1
|
Bai JJ, Ao M, Xing A, Yu LJ, Tong HY, Bao WY, Wang Y. Areca Thirteen Pill Improves Depression in Rat by Modulation of the Chemokine/Chemokine Receptor Axis. Mol Neurobiol 2024; 61:4633-4647. [PMID: 38110645 DOI: 10.1007/s12035-023-03855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Depressive disorder is a severe and complex mental illness. There are a few anti-depressive medications that can reduce depressive symptoms, but with adverse or side effects. GaoYou-13 (GY-13), commonly known as Areca Thirteen Pill, is a traditional medicine for depression treatment with significant clinical impact. However, the molecular mechanism of GY-13 has not been fully elucidated. This study aimed to explore and explain the action and mechanism of GY-13 in treatment for depression. SD male rats were stimulated differently daily for 42 days to construct a depression rat model and divided into six groups: the control, CUMS model, GY-13L, GY-13 M, GY-13H, and FLUO. The body weight of was measured on day 7, 14, 21, 28, 35, and 42 or different days, and the behavioral tests (Open-field test, Sucrose preference test, Morris water maze) were made alongside. After the rats were decapitated, the rat brains were stained with Nissl or H&E dyes. The serums of TNF-α and IL-1β were tested. The protein of p-IKKα, p-IкBα, and p-NFкBp65 was traced. Then nano-LC-MS/MS analysis was made to detect the mechanism of GY-13. The active ingredients, drug targets, and key pathways of GY-13 in treating depression were analyzed through network pharmacology and molecular docking. With immunohistochemistry, quantitative RT-PCR, and western-blot techniques, the therapeutic mechanism of GY-13 was traced and analyzed. This study revealed that GY-13 significantly enhances autonomous and exploratory behavior, sucrose consumption, learning and memory ability, and hippocampal neuronal degeneration, which inhibits inflammation. In addition, omics analysis showed several proteins were altered in the hippocampus of rats following CUMS and GY-13 treatment. Bioinformatics analysis and network pharmacology revealed the antidepressant effects of GY-13 are related to the chemokine/chemokine receptor axis. Immunohistochemistry, western blotting and RT-PCR assay further support the findings of omics analysis. We highlighted the importance of the chemokine/chemokine receptor axis in the treatment of depression, as well as showed GY-13 can be used as a novel targeted therapy for depression treatment.
Collapse
Affiliation(s)
- Jing-Jing Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, People's Republic of China
- Tongliao Institute of agriculture and animal husbandry, Tongliao, Inner Mongolia, People's Republic of China
| | - Min Ao
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - An Xing
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - Li-Jun Yu
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - Hai-Ying Tong
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China
| | - Wu-Ye Bao
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, People's Republic of China.
| | - Yu Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, People's Republic of China.
| |
Collapse
|
2
|
Hu R, Wang R, Yuan J, Lin Z, Hutchins E, Landin B, Liao Z, Liu G, Scherzer CR, Dong X. Transcriptional pathobiology and multi-omics predictors for Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599639. [PMID: 38948706 PMCID: PMC11212969 DOI: 10.1101/2024.06.18.599639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Early diagnosis and biomarker discovery to bolster the therapeutic pipeline for Parkinson's disease (PD) are urgently needed. In this study, we leverage the large-scale whole-blood total RNA-seq dataset from the Accelerating Medicine Partnership in Parkinson's Disease (AMP PD) program to identify PD-associated RNAs, including both known genes and novel circular RNAs (circRNA) and enhancer RNAs (eRNAs). There were 1,111 significant marker RNAs, including 491 genes, 599 eRNAs, and 21 circRNAs, that were first discovered in the PPMI cohort (FDR < 0.05) and confirmed in the PDBP/BioFIND cohorts (nominal p < 0.05). Functional enrichment analysis showed that the PD-associated genes are involved in neutrophil activation and degranulation, as well as the TNF-alpha signaling pathway. We further compare the PD-associated genes in blood with those in post-mortem brain dopamine neurons in our BRAINcode cohort. 44 genes show significant changes with the same direction in both PD brain neurons and PD blood, including neuroinflammation-associated genes IKBIP, CXCR2, and NFKBIB. Finally, we built a novel multi-omics machine learning model to predict PD diagnosis with high performance (AUC = 0.89), which was superior to previous studies and might aid the decision-making for PD diagnosis in clinical practice. In summary, this study delineates a wide spectrum of the known and novel RNAs linked to PD and are detectable in circulating blood cells in a harmonized, large-scale dataset. It provides a generally useful computational framework for further biomarker development and early disease prediction.
Collapse
Affiliation(s)
- Ruifeng Hu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ruoxuan Wang
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jie Yuan
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zechuan Lin
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | | | - Zhixiang Liao
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganqiang Liu
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Clemens R. Scherzer
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xianjun Dong
- APDA Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Precision Neurology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Gu X, Dong M, Xia S, Li H, Bao X, Cao X, Xu Y. γ-Glutamylcysteine ameliorates blood-brain barrier permeability and neutrophil extracellular traps formation after ischemic stroke by modulating Wnt/β-catenin signalling in mice. Eur J Pharmacol 2024; 969:176409. [PMID: 38365105 DOI: 10.1016/j.ejphar.2024.176409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
During the inflammatory response after stroke, the blood-brain barrier (BBB) is significantly disrupted, compromising its integrity. This disruption allows many peripheral neutrophils to infiltrate the injury site in the brain and release neutrophil extracellular traps (NETs), which further increase BBB permeability. In this study, we aimed to investigate the protective effects of γ-Glutamylcysteine (γ-GC), an immediate precursor of GSH, against BBB breakdown and NET formation after ischemic stroke. Our data indicated that γ-GC treatment effectively attenuated BBB damage, decreased neutrophil infiltration, and suppressed the release of NETs, ultimately leading to the amelioration of ischemic injury. Transcriptomic data and subsequent validation studies revealed that mechanistically, γ-GC exerts its effect by activating the Wnt/β-catenin pathway after ischemic stroke. This research suggests that γ-GC may hold promise as a therapeutic agent for alleviating brain injury following an ischemic stroke.
Collapse
Affiliation(s)
- Xinya Gu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Mengqi Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Huiqin Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China.
| |
Collapse
|
4
|
Manou D, Golfinopoulou MA, Alharbi SND, Alghamdi HA, Alzahrani FM, Theocharis AD. The Expression of Serglycin Is Required for Active Transforming Growth Factor β Receptor I Tumorigenic Signaling in Glioblastoma Cells and Paracrine Activation of Stromal Fibroblasts via CXCR-2. Biomolecules 2024; 14:461. [PMID: 38672477 PMCID: PMC11048235 DOI: 10.3390/biom14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFβRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFβ signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFβRI associated with lower responsiveness to the manipulation of TGFβ/TGFβRI pathway and the regulation of pro-tumorigenic properties. Active TGFβRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1β, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| | - Maria-Angeliki Golfinopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| | - Sara Naif D. Alharbi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Hind A. Alghamdi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| |
Collapse
|
5
|
La Cognata V, Morello G, Guarnaccia M, Cavallaro S. The multifaceted role of the CXC chemokines and receptors signaling axes in ALS pathophysiology. Prog Neurobiol 2024; 235:102587. [PMID: 38367748 DOI: 10.1016/j.pneurobio.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease with complex genetic basis and still no clear etiology. Multiple intertwined layers of immune system-related dysfunctions and neuroinflammatory mechanisms are emerging as substantial determinants in ALS onset and progression. In this review, we collect the increasingly arising evidence implicating four main CXC chemokines/cognate receptors signaling axes (CXCR1/2-CXCL1/2/8; CXCR3-CXCL9/10/11; CXCR4/7-CXCL12; CXCR5-CXCL13) in the pathophysiology of ALS. Findings in preclinical models implicate these signaling pathways in motor neuron toxicity and neuroprotection, while in ALS patients dysregulation of CXCLs/CXCRs has been shown at both central and peripheral levels. Immunological monitoring of CXC-ligands in ALS may allow tracking of disease progression, while pharmacological modulation of CXC-receptors provides a novel therapeutic strategy. A deeper understanding of the interplay between CXC-mediated neuroinflammation and ALS is crucial to advance research into treatments for this debilitating uncurable disorder.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
6
|
Barisas DAG, Choi K. Extramedullary hematopoiesis in cancer. Exp Mol Med 2024; 56:549-558. [PMID: 38443597 PMCID: PMC10985111 DOI: 10.1038/s12276-024-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.
Collapse
Affiliation(s)
- Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Boon K, Vanalken N, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic assessment of chemokine ligand bias at the human chemokine receptor CXCR2 indicates G protein bias over β-arrestin recruitment and receptor internalization. Cell Commun Signal 2024; 22:43. [PMID: 38233929 PMCID: PMC10795402 DOI: 10.1186/s12964-023-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, β-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in β-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards β-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of β-arrestin1/2 subtypes, respectively. However, compared to β-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.
