Duranton C, Ea HK. Activation of osmo-sensitive LRRC8 anion channels in macrophages is important for micro-crystallin joint inflammation. Nat Commun 2024; 15:8179. [PMID: 39294178 PMCID: PMC11410944 DOI: 10.1038/s41467-024-52543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
Deposition of monosodium urate and calcium pyrophosphate (MSU and CPP) micro-crystals is responsible for painful and recurrent inflammation flares in gout and chondrocalcinosis. In these pathologies, the inflammatory reactions are due to the activation of macrophages responsible for releasing various cytokines including IL-1β. The maturation of IL-1β is mediated by the multiprotein NLRP3 inflammasome. Here, we find that activation of the NLRP3 inflammasome by crystals and concomitant production of IL-1β depend on cell volume regulation via activation of the osmo-sensitive LRRC8 anion channels. Both pharmacological inhibition and genetic silencing of LRRC8 abolish NLRP3 inflammasome activation by crystals in vitro and in mouse models of crystal-induced inflammation. Activation of LRRC8 upon MSU/CPP crystal exposure induces ATP release, P2Y receptor activation and intracellular calcium increase necessary for NLRP3 inflammasome activation and IL-1β maturation. We identify a function of the LRRC8 osmo-sensitive anion channels with pathophysiological relevance in the context of joint crystal-induced inflammation.
Collapse
Affiliation(s)
- Twinu Wilson Chirayath
- Université Paris Cité, INSERM UMR-1132, Bioscar, Hôpital Lariboisière, AP-HP, Paris, France
| | - Matthias Ollivier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Mete Kayatekin
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | - Isabelle Rubera
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | - Chinh Nghia Pham
- Université Paris Cité, INSERM UMR-1132, Bioscar, Hôpital Lariboisière, AP-HP, Paris, France
| | - Jonas Friard
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | - Nathalie Linck
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Hélene Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Christèle Combes
- Université Toulouse, ENSACIET, INPT-CNRS, F-31000, Toulouse, France
| | - Mylène Zarka
- Université Paris Cité, INSERM UMR-1132, Bioscar, Hôpital Lariboisière, AP-HP, Paris, France
| | - Frédéric Lioté
- Université Paris Cité, INSERM UMR-1132, Bioscar, Hôpital Lariboisière, AP-HP, Paris, France
- Hôpital Lariboisière, AP-HP, Rheumatology department, Centre Viggo Petersen, DMU Locomoteur, Paris, France
| | - Pascal Richette
- Université Paris Cité, INSERM UMR-1132, Bioscar, Hôpital Lariboisière, AP-HP, Paris, France
- Hôpital Lariboisière, AP-HP, Rheumatology department, Centre Viggo Petersen, DMU Locomoteur, Paris, France
| | - Francois Rassendren
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France.
| | - Christophe Duranton
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France.
- Université Côte d'Azur, CNRS, LP2M, Nice, France.
| | - Hang Korng Ea
- Université Paris Cité, INSERM UMR-1132, Bioscar, Hôpital Lariboisière, AP-HP, Paris, France.
- Hôpital Lariboisière, AP-HP, Rheumatology department, Centre Viggo Petersen, DMU Locomoteur, Paris, France.
| |
Collapse
|
2
|
Mom R, Mocquet V, Auguin D, Réty S. Aquaporin Modulation by Cations, a Review. Curr Issues Mol Biol 2024; 46:7955-7975. [PMID: 39194687 DOI: 10.3390/cimb46080470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes' water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, F-45067 Orléans, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| |
Collapse
|
3
|
Mom R, Réty S, Mocquet V, Auguin D. Deciphering Molecular Mechanisms Involved in the Modulation of Human Aquaporins' Water Permeability by Zinc Cations: A Molecular Dynamics Approach. Int J Mol Sci 2024; 25:2267. [PMID: 38396944 PMCID: PMC10888569 DOI: 10.3390/ijms25042267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Aquaporins (AQPs) constitute a wide family of water channels implicated in all kind of physiological processes. Zinc is the second most abundant trace element in the human body and a few studies have highlighted regulation of AQP0 and AQP4 by zinc. In the present work, we addressed the putative regulation of AQPs by zinc cations in silico through molecular dynamics simulations of human AQP0, AQP2, AQP4, and AQP5. Our results align with other scales of study and several in vitro techniques, hence strengthening the reliability of this regulation by zinc. We also described two distinct putative molecular mechanisms associated with the increase or decrease in AQPs' water permeability after zinc binding. In association with other studies, our work will help deciphering the interaction networks existing between zinc and channel proteins.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1293, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France; (S.R.); (V.M.)
- Research Group on Vestibular Pathophysiology, CNRS, Unit GDR2074, F-13331 Marseille, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1293, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France; (S.R.); (V.M.)
| | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1293, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France; (S.R.); (V.M.)
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
4
|
Jeuken K, Jaeger E, Matthews E, Beitz E. Methylthiosulfonate-Based Cysteine Modifiers as Alternative Inhibitors of Mercurial-Sensitive Aquaporins. Cells 2023; 12:1742. [PMID: 37443776 PMCID: PMC10340331 DOI: 10.3390/cells12131742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Several members of the ubiquitous aquaporin family, AQP, of water and neutral solute channels carry a cysteine residue in the selectivity filter region. Traditionally, toxic mercury-containing compounds are used to bind to the cysteine as covalent AQP inhibitors for physiological studies or analysis of structure-function relationships. (2) Methods: We tested thiol-reactive methylthiosulfonate reagents, MTS, as alternative Cys modifiers for AQP inhibition. Three MTS reagents transferring S-alkyl moieties of increasing size, i.e., S-methyl, S-n-propyl, and S-benzyl, were used with yeast-expressed water-selective AQP1 and the aquaglyceroporin AQP9. Respective Cys-to-Ala variants and mouse erythrocytes that naturally express AQP1 and AQP9 served as controls. (3) Results: Both wildtype AQP isoforms were inhibited by the Cys modifiers in a size-dependent manner, whereas the Cys-to-Ala-variants exhibited resistance. Sub-millimolar concentrations and incubation times in the minute range were sufficient. The modifications were reversible by treatment with the thiol reagents acetylcysteine, ACC, and dithiothreitol, DTT. (4) Conclusions: MTS reagents represent a valid alternative of low toxicity for the inhibition of mercurial-sensitive AQPs.
Collapse
Affiliation(s)
| | | | | | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (K.J.); (E.J.); (E.M.)
| |
Collapse
|
5
|
Vysotskaya L, Akhiyarova G, Seldimirova O, Nuzhnaya T, Galin I, Ivanov R, Kudoyarova G. Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock. Int J Mol Sci 2023; 24:9860. [PMID: 37373010 DOI: 10.3390/ijms24129860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cytokinins are known to keep stomata open, which supports gas exchange and correlates with increased photosynthesis. However, keeping the stomata open can be detrimental if the increased transpiration is not compensated for by water supply to the shoots. In this study, we traced the effect of ipt (isopentenyl transferase) gene induction, which increases the concentration of cytokinins in transgenic tobacco plants, on transpiration and hydraulic conductivity. Since water flow depends on the conductivity of the apoplast, the deposition of lignin and suberin in the apoplast was studied by staining with berberine. The effect of an increased concentration of cytokinins on the flow of water through aquaporins (AQPs) was revealed by inhibition of AQPs with HgCl2. It was shown that an elevated concentration of cytokinins in ipt-transgenic plants increases hydraulic conductivity by enhancing the activity of aquaporins and reducing the formation of apoplastic barriers. The simultaneous effect of cytokinins on both stomatal and hydraulic conductivity makes it possible to coordinate the evaporation of water from leaves and its flow from roots to leaves, thereby maintaining the water balance and leaf hydration.
