1
|
Yan Y, Li M, Ding Z, Yang J, Xie Z, Ye X, Tie W, Tao X, Chen G, Huo K, Ma J, Ye J, Hu W. The regulation mechanism of ethephon-mediated delaying of postharvest physiological deterioration in cassava storage roots based on quantitative acetylproteomes analysis. Food Chem 2024; 458:140252. [PMID: 38964113 DOI: 10.1016/j.foodchem.2024.140252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ethylene plays diverse roles in post-harvest processes of horticultural crops. However, its impact and regulation mechanism on the postharvest physiological deterioration (PPD) of cassava storage roots is unknown. In this study, a notable delay in PPD of cassava storage roots was observed when ethephon was utilized as an ethylene source. Physiological analyses and quantitative acetylproteomes were employed to investigate the regulation mechanism regulating cassava PPD under ethephon treatment. Ethephon was found to enhance the reactive oxygen species (ROS) scavenging system, resulting in a significant decrease in H2O2 and malondialdehyde (MDA) content. The comprehensive acetylome analysis identified 12,095 acetylation sites on 4403 proteins. Subsequent analysis demonstrated that ethephon can regulate the acetylation levels of antioxidant enzymes and members of the energy metabolism pathways. In summary, ethephon could enhance the antioxidant properties and regulate energy metabolism pathways, leading to the delayed PPD of cassava.
Collapse
Affiliation(s)
- Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Meiying Li
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Zehong Ding
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhengnan Xie
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Xiangru Tao
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ganlu Chen
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kaisen Huo
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Jianxiang Ma
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| |
Collapse
|
2
|
Provost JJ, Cornely KA, Mertz PS, Peterson CN, Riley SG, Tarbox HJ, Narasimhan SR, Pulido AJ, Springer AL. Phosphorylation of mammalian cytosolic and mitochondrial malate dehydrogenase: insights into regulation. Essays Biochem 2024; 68:183-198. [PMID: 38864157 DOI: 10.1042/ebc20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Kathleen A Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence RI, U.S.A
| | - Pamela S Mertz
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, MD, U.S.A
| | | | - Sophie G Riley
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Harrison J Tarbox
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Shree R Narasimhan
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Andrew J Pulido
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| |
Collapse
|
3
|
Kuhn ML, Rakus JF, Quenet D. Acetylation, ADP-ribosylation and methylation of malate dehydrogenase. Essays Biochem 2024; 68:199-212. [PMID: 38994669 PMCID: PMC11451102 DOI: 10.1042/ebc20230080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.
Collapse
Affiliation(s)
- Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco
State University, San Francisco, CA, U.S.A
| | - John F. Rakus
- School of Sciences, University of Louisiana at Monroe,
Monroe, LA, U.S.A
| | - Delphine Quenet
- Department of Biochemistry, Larner College of Medicine,
University of Vermont, Burlington, VT, U.S.A
| |
Collapse
|
4
|
Jin X, Li X, Teixeira da Silva JA, Liu X. Functions and mechanisms of non-histone protein acetylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2087-2101. [PMID: 39136630 DOI: 10.1111/jipb.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
Collapse
Affiliation(s)
- Xia Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | | | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
5
|
Lin Y, Ma Q, Yan J, Gong T, Huang J, Chen J, Li J, Qiu Y, Wang X, Lei Z, Zeng J, Wang L, Zhou X, Li Y. Inhibition of Streptococcus mutans growth and biofilm formation through protein acetylation. Mol Oral Microbiol 2024; 39:334-343. [PMID: 38224336 DOI: 10.1111/omi.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Broeckaert N, Longin H, Hendrix H, De Smet J, Franz-Wachtel M, Maček B, van Noort V, Lavigne R. Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa. MICROLIFE 2024; 5:uqae018. [PMID: 39464744 PMCID: PMC11512479 DOI: 10.1093/femsml/uqae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 10/29/2024]
Abstract
Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can, for example, use post-translational modifications, such as Nε-lysine acetylation, to alter enzyme activity. Although a lot of progress has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) in combination with the immunoprecipitation of acetylated peptides and LC-MS/MS to measure the first Pseudomonas aeruginosa PAO1 acetylome, revealing 1076 unique acetylation sites in 508 proteins. Next, we assessed interstrain acetylome differences within P. aeruginosa by comparing our PAO1 acetylome with two publicly available PA14 acetylomes, and postulate that the overall acetylation patterns are not driven by strain-specific factors. In addition, the comparison of the P. aeruginosa acetylome to 30 other bacterial acetylomes revealed that a high percentage of transcription related proteins are acetylated in the majority of bacterial species. This conservation could help prioritize the characterization of functional consequences of individual acetylation sites.
Collapse
Affiliation(s)
- Nand Broeckaert
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hannelore Longin
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Boris Maček
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| |
Collapse
|
7
|
Cai J, Chen H, Wang R, Zhong Q, Chen W, Zhang M, He R, Chen W. Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study. Foods 2024; 13:2501. [PMID: 39200428 PMCID: PMC11353791 DOI: 10.3390/foods13162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission electron microscopy (FETEM) and atomic force microscopy (AFM) showed that linalool damage membrane integrity increases surface shrinkage and roughness. According to Fourier transform infrared (FTIR) spectra results, the components in the membrane underwent significant changes, including nucleic acid leakage, carbohydrate production, protein denaturation and modification, and fatty acid content reduction. The data obtained from amino acid metabolomics indicated that linalool caused excessive synthesis and metabolism of specific amino acids, particularly tryptophan metabolism and arginine biosynthesis. The reduced activities of glucose 6-phosphate dehydrogenase (G6PDH), malate dehydrogenase (MDH), and phosphofructokinase (PFK) suggested that linalool impair the respiratory chain and energy metabolism. Meanwhile, genes encoding the above enzymes were differentially expressed, with pfkB overexpression and zwf and mqo downregulation. Furthermore, molecular docking revealed that linalool can interact with the amino acid residues of G6DPH, MDH and PFK through hydrogen bonds. Therefore, it is hypothesized that the mechanism of linalool against P. fragi may involve cell membrane damage (structure and morphology), disturbance of energy metabolism (TCA cycle, EMP and HMP pathway) and amino acid metabolism (cysteine, glutamic acid and citrulline). These findings contribute to the development of linalool as a promising antibacterial agent in response to the food security challenge.
Collapse
Affiliation(s)
- Jiaxin Cai
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Haiming Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Runqiu Wang
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Qiuping Zhong
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Weijun Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Ming Zhang
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Rongrong He
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Wenxue Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| |
Collapse
|
8
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
9
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
10
|
Moreira-Pais A, Vitorino R, Sousa-Mendes C, Neuparth MJ, Nuccio A, Luparello C, Attanzio A, Novák P, Loginov D, Nogueira-Ferreira R, Leite-Moreira A, Oliveira PA, Ferreira R, Duarte JA. Mitochondrial remodeling underlying age-induced skeletal muscle wasting: let's talk about sex. Free Radic Biol Med 2024; 218:68-81. [PMID: 38574975 DOI: 10.1016/j.freeradbiomed.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450, Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rui Vitorino
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal.
| | - Maria João Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP) and Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Alessandro Nuccio
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| | - Dmitry Loginov
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| | - Rita Nogueira-Ferreira
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal.
| | - Adelino Leite-Moreira
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal; Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, 4200-319, Porto, Portugal.