Collapse
Affiliation(s)
- Katrijn Boon
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Nathan Vanalken
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Tom Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
8
|
Sipprell SE, Johnson MB, Leach W, Suptela SR, Marriott I. Staphylococcus aureus Infection Induces the Production of the Neutrophil Chemoattractants CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by Murine Osteoblasts. Infect Immun 2023; 91:e0001423. [PMID: 36880752 PMCID: PMC10112169 DOI: 10.1128/iai.00014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.
Collapse
Affiliation(s)
- Sophie E. Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
9
|
Willis EF, Gillespie ER, Guse K, Zuercher AW, Käsermann F, Ruitenberg MJ, Vukovic J. Intravenous immunoglobulin (IVIG) promotes brain repair and improves cognitive outcomes after traumatic brain injury in a FcγRIIB receptor-dependent manner. Brain Behav Immun 2023; 109:37-50. [PMID: 36581304 DOI: 10.1016/j.bbi.2022.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a promising immune-modulatory therapy for limiting harmful inflammation and associated secondary tissue loss in neurotrauma. Here, we show that IVIG therapy attenuates spatial learning and memory deficits following a controlled cortical impact mouse model of traumatic brain injury (TBI). These improvements in cognitive outcomes were associated with increased neuronal survival, an overall reduction in brain tissue loss, and a greater preservation of neural connectivity. Furthermore, we demonstrate that the presence of the main inhibitory FcγRIIB receptor is required for the beneficial effects of IVIG treatment in TBI, with our results simultaneously highlighting the role of this receptor in reducing secondary damage arising from brain injury.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten Guse
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Adrian W Zuercher
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Marc J Ruitenberg
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Lin Q, Ni H, Zhong J, Zheng Z, Nie H. Identification of hub genes and potential biomarkers of neutrophilic asthma: evidence from a bioinformatics analysis. J Asthma 2023; 60:348-359. [PMID: 35286184 DOI: 10.1080/02770903.2022.2051544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Asthma is a chronic airway inflammatory disease caused by multiple genetic and environmental factors. This study mainly sought to provide potential therapeutic targets and biomarkers for neutrophilic asthma (NA). METHODS Three gene expression profiling datasets were obtained from the Genome Expression Omnibus (GEO) database. GSE45111 and GSE41863 were used to identify hub genes and potential biomarkers, and GSE137268 was used for data verification. We verified the repeatability of intragroup data and identified differentially expressed genes (DEGs). Then, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs, and a protein-protein interaction (PPI) network was constructed to identify the hub genes. Finally, receiver operating characteristic (ROC) analysis was used to verify the ability of the hub genes to differentiate between NA and eosinophilic asthma (EA). RESULTS In this study, we identified 411 DEGs by comprehensive analysis of NA/EA patients and NA/healthy controls (HCs). Ten hub genes (CXCR1, FCGR3B, CXCR2, SELL, S100A12, CSF3R, IL6R, JAK3, CD48, and GNG2) were identified from the PPI network. Finally, based on the ROC analysis, 7 genes showed good diagnostic value for discriminating NA from EA-CXCR1, FCGR3B, CXCR2, SELL, S100A12, CSF3R, and IL6R (AUC > 0.7). CONCLUSION We identified 7 hub genes that can distinguish NA from EA. The IL-8-mediated signaling may be the primary pathway to determine the NA phenotype in asthma. CXCR1/2 and S100A12 may be the primary genes determining the NA phenotype. CXCR1/2 and S100A12 might be biomarkers and new therapeutic targets for NA. Supplemental data for this article is available online at at.
Collapse
Affiliation(s)
- Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jieying Zhong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhishui Zheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
SARS-CoV-2 mRNA Dual Immunization Induces Innate Transcriptional Signatures, Establishes T-Cell Memory and Coordinates the Recall Response. Vaccines (Basel) 2023; 11:vaccines11010103. [PMID: 36679948 PMCID: PMC9861479 DOI: 10.3390/vaccines11010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND mRNA vaccines have played a crucial role in controlling the SARS-CoV-2 global pandemic. However, the immunological mechanisms involved in the induction, magnitude and longevity of mRNA-vaccine-induced protective immunity are still unclear. METHODS In our study, we used whole-RNA sequencing along with detailed immunophenotyping of antigen-specific T cells and humoral RBD-specific response to dual immunization with the Pfizer-BioNTech mRNA vaccine (BNT162b2) and correlated them with response to an additional dose, administered 10 months later, in order to comprehensively profile the immune response of healthy volunteers to BNT162b2. RESULTS Primary dual immunization induced upregulation of the Type I interferon pathway and generated spike protein (S)-specific IFN-γ+ and TNF-α+ CD4 T cells, S-specific memory CD4 T cells, and RBD-specific antibodies against SARS-CoV-2. S-specific CD4 T cells induced by the primary series correlated with the RBD-specific antibody titers to a third dose. CONCLUSIONS This study demonstrates the induction of both innate and adaptive immunity in response to the BNT162b2 mRNA vaccine in a coordinated manner and identifies the central role of primarily induced CD4+ T cells as a predictive biomarker of the magnitude of anamnestic immune response.
Collapse
|
12
|
Protective effect of hepatocyte-enriched lncRNA-Mir122hg by promoting hepatocyte proliferation in acute liver injury. Exp Mol Med 2022; 54:2022-2035. [PMID: 36424455 PMCID: PMC9722683 DOI: 10.1038/s12276-022-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs), which harbor microRNAs in their gene sequence and are also known as microRNA host gene derived lncRNAs (lnc-MIRHGs), play a dominant role alongside miRNAs, or both perform biological functions synergistically or independently. However, only a small number of lnc-MIRHGs have been identified. Here, multiple liver injury datasets were analyzed to screen and identify the target lncRNA Mir122hg. Mir122hg was mainly enriched in liver tissues with human-mouse homology. In both CCl4-induced acute liver injury and Dgal/LPS-induced fulminant liver failure in mice, Mir122hg was sharply downregulated at the early stage, while a subsequent significant increase was only found in the CCl4 group with liver recovery. Overexpression and silencing assays confirmed that Mir122hg played a protective role in acute injury by promoting hepatocyte proliferation in vivo and in vitro. Consistent with the results of gene enrichment analysis, Mir122hg binding to C/EBPα affected its transcriptional repression, promoted gene transcription of downstream chemokines, Cxcl2, Cxcl3, and Cxcl5, and exerted pro-proliferative effects on hepatocytes through activation of the AKT/GSK-3β/p27 signaling pathway by CXC/CXCR2 complexes. This study identifies a novel lncRNA with protective effects in acute liver injury and demonstrates that the binding of Mir122hg-C/EBPα promotes hepatocyte proliferation via upregulation of CXC chemokine and activation of AKT signaling.
Collapse
|
13
|
Robilliard LD, Yu J, Anchan A, Finlay G, Angel CE, Graham ES. Comprehensive Assessment of Secreted Immuno-Modulatory Cytokines by Serum-Differentiated and Stem-like Glioblastoma Cells Reveals Distinct Differences between Glioblastoma Phenotypes. Int J Mol Sci 2022; 23:ijms232214164. [PMID: 36430641 PMCID: PMC9692434 DOI: 10.3390/ijms232214164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is refractory to therapy and presents a significant oncological challenge. Promising immunotherapies have not shown the promise observed in other aggressive cancers. The reasons for this include the highly immuno-suppressive tumour microenvironment controlled by the glioblastoma cells and heterogeneous phenotype of the glioblastoma cells. Here, we wanted to better understand which glioblastoma phenotypes produced the regulatory cytokines, particularly those that are implicated in shaping the immune microenvironment. In this study, we employed nanoString analysis of the glioblastoma transcriptome, and proteomic analysis (proteome profiler arrays and cytokine profiling) of secreted cytokines by different glioblastoma phenotypes. These phenotypes were cultured to reflect a spectrum of glioblastoma cells present in tumours, by culturing an enhanced stem-like phenotype of glioblastoma cells or a more differentiated phenotype following culture with serum. Extensive secretome profiling reveals that there is considerable heterogeneity in secretion patterns between serum-derived and glioblastoma stem-like cells, as well as between individuals. Generally, however, the serum-derived phenotypes appear to be the primary producers of cytokines associated with immune cell recruitment into the tumour microenvironment. Therefore, these glioblastoma cells have considerable importance in shaping the immune landscape in glioblastoma and represent a valuable therapeutic target that should not be ignored.