Collapse
Affiliation(s)
- Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| |
Collapse
|
6
|
Steelman ZA, Martens S, Tran J, Coker ZN, Sedelnikova A, Kiester AS, O’Connor SP, Ibey BL, Bixler JN. Rapid and precise tracking of water influx and efflux across cell membranes induced by a pulsed electric field. BIOMEDICAL OPTICS EXPRESS 2023; 14:1894-1910. [PMID: 37206120 PMCID: PMC10191652 DOI: 10.1364/boe.485627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Quantitative measurements of water content within a single cell are notoriously difficult. In this work, we introduce a single-shot optical method for tracking the intracellular water content, by mass and volume, of a single cell at video rate. We utilize quantitative phase imaging and a priori knowledge of a spherical cellular geometry, leveraging a two-component mixture model to compute the intracellular water content. We apply this technique to study CHO-K1 cells responding to a pulsed electric field, which induces membrane permeabilization and rapid water influx or efflux depending upon the osmotic environment. The effects of mercury and gadolinium on water uptake in Jurkat cells following electropermeabilization are also examined.
Collapse
Affiliation(s)
| | - Stacey Martens
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | - Jennifer Tran
- University of Wisconsin-Madison School of Pharmacy, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | | - Allen S. Kiester
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | | | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| |
Collapse
|
7
|
Tsujimoto H, Metz HC, Smith AA, Sakamoto JM, Pal U, Rasgon JL. Function and evolution of the aquaporin IsAQP1 in the Lyme disease vector Ixodes scapularis. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36680546 DOI: 10.1111/imb.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Ticks are important vectors of pathogenic viruses, bacteria, and protozoans to humans, wildlife, and domestic animals. Due to their life cycles, ticks face significant challenges related to water homeostasis. When blood-feeding, they must excrete water and ions, but when off-host (for stretches lasting several months), they must conserve water to avoid desiccation. Aquaporins (AQPs), a family of membrane-bound water channels, are key players in osmoregulation in many animals but remain poorly characterized in ticks. Here, we bioinformatically identified AQP-like genes from the deer tick Ixodes scapularis and used phylogenetic approaches to map the evolution of the aquaporin gene family in arthropods. Most arachnid AQP-like sequences (including those of I. scapularis) formed a monophyletic group clustered within aquaglycerolporins (GLPs) from bacteria to vertebrates. This gene family is absent from insects, revealing divergent evolutionary paths for AQPs in different hematophagous arthropods. Next, we sequenced the full-length cDNA of I. scapularis aquaporin 1 (IsAQP1) and expressed it heterologously in Xenopus oocytes to functionally characterize its permeability to water and solutes. Additionally, we examined IsAQP1 expression across different life stages and adult female organs. We found IsAQP1 is an efficient water channel with high expression in salivary glands prior to feeding, suggesting it plays a role in osmoregulation before or during blood feeding. Its functional properties are unique: unlike most GLPs, IsAQP1 has low glycerol permeability, and unlike most AQPs, it is insensitive to mercury. Together, our results suggest IsAQP1 plays an important role in tick water balance physiology and that it may hold promise as a target of novel vector control efforts.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Hillery C Metz
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Joyce M Sakamoto
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Chuang YC, Wu SY, Huang YC, Peng CK, Tang SE, Huang KL. Cell volume restriction by mercury chloride reduces M1-like inflammatory response of bone marrow-derived macrophages. Front Pharmacol 2022; 13:1074986. [PMID: 36582541 PMCID: PMC9792784 DOI: 10.3389/fphar.2022.1074986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of macrophages in the pro-inflammatory (M1) and anti-inflammatory (M2) sub-phenotypes is a crucial element in several inflammation-related diseases and injuries. We investigated the role of aquaporin (AQP) in macrophage polarization using AQP pan-inhibitor mercury chloride (HgCl2). Lipopolysaccharides (LPSs) induced the expression of AQP-1 and AQP-9 which increased the cell size of bone marrow-derived macrophages. The inhibition of AQPs by HgCl2 abolished cell size changes and significantly suppressed M1 polarization. HgCl2 significantly reduced the activation of the nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) pathways and inhibited the production of IL-1β. HgCl2 attenuated LPS-induced activation of mitochondria and reactive oxygen species production and autophagy was promoted by HgCl2. The increase in the light chain three II/light chain three I ratio and the reduction in PTEN-induced kinase one expression suggests the recycling of damaged mitochondria and the restoration of mitochondrial activity by HgCl2. In summary, the present study demonstrates a possible mechanism of the AQP inhibitor HgCl2 in macrophage M1 polarization through the restriction of cell volume change, suppression of the p38 MAPK/NFκB pathway, and promotion of autophagy.
Collapse
Affiliation(s)
- Yen-Chieh Chuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan,Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan,*Correspondence: Kun-Lun Huang,
| |
Collapse
|
10
|
Xie H, Ma S, Zhao Y, Zhou H, Tong Q, Chen Y, Zhang Z, Yu K, Lin Q, Kai L, Liu M, Yang J. Molecular Mechanisms of Mercury-Sensitive Aquaporins. J Am Chem Soc 2022; 144:22229-22241. [PMID: 36413513 DOI: 10.1021/jacs.2c10240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aquaporins are transmembrane channels that allow for the passive permeation of water and other small molecules across biological membranes. Their channel activities are sensitive to mercury ions. Intriguingly, while most aquaporins are inhibited by mercury ions, several aquaporins are activated by mercury ions. The molecular basis of the opposing aquaporin regulation by mercury remains poorly understood. Herein, we investigated AqpZ inhibition and AQP6 activation upon binding of mercury ions using solid-state NMR (ssNMR) and molecular dynamics (MD) simulations. Based on the structure of the Hg-AqpZ complex constructed by MD simulations and ssNMR, we identified that the pore closure was caused by mercury-induced conformational changes of the key residue R189 in the selectivity filter region, while pore opening was caused by conformational changes of residues H181 and R196 in the selectivity filter region in AQP6. Both conformational changes were caused by the disruption of the H-bond network of R189/R196 by mercury. The molecular details provided a structural basis for mercury-mediated functional changes in aquaporins.