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - José A Duarte
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
| |
Collapse
|
11
|
Lozano-Terol G, Chiozzi RZ, Gallego-Jara J, Sola-Martínez RA, Vivancos AM, Ortega Á, Heck AJ, Díaz MC, de Diego Puente T. Relative impact of three growth conditions on the Escherichia coli protein acetylome. iScience 2024; 27:109017. [PMID: 38333705 PMCID: PMC10850759 DOI: 10.1016/j.isci.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Nε-lysine acetylation is a common posttranslational modification observed in Escherichia coli. In the present study, integrative analysis of the proteome and acetylome was performed using label-free quantitative mass spectrometry to analyze the relative influence of three factors affecting growth. The results revealed differences in the proteome, mainly owing to the type of culture medium used (defined or complex). In the acetylome, 7482 unique acetylation sites were identified. Acetylation is directly related to the abundance of proteins, and the level of acetylation in each type of culture is associated with extracellular acetate concentration. Furthermore, most acetylated lysines in the exponential phase remained in the stationary phase without dynamic turnover. Interestingly, unique acetylation sites were detected in proteins whose presence or abundance was linked to the type of culture medium. Finally, the biological function of the acetylation changes was demonstrated for three central metabolic proteins (GapA, Mdh, and AceA).
Collapse
Affiliation(s)
- Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Rosa Alba Sola-Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
12
|
Fatema N, Li X, Gan Q, Fan C. Characterizing lysine acetylation of glucokinase. Protein Sci 2024; 33:e4845. [PMID: 37996965 PMCID: PMC10731539 DOI: 10.1002/pro.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Glucokinase (GK) catalyzes the phosphorylation of glucose to form glucose-6-phosphate as the substrate of glycolysis for energy production. Acetylation of lysine residues in Escherichia coli GK has been identified at multiple sites by a series of proteomic studies, but the impact of acetylation on GK functions remains largely unknown. In this study, we applied the genetic code expansion strategy to produce site-specifically acetylated GK variants which naturally exist in cells. Enzyme assays and kinetic analyses showed that lysine acetylation decreases the GK activity, mostly resulting from acetylation of K214 and K216 at the entrance of the active site, which impairs the binding of substrates. We also compared results obtained from the glutamine substitution method and the genetic acetyllysine incorporation approach, showing that glutamine substitution is not always effective for mimicking acetylated lysine. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to determine acetylation and deacetylation mechanisms, which showed that E. coli GK could be acetylated by acetyl-phosphate without enzymes and deacetylated by CobB deacetylase.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Xinyu Li
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Chenguang Fan
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
13
|
Fatema N, Fan C. Studying lysine acetylation of citric acid cycle enzymes by genetic code expansion. Mol Microbiol 2023; 119:551-559. [PMID: 36890576 PMCID: PMC10636775 DOI: 10.1111/mmi.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
14
|
Sofeo N, Winkelman DC, Leung K, Nikolau BJ. Modulation of plant acetyl-CoA synthetase activity by post-translational lysine acetylation. Front Mol Biosci 2023; 10:1117921. [PMID: 37006614 PMCID: PMC10062202 DOI: 10.3389/fmolb.2023.1117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Acetyl-CoA synthetase (ACS) is one of several enzymes that generate the key metabolic intermediate, acetyl-CoA. In microbes and mammals ACS activity is regulated by the post-translational acetylation of a key lysine residue. ACS in plant cells is part of a two-enzyme system that maintains acetate homeostasis, but its post-translational regulation is unknown. This study demonstrates that the plant ACS activity can be regulated by the acetylation of a specific lysine residue that is positioned in a homologous position as the microbial and mammalian ACS sequences that regulates ACS activity, occurring in the middle of a conserved motif, near the carboxyl-end of the protein. The inhibitory effect of the acetylation of residue Lys-622 of the Arabidopsis ACS was demonstrated by site-directed mutagenesis of this residue, including its genetic substitution with the non-canonical N-ε-acetyl-lysine residue. This latter modification lowered the catalytic efficiency of the enzyme by a factor of more than 500-fold. Michaelis-Menten kinetic analysis of the mutant enzyme indicates that this acetylation affects the first half-reaction of the ACS catalyzed reaction, namely, the formation of the acetyl adenylate enzyme intermediate. The post-translational acetylation of the plant ACS could affect acetate flux in the plastids and overall acetate homeostasis.
Collapse
Affiliation(s)
- Naazneen Sofeo
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Dirk C. Winkelman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Karina Leung
- Engineering Research Center for Biorenewable Chemicals Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- *Correspondence: Basil J. Nikolau,
| |
Collapse
|
15
|
Acetylation of Cyclic AMP Receptor Protein by Acetyl Phosphate Modulates Mycobacterial Virulence. Microbiol Spectr 2023; 11:e0400222. [PMID: 36700638 PMCID: PMC9927398 DOI: 10.1128/spectrum.04002-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a pathogen is partly attributed to its ability to sense and respond to dynamic host microenvironments. The cyclic AMP (cAMP) receptor protein (CRP) is closely related to the pathogenicity of Mtb and plays an important role in this process. However, the molecular mechanisms guiding the autoregulation and downstream target genes of CRP while Mtb responds to its environment are not fully understood. Here, it is demonstrated that the acetylation of conserved lysine 193 (K193) within the C-terminal DNA-binding domain of CRP reduces its DNA-binding ability and inhibits transcriptional activity. The reversible acetylation status of CRP K193 was shown to significantly affect mycobacterial growth phenotype, alter the stress response, and regulate the expression of biologically relevant genes using a CRP K193 site-specific mutation. Notably, the acetylation level of K193 decreases under CRP-activating conditions, including the presence of cAMP, low pH, high temperature, and oxidative stress, suggesting that microenvironmental signals can directly regulate CRP K193 acetylation. Both cell- and murine-based infection assays confirmed that CRP K193 is critical to the regulation of Mtb virulence. Furthermore, the acetylation of CRP K193 was shown to be dependent on the intracellular metabolic intermediate acetyl phosphate (AcP), and deacetylation was mediated by NAD+-dependent deacetylases. These findings indicate that AcP-mediated acetylation of CRP K193 decreases CRP activity and negatively regulates the pathogenicity of Mtb. We believe that the underlying mechanisms of cross talk between transcription, posttranslational modifications, and metabolites are a common regulatory mechanism for pathogenic bacteria. IMPORTANCE Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, and the ability of Mtb to survive harsh host conditions has been the subject of intensive research. As a result, we explored the molecular mechanisms guiding downstream target genes of CRP when Mtb responds to its environment. Our study makes a contribution to the literature because we describe the role of acetylated K193 in regulating its binding affinity to target DNA and influencing the virulence of mycobacteria. We discovered that mycobacteria can regulate their pathogenicity through the reversible acetylation of CRP K193 and that this reversible acetylation is mediated by AcP and a NAD+-dependent deacetylase. The regulation of CRPMtb by posttranslational modifications, at the transcriptional level, and by metabolic intermediates contribute to a better understanding of its role in the survival and pathogenicity of mycobacteria.
