1
|
Kim BJ, Kim Y, Kim JA, Han JH, Kim MY, Yang HK, Rhee CS, Kang YC, Kim CH, Choi BY. Novel Variant of FDXR as a Molecular Etiology of Postlingual Post-synaptic Auditory Neuropathy Spectrum Disorder via Mitochondrial Dysfunction: Reiteration of the Correlation between Genotype and Cochlear Implantation Outcomes. Clin Exp Otorhinolaryngol 2024; 17:206-216. [PMID: 39104018 PMCID: PMC11375174 DOI: 10.21053/ceo.2024.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVES FDXR encodes mitochondrial ferredoxin reductase, which is associated with auditory neuropathy spectrum disorder (ANSD) and optic atrophy. To date, only two studies have described FDXR-related hearing loss. The auditory rehabilitation outcomes of this disease entity have not been investigated, and the pathophysiological mechanisms remain incompletely understood. Here we report a hearing-impaired individual with co-segregation of the FDXR variant and post-synaptic type ANSD, who underwent cochlear implantation (CI) with favorable outcomes. We suggest a possible pathophysiological mechanism of adult-onset ANSD involving mitochondrial dysfunction. METHODS A 35-year-old woman was ascertained to have ANSD. Exome sequencing identified the genetic cause of hearing loss, and a functional study measuring mitochondrial activity was performed to provide molecular evidence of pathophysiology. Expression of FDXR in the mouse cochlea was evaluated by immunohistochemistry. Intraoperatively, electrically evoked compound action potential (ECAP) responses were measured, and the mapping parameters were adjusted accordingly. Audiological outcomes were monitored for over 1 year. RESULTS In lymphoblastoid cell lines (LCLs) carrying a novel FDXR variant, decreased ATP levels, reduced mitochondrial membrane potential, and increased reactive oxygen species levels were observed compared to control LCLs. These dysfunctions were restored by administering mitochondria isolated from umbilical cord mesenchymal stem cells, confirming the pathogenic potential of this variant via mitochondrial dysfunction. Partial ECAP responses during CI and FDXR expression in the mouse cochlea indicate that FDXR-related ANSD is post-synaptic. As a result of increasing the pulse width during mapping, the patient's CI outcomes showed significant improvement over 1-year post-CI. CONCLUSION A novel FDXR variant associated with mitochondrial dysfunction and post-synaptic ANSD was first identified in a Korean individual. Additionally, 1-year post-CI outcomes were reported for the first time in the literature. Excellent audiologic. RESULTS were obtained, and our. RESULTS reiterate the correlation between genotype and CI outcomes in ANSD.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otorhinolaryngology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yujin Kim
- Paean Biotechnology Inc., Seoul, Korea
| | - Ju Ang Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hee Kyung Yang
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
2
|
Ahmad F, Ramamorthy S, Areeshi MY, Ashraf GM, Haque S. Isolated Mitochondrial Preparations and In organello Assays: A Powerful and Relevant Ex vivo Tool for Assessment of Brain (Patho)physiology. Curr Neuropharmacol 2023; 21:1433-1449. [PMID: 36872352 PMCID: PMC10324330 DOI: 10.2174/1570159x21666230303123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2022] [Revised: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 03/07/2023] Open
Abstract
Mitochondria regulate multiple aspects of neuronal development, physiology, plasticity, and pathology through their regulatory roles in bioenergetic, calcium, redox, and cell survival/death signalling. While several reviews have addressed these different aspects, a comprehensive discussion focussing on the relevance of isolated brain mitochondria and their utilities in neuroscience research has been lacking. This is relevant because the employment of isolated mitochondria rather than their in situ functional evaluation, offers definitive evidence of organelle-specificity, negating the interference from extra mitochondrial cellular factors/signals. This mini-review was designed primarily to explore the commonly employed in organello analytical assays for the assessment of mitochondrial physiology and its dysfunction, with a particular focus on neuroscience research. The authors briefly discuss the methodologies for biochemical isolation of mitochondria, their quality assessment, and cryopreservation. Further, the review attempts to accumulate the key biochemical protocols for in organello assessment of a multitude of mitochondrial functions critical for neurophysiology, including assays for bioenergetic activity, calcium and redox homeostasis, and mitochondrial protein translation. The purpose of this review is not to examine each and every method or study related to the functional assessment of isolated brain mitochondria, but rather to assemble the commonly used protocols of in organello mitochondrial research in a single publication. The hope is that this review will provide a suitable platform aiding neuroscientists to choose and apply the required protocols and tools to address their particular mechanistic, diagnostic, or therapeutic question dealing within the confines of the research area of mitochondrial patho-physiology in the neuronal perspective.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Mohammed Y. Areeshi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Preferred Migration of Mitochondria toward Cells and Tissues with Mitochondrial Damage. Int J Mol Sci 2022; 23:ijms232415734. [PMID: 36555376 PMCID: PMC9779580 DOI: 10.3390/ijms232415734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.
Collapse
|
4
|
Fu X, Calderón C, Harm T, Gawaz M, Lämmerhofer M. Advanced unified monophasic lipid extraction protocol with wide coverage on the polarity scale optimized for large-scale untargeted clinical lipidomics analysis of platelets. Anal Chim Acta 2022; 1221:340155. [DOI: 10.1016/j.aca.2022.340155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
|
5
|
Huang Y, Wan Z, Tang Y, Xu J, Laboret B, Nallamothu S, Yang C, Liu B, Lu RO, Lu B, Feng J, Cao J, Hayflick S, Wu Z, Zhou B. Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism. Nat Commun 2022; 13:2412. [PMID: 35504872 PMCID: PMC9065001 DOI: 10.1038/s41467-022-30178-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2020] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Human neurodegenerative disorders often exhibit similar pathologies, suggesting a shared aetiology. Key pathological features of Parkinson's disease (PD) are also observed in other neurodegenerative diseases. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is caused by mutations in the human PANK2 gene, which catalyzes the initial step of de novo CoA synthesis. Here, we show that fumble (fbl), the human PANK2 homolog in Drosophila, interacts with PINK1 genetically. fbl and PINK1 mutants display similar mitochondrial abnormalities, and overexpression of mitochondrial Fbl rescues PINK1 loss-of-function (LOF) defects. Dietary vitamin B5 derivatives effectively rescue CoA/acetyl-CoA levels and mitochondrial function, reversing the PINK1 deficiency phenotype. Mechanistically, Fbl regulates Ref(2)P (p62/SQSTM1 homolog) by acetylation to promote mitophagy, whereas PINK1 regulates fbl translation by anchoring mRNA molecules to the outer mitochondrial membrane. In conclusion, Fbl (or PANK2) acts downstream of PINK1, regulating CoA/acetyl-CoA metabolism to promote mitophagy, uncovering a potential therapeutic intervention strategy in PD treatment.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihui Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Junxuan Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Sree Nallamothu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Chenyu Yang
- Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Boxiang Liu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rongze Olivia Lu
- Department of Neurosurgery, Dell Medical School, University of Texas Austin, Austin, TX, 78712, USA
- Department of Neurological Surgery, Brain Tumor Center, University of California San Francisco, California, CA, 94143, USA
| | - Bingwei Lu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Juan Feng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Cao
- Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Susan Hayflick
- Department of Molecular & Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Yu SH, Kim S, Kim Y, Lee SE, Park JH, Cho G, Ha JC, Jung H, Lim SM, Han K, Lee HK, Kang YC, Kim CH. Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway. BMB Rep 2022. [PMID: 34488927 PMCID: PMC8972135 DOI: 10.5483/bmbrep.2022.55.3.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Inflammation is one of the body’s natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response. Therefore, treating inflammatory diseases by recovering mitochondrial function may be a potential therapeutic approach. Recently, mitochondrial transplantation has been proven to be beneficial in hyperinflammatory animal models. However, it is unclear how mitochondrial transplantation attenuates inflammatory responses induced by external stimuli. Here, we isolated mitochondria from umbilical cord-derived mesenchymal stem cells, referred as to PN-101. We found that PN-101 could signifi-cantly reduce LPS-induced mortality in mice. In addition, in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages, PN-101 attenuated LPS-induced increase production of pro-inflammatory cytokines. Furthermore, the anti-inflammatory effect of PN-101 was mediated by blockade of phosphorylation, nuclear translocation, and trans-activity of NFκB. Taken together, our results demonstrate that PN-101 has therapeutic potential to attenuate pathological inflammatory responses.