Collapse
Affiliation(s)
- Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Shaojie Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hu Zhou
- Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore, Singapore 117411, Singapore
| | - Qiong Tong
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Qingsong Lin
- Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore, Singapore 117411, Singapore
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
11
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
12
|
Mishra M, Nichols L, Dave AA, Pittman EH, Cheek JP, Caroland AJV, Lotwala P, Drummond J, Bridges CC. Molecular Mechanisms of Cellular Injury and Role of Toxic Heavy Metals in Chronic Kidney Disease. Int J Mol Sci 2022; 23:11105. [PMID: 36232403 PMCID: PMC9569673 DOI: 10.3390/ijms231911105] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease that affects millions of adults every year. Major risk factors include diabetes, hypertension, and obesity, which affect millions of adults worldwide. CKD is characterized by cellular injury followed by permanent loss of functional nephrons. As injured cells die and nephrons become sclerotic, remaining healthy nephrons attempt to compensate by undergoing various structural, molecular, and functional changes. While these changes are designed to maintain appropriate renal function, they may lead to additional cellular injury and progression of disease. As CKD progresses and filtration decreases, the ability to eliminate metabolic wastes and environmental toxicants declines. The inability to eliminate environmental toxicants such as arsenic, cadmium, and mercury may contribute to cellular injury and enhance the progression of CKD. The present review describes major molecular alterations that contribute to the pathogenesis of CKD and the effects of arsenic, cadmium, and mercury on the progression of CKD.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Larry Nichols
- Department of Pathology and Clinical Sciences Education, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Aditi A. Dave
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Elizabeth H Pittman
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - John P. Cheek
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Anasalea J. V. Caroland
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Purva Lotwala
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - James Drummond
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Christy C. Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
13
|
Sharma L, Ye L, Yong C, Seetharaman R, Kho K, Surya W, Wang R, Torres J. Aquaporin-based membranes made by interfacial polymerization in hollow fibers: Visualization and role of aquaporin in water permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Mechanism of unusual AQP6 activation by mercury binding to a pore-external residue C155. Biochem Biophys Res Commun 2022; 618:1-7. [PMID: 35714565 DOI: 10.1016/j.bbrc.2022.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Aquaporins (AQPs) transport water molecules across cell membranes. Although most aquaporins are inhibited by mercury ions, AQP6 was reported to be activated by binding mercury ions to residues C155 and C190. Different from C190 and the other pore-line cysteine residues, C155 is located outside the pore, thus not directly affecting the internal pathway by mercury binding to it. The molecular mechanism of unusual water channel activation by mercury ion binding to the C155 site remains unknown. Here, we investigate the activation of AQP6 by mercury ions binding to C155 by molecular dynamics (MD) simulations. The MD simulation results show that the mercury-induced water permeation activation is derived from the conformational change of a pore-line residue M160, from a point-to-pore conformation before mercury binding to an away-pore conformation after mercury binding. The conformation change of M160 is derived from the reduction of the hydrogen bonding between C155 and S159 in the α-helix with the coordination of C155 to mercury ion altering their conformation significantly. This study reveals the complex mechanism of water channel activation by mercury ion binding to pore-external residues in water channels.
Collapse
|
15
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
16
|
Movassagh H, Halchenko Y, Sampath V, Nygaard UC, Jackson B, Robbins D, Li Z, Nadeau KC, Karagas MR. Maternal gestational mercury exposure in relation to cord blood T cell alterations and placental gene expression signatures. ENVIRONMENTAL RESEARCH 2021; 201:111385. [PMID: 34129869 PMCID: PMC8478717 DOI: 10.1016/j.envres.2021.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The immunotoxic impacts of mercury during early life is poorly understood. We investigated the associations between gestational mercury exposure and frequency of cord blood T cells as well as placental gene expression. Frequency of natural Treg cells was positively associated with prenatal and postpartum mercury toenail concentrations. Frequency of NKT and activated naïve Th cells was positively associated with prenatal toenail mercury concentrations and number of maternal silver-mercury dental amalgams, respectively. Placental gene expression analyses revealed distinct gene signatures associated with mercury exposure. Decreased placental expression of a histone demethylase, KDM4DL, was associated with both higher prenatal and postpartum maternal toenail mercury levels among male infants and remained statistically significant after adjustment for fish and seafood consumption. The results suggest that gestational exposure to mercury concentrations contribute to alterations in both T cells and gene expression in placenta at birth. These alterations may inform mechanisms of mercury immunotoxicity.
Collapse
Affiliation(s)
- Hesam Movassagh
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Yuliya Halchenko
- Department of Epidemiology, Geisel School of Medicine and the Children's Environmental Health and Disease Prevention Research Center at Dartmouth; Hanover, NH, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Unni C Nygaard
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA; Department of Environmental Health, Norwegian Institute of Public Health; Oslo, Norway
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College; Hanover, NH, USA
| | - David Robbins
- Department of Surgery, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Zhigang Li
- Department of Epidemiology, Geisel School of Medicine and the Children's Environmental Health and Disease Prevention Research Center at Dartmouth; Hanover, NH, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA.
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine and the Children's Environmental Health and Disease Prevention Research Center at Dartmouth; Hanover, NH, USA
| |
Collapse
|
17
|
Bill RM, Hedfalk K. Aquaporins - Expression, purification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183650. [PMID: 34019902 DOI: 10.1016/j.bbamem.2021.183650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Aquaporin water channels facilitate the bi-directional flow of water and small, neutral solutes down an osmotic gradient in all kingdoms of life. Over the last two decades, the availability of high-quality protein has underpinned progress in the structural and functional characterization of these water channels. In particular, recombinant protein technology has guaranteed the supply of aquaporin samples that were of sufficient quality and quantity for further study. Here we review the features of successful expression, purification and characterization strategies that have underpinned these successes and that will drive further breakthroughs in the field. Overall, Escherichia coli is a suitable host for prokaryotic isoforms, while Pichia pastoris is the most commonly-used recombinant host for eukaryotic variants. Generally, a two-step purification procedure is suitable after solubilization in glucopyranosides and most structures are determined by X-ray following crystallization.
Collapse
Affiliation(s)
- Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
18
|
Vieira JVDA, Marques VB, Vieira LV, Crajoinas RDO, Shimizu MHM, Seguro AC, Carneiro MTWD, Girardi ACC, Vassallo DV, Dos Santos L. Changes in the renal function after acute mercuric chloride exposure in the rat are associated with renal vascular endothelial dysfunction and proximal tubule NHE3 inhibition. Toxicol Lett 2021; 341:23-32. [PMID: 33476711 DOI: 10.1016/j.toxlet.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Mercury is an environmental pollutant and a threat to human health. Mercuric chloride (HgCl2)-induced acute renal failure has been described by several reports, but the mechanisms of renal dysfunction remain elusive. This study tested the hypothesis that HgCl2 directly impairs renal vascular reactivity. Additionally, due to the mercury toxicity on the proximal tubule, we investigated whether the HgCl2-induced natriuresis is accompanied by inhibition of Na+/H+ exchanger isoform-3 (NHE3). We found that 90-min HgCl2 infusion (6.5 μg/kg i.v.) remarkably increased urinary output, reduced GFR and renal blood flow, and increased vascular resistance in rats. "In vitro" experiments of HgCl2 infusion in isolated renal vascular bed demonstrated an elevation of perfusion pressure in a concentration- and time-dependent manner, associated with changes on the endothelium-dependent vasodilatation and the flow-pressure relationship. Moreover, by employing "in vivo" stationary microperfusion of the proximal tubule, we found that HgCl2 inhibits NHE3 activity and increases the phosphorylation of NHE3 at serine 552 in the renal cortex, in line with the HgCl2-induced diuresis. Changes in renal proximal tubular function induced by HgCl2 were parallel to increased urinary markers of proximal tubular injury. Besides, atomic spectrometry showed that mercury accumulated in the renal cortex. We conclude that acute HgCl2 exposure causes renal vasoconstriction that is associated with reduced endothelial vasodilator agonist- and flow-mediated responses and inhibition of NHE3-mediated sodium reabsorption. Thus, our data suggest that HgCl2-induced acute renal failure may be attributable at least in part by its direct effects on renal hemodynamics and NHE3 activity.