Collapse
|
16
|
Linalool against Hafnia alvei, its antibacterial mechanism revealed by metabolomic analyses. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Schastnaya E, Doubleday PF, Maurer L, Sauer U. Non-enzymatic acetylation inhibits glycolytic enzymes in Escherichia coli. Cell Rep 2023; 42:111950. [PMID: 36640332 DOI: 10.1016/j.celrep.2022.111950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Advanced mass spectrometry methods have detected thousands of post-translational phosphorylation and acetylation sites in bacteria, but their functional role and the enzymes catalyzing these modifications remain largely unknown. In addition to enzymatic acetylation, lysine residues can also be chemically acetylated by the metabolite acetyl phosphate. In Escherichia coli, acetylation at over 3,000 sites has been linked to acetyl phosphate, but the functionality of this widespread non-enzymatic acetylation is even less clear than the enzyme-catalyzed one. Here, we investigate the role of acetyl-phosphate-mediated acetylation in E. coli central metabolism. Out of 19 enzymes investigated, only GapA and GpmA are acetylated at high stoichiometry, which inhibits their activity by interfering with substrate binding, effectively reducing glycolysis when flux to or from acetate is high. Extrapolating our results to the whole proteome, maximally 10% of the reported non-enzymatically acetylated proteins are expected to reach a stoichiometry that could inhibit their activity.
Collapse
Affiliation(s)
- Evgeniya Schastnaya
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology, 8093 Zurich, Switzerland
| | | | - Luca Maurer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Guo J, Ma Z, Deng C, Ding J, Chang Y. A comprehensive dynamic immune acetylproteomics profiling induced by Puccinia polysora in maize. BMC PLANT BIOLOGY 2022; 22:610. [PMID: 36564751 PMCID: PMC9789614 DOI: 10.1186/s12870-022-03964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Lysine-ε-acetylation (Kac) is a reversible post-translational modification that plays important roles during plant-pathogen interactions. Some pathogens can deliver secreted effectors encoding acetyltransferases or deacetylases into host cell to directly modify acetylation of host proteins. However, the function of these acetylated host proteins in plant-pathogen defense remains to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein abundance and lysine acetylation changes in maize infected with Puccinia polysora (P. polysora) at 0 h, 12 h, 24 h, 48 h and 72 h. A total of 7412 Kac sites from 4697 proteins were identified, and 1732 Kac sites from 1006 proteins were quantified. Analyzed the features of lysine acetylation, we found that Kac is ubiquitous in cellular compartments and preferentially targets lysine residues in the -F/W/Y-X-X-K (ac)-N/S/T/P/Y/G- motif of the protein, this Kac motif contained proteins enriched in basic metabolism and defense-associated pathways during fungal infection. Further analysis of acetylproteomics data indicated that maize regulates cellular processes in response to P. polysora infection by altering Kac levels of histones and non-histones. In addition, acetylation of pathogen defense-related proteins presented converse patterns in signaling transduction, defense response, cell wall fortification, ROS scavenging, redox reaction and proteostasis. Our results provide informative resources for studying protein acetylation in plant-pathogen interactions, not only greatly extending the understanding on the roles of acetylation in vivo, but also providing a comprehensive dynamic pattern of Kac modifications in the process of plant immune response.
Collapse
Affiliation(s)
- Jianfei Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhigang Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Ce Deng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
- The State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
19
|
Cao M, Cheng Q, Cai B, Chen Y, Wei Y, Qi D, Li Y, Yan L, Li X, Long W, Liu Q, Xie J, Wang W. Antifungal Mechanism of Metabolites from Newly Isolated Streptomyces sp. Y1-14 against Banana Fusarium Wilt Disease Using Metabolomics. J Fungi (Basel) 2022; 8:jof8121291. [PMID: 36547623 PMCID: PMC9784640 DOI: 10.3390/jof8121291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most destructive banana diseases in the world, which limits the development of the banana industry. Compared with traditional physical and chemical practices, biological control becomes a promising safe and efficient strategy. In this study, strain Y1-14 with strong antagonistic activity against Foc TR4 was isolated from the rhizosphere soil of a banana plantation, where no disease symptom was detected for more than ten years. The strain was identified as Streptomyces according to the morphological, physiological, and biochemical characteristics and the phylogenetic tree of 16S rRNA. Streptomyces sp. Y1-14 also showed a broad-spectrum antifungal activity against the selected 12 plant pathogenic fungi. Its extracts inhibited the growth and spore germination of Foc TR4 by destroying the integrity of the cell membrane and the ultrastructure of mycelia. Twenty-three compounds were identified by gas chromatography-mass spectrometry (GC-MS). The antifungal mechanism was investigated further by metabolomic analysis. Strain Y1-14 extracts significantly affect the carbohydrate metabolism pathway of Foc TR4 by disrupting energy metabolism.
Collapse
Affiliation(s)
- Miaomiao Cao
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qifeng Cheng
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuqi Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Liu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Xiaojuan Li
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weiqiang Long
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture and Forestry Sciences/Faculty of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture and Forestry Sciences/Faculty of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (J.X.); (W.W.)
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (J.X.); (W.W.)