Collapse
Affiliation(s)
- Laverne D. Robilliard
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Jane Yu
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Graeme Finlay
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- Correspondence:
| |
Collapse
|
14
|
Abdelaziz RR, Abdelrahman RS, Abdelmageed ME. SB332235, a CXCR2 antagonist, ameliorates thioacetamide-induced hepatic encephalopathy through modulation of the PI3K/AKT pathways in rats. Neurotoxicology 2022; 92:110-121. [PMID: 35961375 DOI: 10.1016/j.neuro.2022.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Hepatic encephalopathy (HE) is a neuropsychiatric disorder that results from either acute or chronic liver failure. CXCR2 plays an essential role in the pathophysiology of liver and brain diseases. In the present study, the potential beneficial effects of SB332235, a selective inhibitor of CXCR2, against HE were evaluated. METHODS HE was induced in male rats by thioacetamide injection (200 mg/kg, i.p.) at three alternative days. SB332235 was injected in rats 1 h before TAA at a dose of 1 and 3 mg/kg i.p. RESULTS SB332235 alleviated oxidative stress as shown by the decreased serum NO and reduced MDA, elevated GSH and SOD levels, and reduced TNF-α and NF-κB levels in both brain and liver tissues of rats. Additionally, SB332235 suppressed brain ASK-1, JNK, IL-8, and caspase-3 expression, and activated PI3K/AKT expression in brain tissues. Markers of brain dysfunction, such as ammonia, and markers of hepatic injury, such as LDH, albumin, bilirubin, γGT, AST, ALT, and ALP, were significantly ameliorated. Also, the protective effect of SB332235 was confirmed by histological examination of both brain and liver tissues. CONCLUSIONS Both doses (1 and 3 mg/kg) of SB332235 revealed significant hepatic/neuroprotective effects due to their anti-inflammatory, antioxidant, and antiapoptotic activities via activation of the PI3K/AKT pathway. Between the two, the 1 mg/kg dose provided significantly improved outcomes.
Collapse
Affiliation(s)
- Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
15
|
A highly branched α-D-glucan facilitates antitumor immunity by reducing cancer cell CXCL5 expression. Int J Biol Macromol 2022; 209:166-179. [PMID: 35390399 DOI: 10.1016/j.ijbiomac.2022.03.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Tumor immunotherapy has emerged as a major pillar of anticancer therapeutic strategies. Natural polysaccharides, known for their strong immunomodulatory activities with relatively low cost and toxicity, are becoming promising prospects for cancer immunotherapy. In this study, we investigated the antitumor mechanism of JNY2PW, a highly branched α-D-glucan previously purified from the traditional marine Chinese medicine Arca inflata. JNY2PW was shown to enhance the sensitivity of tumor cells to co-culture macrophage supernatants by decreasing cancer cell CXCL5 expression. Furthermore, JNY2PW exerted antitumor effects without obvious toxic side effects in tumor-bearing mice by triggering the Akt/mTOR and ERK/GSK3β/β-catenin pathways and attenuating expression of CXCL5 in cancer cells. Remarkably, JNY2PW reduced tumor proliferation and dampened CXCL5 expression in tumor cells overexpressing CXCL5 both in vitro and in vivo. Additionally, JNY2PW blocked epithelial-mesenchymal transition (EMT) in both CXCL5-overexpressing and wild type tumor cells. Our data therefore uncovered a previously unrecognized antitumor mechanism for JNY2PW, suggesting that JNY2PW is a promising adjuvant as an immunomodulator for cancer immunotherapy.
Collapse
|
16
|
Lin H, Bai Z, Wu Q, Chu G, Zhang Y, Guo X, Qi X. Inflammatory Indexes for Assessing the Severity and Disease Progression of Ulcerative Colitis: A Single-Center Retrospective Study. Front Public Health 2022; 10:851295. [PMID: 35359771 PMCID: PMC8963422 DOI: 10.3389/fpubh.2022.851295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Active and severe ulcerative colitis (UC) and non-response to 5-aminosalicylic acid (5-ASA) are related to poor outcomes and should be accurately identified. Several integrated inflammatory indexes are potentially useful to assess the disease severity in patients with acute or critical diseases but are underexplored in patients with UC. METHODS Patients with UC consecutively admitted to our hospital between January 2015 and December 2020 were retrospectively grouped according to the activity and severity of UC and response to 5-ASA. The neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), neutrophil-to-platelet ratio (NPR), platelet-to-albumin ratio (PAR), C-reactive protein-to-albumin ratio (CAR), and C-reactive protein-to-lymphocyte ratio (CLR) were calculated. The areas under receiver operating characteristic curves (AUC) were calculated. RESULTS Overall, 187 patients with UC were included, of whom 151 were active, 55 were severe, and 14 were unresponsive to 5-ASA. The active UC group had significantly higher NLR, PLR, SII, and PAR levels. SII had the greatest predictive accuracy for active UC, followed by PLR, PAR, and NLR (AUC = 0.647, 0.641, 0.634, and 0.626). The severe UC group had significantly higher NLR, PLR, SII, PAR, CAR, and CLR levels. CLR had the greatest predictive accuracy for severe UC, followed by CAR, PLR, SII, NLR, and PAR (AUC = 0.732, 0.714, 0.693, 0.669, 0.646, and 0.63). The non-response to the 5-ASA group had significantly higher CAR and CLR levels. CAR had a greater predictive accuracy for non-response to 5-ASA than CLR (AUC = 0.781 and 0.759). CONCLUSION SII, CLR, and CAR may be useful for assessing the severity and progression of UC, but remain not optimal.
Collapse
Affiliation(s)
- Hanyang Lin
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Zhaohui Bai
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiong Wu
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guiyang Chu
- Information Section of Medical Security Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Yongguo Zhang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaozhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Xiaozhong Guo
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, China Medical University, Shenyang, China
- Postgraduate College, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Xingshun Qi
| |
Collapse
|
17
|
La Cognata V, Golini E, Iemmolo R, Balletta S, Morello G, De Rosa C, Villari A, Marinelli S, Vacca V, Bonaventura G, Dell'Albani P, Aronica E, Mammano F, Mandillo S, Cavallaro S. CXCR2 increases in ALS cortical neurons and its inhibition prevents motor neuron degeneration in vitro and improves neuromuscular function in SOD1G93A mice. Neurobiol Dis 2021; 160:105538. [PMID: 34743985 DOI: 10.1016/j.nbd.2021.105538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease characterized by depletion of motor neurons (MNs), for which effective medical treatments are still required. Previous transcriptomic analysis revealed the up-regulation of C-X-C motif chemokine receptor 2 (CXCR2)-mRNA in a subset of sporadic ALS patients and SOD1G93A mice. Here, we confirmed the increase of CXCR2 in human ALS cortex, and showed that CXCR2 is mainly localized in cell bodies and axons of cortical neurons. We also investigated the effects of reparixin, an allosteric inhibitor of CXCR2, in degenerating human iPSC-derived MNs and SOD1G93A mice. In vitro, reparixin rescued MNs from apoptotic cell death, preserving neuronal morphology, mitochondrial membrane potential and cytoplasmic membrane integrity, whereas in vivo it improved neuromuscular function of SOD1G93A mice. Altogether, these data suggest a role for CXCR2 in ALS pathology and support its pharmacological inhibition as a candidate therapeutic strategy against ALS at least in a specific subgroup of patients.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Rosario Iemmolo
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Sara Balletta
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Carla De Rosa
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Ambra Villari
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Sara Marinelli
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Valentina Vacca
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Paola Dell'Albani
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 Amsterdam, the Netherlands.
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy; Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy.
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| |
Collapse
|
18
|
Piotrowska A, Ciapała K, Pawlik K, Kwiatkowski K, Rojewska E, Mika J. Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model- In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms222011074. [PMID: 34681732 PMCID: PMC8538855 DOI: 10.3390/ijms222011074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.
Collapse
MESH Headings
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Behavior, Animal/drug effects
- Cells, Cultured
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Down-Regulation/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/pathology
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Rats, Wistar
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Stress, Mechanical
Collapse
|
19
|
Strong MJ, Rocco S, Taichman R, Clines GA, Szerlip NJ. Dura promotes metastatic potential in prostate cancer through the CXCR2 pathway. J Neurooncol 2021; 153:33-42. [PMID: 33835371 DOI: 10.1007/s11060-021-03752-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Spinal metastases are common in cancer. This preferential migration/growth in the spine is not fully understood. Dura has been shown to affect the surrounding microenvironment and promote cancer growth. Here, we investigate the role of dural cytokines in promoting the metastatic potential of prostate cancer (PCa) and the involvement of the CXCR2 signaling pathway. METHODS The role of dural conditioned media (DCM) in proliferation, migration and invasion of five PCa cell lines with various hormone sensitivities was assessed in the presence or absence of the CXCR2 inhibitor, SB225002. CXCR2 surface protein was examined by FACS. Cytokine levels were measured using a mouse cytokine array. RESULTS We observed high levels of cytokines produced by dura and within the vertebral body bone marrow, namely CXCL1 and CXCL2, that act on the CXCR2 receptor. All prostate cell lines treated with DCM demonstrated significant increase in growth, migration and invasion regardless of androgen sensitivity, except PC3, which did not significantly increase in invasiveness. When treated with SB225002, the growth response to DCM by cells expressing the highest levels of CXCR2 as measured by FACS (LNCaP and 22Rv1) was blunted. The increase in migration was significantly decreased in all lines in the presence of SB225002. Interestingly, the invasion increase seen with DCM was unchanged when these cells were treated with the CXCR2 inhibitor, except PC3 did demonstrate a significant decrease in invasion. CONCLUSION DCM enhances the metastatic potential of PCa with increased proliferation, migration and invasion. This phenomenon is partly mediated through the CXCR2 pathway.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Sabrina Rocco
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Russell Taichman
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Nicholas J Szerlip
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.