Collapse
Affiliation(s)
| | | | - Luiza Valli Vieira
- Department of Chemistry, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Antonio Carlos Seguro
- Department of Nephrology (LIM-12), University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | | | | | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
19
|
Yue K, Jiang J, Zhang P, Kai L. Functional Analysis of Aquaporin Water Permeability Using an Escherichia coli-Based Cell-Free Protein Synthesis System. Front Bioeng Biotechnol 2020; 8:1000. [PMID: 32974321 PMCID: PMC7466572 DOI: 10.3389/fbioe.2020.01000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Aquaporins are essential water channel proteins found in all kingdoms of life. Although the water permeability of aquaporins has been well characterized, sample preparation for aquaporin water permeability assays remains challenging and time-consuming. Besides the difficulty in overexpressing membrane proteins in a cell-based expression system, the unique requirement for homogeneity in aquaporin proteoliposome sample preparations for water transport assays further increases the complexity. In this study, a complementary Cell-free Protein Synthesis (CFPS) method is described in detail, providing three different strategies for the preparation of aquaporin proteoliposome samples. Aquaporin can be produced either as a pellet fraction and then resolubilized, or co-translationally as a detergent-soluble fraction. Furthermore, aquaporin can be directly incorporated into liposomes, which was included in the CFPS reactions. Although proteoliposomes tend to fuse during the incubation of the CFPS reactions, an additional treatment of the fused samples with detergent, followed by a detergent removal step, can re-form homogenously sized proteoliposomes suitable for functional analysis. Using this method, we successfully characterized aquaporins from both prokaryotic and eukaryotic organisms. In particular, in the presence of liposomes, the developed CFPS expression system is a fast and convenient method for sample preparation for the functional analysis of aquaporins.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng Zhang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
20
|
Linhares Lino de Souza D, Serrão JE, Hansen IA. Aquaporin expression in the alimentary canal of the honey bee Apis mellifera L. (Hymenoptera: Apidae) and functional characterization of Am_Eglp 1. PLoS One 2020; 15:e0236724. [PMID: 32956406 PMCID: PMC7505460 DOI: 10.1371/journal.pone.0236724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022] Open
Abstract
Aquaporins (AQP) are a family of plasma membrane proteins responsible for water transport through cell membranes. They are differentially expressed in different parts of the alimentary canal of insects where they regulate water transport. These proteins have been studied in detail in some insects, but few data are available for aquaporins of the honey bee, Apis mellifera. We used quantitative PCR to study the expression of six putative aquaporin genes in forager honey bees. We found differential expression of all putative AQP genes in crop, midgut, ileum, rectum and Malpighian tubules. We found the entomoglyceroporin Am_Eglp 1 expressed at extremely high levels in the midgut. We performed a functional characterization of Am_Eglp 1 using heterologous expression in Xenopus laevis oocyte followed by water uptake assays. Our results confirmed that the Am_Eglp 1 gene encodes a functional water transporter. This study shows that all putative honey bee aquaporin genes have complex expression patterns in the digestive and excretory organs of honey bee workers. Our results suggest that Am_Eglp 1 is the principal water transporter in the midgut of A. mellifera workers.
Collapse
Affiliation(s)
| | | | - Immo Alex Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
- * E-mail:
| |
Collapse
|
21
|
Yan ZJ, Wang D, Ye Z, Fan T, Wu G, Deng L, Yang L, Li B, Liu J, Ma T, Dong C, Li ZT, Xiao L, Wang Y, Wang W, Hou JL. Artificial Aquaporin That Restores Wound Healing of Impaired Cells. J Am Chem Soc 2020; 142:15638-15643. [PMID: 32876439 DOI: 10.1021/jacs.0c00601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Artificial aquaporins are synthetic molecules that mimic the structure and function of natural aquaporins (AQPs) in cell membranes. The development of artificial aquaporins would provide an alternative strategy for treatment of AQP-related diseases. In this report, an artificial aquaporin has been constructed from an amino-terminated tubular molecule, which operates in a unimolecular mechanism. The artificial channel can work in cell membranes with high water permeability and selectivity rivaling those of AQPs. Importantly, the channel can restore wound healing of the cells that contain function-lost AQPs.
Collapse
Affiliation(s)
- Zhao-Jun Yan
- Department of Chemistry, Fudan University, Shanghai, China
| | - Dongdong Wang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Ting Fan
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Gang Wu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Liyun Deng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Yang
- Department of Chemistry, Western University, London, Ontario, Canada
| | - Binxiao Li
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jianwei Liu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, Shanghai, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Wenning Wang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
22
|
|
23
|
Volkov AG, Xu KG, Kolobov VI. Plasma-generated reactive oxygen and nitrogen species can lead to closure, locking and constriction of the Dionaea muscipula Ellis trap. J R Soc Interface 2020; 16:20180713. [PMID: 30958146 DOI: 10.1098/rsif.2018.0713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) can influence plant signalling, physiology and development. We have previously observed that an argon plasma jet in atmospheric air can activate plant movements and morphing structures in the Venus flytrap and Mimosa pudica similar to stimulation of their mechanosensors in vivo. In this paper, we found that the Venus flytrap can be activated by plasma jets without direct contact of plasma with the lobe, midrib or cilia. The observed effects are attributed to RONS, which are generated by argon and helium plasma jets in atmospheric air. We also found that application of H2O2 or HNO3 aqueous solutions to the midrib induces propagation of action potentials and trap closing similar to plasma effects. Control experiments showed that UV light or neutral gas flow did not induce morphing or closing of the trap. The trap closing by plasma is thus likely to be associated with the production of hydrogen peroxide by the cold plasma jet in air. Understanding plasma control of plant morphing could help design adaptive structures and bioinspired intelligent materials.
Collapse
Affiliation(s)
- Alexander G Volkov
- 1 Department of Chemistry and Biochemistry, Oakwood University , Huntsville, AL 35896 , USA
| | - Kunning G Xu
- 2 Mechanical and Aerospace Engineering Department, The University of Alabama in Huntsville , Huntsville, AL 35899 , USA
| | - Vladimir I Kolobov
- 3 The Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville , Huntsville, AL 35899 , USA.,4 CFD Research Corporation , Huntsville, AL 35806 , USA
| |
Collapse
|
24
|
Belimov AA, Safronova VI, Dodd IC. Water relations responses of the pea (Pisum sativum L.) mutant SGECd t to mercury. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mercury (Hg) is one of the most toxic heavy metals and has multiple impacts on plant growth and physiology, including disturbances of plant water status. The impact of Hg on water relations was assessed by exposing the unique Hg-sensitive pea (Pisum sativum L.) mutant SGECdt and its wild-type (WT) line SGE in hydroponic culture. When the plants were grown in the presence of 1 or 2 µM HgCl2 for 11 days, the SGECdt mutant had lower whole plant transpiration rate and increased leaf temperature, indicating stomatal closure. Shoot removal of Hg-untreated plants resulted in greater root-pressure induced xylem sap flow in the SGECdt mutant than WT plants. Treating these plants with 50 µM HgCl2 (an inhibitor of aquaporins) for 1 h decreased xylem sap flow of both genotypes by about 5 times and eliminated differences between WT and mutant. Adding 1 mM dithiothreitol (the reducing thiol reagent used for opening aquaporins) to the nutrient solution of Hg-treated plants partially restored xylem sap flow in SGECdt roots only, suggesting genotypic differences in aquaporin function. Thus root water uptake is important in mediating sensitivity of SGECdt to toxic Hg.
Collapse
|
25
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
26
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
27
|
Tong H, Wang X, Dong Y, Hu Q, Zhao Z, Zhu Y, Dong L, Bai F, Dong X. A Streptococcus aquaporin acts as peroxiporin for efflux of cellular hydrogen peroxide and alleviation of oxidative stress. J Biol Chem 2019; 294:4583-4595. [PMID: 30705089 DOI: 10.1074/jbc.ra118.006877] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/27/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins widely distributed in various organisms, and they facilitate bidirectional diffusion of water and uncharged solutes. The catalase-negative bacterium Streptococcus oligofermentans produces the highest H2O2 levels reported to date, which has to be exported to avoid oxidative stress. Here, we report that a S. oligofermentans aquaporin functions as a peroxiporin facilitating bidirectional transmembrane H2O2 transport. Knockout of this aquaporin homolog, So-AqpA, reduced H2O2 export by ∼50% and increased endogenous H2O2 retention, as indicated by the cellular H2O2 reporter HyPer. Heterologous expression of So-aqpA accelerated exogenous H2O2 influx into Saccharomyces cerevisiae and Escherichia coli cells, indicating that So-AqpA acts as an H2O2-transferring aquaporin. Alanine substitution revealed Phe-40 as a key residue for So-AqpA-mediated H2O2 transport. Northern blotting, qPCR, and luciferase reporter assays disclosed that H2O2 induces a >10-fold expression of So-aqpA Super-resolution imaging showed that H2O2 treatment increases So-AqpA protein molecules per cell by 1.6- to 3-fold. Inactivation of two redox-regulatory transcriptional repressors, PerR and MntR, reduced H2O2-induced So-aqpA expression to 1.8- and 4-fold, respectively. Electrophoretic mobility shift assays determined that MntR, but not PerR, binds to the So-aqpA promoter, indicating that MntR directly regulates H2O2-induced So-aqpA expression. Importantly, So-aqpA deletion decreased oxic growth and intraspecies competition and diminished the competitive advantages of S. oligofermentans over the caries pathogen Streptococcus mutans Of note, So-aqpA orthologs with the functionally important Phe-40 are present in all streptococci. Our work has uncovered an intrinsic, H2O2-inducible bacterial peroxiporin that has a key physiological role in H2O2 detoxification in S. oligofermentans.