Collapse
Affiliation(s)
- Shin-Hye Yu
- Paean Biotechnology Inc., Seoul 04552, Korea
| | - Soomin Kim
- Paean Biotechnology Inc., Seoul 04552, Korea
| | - Yujin Kim
- Paean Biotechnology Inc., Seoul 04552, Korea
| | - Seo-Eun Lee
- Paean Biotechnology Inc., Seoul 04552, Korea
| | | | - Gayoung Cho
- Paean Biotechnology Inc., Seoul 04552, Korea
| | | | | | | | - Kyuboem Han
- Paean Biotechnology Inc., Seoul 04552, Korea
| | | | | | | |
Collapse
|
7
|
Lebiedzinska-Arciszewska M, Wojtczak L, Wieckowski MR. An Update on Isolation of Functional Mitochondria from Cells for Bioenergetics Studies. Methods Mol Biol 2021; 2310:79-89. [PMID: 34096000 DOI: 10.1007/978-1-0716-1433-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/23/2023]
Abstract
Mitochondria are the organelles where the most fundamental processes of energy transformation within the cell are located. They are also involved in several processes like apoptosis and autophagy, reactive oxygen species formation, and calcium signaling, which are crucial for proper cell functioning. In addition, mitochondrial genome hosts genes encoding important proteins incorporated in respiratory chain complexes and indispensable for the oxidative phosphorylation. Studying isolated mitochondria is, therefore, crucial for better understanding of cell physiology. The presented protocol describes a relatively simple and handy method for crude mitochondrial fraction isolation from different mammalian cell lines. It includes mechanical cells disruption (homogenization) and differential centrifugation. In addition, this chapter presents two basic ways to assess mitochondrial functionality: by measuring mitochondrial inner membrane potential and coupled respiration.
Collapse
Affiliation(s)
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
8
|
Crocetin Alleviates Inflammation in MPTP-Induced Parkinson's Disease Models through Improving Mitochondrial Functions. PARKINSON'S DISEASE 2020; 2020:9864370. [PMID: 33101635 PMCID: PMC7569465 DOI: 10.1155/2020/9864370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/13/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Crocetin, derived from saffron, exerts multiple pharmacological properties, such as anti-inflammatory, antioxidant, antifatigue, and anticancer effects. However, the effect of crocetin on PD remains unclear. In this study, we designed experiments to investigate the effect of crocetin against MPTP-induced PD models and the underlying mechanisms. Our results showed that crocetin treatment attenuates MPTP-induced motor deficits and protects dopaminergic neurons. Both in vivo and in vitro experiments demonstrated that crocetin treatment decreased the expression of inflammatory associated genes and inflammatory cytokines. Furthermore, crocetin treatment protected mitochondrial functions against MPP+ induced damage by regulating the mPTP (mitochondrial permeability transition pore) viability in the interaction of ANT (adenine nucleotide translocase) and Cyp D (Cyclophilin D) dependent manner. Therefore, our results demonstrate that crocetin has therapeutic potential in Parkinson's disease.
Collapse
|
9
|
Hill RL, Singh IN, Wang JA, Kulbe JR, Hall ED. Protective effects of phenelzine administration on synaptic and non-synaptic cortical mitochondrial function and lipid peroxidation-mediated oxidative damage following TBI in young adult male rats. Exp Neurol 2020; 330:113322. [PMID: 32325157 DOI: 10.1016/j.expneurol.2020.113322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2019] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations, with synaptic mitochondria being more vulnerable to injury-dependent consequences. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following TBI using phenelzine (PZ), an aldehyde scavenger, would preferentially protect synaptic mitochondria against LP-mediated damage in a dose- and time-dependent manner. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ (3-30 mg/kg) was administered subcutaneously (subQ) at different times post-injury. We found PZ treatment preserves both synaptic and non-synaptic mitochondrial bioenergetics at 24 h and that this protection is partially maintained out to 72 h post-injury using various dosing regimens. The results from these studies indicate that the therapeutic window for the first dose of PZ is likely within the first hour after injury, and the window for administration of the second dose seems to fall between 12 and 24 h. Administration of PZ was able to significantly improve mitochondrial respiration compared to vehicle-treated animals across various states of respiration for both the non-synaptic and synaptic mitochondria. The synaptic mitochondria appear to respond more robustly to PZ treatment than the non-synaptic, and further experimentation will need to be done to further understand these effects in the context of TBI.
Collapse
Affiliation(s)
- Rachel L Hill
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America.
| | - Indrapal N Singh
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America; Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, United States of America
| | - Juan A Wang
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America
| | - Jacqueline R Kulbe
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America
| | - Edward D Hall
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America; Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, United States of America
| |
Collapse
|
10
|
Jakobsen E, Lange SC, Bak LK. Soluble adenylyl cyclase-mediated cAMP signaling and the putative role of PKA and EPAC in cerebral mitochondrial function. J Neurosci Res 2019; 97:1018-1038. [PMID: 31172581 DOI: 10.1002/jnr.24477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
Mitochondria produce the bulk of the ATP in most cells, including brain cells. Regulating this complex machinery to match the energetic needs of the cell is a complicated process that we have yet to understand in its entirety. In this context, 3',5'-cyclic AMP (cAMP) has been suggested to play a seminal role in signaling-metabolism coupling and regulation of mitochondrial ATP production. In cells, cAMP signals may affect mitochondria from the cytosolic side but more recently, a cAMP signal produced within the matrix of mitochondria by soluble adenylyl cyclase (sAC) has been suggested to regulate respiration and thus ATP production. However, little is known about these processes in brain mitochondria, and the effectors of the cAMP signal generated within the matrix are not completely clear since both protein kinase A (PKA) and exchange protein activated by cAMP 1 (EPAC1) have been suggested to be involved. Here, we review the current knowledge and relate it to brain mitochondria. Further, based on measurements of respiration, membrane potential, and ATP production in isolated mouse brain cortical mitochondria we show that inhibitors of sAC, PKA, or EPAC affect mitochondrial function in distinct ways. In conclusion, we suggest that brain mitochondria do regulate their function via sAC-mediated cAMP signals and that both PKA and EPAC could be involved downstream of sAC. Finally, due to the role of faulty mitochondrial function in a range of neurological diseases, we expect that the function of sAC-cAMP-PKA/EPAC signaling in brain mitochondria will likely attract further attention.
Collapse
Affiliation(s)
- Emil Jakobsen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie C Lange
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Neuritic retraction in the absence of overt neuronal death is a shared feature of normal aging and neurodegenerative disorders, but the intracellular mechanisms modulating this process are not understood. We propose that cumulative distal mitochondrial protein damage results in impaired protein import, leading to mitochondrial dysfunction and focal activation of the canonical apoptosis pathway in neurites. This is a controlled process that may not lead to neuronal death and, thus, we term this phenomenon "neuritosis." Consistent with our hypothesis, we show that in primary cerebrocortical neurons, mitochondrial distance from the soma correlates with increased mitochondrial protein damage, PINK1 accumulation, reactive oxygen species production, and decreased mitochondrial membrane potential and depolarization threshold. Furthermore, we demonstrate that the distance-dependent mitochondrial membrane potential gradient exists in vivo in mice. We demonstrate that impaired distal mitochondria have a lower threshold for focal/nonlethal neuritic caspase-3 activation in normal neurons that is exacerbated in aging, stress, and neurodegenerative conditions, thus delineating a fundamental mechanistic underpinning for synaptic vulnerability.