- Veterans Affairs Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Chen M, Pang DD, Dai SM. Expression Profile of Osteoclasts Following the Stimulation With Interleukin-23 in Mice. Arch Rheumatol 2021; 35:533-544. [PMID: 33758810 PMCID: PMC7945700 DOI: 10.46497/archrheumatol.2020.7510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/13/2020] [Indexed: 11/08/2022] Open
Abstract
Objectives
This study aims to analyze the expression profile of osteoclasts (OCs) following the stimulation with interleukin 23 (IL-23) in mice, which would imply the underlying effects of IL-23 on the function of OCs in inflammatory arthritis. Materials and methods
Mature OCs were induced from bone marrow mononuclear cells of 5 male mice (age 6 weeks; weighing 18-20 g) in the presence of macrophage-colony stimulating factor (50 ng/mL) and receptor activator of nuclear factor kappa B ligand (30 ng/mL) in vitro. The Agilent SurePrint G3 Mouse GE V2.0 Microarray was used to analyze the gene expression profile of OCs stimulated with IL-23 (30 ng/mL) or vehicle. The four major IL-23-modulated genes were validated by quantitative real-time polymerase chain reaction (qPCR) analysis. Results
The expression levels of 23 genes were up-regulated and 32 genes were down-regulated by IL-23 stimulation (fold change ≥1.5 and p value <0.05). Among them, there were 37 genes with assigned gene symbols. Gene ontology analysis showed that the IL-23-regulated messenger ribonucleic acids (mRNAs) were related to positive regulation of leukocyte chemotaxis, chemokine-mediated signaling pathway and C-X-C chemokine receptors binding. The pathway analysis showed that the IL-23-regulated mRNAs were related to chemokine signaling pathway and cytokine-cytokine receptor interaction. The significant up-regulation of chemokine (C-X-C motif) ligand 1 and chemokine (C-X-C motif) ligand 2 induced by IL-23 was confirmed by qPCR. In addition, there were 18 long non-coding RNAs that were regulated by IL-23, while their function needs to be confirmed in the future. Conclusion Expression levels of genes related to chemotaxis in OCs were up-regulated by IL-23 in mice, which imply that IL-23 may facilitate chemotaxis of OCs in inflammatory arthritis.
Collapse
Affiliation(s)
- Miao Chen
- Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dan-Dan Pang
- Department of Rheumatology & Immunology, Changhai Hospital, Second Military Medical University, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Sheng-Ming Dai
- Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Kwon JH, Kim M, Um S, Lee HJ, Bae YK, Choi SJ, Hwang HH, Oh W, Jin HJ. Senescence-Associated Secretory Phenotype Suppression Mediated by Small-Sized Mesenchymal Stem Cells Delays Cellular Senescence through TLR2 and TLR5 Signaling. Cells 2021; 10:cells10010063. [PMID: 33401590 PMCID: PMC7824096 DOI: 10.3390/cells10010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
In order to provide a sufficient number of cells for clinical use, mesenchymal stem cells (MSCs) must be cultured for long-term expansion, which inevitably triggers cellular senescence. Although the small size of MSCs is known as a critical determinant of their fate, the main regulators of stem cell senescence and the underlying signaling have not been addressed. Umbilical cord blood-derived MSCs (UCB-MSCs) were obtained using size-isolation methods and then cultured with control or small cells to investigate the major factors that modulate MSC senescence. Cytokine array data suggested that the secretion of interukin-8 (IL-8) or growth-regulated oncogene-alpha (GROa) by senescent cells was markedly inhibited during incubation of small cells along with suppression of cognate receptor (C-X-C motif chemokine receptor2, CXCR2) via blockade of the autocrine/paracrine positive loop. Moreover, signaling via toll-like receptor 2 (TLR2) and TLR5, both pattern recognition receptors, drove cellular senescence of MSCs, but was inhibited in small cells. The activation of TLRs (2 and 5) through ligand treatment induced a senescent phenotype in small cells. Collectively, our data suggest that small cell from UCB-MSCs exhibit delayed cellular senescence by inhibiting the process of TLR signaling-mediated senescence-associated secretory phenotype (SASP) activation.
Collapse
Affiliation(s)
- Ji Hye Kwon
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Miyeon Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Soyoun Um
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hyang Ju Lee
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Yun Kyung Bae
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hyun Ho Hwang
- King Abdullah University of Science and Technology, Thuwal 47000, Makkah Province, Saudi Arabia;
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
- Correspondence:
| |
Collapse
|
22
|
Reyes N, Figueroa S, Tiwari R, Geliebter J. CXCL3 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:15-24. [PMID: 34286438 DOI: 10.1007/978-3-030-62658-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer progression is driven, to a large extent, by the action of immune cells that have been recruited to tumor sites through interactions between chemokines and their receptors. Chemokines of the CXC subfamily are secreted by both tumor and non-tumor cells within the microenvironment of the tumor, where they induce either antitumor or protumor activity that fosters either clearance or progression of the tumor, respectively. Understanding the nature of these interactions is important to envisage novel approaches targeting the essential components of the tumor microenvironment, increasing the odds for favorable patient outcomes. In this chapter we describe the involvement of the chemokine (C-X-C motif) ligand 3 (CXCL3) in the human tumor microenvironment and its effects on immune and non-immune cells. Because of the limited data on the CXCL3 signaling in the tumor microenvironment, we extend the review to other members of the CXC subfamily of chemokines. This review also addresses the future trends or directions for therapeutic interventions that target signaling pathways used by these molecules in the tumor microenvironment.
Collapse
Affiliation(s)
- Niradiz Reyes
- School of Medicine, University of Cartagena, Cartagena, Colombia.
| | - Stephanie Figueroa
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
23
|
Alsema AM, Jiang Q, Kracht L, Gerrits E, Dubbelaar ML, Miedema A, Brouwer N, Hol EM, Middeldorp J, van Dijk R, Woodbury M, Wachter A, Xi S, Möller T, Biber KP, Kooistra SM, Boddeke EWGM, Eggen BJL. Profiling Microglia From Alzheimer's Disease Donors and Non-demented Elderly in Acute Human Postmortem Cortical Tissue. Front Mol Neurosci 2020; 13:134. [PMID: 33192286 PMCID: PMC7655794 DOI: 10.3389/fnmol.2020.00134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 01/22/2023] Open
Abstract
Microglia are the tissue-resident macrophages of the central nervous system (CNS). Recent studies based on bulk and single-cell RNA sequencing in mice indicate high relevance of microglia with respect to risk genes and neuro-inflammation in Alzheimer's disease (AD). Here, we investigated microglia transcriptomes at bulk and single-cell levels in non-demented elderly and AD donors using acute human postmortem cortical brain samples. We identified seven human microglial subpopulations with heterogeneity in gene expression. Notably, gene expression profiles and subcluster composition of microglia did not differ between AD donors and non-demented elderly in bulk RNA sequencing nor in single-cell sequencing.