Collapse
Affiliation(s)
- Huichun Tong
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China, .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xinhui Wang
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuzhu Dong
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qingqing Hu
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ziyi Zhao
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yun Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Linxuan Dong
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xiuzhu Dong
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China, .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
28
|
Abstract
Water at interfaces governs many processes on the molecular scale from electrochemical and enzymatic reactions to protein folding. Here we focus on water transport through proteinaceous pores that are so narrow that the water molecules cannot overtake each other in the pore. After a short introduction into the single-file transport theory, we analyze experiments in which the unitary water permeability, pf, of water channel proteins (aquaporins, AQPs), potassium channels (KcsA), and antibiotics (gramicidin-A derivatives) has been obtained. A short outline of the underlying methods (scanning electrochemical microscopy, fluorescence correlation spectroscopy, measurements of vesicle light scattering) is also provided. We conclude that pf increases exponentially with a decreasing number NH of hydrogen bond donating or accepting residues in the channel wall. The variance in NH is responsible for a more than hundredfold change in pf. The dehydration penalty at the channel mouth has a smaller effect on pf. The intricate link between pf and the Gibbs activation energy barrier, ΔG‡t, for water flow suggests that conformational transitions of water channels act as a third determinant of pf.
Collapse
Affiliation(s)
- Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria.
| | | |
Collapse
|
29
|
Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 2018; 550:500-505. [PMID: 29072271 DOI: 10.1038/nature24288] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 09/12/2017] [Indexed: 11/08/2022]
Abstract
The regulation of size, volume and mass in living cells is physiologically important, and dysregulation of these parameters gives rise to many diseases. Cell mass is largely determined by the amount of water, proteins, lipids, carbohydrates and nucleic acids present in a cell, and is tightly linked to metabolism, proliferation and gene expression. Technologies have emerged in recent years that make it possible to track the masses of single suspended cells and adherent cells. However, it has not been possible to track individual adherent cells in physiological conditions at the mass and time resolutions required to observe fast cellular dynamics. Here we introduce a cell balance (a 'picobalance'), based on an optically excited microresonator, that measures the total mass of single or multiple adherent cells in culture conditions over days with millisecond time resolution and picogram mass sensitivity. Using our technique, we observe that the mass of living mammalian cells fluctuates intrinsically by around one to four per cent over timescales of seconds throughout the cell cycle. Perturbation experiments link these mass fluctuations to the basic cellular processes of ATP synthesis and water transport. Furthermore, we show that growth and cell cycle progression are arrested in cells infected with vaccinia virus, but mass fluctuations continue until cell death. Our measurements suggest that all living cells show fast and subtle mass fluctuations throughout the cell cycle. As our cell balance is easy to handle and compatible with fluorescence microscopy, we anticipate that our approach will contribute to the understanding of cell mass regulation in various cell states and across timescales, which is important in areas including physiology, cancer research, stem-cell differentiation and drug discovery.
Collapse
|
30
|
Montenegro FA, Cantero JR, Barrera NP. Combining Mass Spectrometry and X-Ray Crystallography for Analyzing Native-Like Membrane Protein Lipid Complexes. Front Physiol 2017; 8:892. [PMID: 29170643 PMCID: PMC5684187 DOI: 10.3389/fphys.2017.00892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/24/2017] [Indexed: 01/22/2023] Open
Abstract
Membrane proteins represent a challenging family of macromolecules, particularly related to the methodology aimed at characterizing their three-dimensional structure. This is mostly due to their amphipathic nature as well as requirements of ligand bindings to stabilize or control their function. Recently, Mass Spectrometry (MS) has become an important tool to identify the overall stoichiometry of native-like membrane proteins complexed to ligand bindings as well as to provide insights into the transport mechanism across the membrane, with complementary information coming from X-ray crystallography. This perspective article emphasizes MS findings coupled with X-ray crystallography in several membrane protein lipid complexes, in particular transporters, ion channels and molecular machines, with an overview of techniques that allows a more thorough structural interpretation of the results, which can help us to unravel hidden mysteries on the membrane protein function.
Collapse
Affiliation(s)
- Felipe A Montenegro
- Laboratory of Nanophysiology and Structural Biology, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge R Cantero
- Laboratory of Nanophysiology and Structural Biology, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson P Barrera
- Laboratory of Nanophysiology and Structural Biology, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Petrova RS, Webb KF, Vaghefi E, Walker K, Schey KL, Donaldson PJ. Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells. Am J Physiol Cell Physiol 2017; 314:C191-C201. [PMID: 29118028 DOI: 10.1152/ajpcell.00214.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the functionality of the lens water channels aquaporin 1 (AQP1; epithelium) and AQP0 (fiber cells) is well established, less is known about the role of AQP5 in the lens. Since in other tissues AQP5 functions as a regulated water channel with a water permeability (PH2O) some 20 times higher than AQP0, AQP5 could function to modulate PH2O in lens fiber cells. To test this possibility, a fluorescence dye dilution assay was used to calculate the relative PH2O of epithelial cells and fiber membrane vesicles isolated from either the mouse or rat lens, in the absence and presence of HgCl2, an inhibitor of AQP1 and AQP5. Immunolabeling of lens sections and fiber membrane vesicles from mouse and rat lenses revealed differences in the subcellular distributions of AQP5 in the outer cortex between species, with AQP5 being predominantly membranous in the mouse but predominantly cytoplasmic in the rat. In contrast, AQP0 labeling was always membranous in both species. This species-specific heterogeneity in AQP5 membrane localization was mirrored in measurements of PH2O, with only fiber membrane vesicles isolated from the mouse lens, exhibiting a significant Hg2+-sensitive contribution to PH2O. When rat lenses were first organ cultured, immunolabeling revealed an insertion of AQP5 into cortical fiber cells, and a significant increase in Hg2+-sensitive PH2O was detected in membrane vesicles. Our results show that AQP5 forms functional water channels in the rodent lens, and they suggest that dynamic membrane insertion of AQP5 may regulate water fluxes in the lens by modulating PH2O in the outer cortex.