Collapse
|
12
|
Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED. Synaptic Mitochondria are More Susceptible to Traumatic Brain Injury-induced Oxidative Damage and Respiratory Dysfunction than Non-synaptic Mitochondria. Neuroscience 2018; 386:265-283. [PMID: 29960045 DOI: 10.1016/j.neuroscience.2018.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations. Synaptic mitochondria are reported to be more vulnerable to injury; however, this is the first study to characterize the temporal profile of synaptic and non-synaptic mitochondria following TBI, including investigation of respiratory dysfunction and oxidative damage to mitochondrial proteins between 3 and 120 h following injury. These results indicate that synaptic mitochondria are indeed the more vulnerable population, showing both more rapid and severe impairments than non-synaptic mitochondria. By 24 h, synaptic respiration is significantly impaired compared to synaptic sham, whereas non-synaptic respiration does not decline significantly until 48 h. Decreases in respiration are associated with increases in oxidative damage to synaptic and non-synaptic mitochondrial proteins at 48 h and 72 h, respectively. These results indicate that the therapeutic window for mitochondria-targeted pharmacological neuroprotectants to prevent respiratory dysfunction is shorter for the more vulnerable synaptic mitochondria than for the non-synaptic population.
Collapse
Affiliation(s)
- Rachel L Hill
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Indrapal N Singh
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Juan A Wang
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Edward D Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States.
| |
Collapse
|
13
|
Lindström L, Li T, Malycheva D, Kancharla A, Nilsson H, Vishnu N, Mulder H, Johansson M, Rosselló CA, Alvarado-Kristensson M. The GTPase domain of gamma-tubulin is required for normal mitochondrial function and spatial organization. Commun Biol 2018; 1:37. [PMID: 30271923 PMCID: PMC6123723 DOI: 10.1038/s42003-018-0037-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
In the cell, γ-tubulin establishes a cellular network of threads named the γ-string meshwork. However, the functions of this meshwork remain to be determined. We investigated the traits of the meshwork and show that γ-strings have the ability to connect the cytoplasm and the mitochondrial DNA together. We also show that γ-tubulin has a role in the maintenance of the mitochondrial network and functions as reduced levels of γ-tubulin or impairment of its GTPase domain disrupts the mitochondrial network and alters both their respiratory capacity and the expression of mitochondrial-related genes. By contrast, reduced mitochondrial number or increased protein levels of γ-tubulin DNA-binding domain enhanced the association of γ-tubulin with mitochondria. Our results demonstrate that γ-tubulin is an important mitochondrial structural component that maintains the mitochondrial network, providing mitochondria with a cellular infrastructure. We propose that γ-tubulin provides a cytoskeletal element that gives form to the mitochondrial network. Lisa Lindström et al. find that the gamma-tubulin cellular network is required to maintain mitochondrial function and organization in the cell. Knockdown of gamma-tubulin or loss of its GTPase domain disrupts the mitochondrial network and alters respiratory capacity and expression of mitochondrial genes.
Collapse
Affiliation(s)
- Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Tongbin Li
- AccuraScience LLC, 5721 Merle Hay Road, Suite #16B, Johnston, IA, 50131, USA
| | - Darina Malycheva
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Arun Kancharla
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Helén Nilsson
- Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Neelanjan Vishnu
- Unit of Molecular Metabolism, Lund University Diabetes Centre Malmö, 20502, Malmö, Sweden
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre Malmö, 20502, Malmö, Sweden
| | - Martin Johansson
- Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Catalina Ana Rosselló
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden.
| |
Collapse
|
14
|
Kennedy BE, Charman M, Karten B. Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct. Methods Mol Biol 2018; 1583:163-184. [PMID: 28205173 DOI: 10.1007/978-1-4939-6875-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/13/2023]
Abstract
All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer's, and Niemann-Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Mark Charman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2.
| |
Collapse
|
15
|
Kulbe JR, Hill RL, Singh IN, Wang JA, Hall ED. Synaptic Mitochondria Sustain More Damage than Non-Synaptic Mitochondria after Traumatic Brain Injury and Are Protected by Cyclosporine A. J Neurotrauma 2016; 34:1291-1301. [PMID: 27596283 DOI: 10.1089/neu.2016.4628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Currently, there are no Food and Drug Administration (FDA)-approved pharmacotherapies for the treatment of those with traumatic brain injury (TBI). As central mediators of the secondary injury cascade, mitochondria are promising therapeutic targets for prevention of cellular death and dysfunction after TBI. One of the most promising and extensively studied mitochondrial targeted TBI therapies is inhibition of the mitochondrial permeability transition pore (mPTP) by the FDA-approved drug, cyclosporine A (CsA). A number of studies have evaluated the effects of CsA on total brain mitochondria after TBI; however, no study has investigated the effects of CsA on isolated synaptic and non-synaptic mitochondria. Synaptic mitochondria are considered essential for proper neurotransmission and synaptic plasticity, and their dysfunction has been implicated in neurodegeneration. Synaptic and non-synaptic mitochondria have heterogeneous characteristics, but their heterogeneity can be masked in total mitochondrial (synaptic and non-synaptic) preparations. Therefore, it is essential that mitochondria targeted pharmacotherapies, such as CsA, be evaluated in both populations. This is the first study to examine the effects of CsA on isolated synaptic and non-synaptic mitochondria after experimental TBI. We conclude that synaptic mitochondria sustain more damage than non-synaptic mitochondria 24 h after severe controlled cortical impact injury (CCI), and that intraperitoneal administration of CsA (20 mg/kg) 15 min after injury improves synaptic and non-synaptic respiration, with a significant improvement being seen in the more severely impaired synaptic population. As such, CsA remains a promising neuroprotective candidate for the treatment of those with TBI.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Rachel L Hill
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Indrapal N Singh
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Juan A Wang
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of Anatomy & Neurobiology, University of Kentucky College of Medicine , Lexington, Kentucky
| |
Collapse
|
16
|
Cheng ML, Chi LM, Wu PR, Ho HY. Dehydroepiandrosterone-induced changes in mitochondrial proteins contribute to phenotypic alterations in hepatoma cells. Biochem Pharmacol 2016; 117:20-34. [DOI: 10.1016/j.bcp.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
17
|
Morris-Blanco KC, Dave KR, Saul I, Koronowski KB, Stradecki HM, Perez-Pinzon MA. Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5. Sci Rep 2016; 6:29790. [PMID: 27435822 PMCID: PMC4951704 DOI: 10.1038/srep29790] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2016] [Accepted: 06/24/2016] [Indexed: 01/21/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a mitochondrial-localized NAD(+)-dependent lysine desuccinylase and a major regulator of the mitochondrial succinylome. We wanted to determine whether SIRT5 is activated by protein kinase C epsilon (PKCε)-mediated increases in mitochondrial Nampt and whether SIRT5 regulates mitochondrial bioenergetics and neuroprotection against cerebral ischemia. In isolated mitochondria from rat cortical cultures, PKCε activation increased SIRT5 levels and desuccinylation activity in a Nampt-dependent manner. PKCε activation did not lead to significant modifications in SIRT3 activity, the major mitochondrial lysine deacetylase. Assessments of mitochondrial bioenergetics in the cortex of wild type (WT) and SIRT5-/- mice revealed that SIRT5 regulates oxygen consumption in the presence of complex I, complex II, and complex IV substrates. To explore the potential role of SIRT5 in PKCε-mediated protection, we compared WT and SIRT5-/- mice by employing both in vitro and in vivo ischemia paradigms. PKCε-mediated decreases in cell death following oxygen-glucose deprivation were abolished in cortical cultures harvested from SIRT5-/- mice. Furthermore, PKCε failed to prevent cortical degeneration following MCAO in SIRT5-/- mice. Collectively this demonstrates that SIRT5 is an important mitochondrial enzyme for protection against metabolic and ischemic stress following PKCε activation in the brain.