Collapse
Affiliation(s)
- Astrid M. Alsema
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Qiong Jiang
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anneke Miedema
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Roland van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Maya Woodbury
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Astrid Wachter
- Neuroscience Discovery, AbbVie Deutschland GmbH and Co. KG, Ludwigshafen, Germany
| | - Simon Xi
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Thomas Möller
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Knut P. Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH and Co. KG, Ludwigshafen, Germany
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Cellular and Molecular Medicine, Center for Healthy Ageing, University of Copenhagen, Copenhagen, Denmark
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Zhu F, He H, Fan L, Ma C, Xu Z, Xue Y, Wang Y, Zhang C, Zhou G. Blockade of CXCR2 suppresses proinflammatory activities of neutrophils in ulcerative colitis. Am J Transl Res 2020; 12:5237-5251. [PMID: 33042416 PMCID: PMC7540107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Ulcerative colitis (UC) is one chronically remittent and progressive inflammatory disorder. Chemokine receptor CXCR2 is reported to be involved in the pathogenesis of several inflammatory diseases. However, how CXCR2 modulate mucosal inflammation in UC is still obscure. In this study, CXCR2 expression was determined in inflamed mucosa and peripheral blood cells from patients with UC by qRT-PCR. Neutrophils isolated from peripheral blood were pretreated with CXCR2 inhibitor (SB225002), and proinflammatory mediators were examined by qRT-PCR, ELISA and IF. The migratory capacity of neutrophils after SB225002 treatment was examined by using Transwell plate. Furthermore, SB225002 was administrated daily in DSS-induced colitis mice. We found that CXCR2 expression was significantly increased in colonic mucosal tissues and peripheral blood cells from patients with active UC. Besides, CXCR2 was highly expressed in neutrophils, and was positively correlated with disease activity. Inhibition of CXCR2 in neutrophils decreased the production of proinflammatory mediators, such as reactive oxygen species (ROS), MPO, S100a8, S100a9, TNF-α, IL-1β, IL-8 and IL-6, and the migratory capacity of neutrophils was markedly impaired after SB225002 treatment. Moreover, blockade of CXCR2 with SB225002 could markedly ameliorate DSS-induced colitis in mice. In summary, CXCR2 plays a critical role in the pathogenesis of UC through modulating immune responses of neutrophils. Blockade of CXCR2 may serve as a new therapeutic approach for treatment of UC.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Li Fan
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Cuimei Ma
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Yuan Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, P. R. China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical UniversityJining 272000, Shandong, P. R. China
- Institute of Immunology and Molecular Medicine, Jining Medical UniversityJining 272000, Shandong, P. R. China
| |
Collapse
|
25
|
Caligiuri A, Pastore M, Lori G, Raggi C, Di Maira G, Marra F, Gentilini A. Role of Chemokines in the Biology of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082215. [PMID: 32784743 PMCID: PMC7463556 DOI: 10.3390/cancers12082215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous tumor with poor prognosis, can arise at any level in the biliary tree. It may derive from epithelial cells in the biliary tracts and peribiliary glands and possibly from progenitor cells or even hepatocytes. Several risk factors are responsible for CCA onset, however an inflammatory milieu nearby the biliary tree represents the most common condition favoring CCA development. Chemokines play a key role in driving the immunological response upon liver injury and may sustain tumor initiation and development. Chemokine receptor-dependent pathways influence the interplay among various cellular components, resulting in remodeling of the hepatic microenvironment towards a pro-inflammatory, pro-fibrogenic, pro-angiogenic and pre-neoplastic setting. Moreover, once tumor develops, chemokine signaling may influence its progression. Here we review the role of chemokines in the regulation of CCA development and progression, and the modulation of angiogenesis, metastasis and immune control. The potential role of chemokines and their receptors as possible biomarkers and/or therapeutic targets for hepatobiliary cancer is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabio Marra
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| | - Alessandra Gentilini
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| |
Collapse
|
26
|
Jantzie LL, Maxwell JR, Newville JC, Yellowhair TR, Kitase Y, Madurai N, Ramachandra S, Bakhireva LN, Northington FJ, Gerner G, Tekes A, Milio LA, Brigman JL, Robinson S, Allan A. Prenatal opioid exposure: The next neonatal neuroinflammatory disease. Brain Behav Immun 2020; 84:45-58. [PMID: 31765790 PMCID: PMC7010550 DOI: 10.1016/j.bbi.2019.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023] Open
Abstract
The rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model. Specifically, we examined the effects of opioids on the developing brain to elucidate mechanisms of putative neural cell injury, to identify diagnostic biomarkers and to guide clinical studies of outcome and follow-up. We hypothesized that methadone would induce a pronounced inflammatory profile in both dams and their pups, and be associated with immune system dysfunction, sustained CNS injury, and altered cognition and executive function into adulthood. This investigation was conducted using a combination of cellular, molecular, biochemical, and clinically translatable biomarker, imaging and cognitive assessment platforms. Data reveal that perinatal methadone exposure increases inflammatory cytokines in the neonatal peripheral circulation, and reprograms and primes the immune system through sustained peripheral immune hyperreactivity. In the brain, perinatal methadone exposure not only increases chemokines and cytokines throughout a crucial developmental period, but also alters microglia morphology consistent with activation, and upregulates TLR4 and MyD88 mRNA. This increase in neuroinflammation coincides with reduced myelin basic protein and altered neurofilament expression, as well as reduced structural coherence and significantly decreased fractional anisotropy on diffusion tensor imaging. In addition to this microstructural brain injury, adult rats exposed to methadone in the perinatal period have significant impairment in associative learning and executive control as assessed using touchscreen technology. Collectively, these data reveal a distinct systemic and neuroinflammatory signature associated with prenatal methadone exposure, suggestive of an altered CNS microenvironment, dysregulated developmental homeostasis, complex concurrent neural injury, and imaging and cognitive findings consistent with clinical literature. Further investigation is required to define appropriate therapies targeted at the neural injury and improve the long-term outcomes for this exceedingly vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L. Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Kennedy Krieger Institute, Baltimore, MD.,Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM.,Correspondence: Lauren L. Jantzie, PhD, Johns Hopkins University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, 600 N. Wolfe Street, CMSC Building Room 6-104A, Baltimore, MD 21287,
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Jessie C. Newville
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Tracylyn R. Yellowhair
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yuma Kitase
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nethra Madurai
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sindhu Ramachandra
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludmila N. Bakhireva
- Substance Use Research and Education (SURE) Center, University of New Mexico College of Pharmacy, Albuquerque, NM
| | | | - Gwendolyn Gerner
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorraine A. Milio
- Department of Obstetrics & Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrea Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
27
|
Dieckmann L, Cole S, Kumsta R. Stress genomics revisited: gene co-expression analysis identifies molecular signatures associated with childhood adversity. Transl Psychiatry 2020; 10:34. [PMID: 32066736 PMCID: PMC7026041 DOI: 10.1038/s41398-020-0730-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Childhood adversity is related to an increased risk for psychopathology in adulthood. Altered regulation of stress response systems, as well as the changes in stress-immune interplay have been suggested as potential mechanisms underlying these long-term effects. We have previously shown altered transcriptional responses to acute psychosocial stress in adults reporting the experience of childhood adversity. Here, we extend these analyses using a network approach. We performed a co-expression network analysis of genome-wide mRNA data derived from isolated monocytes, sampled 3 h after stress exposure from healthy adults, who experienced childhood adversity and a matched control group without adverse childhood experiences. Thirteen co-expression modules were identified, of which four modules were enriched for genes related to immune system function. Gene set enrichment analysis showed differential module activity between the early adversity and control group. In line with previous findings reporting a pro-inflammatory bias following childhood adversity, one module included genes associated with pro-inflammatory function (hub genes: IL6, TM4SF1, ADAMTS4, CYR61, CCDC3), more strongly expressed in the early adversity group. Another module downregulated in the early adversity group was related to platelet activation and wound healing (hub genes: GP9, CMTM5, TUBB1, GNG11, PF4), and resembled a co-expression module previously found over-expressed in post-traumatic stress disorder resilient soldiers. These discovery analysis results provide a system wide and more holistic understanding of gene expression programs associated with childhood adversity. Furthermore, identified hub genes can be used in directed hypothesis testing in future studies.
Collapse
Affiliation(s)
- Linda Dieckmann
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Steve Cole
- grid.19006.3e0000 0000 9632 6718Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA USA
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
28
|
Zhang YL, Geng C, Yang J, Fang J, Yan X, Li PB, Zou LX, Chen C, Guo SB, Li HH, Liu Y. Chronic inhibition of chemokine receptor CXCR2 attenuates cardiac remodeling and dysfunction in spontaneously hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165551. [DOI: 10.1016/j.bbadis.2019.165551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023]
|
29
|
Wright AA, Todorovic M, Murtaza M, St John JA, Ekberg JA. Macrophage migration inhibitory factor and its binding partner HTRA1 are expressed by olfactory ensheathing cells. Mol Cell Neurosci 2019; 102:103450. [PMID: 31794879 DOI: 10.1016/j.mcn.2019.103450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an important regulator of innate immunity with key roles in neural regeneration and responses to pathogens, amongst a multitude of other functions. The expression of MIF and its binding partners has been characterised throughout the nervous system, with one key exception: the primary olfactory nervous system. Here, we showed in young mice (postnatal day 10) that MIF is expressed in the olfactory nerve by olfactory ensheathing glial cells (OECs) and by olfactory nerve fibroblasts. We also examined the expression of potential binding partners for MIF, and found that the serine protease HTRA1, known to be inhibited by MIF, was also expressed at high levels by OECs and olfactory fibroblasts in vivo and in vitro. We also demonstrated that MIF mediated segregation between OECs and J774a.1 cells (a monocyte/macrophage cell line) in co-culture, which suggests that MIF contributes to the fact that macrophages are largely absent from olfactory nerve fascicles. Phagocytosis assays of axonal debris demonstrated that MIF strongly stimulates phagocytosis by OECs, which indicates that MIF may play a role in the response of OECs to the continual turnover of olfactory axons that occurs throughout life.
Collapse
Affiliation(s)
- A A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - M Todorovic
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - M Murtaza
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - J A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - J A Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
30
|
Chai HH, Fu XC, Ma L, Sun HT, Chen GZ, Song MY, Chen WX, Chen YS, Tan MX, Guo YW, Li SP. The chemokine CXCL1 and its receptor CXCR2 contribute to chronic stress-induced depression in mice. FASEB J 2019; 33:8853-8864. [PMID: 31034777 DOI: 10.1096/fj.201802359rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Depression is increasingly recognized as an inflammatory disease, with inflammatory crosstalk in the brain contributing its pathogenesis. Life stresses may up-regulate inflammatory processes and promote depression. Although cytokines are central to stress-related immune responses, their contribution to stress-induced depression remains unclear. Here, we used unpredictable chronic mild stress (UCMS) to induce depression-like behaviors in mice, as assessed through a suite of behavioral tests. C-X-C motif chemokine ligand 1 (CXCL1)-related molecular networks responsible for depression-like behaviors were assessed through intrahippocampal microinjection of lenti-CXCL1, the antidepressant fluoxetine, the C-X-C motif chemokine receptor 2 (CXCR2) inhibitor SB265610, and the glycogen synthase kinase-3β (GSK3β) inhibitor AR-A014418. Modulation of apoptosis-related pathways and neuronal plasticity were assessed via quantification of cleaved caspase-3, B-cell lymphoma 2-associated X protein, cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) protein expression. CXCL1/CXCL2 expression was correlated with depression-like behaviors in response to chronic stress or antidepressant treatment in the UCMS depression model. Intrahippocampal microinjection of lenti-CXCL1 increased depression-like behaviors, activated GSK3β, increased apoptosis pathways, suppressed CREB activation, and decreased BDNF. Administration of the selective GSK3β inhibitor AR-A014418 abolished the effects of lenti-CXCL1, and the CXCR2 inhibitor SB265610 prevented chronic stress-induced depression-like behaviors, inhibited GSK3β activity, blocked apoptosis pathways, and restored BDNF expression. The CXCL1/CXCR2 axis appears to play a critical role in stress-induced depression, and CXCR2 is a potential novel therapeutic target for patients with depression.-Chai, H.-H., Fu, X.-C., Ma, L., Sun, H.-T., Chen, G.-Z., Song, M.-Y., Chen, W.-X., Chen, Y.-S., Tan, M.-X., Guo, Y.-W., Li, S.-P. The chemokine CXCL1 and its receptor CXCR2 contribute to chronic stress-induced depression in mice.