Collapse
Affiliation(s)
- Rosica S Petrova
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin F Webb
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,Optics and Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham , Nottingham , United Kingdom
| | - Ehsan Vaghefi
- School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| | - Kerry Walker
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| |
Collapse
|
32
|
Graziano ACE, Avola R, Pannuzzo G, Cardile V. Aquaporin1 and 3 modification as a result of chondrogenic differentiation of human mesenchymal stem cell. J Cell Physiol 2017; 233:2279-2291. [PMID: 28708257 DOI: 10.1002/jcp.26100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
Chondrocytes are cells of articular cartilage particularly sensitive to water transport and ionic and osmotic changes from extracellular environment and responsible for the production of the synovial fluid. Aquaporins (AQPs) are a family of water and small solute transport channel proteins identified in several tissues, involved in physiological pathways and in manifold human diseases. In a recent period, AQP1 and 3 seem to have a role in metabolic water regulation in articular cartilage of load bearing joints. The aim of this study was to examine the levels of AQP1 and 3 during the chondrogenic differentiation of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT). For the determination of chondrogenic markers and AQPs levels, glycosaminoglycans (GAGs) quantification, immunocytochemistry, RT-PCR, and Western blot were used after 0, 7, 14, 21, and 28 days from the start of differentiation. At 21 days, chondrocytes derived from AT-MSCs were able to produce augmented content of GAGs and significant quantity of SOX-9, lubricin, aggrecan, and collagen type II, suggesting hyaline cartilage formation, in combination with an increase of AQP3 and AQP1. However, while AQP1 level decreased after 21 days; AQP3 reached higher values at 28 days. The expression of AQP1 and 3 is a manifestation of physiological adaptation of functionally mature chondrocytes able to respond to the change of their internal environment influenced by extracellular matrix. The alteration or loss of expression of AQP1 and 3 could contribute to destruction of chondrocytes and to development of cartilage damage.
Collapse
Affiliation(s)
- Adriana C E Graziano
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Li B, Mendenhall J, Nguyen ED, Weiner BE, Fischer AW, Meiler J. Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints. Proteins 2017; 85:1212-1221. [PMID: 28263405 PMCID: PMC5476507 DOI: 10.1002/prot.25281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/20/2017] [Accepted: 02/17/2017] [Indexed: 01/21/2023]
Abstract
One of the challenging problems in tertiary structure prediction of helical membrane proteins (HMPs) is the determination of rotation of α-helices around the helix normal. Incorrect prediction of helix rotations substantially disrupts native residue-residue contacts while inducing only a relatively small effect on the overall fold. We previously developed a method for predicting residue contact numbers (CNs), which measure the local packing density of residues within the protein tertiary structure. In this study, we tested the idea of incorporating predicted CNs as restraints to guide the sampling of helix rotation. For a benchmark set of 15 HMPs with simple to rather complicated folds, the average contact recovery (CR) of best-sampled models was improved for all targets, the likelihood of sampling models with CR greater than 20% was increased for 13 targets, and the average RMSD100 of best-sampled models was improved for 12 targets. This study demonstrated that explicit incorporation of CNs as restraints improves the prediction of helix-helix packing. Proteins 2017; 85:1212-1221. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bian Li
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey Mendenhall
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Brian E. Weiner
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Axel W. Fischer
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
34
|
Wambo TO, Rodriguez RA, Chen LY. Computing osmotic permeabilities of aquaporins AQP4, AQP5, and GlpF from near-equilibrium simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1310-1316. [PMID: 28455098 DOI: 10.1016/j.bbamem.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/01/2022]
Abstract
Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. The measured values scatter over an order of magnitude but the corresponding Arrhenius activation energies converge in the current literature. Osmotic flux through an AQP was simulated as water current forced through the channel by kilobar hydraulic pressure or theoretically approximated as single-file diffusion. In this paper, we report large scale simulations of osmotic current under sub M gradient through three AQPs (water channels AQP4 and AQP5 and glycerol-water channel GlpF) using the mature particle mesh Ewald technique (PME) for which the established force fields have been optimized with known accuracy. These simulations were implemented with hybrid periodic boundary conditions devised to avoid the artifactitious mixing across the membrane in a regular PME simulation. The computed single-channel permeabilities at 5°C and 25°C are in agreement with recently refined experiments on GlpF. The Arrhenius activation energies extracted from our simulations for all the three AQPs agree with the in vitro measurements. The single-file diffusion approximations from our large-scale simulations are consistent with the current literature on smaller systems. From these unambiguous agreements among the in vitro and in silico studies, we observe the quantitative accuracy of the all-atom force fields of the current literature for water-channel biology. We also observe that AQP4, that is particularly rich in the central nervous system, is more efficient in water conduction and more temperature-sensitive than other water-only channels (excluding glycerol channels that also conduct water when not inhibited by glycerol).
Collapse
Affiliation(s)
- Thierry O Wambo
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
35
|
de Almeida A, Mósca AF, Wragg D, Wenzel M, Kavanagh P, Barone G, Leoni S, Soveral G, Casini A. The mechanism of aquaporin inhibition by gold compounds elucidated by biophysical and computational methods. Chem Commun (Camb) 2017; 53:3830-3833. [DOI: 10.1039/c7cc00318h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of inhibition of water and glycerol permeation via human aquaglyceroporin-3 (AQP3) by gold(iii) complexes has been described, for the first time, using molecular dynamics (MD), combined with density functional theory (DFT) and electrochemical studies.
Collapse
Affiliation(s)
| | - Andreia F. Mósca
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Darren Wragg
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Margot Wenzel
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Paul Kavanagh
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Giampaolo Barone
- Dip. di Scienze e Tecnologie Biologiche
- Chimiche e Farmaceutiche (STEBICEF)
- Università degli Studi di Palermo
- Palermo
- Italy
| | - Stefano Leoni
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Angela Casini
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| |
Collapse
|
36
|
Noronha H, Araújo D, Conde C, Martins AP, Soveral G, Chaumont F, Delrot S, Gerós H. The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water. PLoS One 2016; 11:e0160976. [PMID: 27504956 PMCID: PMC4978503 DOI: 10.1371/journal.pone.0160976] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
A MIP (Major Intrinsic Protein) subfamily called Uncharacterized Intrinsic Proteins (XIP) was recently described in several fungi and eudicot plants. In this work, we cloned a XIP from grapevine, VvXIP1, and agrobacterium-mediated transformation studies in Nicotiana benthamiana revealed that the encoded aquaporin shows a preferential localization at the endoplasmic reticulum membrane. Stopped-flow spectrometry in vesicles from the aqy-null yeast strain YSH1172 overexpressing VvXIP1 showed that VvXIP1 is unable to transport water but is permeable to glycerol. Functional studies with the ROS sensitive probe CM-H2DCFDA in intact transformed yeasts showed that VvXIP1 is also able to permeate hydrogen peroxide (H2O2). Drop test growth assays showed that besides glycerol and H2O2, VvXIP1 also transports boric acid, copper, arsenic and nickel. Furthermore, we found that VvXIP1 transcripts were abundant in grapevine leaves from field grown plants and strongly repressed after the imposition of severe water-deficit conditions in potted vines. The observed downregulation of VvXIP1 expression in cultured grape cells in response to ABA and salt, together with the increased sensitivity to osmotic stress displayed by the aqy-null yeast overexpressing VvXIP1, corroborates the role of VvXIP1 in osmotic regulation besides its involvement in H2O2 transport and metal homeostasis.