Collapse
Affiliation(s)
- Kahlilia C. Morris-Blanco
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R. Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabel Saul
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin B. Koronowski
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Holly M. Stradecki
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
18
|
Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, Vafai SB, Cox AG, Marutani E, Ichinose F, Goessling W, Regev A, Carr SA, Clish CB, Mootha VK. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 2016; 5. [PMID: 27307216 PMCID: PMC4911214 DOI: 10.7554/elife.10575] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI:http://dx.doi.org/10.7554/eLife.10575.001 Mitochondria are found within virtually all of our body’s cells and are best known as their power plants. Damaged mitochondria cause many diseases in humans – from rare, inherited metabolic disorders that cause symptoms including muscle weakness and developmental problems, to age-related diseases such as diabetes and Parkinson’s disease. How does mitochondrial damage lead to such a variety of symptoms and conditions? To answer this question, researchers must understand how cells respond to and compensate for such damage. To mimic mitochondrial failure, Bao et al. reduced the amount of DNA in the mitochondria of human cells and observed that this caused the cells to accumulate more of an amino acid called serine. Further investigation showed that this accumulation comes in part from cells producing more serine, and that a protein called Activating Transcription Factor 4 is responsible for increasing the expression of the genes needed to produce serine in the cells. Bao et al. also found that damaged mitochondria are less able to consume serine to produce a compound called formate, which is a precursor for DNA building blocks. If cells cannot acquire enough extra serine to compensate for this inefficiency, they cannot produce some of the building blocks required to make DNA and other critical compounds in the cell. Supplementing the cells with formate or the DNA building blocks enabled the cells to recover, which suggests that formate supplements may help to treat some mitochondrial disorders. At a higher level, these results suggest that the mitochondrion’s role as a major chemical factory in the cell, and not just as the power plant, may also contribute to disease when the mitochondria are broken. Further work is now needed to investigate how cells know to turn on Activating Transcription Factor 4 when their mitochondria are damaged. It also remains to be discovered whether this reduces or exacerbates the symptoms of mitochondrial disease. DOI:http://dx.doi.org/10.7554/eLife.10575.002
Collapse
Affiliation(s)
- Xiaoyan Robert Bao
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shao-En Ong
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Olga Goldberger
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States
| | - Jun Peng
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Rohit Sharma
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States
| | - Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Scott B Vafai
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Andrew G Cox
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Eizo Marutani
- Department of Anesthesia, Critical Care, and Pain Medicine, Masaschusetts General Hospital, Boston, United States
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Masaschusetts General Hospital, Boston, United States
| | - Wolfram Goessling
- Broad Institute of MIT and Harvard, Cambridge, United States.,Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Vamsi K Mootha
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
19
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
20
|
Low T3 State Is Correlated with Cardiac Mitochondrial Impairments after Ischemia Reperfusion Injury: Evidence from a Proteomic Approach. Int J Mol Sci 2015; 16:26687-705. [PMID: 26561807 PMCID: PMC4661832 DOI: 10.3390/ijms161125973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are major determinants of cell fate in ischemia/reperfusion injury (IR) and common effectors of cardio-protective strategies in cardiac ischemic disease. Thyroid hormone homeostasis critically affects mitochondrial function and energy production. Since a low T3 state (LT3S) is frequently observed in the post infarction setting, the study was aimed to investigate the relationship between 72 h post IR T3 levels and both the cardiac function and the mitochondrial proteome in a rat model of IR. The low T3 group exhibits the most compromised cardiac performance along with the worst mitochondrial activity. Accordingly, our results show a different remodeling of the mitochondrial proteome in the presence or absence of a LT3S, with alterations in groups of proteins that play a key role in energy metabolism, quality control and regulation of cell death pathways. Overall, our findings highlight a relationship between LT3S in the early post IR and poor cardiac and mitochondrial outcomes, and suggest a potential implication of thyroid hormone in the cardio-protection and tissue remodeling in ischemic disease.
Collapse
|
21
|
Lettieri Barbato D, Tatulli G, Maria Cannata S, Bernardini S, Aquilano K, Ciriolo MR. Glutathione Decrement Drives Thermogenic Program In Adipose Cells. Sci Rep 2015; 5:13091. [PMID: 26260892 PMCID: PMC4531326 DOI: 10.1038/srep13091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2015] [Accepted: 07/17/2015] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue metabolically adapts to external stimuli. We demonstrate that the induction of the thermogenic program in white adipocytes, through cold exposure in mice or in vitro adrenergic stimulation, is accompanied by a decrease in the intracellular content of glutathione (GSH). Moreover, the treatment with a GSH depleting agent, buthionine sulfoximine (BSO), recapitulates the effect of cold exposure resulting in the induction of thermogenic program. In particular, BSO treatment leads to enhanced uncoupling respiration as demonstrated by increased expression of thermogenic genes (e.g. Ucp1, Ppargc1a), augmented oxygen consumption and decreased mitochondrial transmembrane potential. Buffering GSH decrement by pre-treatment with GSH ester prevents the up-regulation of typical markers of uncoupling respiration. We demonstrate that FoxO1 activation is responsible for the conversion of white adipocytes into a brown phenotype as the “browning” effects of BSO are completely abrogated in cells down-regulating FoxO1. In mice, the BSO-mediated up-regulation of uncoupling genes results in weight loss that is at least in part ascribed to adipose tissue mass reduction. The induction of thermogenic program has been largely proposed to counteract obesity-related diseases. Based on these findings, we propose GSH as a novel therapeutic target to increase energy expenditure in adipocytes.
Collapse
Affiliation(s)
- Daniele Lettieri Barbato
- Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Giuseppe Tatulli
- Scientific Institute for Research Hospitalization and Health Care and Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Stefano Maria Cannata
- Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sergio Bernardini
- Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Katia Aquilano
- 1] Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy [2] Scientific Institute for Research Hospitalization and Health Care and Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Maria R Ciriolo
- 1] Dept. Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy [2] Scientific Institute for Research Hospitalization and Health Care and Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| |
Collapse
|
22
|
Wilderman A, Guo Y, Divakaruni AS, Perkins G, Zhang L, Murphy AN, Taylor SS, Insel PA. Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A. J Biol Chem 2015. [PMID: 26203188 DOI: 10.1074/jbc.m115.658153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin(-) (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin(-) S49 cells. WT, but not kin(-), S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin(-) cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin(-) cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin(-) S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin(-) cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses.
Collapse
Affiliation(s)
- Andrea Wilderman
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Yurong Guo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0654
| | - Ajit S Divakaruni
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California 92093-0608, and
| | - Lingzhi Zhang
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Anne N Murphy
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626
| | - Susan S Taylor
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0654
| | - Paul A Insel
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0626, Department of Medicine, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
23
|
Mitochondrial ATP-Mg/Pi carrier SCaMC-3/Slc25a23 counteracts PARP-1-dependent fall in mitochondrial ATP caused by excitotoxic insults in neurons. J Neurosci 2015; 35:3566-81. [PMID: 25716855 DOI: 10.1523/jneurosci.2702-14.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023] Open
Abstract
Glutamate excitotoxicity is caused by sustained activation of neuronal NMDA receptors causing a large Ca(2+) and Na(+) influx, activation of poly(ADP ribose) polymerase-1 (PARP-1), and delayed Ca(2+) deregulation. Mitochondria undergo early changes in membrane potential during excitotoxicity, but their precise role in these events is still controversial. Using primary cortical neurons derived from mice, we show that NMDA exposure results in a rapid fall in mitochondrial ATP in neurons deficient in SCaMC-3/Slc25a23, a Ca(2+)-regulated mitochondrial ATP-Mg/Pi carrier. This fall is associated with blunted increases in respiration and a delayed decrease in cytosolic ATP levels, which are prevented by PARP-1 inhibitors or by SCaMC-3 activity promoting adenine nucleotide uptake into mitochondria. SCaMC-3 KO neurons show an earlier delayed Ca(2+) deregulation, and SCaMC-3-deficient mitochondria incubated with ADP or ATP-Mg had reduced Ca(2+) retention capacity, suggesting a failure to maintain matrix adenine nucleotides as a cause for premature delayed Ca(2+) deregulation. SCaMC-3 KO neurons have higher vulnerability to in vitro excitotoxicity, and SCaMC-3 KO mice are more susceptible to kainate-induced seizures, showing that early PARP-1-dependent fall in mitochondrial ATP levels, counteracted by SCaMC-3, is an early step in the excitotoxic cascade.