Collapse
Affiliation(s)
- Hui-Hui Chai
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Xiao-Chun Fu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Hai-Tao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gui-Zeng Chen
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Min-Ying Song
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Wei-Xuan Chen
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Yong-Sheng Chen
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Min-Xuan Tan
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Yan-Wu Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shao-Peng Li
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| |
Collapse
|
31
|
Yellowhair TR, Newville JC, Noor S, Maxwell JR, Milligan ED, Robinson S, Jantzie LL. CXCR2 Blockade Mitigates Neural Cell Injury Following Preclinical Chorioamnionitis. Front Physiol 2019; 10:324. [PMID: 31001130 PMCID: PMC6454349 DOI: 10.3389/fphys.2019.00324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
Minimizing central nervous system (CNS) injury from preterm birth depends upon identification of the critical pathways that underlie essential neurodevelopmental and CNS pathophysiology. While chorioamnionitis (CHORIO), is a leading cause of preterm birth, the precise mechanism linking prenatal brain injury and long-term CNS injury is unknown. The chemokine (C-X-C motif) ligand 1 (CXCL1) and its cognate receptor, CXCR2, are implicated in a variety of uterine and neuropathologies, however, their role in CNS injury associated with preterm birth is poorly defined. To evaluate the putative efficacy of CXCR2 blockade in neural repair secondary to CHORIO, we tested the hypothesis that transient postnatal CXCR2 antagonism would reduce neutrophil activation and mitigate cerebral microstructural injury in rats. To this end, a laparotomy was performed on embryonic day 18 (E18) in Sprague Dawley rats, with uterine arteries transiently occluded for 60 min, and lipopolysaccharide (LPS, 4 μg/sac) injected into each amniotic sac. SB225002, a CXCR2 antagonist (3 mg/kg), was administered intraperitoneally from postnatal day 1 (P1)-P5. Brains were collected on P7 and P21 and analyzed with western blot, immunohistochemistry and ex vivo diffusion tensor imaging (DTI). Results demonstrate that transient CXCR2 blockade reduced cerebral neutrophil activation (myeloperoxidase expression/MPO) and mitigated connexin43 expression, indicative of reduced neuroinflammation at P7 (p < 0.05 for all). CXCR2 blockade also reduced alpha II-spectrin calpain-mediated cleavage, improved pNF/NF ratio, and minimized Iba1 and GFAP expression consistent with improved neuronal and axonal health and reduced gliosis at P21. Importantly, DTI revealed diffuse white matter injury and decreased microstructural integrity following CHORIO as indicated by lower fractional anisotropy (FA) and elevated radial diffusivity (RD) in major white matter tracts (p < 0.05). Early postnatal CXCR2 blockade also reduced microstructural abnormalities in white matter and hippocampus at P21 (p < 0.05). Together, these data indicate that transient postnatal blockade of CXCR2 ameliorates perinatal abnormalities in inflammatory signaling, and facilitates neural repair following CHORIO. Further characterization of neuroinflammatory signaling, specifically via CXCL1/CXCR2 through the placental-fetal-brain axis, may clarify stratification of brain injury following preterm birth, and improve use of targeted interventions in this highly vulnerable patient population.
Collapse
Affiliation(s)
- Tracylyn R. Yellowhair
- Department of Pediatrics, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Jessie C. Newville
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Shahani Noor
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Jessie R. Maxwell
- Department of Pediatrics, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Erin D. Milligan
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Department of Pediatrics, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
32
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
33
|
Haarmann A, Schuhmann MK, Silwedel C, Monoranu CM, Stoll G, Buttmann M. Human Brain Endothelial CXCR2 is Inflammation-Inducible and Mediates CXCL5- and CXCL8-Triggered Paraendothelial Barrier Breakdown. Int J Mol Sci 2019; 20:ijms20030602. [PMID: 30704100 PMCID: PMC6387364 DOI: 10.3390/ijms20030602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood–brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood–brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood–brain barrier stabilization.
Collapse
Affiliation(s)
- Axel Haarmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany.
| | | | - Christine Silwedel
- University Children's Hospital, University of Würzburg, 97080 Würzburg, Germany.
| | | | - Guido Stoll
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany.
| | - Mathias Buttmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany.
- Department of Neurology, Caritas Hospital, 97980 Bad Mergentheim, Germany.
| |
Collapse
|
34
|
SenGupta S, Subramanian BC, Parent CA. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol 2018; 105:449-462. [PMID: 30549315 DOI: 10.1002/jlb.3ri0718-282r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/20/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
The directed migration of neutrophils to sites of injury or infection is mediated by complex networks of chemoattractant-receptor signaling cascades. The recent appreciation of neutrophils as active participants in tumor progression and metastasis has drawn attention to a number of chemokine-receptor systems that may drive their recruitment to tumors. However, the dynamic nature of the tumor microenvironment (TME) along with the phenotypic diversity among tumor-associated neutrophils (TANs) call for a more comprehensive approach to understand neutrophil trafficking to tumors. Here, we review recent advances in understanding how guidance cues underlie neutrophil migration to primary and secondary tumor sites. We also discuss how the presence of other myeloid cells, such as functionally diverse subsets of tumor-associated macrophages (TAMs), can further influence neutrophil accumulation in tumors. Finally, we highlight the importance of hypoxia sensing in localizing TAMs and TANs in the tumor niche and provide a cohesive view on how both myeloid cell types shape TME-associated extracellular matrix organization, which in turn contribute to tumor progression.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Jones MV, Levy M. Effect of CXCR2 Inhibition on Behavioral Outcomes and Pathology in Rat Model of Neuromyelitis Optica. J Immunol Res 2018; 2018:9034695. [PMID: 30648122 PMCID: PMC6311856 DOI: 10.1155/2018/9034695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To reduce immune-mediated damage in a rat model of neuromyelitis optica (NMO) by blocking neutrophil migration using SCH527123, a drug that inhibits CXCR2. BACKGROUND Neuromyelitis optica is a relapsing autoimmune disease that preferentially targets the optic nerves and spinal cord leading to blindness and paralysis. Part of the immunopathogenesis of this disease is thought to involve neutrophils, which are present within NMO lesions. We tested the effect of blocking neutrophil migration in an NMO rat model. METHODS The Lewis rat model of NMO uses a myelin-reactive experimental autoimmune encephalomyelitis (EAE) background with passive transfer of pooled human antibody from patients with aquaporin-4 (AQP4) seropositive NMO at onset of EAE symptoms. We treated rats early in the course of EAE with CXCR2 inhibitor and assessed the extent of neutrophil infiltration into the spinal cord and the extent of AQP4 depletion. RESULTS CXCR2 inhibitor decreased neutrophil migration into the spinal cord of AQP4 IgG-treated EAE rats. However, there was no difference in the acute behavioral signs of EAE or the extent and distribution of AQP4 lesions. This suggests that neutrophils are not centrally involved in the immunopathogenesis of the Lewis rat NMO disease model. CONCLUSIONS CXCR2 inhibitor blocks neutrophil migration into the spinal cord during EAE but does not significantly reduce inflammation or AQP4 lesions in the Lewis rat model of NMO.
Collapse
Affiliation(s)
- Melina V. Jones
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
36
|
Ratajczak J, Vangansewinkel T, Gervois P, Merckx G, Hilkens P, Quirynen M, Lambrichts I, Bronckaers A. Angiogenic Properties of 'Leukocyte- and Platelet-Rich Fibrin'. Sci Rep 2018; 8:14632. [PMID: 30279483 PMCID: PMC6168453 DOI: 10.1038/s41598-018-32936-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is an autologous platelet concentrate, consisting of a fibrin matrix enriched with platelets, leukocytes and a plethora of cytokines and growth factors. Since L-PRF is produced bedside from whole blood without the use of an anti-coagulant, it is becoming a popular adjuvant in regenerative medicine. While other types of platelet concentrates have been described to stimulate blood vessel formation, little is known about the angiogenic capacities of L-PRF. Therefore, this study aimed to fully characterize the angiogenic potential of L-PRF. With an antibody array, the growth factors released by L-PRF were determined and high levels of CXC chemokine receptor 2 (CXCR-2) ligands and epidermal growth factor (EGF) were found. L-PRF induced in vitro key steps of the angiogenic process: endothelial proliferation, migration and tube formation. In addition, we could clearly demonstrate that L-PRF is able to induce blood vessel formation in vivo, the chorioallantoic membrane assay. In conclusion, we could demonstrate the angiogenic capacity of L-PRF both in vitro and in vivo, underlying the clinical potential of this easy-to-use platelet concentrate.