| |
Collapse
|
20
|
Liu M, Huo M, Liu C, Guo L, Ding Y, Ma Q, Qi Q, Xian M, Zhao G. Lysine acetylation of Escherichia coli lactate dehydrogenase regulates enzyme activity and lactate synthesis. Front Bioeng Biotechnol 2022; 10:966062. [PMID: 36051589 PMCID: PMC9424733 DOI: 10.3389/fbioe.2022.966062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
As an evolutionarily conserved posttranslational modification, protein lysine acetylation plays important roles in many physiological and metabolic processes. However, there are few reports about the applications of lysine acetylation in metabolic regulations. Lactate is a main byproduct in microbial fermentation, and itself also an important bulk chemical with considerable commercial values in many fields. Lactate dehydrogenase (LdhA) is the key enzyme catalyzing lactate synthesis from pyruvate. Here, we reported that Escherichia coli LdhA can be acetylated and the acetylated lysine sites were identified by mass spectrometry. The effects and regulatory mechanisms of acetylated sites on LdhA activity were characterized. Finally, lysine acetylation was successfully used to regulate the lactate synthesis. LdhA (K9R) mutant overexpressed strain improved the lactate titer and glucose conversion efficiency by 1.74 folds than that of wild-type LdhA overexpressed strain. LdhA (K154Q-K248Q) mutant can inhibit lactate accumulation and improve 3HP production. Our study established a paradigm for lysine acetylation in lactate synthesis regulation and suggested that lysine acetylation may be a promising strategy to improve the target production and conversion efficiency in microbial synthesis. The application of lysine acetylation in regulating lactate synthesis also provides a reference for the treatment of lactate-related diseases.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Meitong Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Changshui Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qingjun Ma
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Mo Xian, ; Guang Zhao,
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Mo Xian, ; Guang Zhao,
| |
Collapse
|
21
|
Xu Z, Wang L, Wang X, Wan M, Tang M, Ding Y. Characterizing the Effect of the Lysine Deacetylation Modification on Enzyme Activity of Pyruvate Kinase I and Pathogenicity of Vibrio alginolyticus. Front Vet Sci 2022; 9:877067. [PMID: 35795782 PMCID: PMC9252168 DOI: 10.3389/fvets.2022.877067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 01/22/2023] Open
Abstract
Pyruvate kinase I (PykF) is one of the key enzymes of glycolysis and plays a crucial role in bacterial metabolism. Several acetylation sites of Vibrio alginolyticus PykF were reported in previous studies and then 11 sites were first verified in this study, however, the specific roles of PykF acetylation remains unclear. Overlap-PCR and homologous recombination were implied to delete V. alginolyticus pykF gene and constructed complementary strains of site-directed mutagenesis for the further research focus on the deacetylation regulation on PykF. The results showed that the pyruvate kinase activity was sharply suppressed in the deacetylation status of K52, K68, and K317 of PykF, as well as the extracellular protease activity was significantly decreased in the deacetylation status of K52 and K68, but not induced with K317. Moreover, the growth rates of V. alginolyticus were not influenced with these three deacetylation sites. The ΔpykF mutant exhibited a 6-fold reduction in virulence to zebrafish. Site-directed mutations of K52R and K68R also showed reduced virulence while mutations of K317R didn't. The in vitro experiments showed that PykF was acetylated by acetyl phosphate (AcP), with the increase of incubation time by AcP, the acetylation level of PykF increased while the enzyme activity of PykF decreased correspondingly. Besides, PykF was deacetylated by CobB deacetylase and in result that the deacetylation was significantly down-regulated while the pyruvate kinase activity of PykF increased. Moreover, deletion of cobB gene had no significant difference in pyruvate kinase activity. These results confirm that CobB can regulate the acetylation level and pyruvate kinase activity of PykF. In summary, the results of this study provide a theoretical basis for further understanding of the deacetylation modification of PykF. It provides a new idea for the prevention and cure of vibriosis.
Collapse
Affiliation(s)
- Zhou Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Linjing Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Xudong Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mingyue Wan
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mei Tang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Yu Ding
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Yu Ding
| |
Collapse
|
22
|
Araujo J, Ottinger S, Venkat S, Gan Q, Fan C. Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion. Front Chem 2022; 10:862483. [PMID: 35402385 PMCID: PMC8987015 DOI: 10.3389/fchem.2022.862483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Aconitase catalyzes the second reaction of the tricarboxylic acid cycle, the reversible conversion of citrate and isocitrate. Escherichia coli has two isoforms of aconitase, AcnA and AcnB. Acetylomic studies have identified acetylation at multiple lysine sites of both E. coli aconitase isozymes, but the impacts of acetylation on aconitases are unknown. In this study, we applied the genetic code expansion approach to produce 14 site-specifically acetylated aconitase variants. Enzyme assays and kinetic analyses showed that acetylation of AcnA K684 decreased the enzyme activity, while acetylation of AcnB K567 increased the enzyme activity. Further in vitro acetylation and deacetylation assays were performed, which indicated that both aconitase isozymes could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase at most lysine sites. Through this study, we have demonstrated practical applications of genetic code expansion in acetylation studies.
Collapse
Affiliation(s)
- Jessica Araujo
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Sara Ottinger
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Sumana Venkat
- Children’s Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Chenguang Fan,
| |
Collapse
|
23
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Guo J, Chai X, Mei Y, Du J, Du H, Shi H, Zhu JK, Zhang H. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. STRESS BIOLOGY 2022; 2:1. [PMID: 37676343 PMCID: PMC10442023 DOI: 10.1007/s44154-021-00024-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 09/08/2023]
Abstract
Lysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that "reader" proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.
Collapse
Affiliation(s)
- Jianfei Guo
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqiang Chai
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiamu Du
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
25
|
Balparda M, Elsässer M, Badia MB, Giese J, Bovdilova A, Hüdig M, Reinmuth L, Eirich J, Schwarzländer M, Finkemeier I, Schallenberg-Rüdinger M, Maurino VG. Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:92-111. [PMID: 34713507 DOI: 10.1111/tpj.15556] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.
Collapse
Affiliation(s)
- Manuel Balparda
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Marlene Elsässer
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Mariana B Badia
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
- Facultad de Quı́mica e Ingenierı́a del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, S2002QEO, Rosario, Argentina
| | - Jonas Giese
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Anastasiia Bovdilova
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Meike Hüdig
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Lisa Reinmuth
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Veronica G Maurino
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| |
Collapse
|
26
|
Wang JM, Lin SR, Zhu YB, Yuan J, Wang YM, Zhang Q, Xie LS, Li SH, Liu SQ, Yu SG, Wu QF. Proteomic analysis of lysine acetylation reveals that metabolic enzymes and heat shock proteins may be potential targets for DSS-induced mice colitis. Int Immunopharmacol 2021; 101:108336. [PMID: 34768127 DOI: 10.1016/j.intimp.2021.108336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Research on acetylation modification and its modification sites will be of great significance for revealing the mechanism of disease and developing new targeted medicines. In this study, we aim to construct a complete atlas of acetylome in the DSS-induced ulcerative colitis mice model (UC model) METHODS: A high-resolution mass spectrometry-based quantitative approach was employed to identify lysine-acetylated proteins and acetylation sites. Bioinformatics analysis and in vitro experiments verified anti-inflammatory effects of HSP90B1-K142ac. RESULTS 2597 acetylation events and 1914 sites were quantified, highlighting 140 acetylation site changes in the colitis colon tissue. 91 acetylation sites in 75 proteins were up-regulated, and 49 acetylation sites in 39 proteins were down-regulated in the UC models. The differentially acetylated proteins mainly consisted of non-histone proteins located in the cytoplasm and mitochondria. KEGG and protein-protein interaction networks analysis showed that the differentially acetylated proteins were enriched in the TCA cycle, fatty acid metabolism, and protein processing in the endoplasmic reticulum. 68% of the differentially metabolized enzymes have a down-regulated trend in acetylation levels. The acetylation level of lysine 142 in HSP90B1 was found to be obvious in the UC colon, and point mutation of HSP90B1-K142ac would result in the decreasing secretion of TNF-α and IL-2 in LPS-stimulated cultured cells. CONCLUSION Our work built a complete atlas of acetylome and revealed the potential role of metabolic enzymes and heat shock proteins in DSS-induced colitis.