Collapse
|
24
|
Sanderson TH, Raghunayakula S, Kumar R. Neuronal hypoxia disrupts mitochondrial fusion. Neuroscience 2015; 301:71-8. [PMID: 26049142 PMCID: PMC4504771 DOI: 10.1016/j.neuroscience.2015.05.078] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2015] [Revised: 05/07/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023]
Abstract
Brain ischemia/reperfusion injury results in death of vulnerable neurons and extensive brain damage. It is well known that mitochondrial release of cytochrome c (cyto c) is a hallmark of neuronal death, however the molecular events underlying this release are largely unknown. We tested the hypothesis that cyto c release is regulated by breakdown of the cristae architecture maintenance protein, optic atrophy 1 (OPA1), located in the inner mitochondrial membrane. We simulated ischemia/reperfusion in isolated primary rat neurons and interrogated OPA1 release from the mitochondria, OPA1 oligomeric breakdown, and concomitant dysfunction of mitochondrial dynamic state. We found that ischemia/reperfusion induces cyto c release and cell death that corresponds to multiple changes in OPA1, including: (i) translocation of the mitochondrial fusion protein OPA1 from the mitochondria to the cytosol, (ii) increase in the short isoform of OPA1, suggestive of proteolytic processing, (iii) breakdown of OPA1 oligomers in the mitochondria, and (iv) increased mitochondrial fission. Thus, we present novel evidence of a connection between release of cyto c from mitochondria and disruption of the mitochondrial fusion.
Collapse
Affiliation(s)
- T H Sanderson
- Department of Emergency Medicine, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, USA; Cardiovascular Research Institute, Wayne State University School of Medicine, 421E. Canfield, Detroit, MI, USA
| | - S Raghunayakula
- Department of Emergency Medicine, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, USA
| | - R Kumar
- Department of Emergency Medicine, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, USA; Cardiovascular Research Institute, Wayne State University School of Medicine, 421E. Canfield, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, USA.
| |
Collapse
|
25
|
Gehrke S, Wu Z, Klinkenberg M, Sun Y, Auburger G, Guo S, Lu B. PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab 2015; 21:95-108. [PMID: 25565208 PMCID: PMC4455944 DOI: 10.1016/j.cmet.2014.12.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/17/2014] [Revised: 11/14/2014] [Accepted: 12/13/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria play essential roles in many aspects of biology, and their dysfunction has been linked to diverse diseases. Central to mitochondrial function is oxidative phosphorylation (OXPHOS), accomplished by respiratory chain complexes (RCCs) encoded by nuclear and mitochondrial genomes. How RCC biogenesis is regulated in metazoans is poorly understood. Here we show that Parkinson's disease (PD)-associated genes PINK1 and Parkin direct localized translation of certain nuclear-encoded RCC (nRCC) mRNAs. Translationally repressed nRCC mRNAs are localized in a PINK1/Tom20-dependent manner to mitochondrial outer membrane, where they are derepressed and activated by PINK1/Parkin through displacement of translation repressors, including Pumilio and Glorund/hnRNP-F, a Parkin substrate, and enhanced binding of activators such as eIF4G. Inhibiting the translation repressors rescued nRCC mRNA translation and neuromuscular-degeneration phenotypes of PINK1 mutant, whereas inhibiting eIF4G had opposite effects. Our results reveal previously unknown functions of PINK1/Parkin in RNA metabolism and suggest new approaches to mitochondrial restoration and disease intervention.
Collapse
Affiliation(s)
- Stephan Gehrke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Yaping Sun
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Cheng ML, Weng SF, Kuo CH, Ho HY. Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One 2014; 9:e113234. [PMID: 25401329 PMCID: PMC4234665 DOI: 10.1371/journal.pone.0113234] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022] Open
Abstract
Redox homeostasis is an important host factor determining the outcome of infectious disease. Enterovirus 71 (EV71) infection has become an important endemic disease in Southeast Asia and China. We have previously shown that oxidative stress promotes viral replication, and progeny virus induces oxidative stress in host cells. The detailed mechanism for reactive oxygen species (ROS) generation in infected cells remains elusive. In the current study, we demonstrate that mitochondria were a major ROS source in EV71-infected cells. Mitochondria in productively infected cells underwent morphologic changes and exhibited functional anomalies, such as a decrease in mitochondrial electrochemical potential ΔΨm and an increase in oligomycin-insensitive oxygen consumption. Respiratory control ratio of mitochondria from infected cells was significantly lower than that of normal cells. The total adenine nucleotide pool and ATP content of EV71-infected cells significantly diminished. However, there appeared to be a compensatory increase in mitochondrial mass. Treatment with mito-TEMPO reduced eIF2α phosphorylation and viral replication, suggesting that mitochondrial ROS act to promote viral replication. It is plausible that EV71 infection induces mitochondrial ROS generation, which is essential to viral replication, at the sacrifice of efficient energy production, and that infected cells up-regulate biogenesis of mitochondria to compensate for their functional defect.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Metabolomics Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan
| | - Shiue-Fen Weng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chih-Hao Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Office of Research and Development, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Morris-Blanco KC, Cohan CH, Neumann JT, Sick TJ, Perez-Pinzon MA. Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex. J Cereb Blood Flow Metab 2014; 34:1024-32. [PMID: 24667915 PMCID: PMC4050248 DOI: 10.1038/jcbfm.2014.51] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/26/2013] [Revised: 01/28/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022]
Abstract
Preserving mitochondrial pools of nicotinamide adenine dinucleotide (NAD) or nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in NAD production, maintains mitochondrial function and confers neuroprotection after ischemic stress. However, the mechanisms involved in regulating mitochondrial-localized Nampt or NAD have not been defined. In this study, we investigated the roles of protein kinase C epsilon (PKCɛ) and AMP-activated protein kinase (AMPK) in regulating mitochondrial pools of Nampt and NAD after resveratrol or ischemic preconditioning (IPC) in the cortex and in primary neuronal-glial cortical cultures. Using the specific PKCɛ agonist ψɛRACK, we found that PKCɛ induced robust activation of AMPK in vitro and in vivo and that AMPK was required for PKCɛ-mediated ischemic neuroprotection. In purified mitochondrial fractions, PKCɛ enhanced Nampt levels in an AMPK-dependent manner and was required for increased mitochondrial Nampt after IPC or resveratrol treatment. Analysis of intrinsic NAD autofluorescence using two-photon microscopy revealed that PKCɛ modulated NAD in the mitochondrial fraction. Further assessments of mitochondrial NAD concentrations showed that PKCɛ has a key role in regulating the mitochondrial NAD(+)/nicotinamide adenine dinucleotide reduced (NADH) ratio after IPC and resveratrol treatment in an AMPK- and Nampt-dependent manner. These findings indicate that PKCɛ is critical to increase or maintain mitochondrial Nampt and NAD after pathways of ischemic neuroprotection in the brain.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, Florida, USA [2] Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Charles H Cohan
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, Florida, USA [2] Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jake T Neumann
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, Florida, USA [2] Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas J Sick
- 1] Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA [2] Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, Florida, USA [2] Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
28
|
Kennedy BE, Madreiter CT, Vishnu N, Malli R, Graier WF, Karten B. Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells. J Biol Chem 2014; 289:16278-89. [PMID: 24790103 DOI: 10.1074/jbc.m114.559914] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.