Collapse
Affiliation(s)
- Henrique Noronha
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas CITAB, Vila Real, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Diogo Araújo
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas CITAB, Vila Real, Portugal
| | - Carlos Conde
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana P. Martins
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) University of Lisbon, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) University of Lisbon, Lisbon, Portugal
| | - François Chaumont
- Institut des Science de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Serge Delrot
- INRA, ISVV, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, Université de Bordeaux, Villenave D’Ornon, France
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas CITAB, Vila Real, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
37
|
The inhibition of glycerol permeation through aquaglyceroporin-3 induced by mercury(II): A molecular dynamics study. J Inorg Biochem 2016; 160:78-84. [DOI: 10.1016/j.jinorgbio.2015.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022]
|
38
|
Hang B, Pan J, Ni D, Zheng Q, Zhang X, Cai J, Huang L, Wei P, Xu Z. High-level production of aquaporin Z in Escherichia coli using maltose-binding protein/polyhistidine dual-affinity tag fusion system. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Fragment Screening of Human Aquaporin 1. Int J Mol Sci 2016; 17:449. [PMID: 27023529 PMCID: PMC4848905 DOI: 10.3390/ijms17040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are membrane proteins that enable water transport across cellular plasma membranes in response to osmotic gradients. Phenotypic analyses have revealed important physiological roles for AQPs, and the potential for AQP water channel modulators in various disease states has been proposed. For example, AQP1 is overexpressed in tumor microvessels, and this correlates with higher metastatic potential and aggressiveness of the malignancy. Chemical modulators would help in identifying the precise contribution of water channel activity in these disease states. These inhibitors would also be important therapeutically, e.g., in anti-cancer treatment. This perceived importance contrasts with the lack of success of high-throughput screens (HTS) to identify effective and specific inhibitors of aquaporins. In this paper, we have screened a library of 1500 "fragments", i.e., smaller than molecules used in HTS, against human aquaporin (hAQP1) using a thermal shift assay and surface plasmon resonance. Although these fragments may not inhibit their protein target, they bound to and stabilized hAQP1 (sub mM binding affinities (KD), with an temperature of aggregation shift ΔTagg of +4 to +50 °C) in a concentration-dependent fashion. Chemically expanded versions of these fragments should follow the determination of their binding site on the aquaporin surface.
Collapse
|
40
|
Berthaud A, Quemeneur F, Deforet M, Bassereau P, Brochard-Wyart F, Mangenot S. Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins. SOFT MATTER 2016; 12:1601-1609. [PMID: 26662491 DOI: 10.1039/c5sm01654a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aquaporin 0 (AQP0) is a transmembrane protein specific to the eye lens, involved as a water carrier across the lipid membranes. During eye lens maturation, AQP0s are truncated by proteolytic cleavage. We investigate in this work the capability of truncated AQP0 to conduct water across membranes. We developed a method to accurately determine water permeability across lipid membranes and across proteins from the deflation under osmotic pressure of giant unilamellar vesicles (GUVs) deposited on an adhesive substrate. Using reflection interference contrast microscopy (RICM), we measure the spreading area of GUVs during deswelling. We interpret these results using a model based on hydrodynamic, binder diffusion towards the contact zone, and Helfrich's law for the membrane tension, which allows us to relate the spread area to the vesicle internal volume. We first study the specific adhesion of vesicles coated with biotin spreading on a streptavidin substrate. We then determine the permeability of a single functional AQP0 and demonstrate that truncated AQP0 is no more a water channel.
Collapse
Affiliation(s)
- Alice Berthaud
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
| | | | | | | | | | | |
Collapse
|
41
|
Wang L, Zhou H, Li Z, Lim TK, Lim XS, Lin Q. One-step extraction of functional recombinant aquaporin Z from inclusion bodies with optimal detergent. Protein Expr Purif 2015; 115:146-52. [DOI: 10.1016/j.pep.2015.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
42
|
The structural and functional effects of Hg(II) and Cd(II) on lipid model systems and human erythrocytes: A review. Chem Phys Lipids 2015; 193:36-51. [PMID: 26455331 DOI: 10.1016/j.chemphyslip.2015.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 01/24/2023]
Abstract
The anthropogenic mobilization of mercury and cadmium into the biosphere has led to an increased and ineludible entry of these metals into biological systems. Here we discuss the impact of Hg(II) and Cd(II) on lipid model systems and human erythrocytes from a biophysical perspective. After a brief introduction to their implications on human health, studies that have investigated the effects of Hg(II) and Cd(II) on lipid model systems and human erythrocytes are discussed. In terms of lipids as toxicological target sites, predominantly variations in lipid head groups have been the source of investigation. However, as research in this field progresses, the effects of Hg(II) and Cd(II) on other structural features, such as acyl chain length and unsaturation, and other important lipid components and complex biomimetic lipid mixtures, will require further examinations. This review provides an analysis of what has been learned collectively from the diverse methodologies and experimental conditions used thus far. Consequently, there is a need for more comprehensive and thorough investigations into the effects of Hg(II) and Cd(II) on lipid membranes under consistent experimental conditions such as pH, ionic strength, temperature, and choice of lipid model system.
Collapse
|
43
|
Holm A, Karlsson T, Vikström E. Pseudomonas aeruginosa lasI/rhlI quorum sensing genes promote phagocytosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages. Front Microbiol 2015; 6:915. [PMID: 26388857 PMCID: PMC4558532 DOI: 10.3389/fmicb.2015.00915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa controls production of its multiple virulence factors and biofilm development via the quorum sensing (QS) system. QS signals also interact with and affect the behavior of eukaryotic cells. Host water homeostasis and aquaporins (AQP) are essential during pathological conditions since they interfere with the cell cytoskeleton and signaling, and hereby affect cell morphology and functions. We investigated the contribution of P. aeruginosa QS genes lasI/rhlI to phagocytosis, cell morphology, AQP9 expression, and distribution in human macrophages, using immunoblotting, confocal, and nanoscale imaging. Wild type P. aeruginosa with a functional QS system was a more attractive prey for macrophages than the lasI/rhlI mutant lacking the production of QS molecules, 3O-C12-HSL, and C4-HSL, and associated virulence factors. The P. aeruginosa infections resulted in elevated AQP9 expression and relocalization to the leading and trailing regions in macrophages, increased cell area and length; bacteria with a functional QS system lasI/rhlI achieved stronger responses. We present evidence for a new role of water fluxes via AQP9 during bacteria–macrophage interaction and for the QS system as an important stimulus in this process. These novel events in the interplay between P. aeruginosa and macrophages may influence on the outcome of infection, inflammation, and development of disease.
Collapse
Affiliation(s)
- Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Thommie Karlsson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| |
Collapse
|
44
|
Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes? MEMBRANES 2015; 5:352-68. [PMID: 26266425 PMCID: PMC4584285 DOI: 10.3390/membranes5030352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022]
Abstract
In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.
Collapse
|
45
|
Mao Z, Sun W. Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4781-94. [PMID: 26019256 PMCID: PMC4507774 DOI: 10.1093/jxb/erv244] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tonoplast intrinsic proteins TIP3;1 and TIP3;2 are specifically expressed during seed maturation and localized to the seed protein storage vacuole membrane. However, the function and physiological roles of TIP3s are still largely unknown. The seed performance of TIP3 knockdown mutants was analysed using the controlled deterioration test. The tip3;1/tip3;2 double mutant was affected in seed longevity and accumulated high levels of hydrogen peroxide compared with the wild type, suggesting that TIP3s function in seed longevity. The transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3) is known to be involved in seed desiccation tolerance and seed longevity. TIP3 transcript and protein levels were significantly reduced in abi3-6 mutant seeds. TIP3;1 and TIP3;2 promoters could be activated by ABI3 in the presence of abscisic acid (ABA) in Arabidopsis protoplasts. TIP3 proteins were detected in the protoplasts transiently expressing ABI3 and in ABI3-overexpressing seedlings when treated with ABA. Furthermore, ABI3 directly binds to the RY motif of the TIP3 promoters. Therefore, seed-specific TIP3s may help maintain seed longevity under the expressional control of ABI3 during seed maturation and are members of the ABI3-mediated seed longevity pathway together with small heat shock proteins and late embryo abundant proteins.