Collapse
Affiliation(s)
- Jessica Ratajczak
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Greet Merckx
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Petra Hilkens
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences, Katholieke Universiteit Leuven (KUL) & Periodontology, University Hospitals Leuven, Leuven, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
37
|
He Q, Shi X, Zhou B, Teng J, Zhang C, Liu S, Lian J, Luo B, Zhao G, Lu H, Xu Y, Lian Y, Jia Y, Zhang Y. Interleukin 8 (CXCL8)-CXC chemokine receptor 2 (CXCR2) axis contributes to MiR-4437-associated recruitment of granulocytes and natural killer cells in ischemic stroke. Mol Immunol 2018; 101:440-449. [PMID: 30096583 DOI: 10.1016/j.molimm.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023]
Abstract
Granulocytes and natural killer (NK) cells have been linked to brain injury in ischemic stroke. However, their recruitment from peripheral leucocytes in stroke patients is not well understood. Here, the expression of the interleukin 8 (CXCL8) in plasma, and CXC chemokine receptor 2 (CXCR2) in peripheral leucocytes of patients with ischemic stroke were evaluated. Based on the results, CXCR2 expression positively correlated with granulocytes and NK cells, which were in turn attracted by CXCL8. The results also indicated that CXCR2 was a direct target of microRNA (miR)-4437, a negative regulator of CXCR2, which was downregulated in peripheral leucocytes from patients with ischemic stroke. Furthermore, serum CXCL8 levels were associated with the infarct volume and functional outcomes in patients with ischemic stroke. The results of the receiver operating characteristic curve analysis with an optimal cut-off value of 34 pg/mL indicated serum CXCL8 levels could be a prognostic indicator for ischemic stroke. In conclusion, these data highlighted the involvement of the CXCL8-CXCR2 chemotactic axis in the recruitment of granulocytes and NK cells in ischemic stroke. Furthermore, miR-4437 was suggested as a novel target for treating ischemic stroke, while the serum CXCL8 level could be a prognostic factor for ischemic stroke.
Collapse
Affiliation(s)
- Qianyi He
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaojuan Shi
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bin Zhou
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingyao Lian
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hong Lu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yajun Lian
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanjie Jia
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Key Laboratory for Tumor Immunology and Immunotherapy of Henan Province, Zhengzhou 450052, Henan, China.
| |
Collapse
|
38
|
Capozzi ME, Giblin MJ, Penn JS. Palmitic Acid Induces Müller Cell Inflammation that is Potentiated by Co-treatment with Glucose. Sci Rep 2018; 8:5459. [PMID: 29626212 PMCID: PMC5889388 DOI: 10.1038/s41598-018-23601-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic hyperglycemia is thought to be the major stimulator of retinal dysfunction in diabetic retinopathy (DR). Thus, many diabetes-related systemic factors have been overlooked as inducers of DR pathology. Cell culture models of retinal cell types are frequently used to mechanistically study DR, but appropriate stimulators of DR-like factors are difficult to identify. Furthermore, elevated glucose, a gold standard for cell culture treatments, yields little to no response from many primary human retinal cells. Thus, the goal of this project was to demonstrate the effectiveness of the free fatty acid, palmitic acid and compare its use alone and in combination with elevated glucose as a stimulus for human Müller cells, a retinal glial cell type that is activated early in DR pathogenesis and uniquely responsive to fatty acids. Using RNA sequencing, we identified a variety of DR-relevant pathways, including NFκB signaling and inflammation, intracellular lipid signaling, angiogenesis, and MAPK signaling, that were stimulated by palmitic acid, while elevated glucose alone did not significantly alter any diabetes-relevant pathways. Co-treatment of high glucose with palmitic acid potentiated the expression of several DR-relevant angiogenic and inflammatory targets, including PTGS2 (COX-2) and CXCL8 (IL-8).
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA.
| | - Meredith J Giblin
- Department of Cell and Developmental Biology at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
| | - John S Penn
- Department of Molecular Physiology and Biophysics at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
- Department of Cell and Developmental Biology at Vanderbilt University, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
- Department of Ophthalmology and Visual Sciences at Vanderbilt University Medical Center, 1301 Medical Center Drive TVC B706-A, Nashville, TN, 37232-0028, USA
| |
Collapse
|
39
|
Lu H, Yang T, Xu Z, Lin X, Ding Q, Zhang Y, Cai X, Dong K, Gong S, Zhang W, Patel M, Copley RCB, Xiang J, Guan X, Wren P, Ren F. Discovery of Novel 1-Cyclopentenyl-3-phenylureas as Selective, Brain Penetrant, and Orally Bioavailable CXCR2 Antagonists. J Med Chem 2018; 61:2518-2532. [DOI: 10.1021/acs.jmedchem.7b01854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongfu Lu
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Ting Yang
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Zhongmiao Xu
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xichen Lin
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Qian Ding
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yueting Zhang
- R&D Projects Clinical Platforms and Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xin Cai
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Kelly Dong
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Sophie Gong
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Wei Zhang
- Platform Technology Sciences, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Metul Patel
- Platform Technology Sciences, GSK Pharmaceuticals R&D, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Royston C. B. Copley
- Platform Technology & Science, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jianing Xiang
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xiaoming Guan
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Paul Wren
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Feng Ren
- Neurosciences Therapeutic Area Unit, GSK Pharmaceuticals R&D, 898 Halei Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
40
|
Zhao Y, Zhang X, Zhao H, Wang J, Zhang Q. CXCL5 secreted from adipose tissue-derived stem cells promotes cancer cell proliferation. Oncol Lett 2017; 15:1403-1410. [PMID: 29434831 PMCID: PMC5777118 DOI: 10.3892/ol.2017.7522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/24/2017] [Indexed: 01/25/2023] Open
Abstract
Accumulating data suggest that adipose tissue facilitates breast tumor initiation and progression through paracrine and endocrine pathways, and that adipose tissue-derived stem cell (ASC) is likely the major cell type responsible for tumorigenesis and tumor development. However, it remains unknown how ASCs exert their effects. In the present study, in cultured breast cancer cell lines, including estrogen receptor (ER)-positive MCF-7 cells and ER-negative MDA-MB-231 cells, the effects on tumor proliferation of isolated ASCs from human breasts were examined. The expression of 174 cytokines was additionally identified in this medium. With an anti-human C-X-C motif ligand 5 (CXCL5) monoclonal antibody, the effects of neutralization of CXCL5 on the actions of ASCs in a co-culture medium of ASCs and tumor cells were studied The results demonstrated that ASCs significantly increased the number of breast cancer cells compared with controls. Similarly, the co-culture medium of ASCs with breast cancer cells exhibited potent effects on tumor cell proliferation. In the co-culture medium of ASCs with breast cancer cells, CXCL5 levels were significantly increased. In addition, depletion of CXCL5 with its specific antibody in ASC-conditioned medium blocked the stimulatory effect of ASCs on the proliferation of breast cancer cells. To the best of our knowledge, these results indicate for the first time that ASC-secreted CXCL5 is a key factor promoting breast tumor cell proliferation.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Medical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaosan Zhang
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hong Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingxuan Wang
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingyuan Zhang
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
41
|
Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp Neurol 2017; 301:110-119. [PMID: 29117499 DOI: 10.1016/j.expneurol.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
In the United States, perinatal brain injury (PBI) is a major cause of infant mortality and childhood disability. For a large proportion of infants with PBI, central nervous system (CNS) injury begins in utero with inflammation (chorioamnionitis/CHORIO) and/or hypoxia-ischemia. While studies show CHORIO contributes to preterm CNS injury and is also a common independent risk factor for brain injury in term infants, the molecular mechanisms mediating inflammation in the placental-fetal-brain axis that result in PBI remain a gap in knowledge. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been clinically implicated in CHORIO and in mature CNS injury, although their specific role in PBI pathophysiology is poorly defined. Given CXCL1/CXCR2 signaling is essential to neural cell development and neutrophil recruitment, a key pathological hallmark of CHORIO, we hypothesized CHORIO would upregulate CXCL1/CXCR2 expression in the placenta and fetal circulation, concomitant with increased CXCL1/CXCR2 signaling in the developing brain, immune cell activation, neutrophilia, and microstructural PBI. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague Dawley rats to induce CHORIO. Specifically, uterine arteries were occluded for 60min to induce placental transient systemic hypoxia-ischemia (TSHI), followed by intra-amniotic injection of lipopolysaccharide (LPS). Pups were born at E22. Placentae, serum and brain were collected along an extended time course from E19 to postnatal day (P)15 and analyzed using multiplex electrochemiluminescence (MECI), Western blot, qPCR, flow cytometry (FC) and diffusion tensor imaging (DTI). Results demonstrate that compared to sham, CHORIO increases placental CXCL1 and CXCR2 mRNA levels, concomitant with increased CXCR2+ neutrophils. Interestingly, pup serum CXCL1 expression in CHORIO parallels this increase, with sustained elevation through P15. Analyses of CHORIO brains reveal similarly increased CXCL1/CXCR2 expression through P7, together with increased neutrophilia, microgliosis and peripheral macrophages. Similar to the placenta, cerebral neutrophilia was defined by increased CXCR2 surface expression and elevated myeloperoxidase expression (MPO), consistent with immune cell activation. Evaluation of microstructural brain injury at P15 with DTI reveals aberrant microstructural integrity in the callosal and capsular white matter, with reduced fractional anisotropy in superficial and deep layers of overlying cortex. In summary, using an established model of CHORIO that exhibits mature CNS deficits mimicking those of preterm survivors, we show CHORIO induces injury throughout the placental-fetal-brain axis with a CXCL1/CXCR2 inflammatory signature, neutrophilia, and microstructural abnormalities. These data are concomitant with abnormal cerebral CXCL1/CXCR2 expression, and support temporal aberrations in CXCL1/CXCR2 and neutrophil dynamics in the placental-fetal-brain axis following CHORIO. These investigations define novel targets for directed therapies for infants at high risk for PBI.