Collapse
Affiliation(s)
- Barry E Kennedy
- From the Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada and
| | - Corina T Madreiter
- the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - Neelanjan Vishnu
- the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - Roland Malli
- the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - Wolfgang F Graier
- the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - Barbara Karten
- From the Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada and
| |
Collapse
|
29
|
Wright EP, Partridge MA, Padula MP, Gauci VJ, Malladi CS, Coorssen JR. Top-down proteomics: enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection. Proteomics 2014; 14:872-89. [PMID: 24452924 DOI: 10.1002/pmic.201300424] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2013] [Revised: 12/01/2013] [Accepted: 12/16/2013] [Indexed: 02/04/2023]
Abstract
The large-scale resolution and detection of proteins from complex native mixtures is fundamental to quantitative proteomic analyses. Comprehensive analyses depend on careful tissue handling and quantitative protein extraction and assessment. To most effectively link these analyses with an understanding of underlying molecular mechanisms, it is critical that all protein types - isoforms, splice variants and those with functionally important PTMs - are quantitatively extracted with high reproducibility. Methodological details concerning protein extraction and resolution using 2DE are discussed with reference to current in-gel protein detection limits. We confirm a significant increase in total protein, and establish that extraction, resolution and detection of phospho- and glycoproteins are improved following automated frozen disruption relative to manual homogenisation. The quality of 2DE protein resolution is established using third-dimension separations and 'deep imaging'; substantially more proteins/protein species than previously realised are actually resolved by 2DE. Thus, the key issue for effective proteome analyses is most likely to be detection, not resolution. Thus, these systematic methodological and technical advances further solidify the role of 2DE in top-down proteomics. By routinely assessing as much proteomic data from a sample as possible, 2DE enables more detailed and critical insights into molecular mechanisms underlying different physiological states.
Collapse
Affiliation(s)
- Elise P Wright
- Department of Molecular Physiology, Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Penrith, NSW, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Franko A, Baris OR, Bergschneider E, von Toerne C, Hauck SM, Aichler M, Walch AK, Wurst W, Wiesner RJ, Johnston ICD, de Angelis MH. Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads. PLoS One 2013; 8:e82392. [PMID: 24349272 PMCID: PMC3861405 DOI: 10.1371/journal.pone.0082392] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022] Open
Abstract
To better understand molecular mechanisms regulating changes in metabolism, as observed e.g. in diabetes or neuronal disorders, the function of mitochondria needs to be precisely determined. The usual isolation methods such as differential centrifugation result in isolates of highly variable quality and quantity. To fulfill the need of a reproducible isolation method from solid tissues, which is suitable to handle parallel samples simultaneously, we developed a protocol based on anti-TOM22 (translocase of outer mitochondrial membrane 22 homolog) antibody-coupled magnetic beads. To measure oxygen consumption rate in isolated mitochondria from various mouse tissues, a traditional Clark electrode and the high-throughput XF Extracellular Flux Analyzer were used. Furthermore, Western blots, transmission electron microscopic and proteomic studies were performed to analyze the purity and integrity of the mitochondrial preparations. Mitochondrial fractions isolated from liver, brain and skeletal muscle by anti-TOM22 magnetic beads showed oxygen consumption capacities comparable to previously reported values and little contamination with other organelles. The purity and quality of isolated mitochondria using anti-TOM22 magnetic beads was compared to traditional differential centrifugation protocol in liver and the results indicated an obvious advantage of the magnetic beads method compared to the traditional differential centrifugation technique.
Collapse
Affiliation(s)
- Andras Franko
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Olivier R. Baris
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Köln, Germany
| | | | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Axel K. Walch
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, Neuherberg, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
- Technische Universität München, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Neuherberg, Germany
- DZNE – Deutsches Zentrum fuer Neurodegenerative Erkrankungen, Site Munich, Germany
| | - Rudolf J. Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Köln, Germany
- Center for Molecular Medicine (CMMC), University of Köln, Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases (CECAD), University of Köln, Köln, Germany
| | | | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, WZW - Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
31
|
Bahnemann J, Kayo S, Wahrheit J, Heinzle E, Pörtner R, Zeng AP. In search of an effective cell disruption method to isolate intact mitochondria from Chinese hamster ovary cells. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Janina Bahnemann
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - Sabrina Kayo
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - Judith Wahrheit
- Biochemical Engineering Institute; Saarland University; Saarland Germany
| | - Elmar Heinzle
- Biochemical Engineering Institute; Saarland University; Saarland Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
32
|
Small peptides against the mutant SOD1/Bcl-2 toxic mitochondrial complex restore mitochondrial function and cell viability in mutant SOD1-mediated ALS. J Neurosci 2013; 33:11588-98. [PMID: 23843527 DOI: 10.1523/jneurosci.5385-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS) in 20% of familial cases (fALS). Mitochondria are one of the targets of mutant SOD1 (mutSOD1) toxicity. We previously demonstrated that at the mitochondria, mutSOD1 forms a toxic complex with Bcl-2, which is then converted into a toxic protein via a structural rearrangement that exposes its toxic BH3 domain (Pedrini et al., 2010). Here we now show that formation of this toxic complex with Bcl-2 is the primary event in mutSOD1-induced mitochondrial dysfunction, inhibiting mitochondrial permeability to ADP and inducing mitochondrial hyperpolarization. In mutSOD1-G93A cells and mice, the newly exposed BH3 domain in Bcl-2 alters the normal interaction between Bcl-2 and VDAC1 thus reducing permeability of the outer mitochondrial membrane. In motor neuronal cells, the mutSOD1/Bcl-2 complex causes mitochondrial hyperpolarization leading to cell loss. Small SOD1-like therapeutic peptides that specifically block formation of the mutSOD1/Bcl-2 complex, recover both aspects of mitochondrial dysfunction: they prevent mitochondrial hyperpolarization and cell loss as well as restore ADP permeability in mitochondria of symptomatic mutSOD1-G93A mice.
Collapse
|
33
|
Luo Y, Wang W, Zhang Y, Huang Q. Effect of body size on organ-specific mitochondrial respiration rate of the largemouth bronze gudgeon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:513-21. [PMID: 22995995 DOI: 10.1007/s10695-012-9716-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/16/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
The effects of body size on the mitochondrial respiration rate were assessed in the heart, brain, gill, liver, and red muscle of largemouth bronze gudgeon, Coreius guichenoti, from the Yangtze River. Body mass had a significant influence on the state 3 oxygen consumption rate of the mitochondria from the heart, gill, and red muscle. The relationships between body mass (M, g) and state 3 oxygen consumption rate (V(state 3), nmol O min(-1) mg(-1)) of the mitochondria were represented by the following: V(state 3) = 3.56M(0.71) for heart, V(state 3) = 4.64M(0.50) for red muscle, and V(state 3) = 473.73M(-0.82) for gill. There was a significant difference in V(state 3), V(state 4), and respiratory control ratio among organs and all were highest in the heart. Our results suggest that the relationship between mitochondrial respiratory rate and body size varies among organs. The high mitochondrial respiratory rate in the heart of the largemouth gudgeon suggests that it has the highest oxidative capacity.
Collapse
Affiliation(s)
- Yiping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing 400715, China.
| | | | | | | |
Collapse
|
34
|
Wu Z, Sawada T, Shiba K, Liu S, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B. Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance. Genes Dev 2013; 27:157-62. [PMID: 23348839 DOI: 10.1101/gad.203406.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
Eukaryotes employ elaborate mitochondrial quality control (MQC) to maintain the function of the power-generating organelle. Parkinson's disease-associated PINK1 and Parkin actively participate in MQC. However, the signaling events involved are largely unknown. Here we show that mechanistic target of rapamycin 2 (mTORC2) and Tricornered (Trc) kinases act downstream from PINK1 to regulate MQC. Trc is phosphorylated in mTORC2-dependent and mTORC2-independent manners and is specifically localized to mitochondria in response to PINK1, which regulates mTORC2 through mitochondrial complex-I activity. Genetically, mTORC2 and Trc act upstream of Parkin. Thus, multiplex kinase signaling is acting between PINK1 and Parkin to regulate MQC, a process highly conserved in mammals.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang B, Xi X, Lei X, Zhang X, Cui S, Wang J, Jin Q, Zhao Z. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 2013; 9:e1003231. [PMID: 23555247 PMCID: PMC3605153 DOI: 10.1371/journal.ppat.1003231] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2012] [Accepted: 01/23/2013] [Indexed: 01/26/2023] Open
Abstract
Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein--a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling--upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2A(pro)), but not the mutant 2A(pro) (2A(pro)-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2A(pro) could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms.