Collapse
Affiliation(s)
- Jun-Meng Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Si-Rui Lin
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China,; Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan,646000, China Tel.: +86 13880648343
| | - Yuan-Bing Zhu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jing Yuan
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Yue-Mei Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qun Zhang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Lu-Shuang Xie
- School of basic medicine, Chengdu University of traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, Sichuan 610075,China
| | - Si-Hui Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu-Qing Liu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu-Guang Yu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China,; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, Sichuan 610075,China.
| |
Collapse
|
27
|
Neumann-Staubitz P, Lammers M, Neumann H. Genetic Code Expansion Tools to Study Lysine Acylation. Adv Biol (Weinh) 2021; 5:e2100926. [PMID: 34713630 DOI: 10.1002/adbi.202100926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Lysine acylation is a ubiquitous protein modification that controls various aspects of protein function, such as the activity, localization, and stability of enzymes. Mass spectrometric identification of lysine acylations has witnessed tremendous improvements in sensitivity over the last decade, facilitating the discovery of thousands of lysine acylation sites in proteins involved in all essential cellular functions across organisms of all domains of life. However, the vast majority of currently known acylation sites are of unknown function. Semi-synthetic methods for installing lysine derivatives are ideally suited for in vitro experiments, while genetic code expansion (GCE) allows the installation and study of such lysine modifications, especially their dynamic properties, in vivo. An overview of the current state of the art is provided, and its potential is illustrated with case studies from recent literature. These include the application of engineered enzymes and GCE to install lysine modifications or photoactivatable crosslinker amino acids. Their use in the context of central metabolism, bacterial and viral pathogenicity, the cytoskeleton and chromatin dynamics, is investigated.
Collapse
Affiliation(s)
- Petra Neumann-Staubitz
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| | - Michael Lammers
- Institute for Biochemistry, Department Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Heinz Neumann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| |
Collapse
|
28
|
Liu M, Guo L, Fu Y, Huo M, Qi Q, Zhao G. Bacterial protein acetylation and its role in cellular physiology and metabolic regulation. Biotechnol Adv 2021; 53:107842. [PMID: 34624455 DOI: 10.1016/j.biotechadv.2021.107842] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 12/28/2022]
Abstract
Protein acetylation is an evolutionarily conserved posttranslational modification. It affects enzyme activity, metabolic flux distribution, and other critical physiological and biochemical processes by altering protein size and charge. Protein acetylation may thus be a promising tool for metabolic regulation to improve target production and conversion efficiency in fermentation. Here we review the role of protein acetylation in bacterial physiology and metabolism and describe applications of protein acetylation in fermentation engineering and strategies for regulating acetylation status. Although protein acetylation has become a hot topic, the regulatory mechanisms have not been fully characterized. We propose future research directions in protein acetylation.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China; CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Yingxin Fu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Meitong Huo
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China; CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
29
|
Keseler IM, Gama-Castro S, Mackie A, Billington R, Bonavides-Martínez C, Caspi R, Kothari A, Krummenacker M, Midford PE, Muñiz-Rascado L, Ong WK, Paley S, Santos-Zavaleta A, Subhraveti P, Tierrafría VH, Wolfe AJ, Collado-Vides J, Paulsen IT, Karp PD. The EcoCyc Database in 2021. Front Microbiol 2021; 12:711077. [PMID: 34394059 PMCID: PMC8357350 DOI: 10.3389/fmicb.2021.711077] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.
Collapse
Affiliation(s)
- Ingrid M. Keseler
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Amanda Mackie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Billington
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | | | - Ron Caspi
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Anamika Kothari
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Markus Krummenacker
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Peter E. Midford
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Luis Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Wai Kit Ong
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Suzanne Paley
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, México
| | - Pallavi Subhraveti
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D. Karp
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| |
Collapse
|
30
|
Miao Y, Wang Y, Huang D, Lin X, Lin Z, Lin X. Profile of protein lysine propionylation in Aeromonas hydrophila and its role in enzymatic regulation. Biochem Biophys Res Commun 2021; 562:1-8. [PMID: 34030039 DOI: 10.1016/j.bbrc.2021.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Abstract
Protein lysine propionylation (Kpr) modification is a novel post-translational modification (PTM) of prokaryotic cells that was recently discovered; however, it is not clear how this modification regulates bacterial life. In this study, the protein Kpr modification profile in Aeromonas hydrophila was identified by high specificity antibody-based affinity enrichment combined with high resolution LC MS/MS. A total of 98 lysine-propionylated peptides with 59 Kpr proteins were identified, most of which were associated with energy metabolism, transcription and translation processes. To further understand the role of Kpr modified proteins, the K168 site on malate dehydrogenase (MDH) and K608 site on acetyl-coenzyme A synthetase (AcsA) were subjected to site-directed mutation to arginine (R) and glutamine (Q) to simulate deacylation and propionylation, respectively. Subsequent measurement of the enzymatic activity showed that the K168 site of Kpr modification on MDH may negatively regulate the MDH enzymatic activity while also affecting the survival of mdh derivatives when using glucose as the carbon source, whereas Kpr modification of K608 of AcsA does not. Overall, the results of this study indicate that protein Kpr modification plays an important role in bacterial biological functions, especially those involved in the activity of metabolic enzymes.
Collapse
Affiliation(s)
- Yuxuan Miao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiaoke Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Zhenping Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
31
|
Banerjee S, Sadler PJ. Transfer hydrogenation catalysis in cells. RSC Chem Biol 2021; 2:12-29. [PMID: 34458774 PMCID: PMC8341873 DOI: 10.1039/d0cb00150c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogenation reactions in biology are usually carried out by enzymes with nicotinamide adenine dinucleotide (NAD(P)H) or flavin mononucleotide (FAMH2)/flavinadenine dinucleotide (FADH2) as cofactors and hydride sources. Industrial scale chemical transfer hydrogenation uses small molecules such as formic acid or alcohols (e.g. propanol) as hydride sources and transition metal complexes as catalysts. We focus here on organometallic half-sandwich RuII and OsII η6-arene complexes and RhIII and IrIII η5-Cp x complexes which catalyse hydrogenation of biomolecules such as pyruvate and quinones in aqueous media, and generate biologically important species such as H2 and H2O2. Organometallic catalysts can achieve enantioselectivity, and moreover can be active in living cells, which is surprising on account of the variety of poisons present. Such catalysts can induce reductive stress using formate as hydride source or oxidative stress by accepting hydride from NAD(P)H. In some cases, photocatalytic redox reactions can be induced by light absorption at metal or flavin centres. These artificial transformations can interfere in biochemical pathways in unusual ways, and are the basis for the design of metallodrugs with novel mechanisms of action.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
32
|
Lou S, Zhu X, Zeng Z, Wang H, Jia B, Li H, Hu Z. Identification of microRNAs response to high light and salinity that involved in beta-carotene accumulation in microalga Dunaliella salina. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Mereweather LJ, Montes Aparicio CN, Heather LC. Positioning Metabolism as a Central Player in the Diabetic Heart. J Lipid Atheroscler 2020; 9:92-109. [PMID: 32821724 PMCID: PMC7379068 DOI: 10.12997/jla.2020.9.1.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
In type 2 diabetes (T2D), the leading cause of death is cardiovascular complications. One mechanism contributing to cardiac pathogenesis is alterations in metabolism, with the diabetic heart exhibiting increased fatty acid oxidation and reduced glucose utilisation. The processes classically thought to underlie this metabolic shift include the Randle cycle and changes to gene expression. More recently, alternative mechanisms have been proposed, most notably, changes in post-translational modification of mitochondrial proteins in the heart. This increased understanding of how metabolism is altered in the diabetic heart has highlighted new therapeutic targets, with an aim to improve cardiac function in T2D. This review focuses on metabolism in the healthy heart and how this is modified in T2D, providing evidence for the mechanisms underlying this shift. There will be emphasis on the current treatments for the heart in diabetes, alongside efforts for metabocentric pharmacological therapies.