Collapse
Affiliation(s)
- Zhilei Mao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032, People's Republic of China
| | - Weining Sun
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032, People's Republic of China
| |
Collapse
|
46
|
Belimov AA, Dodd IC, Safronova VI, Malkov NV, Davies WJ, Tikhonovich IA. The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2359-69. [PMID: 25694548 PMCID: PMC4986718 DOI: 10.1093/jxb/eru536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 05/08/2023]
Abstract
Heavy metals have multiple effects on plant growth and physiology, including perturbation of plant water status. These effects were assessed by exposing the unique Cd-tolerant and Cd-accumulating pea (Pisum sativum L.) mutant SGECd(t) and its wild-type (WT) line SGE to either cadmium (1, 4 μM CdCl2) or mercury (0.5, 1, 2 μM HgCl2) in hydroponic culture for 12 days. When exposed to Cd, SGECd(t) accumulated more Cd in roots, xylem sap, and shoot, and had considerably more biomass than WT plants. WT plants lost circa 0.2 MPa turgor when grown in 4 μM CdCl2, despite massive decreases in whole-plant transpiration rate and stomatal conductance. In contrast, root Hg accumulation was similar in both genotypes, but WT plants accumulated more Hg in leaves and had a higher stomatal conductance, and root and shoot biomass compared with SGECd(t). Shoot excision resulted in greater root-pressure induced xylem exudation of SGECd(t) in the absence of Cd or Hg and following Cd exposure, whereas the opposite response or no genotypic differences occurred following Hg exposure. Exposing plants that had not been treated with metal to 50 μM CdCl2 for 1h increased root xylem exudation of WT, whereas 50 μM HgCl2 inhibited and eliminated genotypic differences in root xylem exudation, suggesting differences between WT and SGECd(t) plants in aquaporin function. Thus, root water transport might be involved in mechanisms of increased tolerance and accumulation of Cd in the SGECd(t) mutant. However, the lack of cross-tolerance to Cd and Hg stress in the mutant indicates metal-specific mechanisms related to plant adaptation.
Collapse
Affiliation(s)
- Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| | - Nikita V Malkov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| |
Collapse
|
47
|
Florey O, Gammoh N, Kim SE, Jiang X, Overholtzer M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 2015; 11:88-99. [PMID: 25484071 PMCID: PMC4502810 DOI: 10.4161/15548627.2014.984277] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 02/01/2023] Open
Abstract
Recently a noncanonical activity of autophagy proteins has been discovered that targets lipidation of microtubule-associated protein 1 light chain 3 (LC3) onto macroendocytic vacuoles, including macropinosomes, phagosomes, and entotic vacuoles. While this pathway is distinct from canonical autophagy, the mechanism of how these nonautophagic membranes are targeted for LC3 lipidation remains unclear. Here we present evidence that this pathway requires activity of the vacuolar-type H(+)-ATPase (V-ATPase) and is induced by osmotic imbalances within endolysosomal compartments. LC3 lipidation by this mechanism is induced by treatment of cells with the lysosomotropic agent chloroquine, and through exposure to the Heliobacter pylori pore-forming toxin VacA. These data add novel mechanistic insights into the regulation of noncanonical LC3 lipidation and its associated processes, including LC3-associated phagocytosis (LAP), and demonstrate that the widely and therapeutically used drug chloroquine, which is conventionally used to inhibit autophagy flux, is an inducer of LC3 lipidation.
Collapse
Key Words
- ATG, autophagy-related
- Baf, bafilomycin A1
- CALCOCO2/NDP52, calcium binding and coiled-coil domain 2
- CQ, chloroquine
- ConA, concanamycin A
- FYCO1, FYVE and coiled-coil domain containing 1
- GFP, green fluorescent protein
- Helicobacter pylori
- LAMP1, lysosomal-associated membrane protein 1
- LAP
- LAP, LC3-associated phagocytosis
- LC3
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin
- PIK3C3/VPS34, phosphatidylinositol 3-kinase
- PtdIns3K, phosphatidylinositol 3-kinase
- PtdIns3P, phosphatidylinositol 3-phosphate
- RB1CC1/FIP200, RB1-inducible coiled-coil 1
- SQSTM1/p62, sequestosome 1
- TEM, transmission electron microscopy
- TLR, toll-like receptor
- ULK1/2, unc-51 like autophagy activating kinase 1/2
- V-ATPase
- V-ATPase, vacuolar-type H+-ATPase
- VacA, vacuolating toxin A
- autophagy
- catalytic subunit type 3
- chloroquine
- entosis
- lysosome
- phagocytosis
Collapse
Affiliation(s)
- Oliver Florey
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Signalling Program; The Babraham Institute; Cambridge, UK
| | - Noor Gammoh
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Edinburgh Cancer Research UK Center; Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh, UK
| | - Sung Eun Kim
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| | - Xuejun Jiang
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Michael Overholtzer
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| |
Collapse
|
48
|
Adiredjo AL, Navaud O, Grieu P, Lamaze T. Hydraulic conductivity and contribution of aquaporins to water uptake in roots of four sunflower genotypes. BOTANICAL STUDIES 2014; 55:75. [PMID: 28510954 PMCID: PMC5430332 DOI: 10.1186/s40529-014-0075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/23/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND This article evaluates the potential of intraspecific variation for whole-root hydraulic properties in sunflower. We investigated genotypic differences related to root water transport in four genotypes selected because of their differing water use efficiency (JAC doi: 10.1111/jac.12079. 2014). We used a pressure-flux approach to characterize hydraulic conductance (L 0 ) which reflects the overall water uptake capacity of the roots and hydraulic conductivity (Lp r ) which represents the root intrinsic water permeability on an area basis. The contribution of aquaporins (AQPs) to water uptake was explored using mercuric chloride (HgCl2), a general AQP blocker. RESULTS There were considerable variations in root morphology between genotypes. Mean values of L 0 and Lp r showed significant variation (above 60% in both cases) between recombinant inbred lines in control plants. Pressure-induced sap flow was strongly inhibited by HgCl2 treatment in all genotypes (more than 50%) and contribution of AQPs to hydraulic conductivity varied between genotypes. Treated root systems displayed markedly different L 0 values between genotypes whereas Lp r values were similar. CONCLUSIONS Our analysis points to marked differences between genotypes in the intrinsic aquaporin-dependent path (Lp r in control plants) but not in the intrinsic AQP-independent paths (Lp r in HgCl2 treated plants). Overall, root anatomy was a major determinant of water transport properties of the whole organ and can compensate for a low AQP contribution. Hydraulic properties of root tissues and organs might have to be taken into account for plant breeding since they appear to play a key role in sunflower water balance and water use efficiency.
Collapse
Affiliation(s)
- Afifuddin Latif Adiredjo
- Université de Toulouse, INP - ENSAT, UMR 1248 AGIR (INPT-INRA), Castanet-Tolosan, 31326 France
- Faculty of Agriculture, Department of Agronomy, Plant Breeding Laboratory, Brawijaya University, Veteran street, Malang, 65145 Indonesia
| | - Olivier Navaud
- Université de Toulouse, UPS - Toulouse III, UMR 5126 CESBIO, 18 avenue Edouard Belin, Toulouse, 31401 Cedex 9 France
| | - Philippe Grieu
- Université de Toulouse, INP - ENSAT, UMR 1248 AGIR (INPT-INRA), Castanet-Tolosan, 31326 France
| | - Thierry Lamaze
- Université de Toulouse, UPS - Toulouse III, UMR 5126 CESBIO, 18 avenue Edouard Belin, Toulouse, 31401 Cedex 9 France
| |
Collapse
|
49
|
Zampino AP, Masters FM, Bladholm EL, Panzner MJ, Berry SM, Leeper TC, Ziegler CJ. Mercury metallation of the copper protein azurin and structural insight into possible heavy metal reactivity. J Inorg Biochem 2014; 141:152-160. [DOI: 10.1016/j.jinorgbio.2014.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
|
50
|
|