Collapse
Affiliation(s)
- Bei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xueyan Xi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoyan Zhang
- Department of Medical Laboratory Science, Fenyang College Shanxi Medical University, Fenyang, Shanxi, People's Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
36
|
Clerc P, Polster BM. Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS One 2012; 7:e34465. [PMID: 22496810 PMCID: PMC3319583 DOI: 10.1371/journal.pone.0034465] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria.
Collapse
Affiliation(s)
| | - Brian M. Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Mitochondrial DNA (mtDNA) is constantly exposed to oxidative injury. Due to its location close to the main site of reactive oxygen species, the inner mitochondrial membrane, mtDNA is more susceptible than nuclear DNA to oxidative damage. The accumulation of DNA damage is thought to be particularly deleterious in post-mitotic cells, including neurons, and to play a critical role in the aging process and in a variety of diseases. Thus, efficient mtDNA repair is important for the maintenance of genomic integrity and a healthy life. The base excision repair (BER) mechanism was the first to be described in mitochondria, and consequently it is the best known. This chapter outlines protocols for isolating mitochondria from mammalian cells in culture and from rodent tissues including liver and brain. It also covers the isolation of synaptic mitochondria. BER takes place in four distinct steps, and protocols describing in vitro assays for measuring these enzymatic steps in lysates of isolated mitochondria are included.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|
38
|
Gross VS, Greenberg HK, Baranov SV, Carlson GM, Stavrovskaya IG, Lazarev AV, Kristal BS. Isolation of functional mitochondria from rat kidney and skeletal muscle without manual homogenization. Anal Biochem 2011; 418:213-23. [PMID: 21820998 DOI: 10.1016/j.ab.2011.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 12/22/2022]
Abstract
Isolation of functional and intact mitochondria from solid tissue is crucial for studies that focus on the elucidation of normal mitochondrial physiology and/or mitochondrial dysfunction in conditions such as aging, diabetes, and cancer. There is growing recognition of the importance of mitochondria both as targets for drug development and as off-target mediators of drug side effects. Unfortunately, mitochondrial isolation from tissue is generally carried out using homogenizer-based methods that require extensive operator experience to obtain reproducible high-quality preparations. These methods limit dissemination, impede scale-up, and contribute to difficulties in reproducing experimental results over time and across laboratories. Here we describe semiautomated methods to disrupt tissue using kidney and muscle mitochondria preparations as exemplars. These methods use the Barocycler, the PCT Shredder, or both. The PCT Shredder is a mechanical grinder that quickly breaks up tissue without significant risk of overhomogenization. Mitochondria isolated using the PCT Shredder are shown to be comparable to controls. The Barocycler generates controlled pressure pulses that can be adjusted to lyse cells and release organelles. The mitochondria subjected to pressure cycling-mediated tissue disruption are shown to retain functionality, enabling combinations of the PCT Shredder and the Barocycler to be used to purify mitochondrial preparations.
Collapse
Affiliation(s)
- Vera S Gross
- Pressure BioSciences, South Easton, MA 02375, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang H, Xie C, Spencer HJ, Zuo C, Higuchi M, Ranganathan G, Kern PA, Chou MW, Huang Q, Szczesny B, Mitra S, Watson AJ, Margison GP, Fan CY. Obesity and hepatosteatosis in mice with enhanced oxidative DNA damage processing in mitochondria. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1715-27. [PMID: 21435453 PMCID: PMC3078437 DOI: 10.1016/j.ajpath.2010.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/23/2010] [Revised: 11/19/2010] [Accepted: 12/30/2010] [Indexed: 12/21/2022]
Abstract
Mitochondria play critical roles in oxidative phosphorylation and energy metabolism. Increasing evidence supports that mitochondrial DNA (mtDNA) damage and dysfunction play vital roles in the development of many mitochondria-related diseases, such as obesity, diabetes mellitus, infertility, neurodegenerative disorders, and malignant tumors in humans. Human 8-oxoguanine-DNA glycosylase 1 (hOGG1) transgenic (TG) mice were produced by nuclear microinjection. Transgene integration was analyzed by PCR. Transgene expression was measured by RT-PCR and Western blot analysis. Mitochondrial DNA damage was analyzed by mutational analyses and measurement of mtDNA copy number. Total fat content was measured by a whole-body scan using dual-energy X-ray absorptiometry. The hOGG1 overexpression in mitochondria increased the abundance of intracellular free radicals and major deletions in mtDNA. Obesity in hOGG1 TG mice resulted from increased fat content in tissues, produced by hyperphagia. The molecular mechanisms of obesity involved overexpression of genes in the central orexigenic (appetite-stimulating) pathway, peripheral lipogenesis, down-regulation of genes in the central anorexigenic (appetite-suppressing) pathway, peripheral adaptive thermogenesis, and fatty acid oxidation. Diffuse hepatosteatosis, female infertility, and increased frequency of malignant lymphoma were also seen in these hOGG1 TG mice. High levels of hOGG1 expression in mitochondria, resulting in enhanced oxidative DNA damage processing, may be an important factor in human metabolic syndrome, infertility, and malignancy.
Collapse
Affiliation(s)
- Haihong Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rosivatz E, Woscholski R. Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal 2011; 23:478-86. [PMID: 21044681 PMCID: PMC3032883 DOI: 10.1016/j.cellsig.2010.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2010] [Revised: 09/23/2010] [Accepted: 10/26/2010] [Indexed: 12/11/2022]
Abstract
Mitochondria are central players in programmed cell death and autophagy. While phosphoinositides are well established regulators of membrane traffic, cellular signalling and the destiny of certain organelles, their presence and role for mitochondria remain elusive. In this study we show that removal of PtdIns(4,5)P₂ by phosphatases or masking the lipid with PH domains leads to fission of mitochondria and increased autophagy. Induction of general autophagy by amino acid starvation also coincides with the loss of mitochondrial PtdIns(4,5)P₂, suggesting an important role for this lipid in the processes that govern mitophagy. Our findings reveal that PKCα can rescue the removal or masking of PtdIns(4,5)P₂, indicating that the inositol lipid is upstream of PKC.
Collapse
Key Words
- ptdins(4,5)p2, phosphatidylinositol(4,5)bisphosphate
- ptdins, phosphatidylinositol
- omm, outer mitochondrial membrane
- imm, inner mitochondrial membrane
- plc, phospholipase c
- pma, 12-o-tetradecanoylphorbol 13-acetate
- pkc, protein kinase c
- ins(1,4,5)p3, inositol 1,4,5-trisphosphate
- dag, 1,2-diacylglycerol
- n.d., not determined
- mitochondria
- autophagy
- phosphatidylinositol(4,5)bisphosphate
- protein kinase c
- ph domain
Collapse
Affiliation(s)
| | - Rudiger Woscholski
- The Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
41
|
Effects of Coenzyme Q10 on Growth Performance and Heart Mitochondrial Function of Broilers Under High Altitude Induced Hypoxia. J Poult Sci 2011. [DOI: 10.2141/jpsa.010084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
|
42
|
Abstract
This unit contains a protocol describing the isolation of brain mitochondria by using discontinuous Percoll gradient centrifugation. The Percoll density gradient centrifugation separates synaptosomes, myelin, and free nonsynaptic mitochondria released from cells during tissue homogenization into individual fractions. Mitochondria entrapped in synaptosomes (synaptic mitochondria) can be liberated using nitrogen cavitation and then further purified by Percoll gradient centrifugation. These methods yield mitochondria that exhibit good respiratory coupling and high respiratory rates.