Collapse
Affiliation(s)
- Laura J Mereweather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Yao K, Zhou QX, Liu DM, Chen SM, Yuan K. Comparative proteomics of the metabolic pathways involved in l-lactic acid production in Bacillus coagulans BCS13002 using different carbon sources. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Gao Y, Lee H, Kwon OK, Tan M, Kim KT, Lee S. Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio). J Proteome Res 2019; 18:3762-3769. [DOI: 10.1021/acs.jproteome.9b00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjia Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
36
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
37
|
Ren J, Sang Y, Qin R, Su Y, Cui Z, Mang Z, Li H, Lu S, Zhang J, Cheng S, Liu X, Li J, Lu J, Wu W, Zhao GP, Shao F, Yao YF. Metabolic intermediate acetyl phosphate modulates bacterial virulence via acetylation. Emerg Microbes Infect 2019; 8:55-69. [PMID: 30866760 PMCID: PMC6455138 DOI: 10.1080/22221751.2018.1558963] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Accumulating evidence indicates that bacterial metabolism plays an important role in virulence. Acetyl phosphate (AcP), the high-energy intermediate of the phosphotransacetylase-acetate kinase pathway, is the major acetyl donor in E. coli. PhoP is an essential transcription factor for bacterial virulence. Here, we show in Salmonella typhimurium that PhoP is non-enzymatically acetylated by AcP, which modifies its transcriptional activity, demonstrating that the acetylation of Lysine 102 (K102) is dependent on the intracellular AcP. The acetylation level of K102 decreases under PhoP-activating conditions including low magnesium, acid stress or following phagocytosis. Notably, in vitro assays show that K102 acetylation affects PhoP phosphorylation and inhibits its transcriptional activity. Both cell and mouse models show that K102 is critical to Salmonella virulence, and suggest acetylation is involved in regulating PhoP activity. Together, the current study highlights the importance of the metabolism in bacterial virulence, and shows AcP might be a key mediator.
Collapse
Affiliation(s)
- Jie Ren
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Yu Sang
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Ran Qin
- b Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture , College of Life Sciences, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Yang Su
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Zhongli Cui
- b Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture , College of Life Sciences, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Zhiguo Mang
- c Department of Pharmaceutical Science , School of Pharmacy, East China University of Science & Technology , Shanghai , People's Republic of China
| | - Hao Li
- c Department of Pharmaceutical Science , School of Pharmacy, East China University of Science & Technology , Shanghai , People's Republic of China
| | - Shaoyong Lu
- d Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Jian Zhang
- d Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Sen Cheng
- e Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center , College of Chemistry and Molecular Engineering, Peking University , Beijing , People's Republic of China
| | - Xiaoyun Liu
- e Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center , College of Chemistry and Molecular Engineering, Peking University , Beijing , People's Republic of China
| | - Jixi Li
- f State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Engineering Research Center of Industrial Microorganisms , School of Life Sciences, Fudan University , Shanghai , People's Republic of China
| | - Jie Lu
- g Department of Infectious Diseases , Shanghai Ruijin Hospital , Shanghai , People's Republic of China
| | - Wenjuan Wu
- h Department of Laboratory Medicine , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Guo-Ping Zhao
- i Key Laboratory of Synthetic Biology , Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , People's Republic of China
| | - Feng Shao
- j National Institute of Biological Sciences , Beijing , People's Republic of China
| | - Yu-Feng Yao
- a Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology , Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China.,h Department of Laboratory Medicine , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
38
|
Moruno Algara M, Kuczyńska‐Wiśnik D, Dębski J, Stojowska‐Swędrzyńska K, Sominka H, Bukrejewska M, Laskowska E. Trehalose protects
Escherichia coli
against carbon stress manifested by protein acetylation and aggregation. Mol Microbiol 2019; 112:866-880. [DOI: 10.1111/mmi.14322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
Affiliation(s)
- María Moruno Algara
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Dorota Kuczyńska‐Wiśnik
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory IBB PAS ul. Pawińskiego 5A02‐106Warsaw Poland
| | - Karolina Stojowska‐Swędrzyńska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Hanna Sominka
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Małgorzata Bukrejewska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Ewa Laskowska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| |
Collapse
|
39
|
Cao Y, Fan G, Wang Z, Gu Z. Phytoplasma-induced Changes in the Acetylome and Succinylome of Paulownia tomentosa Provide Evidence for Involvement of Acetylated Proteins in Witches' Broom Disease. Mol Cell Proteomics 2019; 18:1210-1226. [PMID: 30936209 PMCID: PMC6553929 DOI: 10.1074/mcp.ra118.001104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation and succinylation are post-translational modifications of proteins that have been shown to play roles in plants response to pathogen infection. Phytoplasma infection can directly alter multiple metabolic processes in the deciduous plant Paulownia and lead to Paulownia witches' broom (PaWB) disease, the major cause of Paulownia mortality worldwide. However, the extent and function of lysine aceylation and succinylation during phytoplasma infection have yet to be explored. Here, we investigated the changes in the proteome, acetylome, and succinylome of phytoplasma-infected Paulownia tomentosa seedlings using quantitative mass spectrometry. In total, we identified 8963 proteins, 2893 acetylated proteins (5558 acetylation sites), and 1271 succinylated proteins (1970 succinylation sites), with 425 (533 sites) simultaneously acetylated and succinylated. Comparative analysis revealed that 276 proteins, 546 acetylated proteins (741 acetylation sites) and 5 succinylated proteins (5 succinylation sites) were regulated in response to phytoplasma infection, suggesting that acetylation may be more important than succinylation in PaWB. Enzymatic assays showed that acetylation of specific sites in protochlorophyllide reductase and RuBisCO, key enzymes in chlorophyll and starch biosynthesis, respectively, modifies their activity in phytoplasma-infected seedlings. On the basis of these results, we propose a model to elucidate the molecular mechanism of responses to PaWB and offer a resource for functional studies on the effects of acetylation on protein function.