Collapse
Affiliation(s)
- Tibor Kristian
- Department of Anesthesiology, Organized Research Center, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Gredilla R, Weissman L, Yang JL, Bohr VA, Stevnsner T. Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer's disease. Neurobiol Aging 2010; 33:694-707. [PMID: 20708822 DOI: 10.1016/j.neurobiolaging.2010.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2009] [Revised: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Brain aging is associated with synaptic decline and synaptic function is highly dependent on mitochondria. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging process and the pathogenesis of several neurodegenerative diseases. Here we have investigated the repair of oxidative base damage, in synaptosomes of mouse brain during normal aging and in an AD model. During normal aging, a reduction in the base excision repair (BER) capacity was observed in the synaptosomal fraction, which was associated with a decrease in the level of BER proteins. However, we did not observe changes between the synaptosomal BER activities of presymptomatic and symptomatic AD mice harboring mutated amyolid precursor protein (APP), Tau, and presinilin-1 (PS1) (3xTgAD). Our findings suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms in the synaptosomal fraction when the whole brain was analyzed.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Danish Center for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
44
|
Kovalenko OA, Caron MJ, Ulema P, Medrano C, Thomas AP, Kimura M, Bonini MG, Herbig U, Santos JH. A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell 2010; 9:203-19. [PMID: 20089117 DOI: 10.1111/j.1474-9726.2010.00551.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase is a reverse transcriptase specialized in telomere synthesis. The enzyme is primarily nuclear where it elongates telomeres, but many reports show that the catalytic component of telomerase (in humans called hTERT) also localizes outside of the nucleus, including in mitochondria. Shuttling of hTERT between nucleus and cytoplasm and vice versa has been reported, and different proteins shown to regulate such translocation. Exactly why telomerase moves between subcellular compartments is still unclear. In this study we report that mutations that disrupt the nuclear export signal (NES) of hTERT render it nuclear but unable to immortalize cells despite retention of catalytic activity in vitro. Overexpression of the mutant protein in primary fibroblasts is associated with telomere-based cellular senescence, multinucleated cells and the activation of the DNA damage response genes ATM, Chk2 and p53. Mitochondria function is also impaired in the cells. We find that cells expressing the mutant hTERT produce high levels of mitochondrial reactive oxygen species and have damage in telomeric and extratelomeric DNA. Dysfunctional mitochondria are also observed in an ALT (alternative lengthening of telomeres) cell line that is insensitive to growth arrest induced by the mutant hTERT showing that mitochondrial impairment is not a consequence of the growth arrest. Our data indicate that mutations involving the NES of hTERT are associated with defects in telomere maintenance, mitochondrial function and cellular growth, and suggest targeting this region of hTERT as a potential new strategy for cancer treatment.
Collapse
Affiliation(s)
- Olga A Kovalenko
- Department of Pharmacology and Physiology, National Institute of Environmental and Health Sciences, 111 TW Alexander dr, MD F0-02, Durham, NC 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chaiyarit S, Thongboonkerd V. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study. Anal Biochem 2009; 394:249-58. [DOI: 10.1016/j.ab.2009.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2009] [Revised: 07/14/2009] [Accepted: 07/17/2009] [Indexed: 01/30/2023]
|
46
|
Charman M, Kennedy BE, Osborne N, Karten B. MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res 2009; 51:1023-34. [PMID: 19965586 DOI: 10.1194/jlr.m002345] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick Type C (NPC) disease is a fatal, neurodegenerative disorder, caused in most cases by mutations in the late endosomal protein NPC1. A hallmark of NPC disease is endosomal cholesterol accumulation and an impaired cholesterol homeostatic response, which might affect cholesterol transport to mitochondria and, thus, mitochondrial and cellular function. This study aimed to characterize mitochondrial cholesterol homeostasis in NPC disease. Using wild-type and NPC1-deficient Chinese hamster ovary cells, stably transfected with a CYP11A1 complex to assess mitochondrial cholesterol import by pregnenolone production, we show that cholesterol transport to the mitochondrial inner membrane is not affected by loss of NPC1. However, mitochondrial cholesterol content was higher in NPC1-deficient than in wild-type cells. Cholesterol transport to the mitochondrial inner membrane increased markedly upon exposure of cholesterol-deprived cells to lipoproteins, indicating transport of endosomal cholesterol to mitochondria. Reduction of endosomal metastatic lymph node protein 64 (MLN64) by RNA interference decreased cholesterol transport to the mitochondrial inner membrane and reduced mitochondrial cholesterol levels in NPC1-deficient cells, suggesting that MLN64 transported cholesterol to mitochondria even in the absence of NPC1. In summary, this study describes a transport pathway for endosomal cholesterol to mitochondria that requires MLN64, but not NPC1, and that may be responsible for increased mitochondrial cholesterol in NPC disease.
Collapse
Affiliation(s)
- Mark Charman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
48
|
Hazelton JL, Petrasheuskaya M, Fiskum G, Kristián T. Cyclophilin D is expressed predominantly in mitochondria of gamma-aminobutyric acidergic interneurons. J Neurosci Res 2009; 87:1250-9. [PMID: 18951528 PMCID: PMC2650012 DOI: 10.1002/jnr.21921] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
Brain mitochondria are relatively resistant to calcium-induced mitochondrial permeability transition (MPT), with heterogenic response to the insult. The cause for this heterogeneity is not clear, so we studied the distribution of a key regulator of the MPT, cyclophilin D (cypD), within the rat brain by using immunohistology and Western blotting. Motor and parietal cortex, hippocampus, striatum, substantia nigra, ventral tegmental area, septum, and mammillary nucleus displayed a strong immunoreactivity to cypD within specific subpopulation of neurons. The staining was punctate and intense, particularly in perinuclear regions of cells. Apart from neurons, a subpopulation of astrocytes and NG2-positive cells showed higher cypD immunoreactivity. Double staining of cypD with cytochrome oxidase confirmed the mitochondrial specificity of cypD immunoreactivity. The neurons with high levels of cypD also expressed glutamate decarboxylase (GAD) and the calcium binding protein parvalbumin or calbinding D-28k, identifying these cells as interneurons. Western blots confirmed our immunohistochemical findings, showing significantly higher levels of cypD in crude mitochondria of substantia nigra compared with cortex or striatum. Furthermore, nonsynaptic mitochondria representing mainly mitochondria from cell bodies of neurons and glia have about 16% higher levels of cypD compared with synaptic mitochondria that are localized in presynaptic buttons. These data suggest that the underlying factor of heterogenic response of isolated brain mitochondria to MPT-inducing insults can be the different expression levels of cypD, with mitochondria originated from interneurons as the most sensitive.
Collapse
Affiliation(s)
- Julie L Hazelton
- Department of Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
49
|
Nicholls DG. Mitochondrial calcium function and dysfunction in the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1416-24. [PMID: 19298790 DOI: 10.1016/j.bbabio.2009.03.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/26/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 12/17/2022]
Abstract
The ability of isolated brain mitochondria to accumulate, store and release calcium has been extensively characterized. Extrapolation to the intact neuron led to predictions that the in situ mitochondria would reversibly accumulate Ca(2+) when the concentration of the cation in the vicinity of the mitochondria rose above the 'set-point' at which uptake and efflux were in balance, storing Ca(2+) as a complex with phosphate, and slowly releasing the cation when plasma membrane ion pumps lowered the cytoplasmic free Ca(2+). Excessive accumulation of the cation was predicted to lead to activation of the permeability transition, with catastrophic consequences for the neuron. Each of these predictions has been confirmed with intact neurons, and there is convincing evidence for the permeability transition in cellular Ca(2+) overload associated with glutamate excitotoxicity and stroke, while the neurodegenerative disease in which possible defects in mitochondrial Ca(2+) handling have been most intensively investigated is Huntington's Disease. In this brief review evidence that mitochondrial Ca(2+) transport is relevant to neuronal survival in these conditions will be discussed.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
50
|
Oliveira JM, Gonçalves J. In Situ Mitochondrial Ca2+ Buffering Differences of Intact Neurons and Astrocytes from Cortex and Striatum. J Biol Chem 2009; 284:5010-20. [DOI: 10.1074/jbc.m807459200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023] Open
|