Collapse
Affiliation(s)
| | - Guoqiang Fan
- From the ‡Institute of Paulownia and
- §College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Zhe Wang
- From the ‡Institute of Paulownia and
| | - Zhibin Gu
- From the ‡Institute of Paulownia and
| |
Collapse
|
40
|
Zhao L, Jiang Q, Luo S, Shen J, Xu X. Preparation of hepatic stimulator substance from neonatal porcine liver by enzymatic hydrolysis and characterization of the liver proteins by LC-MS/MS bottom-up approach. Prep Biochem Biotechnol 2019; 49:360-367. [DOI: 10.1080/10826068.2019.1573193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Leilei Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Qiong Jiang
- Guangdong Winnerway Holdings Pharmaceutical Co. Ltd, Dongguan, PR China
| | - Sitong Luo
- Guangdong Winnerway Holdings Pharmaceutical Co. Ltd, Dongguan, PR China
| | - Jie Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
41
|
Venkat S, Chen H, McGuire P, Stahman A, Gan Q, Fan C. Characterizing lysine acetylation of Escherichia coli type II citrate synthase. FEBS J 2019; 286:2799-2808. [PMID: 30974512 DOI: 10.1111/febs.14845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The citrate synthase (CS) catalyzes the first reaction of the tricarboxylic acid cycle, playing an important role in central metabolism. The acetylation of lysine residues in the Escherichia coli Type II CS has been identified at multiple sites by proteomic studies, but their effects remain unknown. In this study, we applied the genetic code expansion strategy to generate 10 site-specifically acetylated CS variants which have been identified in nature. Enzyme assays and kinetic analyses showed that lysine acetylation could decrease the overall CS enzyme activity, largely due to the acetylation of K295 which impaired the binding of acetyl-coenzyme A. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to explore the acetylation and deacetylation processes of the CS, which indicated that the CS could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase.
Collapse
Affiliation(s)
- Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
42
|
Global Lysine Acetylation in Escherichia coli Results from Growth Conditions That Favor Acetate Fermentation. J Bacteriol 2019; 201:JB.00768-18. [PMID: 30782634 DOI: 10.1128/jb.00768-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Lysine acetylation is thought to provide a mechanism for regulating metabolism in diverse bacteria. Indeed, many studies have shown that the majority of enzymes involved in central metabolism are acetylated and that acetylation can alter enzyme activity. However, the details regarding this regulatory mechanism are still unclear, specifically with regard to the signals that induce lysine acetylation. To better understand this global regulatory mechanism, we profiled changes in lysine acetylation during growth of Escherichia coli on the hexose glucose or the pentose xylose at both high and low sugar concentrations using label-free mass spectrometry. The goal was to see whether lysine acetylation differed during growth on these two different sugars. No significant differences, however, were observed. Rather, the initial sugar concentration was the principal factor governing changes in lysine acetylation, with higher sugar concentrations causing more acetylation. These results suggest that acetylation does not target specific metabolic pathways but rather simply targets accessible lysines, which may or may not alter enzyme activity. They further suggest that lysine acetylation principally results from conditions that favor accumulation of acetyl phosphate, the principal acetate donor in E. coli IMPORTANCE Bacteria alter their metabolism in response to nutrient availability, growth conditions, and environmental stresses using a number of different mechanisms. One is lysine acetylation, a posttranslational modification known to target many metabolic enzymes. However, little is known about this regulatory mode. We investigated the factors inducing changes in lysine acetylation by comparing growth on glucose and xylose. We found that the specific sugar used for growth did not alter the pattern of acetylation; rather, the amount of sugar did, with more sugar causing more acetylation. These results imply that lysine acetylation is a global regulatory mechanism that is responsive not to the specific carbon source per se but rather to the accumulation of downstream metabolites.
Collapse
|
43
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
44
|
Ma Y, Qi Y, Wang L, Zheng Z, Zhang Y, Zheng J. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic Biol Med 2019; 134:458-467. [PMID: 30703481 DOI: 10.1016/j.freeradbiomed.2019.01.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yuanzhen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yijun Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaoxu Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Junfang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Beijing International Cooperation Base for Science and Technology on China-UK Cancer Research, Beijing, 100069, China.
| |
Collapse
|
45
|
Yoshida A, Yoshida M, Kuzuyama T, Nishiyama M, Kosono S. Protein acetylation on 2-isopropylmalate synthase from Thermus thermophilus HB27. Extremophiles 2019; 23:377-388. [PMID: 30919057 DOI: 10.1007/s00792-019-01090-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
Protein lysine Nε-acetylation is one of the important factors regulating cellular metabolism. We performed a proteomic analysis to identify acetylated proteins in the extremely thermophilic bacterium, Thermus thermophilus HB27. A total of 335 unique acetylated lysine residues, including many metabolic enzymes and ribosomal proteins, were identified in 208 proteins. Enzymes involved in amino acid metabolism were the most abundant among acetylated metabolic proteins. 2-Isopropylmalate synthase (IPMS), which catalyzes the first step in leucine biosynthesis, was acetylated at four lysine residues. Acetylation-mimicking mutations at Lys332 markedly decreased IPMS activity in vitro, suggesting that Lys332, which is located in subdomain II, plays a regulatory role in IPMS activity. We also investigated the acetylation-deacetylation mechanism of IPMS and revealed that it was acetylated non-enzymatically by acetyl-CoA and deacetylated enzymatically by TT_C0104. The present results suggest that leucine biosynthesis is regulated by post-translational protein modifications, in addition to feedback inhibition/repression, and that metabolic enzymes are regulated by protein acetylation in T. thermophilus.
Collapse
Affiliation(s)
- Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
46
|
Christensen DG, Meyer JG, Baumgartner JT, D'Souza AK, Nelson WC, Payne SH, Kuhn ML, Schilling B, Wolfe AJ. Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. mBio 2018; 9:e01905-18. [PMID: 30352934 PMCID: PMC6199490 DOI: 10.1128/mbio.01905-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Posttranslational modifications, such as Nε-lysine acetylation, regulate protein function. Nε-lysine acetylation can occur either nonenzymatically or enzymatically. The nonenzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donor to modify an Nε-lysine residue of a protein. The enzymatic mechanism uses Nε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to Nε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified in Escherichia coli Here, we demonstrate the existence of 4 additional E. coli KATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the posttranslational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific nonenzymatic and enzymatic protein acetylation mechanisms present in bacteria.IMPORTANCENε-Lysine acetylation is one of the most abundant and important posttranslational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed an E. coli strain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate nonenzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellum-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial posttranslational modification.
Collapse
Affiliation(s)
- David G Christensen
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jackson T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | | | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel H Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | | | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
47
|
Bontemps-Gallo S, Gaviard C, Richards CL, Kentache T, Raffel SJ, Lawrence KA, Schindler JC, Lovelace J, Dulebohn DP, Cluss RG, Hardouin J, Gherardini FC. Global Profiling of Lysine Acetylation in Borrelia burgdorferi B31 Reveals Its Role in Central Metabolism. Front Microbiol 2018; 9:2036. [PMID: 30233522 PMCID: PMC6127242 DOI: 10.3389/fmicb.2018.02036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
The post-translational modification of proteins has been shown to be extremely important in prokaryotes. Using a highly sensitive mass spectrometry-based proteomics approach, we have characterized the acetylome of B. burgdorferi. As previously reported for other bacteria, a relatively low number (5%) of the potential genome-encoded proteins of B. burgdorferi were acetylated. Of these, the vast majority were involved in central metabolism and cellular information processing (transcription, translation, etc.). Interestingly, these critical cell functions were targeted during both ML (mid-log) and S (stationary) phases of growth. However, acetylation of target proteins in ML phase was limited to single lysine residues while these same proteins were acetylated at multiple sites during S phase. To determine the acetyl donor in B. burgdorferi, we used mutants that targeted the sole acetate metabolic/anabolic pathway in B. burgdorferi (lipid I synthesis). B. burgdorferi strains B31-A3, B31-A3 ΔackA (acetyl-P- and acetyl-CoA-) and B31-A3 Δpta (acetyl-P+ and acetyl-CoA-) were grown to S phase and the acetylation profiles were analyzed. While only two proteins were acetylated in the ΔackA mutant, 140 proteins were acetylated in the Δpta mutant suggesting that acetyl-P was the primary acetyl donor in B. burgdorferi. Using specific enzymatic assays, we were able to demonstrate that hyperacetylation of proteins in S phase appeared to play a role in decreasing the enzymatic activity of at least two glycolytic proteins. Currently, we hypothesize that acetylation is used to modulate enzyme activities during different stages of growth. This strategy would allow the bacteria to post-translationally stimulate the activity of key glycolytic enzymes by deacetylation rather than expending excessive energy synthesizing new proteins. This would be an appealing, low-energy strategy for a bacterium with limited metabolic capabilities. Future work focuses on identifying potential protein deacetylase(s) to complete our understanding of this important biological process.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Charlotte Gaviard
- CNRS UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, Université de Rouen, Mont-Saint-Aignan, France.,PISSARO Proteomic Facility, Institut de Recherche et d'Innovation Biomédicale, Mont-Saint-Aignan, France
| | - Crystal L Richards
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Takfarinas Kentache
- CNRS UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, Université de Rouen, Mont-Saint-Aignan, France.,PISSARO Proteomic Facility, Institut de Recherche et d'Innovation Biomédicale, Mont-Saint-Aignan, France
| | - Sandra J Raffel
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Kevin A Lawrence
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Joseph C Schindler
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Joseph Lovelace
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Daniel P Dulebohn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Robert G Cluss
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Julie Hardouin
- CNRS UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, Université de Rouen, Mont-Saint-Aignan, France.,PISSARO Proteomic Facility, Institut de Recherche et d'Innovation Biomédicale, Mont-Saint-Aignan, France
| | - Frank C Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
48
|
Fernández-Coll L, Cashel M. Contributions of SpoT Hydrolase, SpoT Synthetase, and RelA Synthetase to Carbon Source Diauxic Growth Transitions in Escherichia coli. Front Microbiol 2018; 9:1802. [PMID: 30123210 PMCID: PMC6085430 DOI: 10.3389/fmicb.2018.01802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
During the diauxic shift, Escherichia coli exhausts glucose and adjusts its expression pattern to grow on a secondary carbon source. Transcriptional profiling studies of glucose–lactose diauxic transitions reveal a key role for ppGpp. The amount of ppGpp depends on RelA synthetase and the balance between a strong SpoT hydrolase and its weak synthetase. In this study, mutants are used to search for synthetase or hydrolase specific regulation. Diauxic shifts experiments were performed with strains containing SpoT hydrolase and either RelA or SpoT synthetase as the sole source of ppGpp. Here, the length of the diauxic lag times is determined by the presence of ppGpp, showing contributions of both ppGpp synthetases (RelA and SpoT) as well as its hydrolase (SpoT). A balanced ppGpp response is key for a proper adaptation during diauxic shift. The effects of one or the other ppGpp synthetase on diauxic shifts are abolished by addition of amino acids or succinate, although by different mechanisms. While amino acids control the RelA response, succinate blocks the uptake of the excreted acetate via SatP. Acetate is converted to Acetyl-CoA through the ackA-pta pathway, producing Ac-P as intermediate. Evidence of control of the ackA-pta operon as well as a correlation between ppGpp and Ac-P is shown. Finally, acetylation of proteins is shown to occur during a diauxic glucose–lactose shift.
Collapse
Affiliation(s)
- Llorenç Fernández-Coll
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
49
|
Chen H, Venkat S, McGuire P, Gan Q, Fan C. Recent Development of Genetic Code Expansion for Posttranslational Modification Studies. Molecules 2018; 23:E1662. [PMID: 29986538 PMCID: PMC6100177 DOI: 10.3390/molecules23071662] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
Nowadays advanced mass spectrometry techniques make the identification of protein posttranslational modifications (PTMs) much easier than ever before. A series of proteomic studies have demonstrated that large numbers of proteins in cells are modified by phosphorylation, acetylation and many other types of PTMs. However, only limited studies have been performed to validate or characterize those identified modification targets, mostly because PTMs are very dynamic, undergoing large changes in different growth stages or conditions. To overcome this issue, the genetic code expansion strategy has been introduced into PTM studies to genetically incorporate modified amino acids directly into desired positions of target proteins. Without using modifying enzymes, the genetic code expansion strategy could generate homogeneously modified proteins, thus providing powerful tools for PTM studies. In this review, we summarized recent development of genetic code expansion in PTM studies for research groups in this field.
Collapse
Affiliation(s)
- Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
50
|
Venkat S, Chen H, Stahman A, Hudson D, McGuire P, Gan Q, Fan C. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. J Mol Biol 2018; 430:1901-1911. [PMID: 29733852 PMCID: PMC5988991 DOI: 10.1016/j.jmb.2018.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The Escherichia coli isocitrate dehydrogenase (ICDH) is one of the tricarboxylic acid cycle enzymes, playing key roles in energy production and carbon flux regulation. E. coli ICDH was the first bacterial enzyme shown to be regulated by reversible phosphorylation. However, the effect of lysine acetylation on E. coli ICDH, which has no sequence similarity with its counterparts in eukaryotes, is still unclear. Based on previous studies of E. coli acetylome and ICDH crystal structures, eight lysine residues were selected for mutational and kinetic analyses. They were replaced with acetyllysine by the genetic code expansion strategy or substituted with glutamine as a classic approach. Although acetylation decreased the overall ICDH activity, its effects were different site by site. Deacetylation tests demonstrated that the CobB deacetylase could deacetylate ICDH both in vivo and in vitro, but CobB was only specific for lysine residues at the protein surface. On the other hand, ICDH could be acetylated by acetyl-phosphate chemically in vitro. And in vivo acetylation tests indicated that the acetylation level of ICDH was correlated with the amounts of intracellular acetyl-phosphate. This study nicely complements previous proteomic studies to provide direct biochemical evidence for ICDH acetylation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hao Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Denver Hudson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|