Collapse
|
42
|
Deftu AF, Filippi A, Gheorghe RO, Ristoiu V. CXCL1 activates TRPV1 via Gi/o protein and actin filaments. Life Sci 2017; 193:282-291. [PMID: 28966134 DOI: 10.1016/j.lfs.2017.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
AIMS CXCL1 is a chemokine with pleiotropic effects, including pain and itch. Itch, an unpleasant sensation that elicits the desire or reflex to scratch, it is evoked mainly from the skin and implicates activation of a specific subset of IB4+, C-type primary afferents. In previous studies we showed that acute application of CXCL1 induced a Ca2+ influx of low amplitude and slow kinetics in a subpopulation of transient receptor potential vanilloid type 1 (TRPV1)+/isolectin B4 (IB4)+dorsal root ganglia neurons which also responded to other itch-inducing agents. In this study we explored the mechanism behind the Ca2+ influx to better understand how CXCL1 acts on primary sensitive neurons to induce itch. MATERIALS AND METHODS Intracellular Ca2+ imaging and patch-clamp recordings on dorsal root ganglia neurons primary cultures and HEK293T cell transiently transfected with TRPV1 and CXCR2 plasmids were used to investigate the acute effect (12min application) of 4nM CXCL1. In primary cultures, the focus was on TRPV1+/IB4+ cells to which the itch-sensitive neurons belong. KEY FINDINGS The results showed that the Ca2+ influx induced by the acute application of CXCL1 is mediated mainly by TRPV1 receptors and depends on extracellular Ca2+ not on intracellular stores. TRPV1 was activated, not sensitized by CXCL1, in a CXCR2 receptors- and actin filaments-dependent manner, since specific blockers and actin depolymerizing agents disrupted the CXCL1 effect. SIGNIFICANCE This study brings additional data about the itch inducing mechanism of CXCL1 chemokine and about a new mechanism of TRPV1 activation via actin filaments.
Collapse
Affiliation(s)
- Alexandru Florian Deftu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania; Department of Medical Biophysics, University of Medicine and Pharmacy "Carol Davila", Bulevardul Eroilor Sanitari 8, 050474 Bucharest, Romania
| | - Roxana Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania.
| |
Collapse
|
43
|
Murta V, Ferrari C. Peripheral Inflammation and Demyelinating Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:263-285. [PMID: 27714694 DOI: 10.1007/978-3-319-40764-7_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent decades, several neurodegenerative diseases have been shown to be exacerbated by systemic inflammatory processes. There is a wide range of literature that demonstrates a clear but complex relationship between the central nervous system (CNS) and the immunological system, both under naïve or pathological conditions. In diseased brains, peripheral inflammation can transform "primed" microglia into an "active" state, which can trigger stronger pathological responses. Demyelinating diseases are a group of neurodegenerative diseases characterized by inflammatory lesions associated with demyelination, which in turn induces axonal damage, neurodegeneration, and progressive loss of function. Among them, the most important are multiple sclerosis (MS) and neuromyelitis optica (NMO). In this review, we will analyze the effect of specific peripheral inflammatory stimuli in the progression of demyelinating diseases and discuss their animal models. In most cases, peripheral immune stimuli are exacerbating.
Collapse
Affiliation(s)
- Verónica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Ferrari
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis 2017; 18:495-503. [PMID: 28857501 DOI: 10.1111/1751-2980.12540] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), comprising of ulcerative colitis and Crohn's disease, are inflammatory disorders of the gastrointestinal tract characterized by chronically relapsing mucosal inflammation. Neutrophils, as the effector cells of acute inflammation, have long been reported to play a role in the maintenance of intestinal homeostasis and pathogenesis of IBD. At the early stage of mucosal inflammation in patients with IBD, neutrophils flood into intestinal mucosa, phagocytose pathogenic microbes, and promote mucosal healing and resolution of inflammation. However, large numbers of neutrophils infiltrating in the inflamed mucosa and accumulating in the epithelia cause damage of mucosal architecture, compromised epithelial barrier and production of inflammatory mediators. In this review we discuss the critical roles of neutrophils in modulating innate and adaptive immune responses in intestinal mucosa, and, importantly, clarify the potential roles of neutrophils related to their production of inflammatory mediators, transenthothelial and transepithelial migration into intestinal mucosa, and the underlying mechanisms in regulating mucosal inflammation of IBD. Moreover, we also describe a new subset of neutrophils (i.e., CD177+ neutrophils) and illustrate its protective role in modulating intestinal mucosal immune responses in IBD.
Collapse
Affiliation(s)
- Guang Xi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhan Ju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
45
|
The effect of CXCR2 inhibition on seizure activity in the pilocarpine epilepsy mouse model. Brain Res Bull 2017; 134:91-98. [DOI: 10.1016/j.brainresbull.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
|
46
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
47
|
Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory Disequilibrium in Stroke. Circ Res 2017; 119:142-58. [PMID: 27340273 DOI: 10.1161/circresaha.116.308022] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Over the past several decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. Understanding the benefits of timely reperfusion has led to the development of thrombolytic therapy as the cornerstone of current management of ischemic stroke, but there remains much to be learned about mechanisms of neuronal ischemic and reperfusion injury and associated inflammation. For ischemic stroke, novel therapeutic targets have continued to remain elusive. When considering modern molecular biological techniques, advanced translational stroke models, and clinical studies, a consistent pattern emerges, implicating perturbation of the immune equilibrium by stroke in both central nervous system injury and repair responses. Stroke triggers activation of the neuroimmune axis, comprised of multiple cellular constituents of the immune system resident within the parenchyma of the brain, leptomeninges, and vascular beds, as well as through secretion of biological response modifiers and recruitment of immune effector cells. This neuroimmune activation can directly impact the initiation, propagation, and resolution phases of ischemic brain injury. To leverage a potential opportunity to modulate local and systemic immune responses to favorably affect the stroke disease curve, it is necessary to expand our mechanistic understanding of the neuroimmune axis in ischemic stroke. This review explores the frontiers of current knowledge of innate and adaptive immune responses in the brain and how these responses together shape the course of ischemic stroke.
Collapse
Affiliation(s)
- Danica Petrovic-Djergovic
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor
| | - Sascha N Goonewardena
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor
| | - David J Pinsky
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor.
| |
Collapse
|
48
|
Early elevated levels of soluble triggering receptor expressed on myeloid cells-1 in subarachnoid hemorrhage patients. Neurol Sci 2017; 38:873-877. [DOI: 10.1007/s10072-017-2853-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/15/2017] [Indexed: 02/03/2023]
|
49
|
Wang L, Zhao XC, Cui W, Ma YQ, Ren HL, Zhou X, Fassett J, Yang YZ, Chen Y, Xia YL, Du J, Li HH. Genetic and Pharmacologic Inhibition of the Chemokine Receptor CXCR2 Prevents Experimental Hypertension and Vascular Dysfunction. Circulation 2016; 134:1353-1368. [PMID: 27678262 PMCID: PMC5084654 DOI: 10.1161/circulationaha.115.020754] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/08/2016] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Background: The recruitment of leukocytes to the vascular wall is a key step in hypertension development. Chemokine receptor CXCR2 mediates inflammatory cell chemotaxis in several diseases. However, the role of CXCR2 in hypertension development and the underlying mechanisms remain unknown. Methods: Angiotensin II (490 ng·kg-1·min-1) or deoxycorticosterone acetate (DOCA) salt–induced mouse hypertensive models in genetic ablation, pharmacologic inhibition of CXCR2, and adoptive bone marrow transfer mice were used to determine the role of CXCR2 in hypertension (measured by radiotelemetry and tail-cuff system), inflammation (verified by flow cytometry and quantitative real-time polymerase chain reaction [PCR] analysis), vascular remodeling (studied by haematoxylin and eosin and Masson’s trichrome staining), vascular dysfunction (assessed by aortic ring), and oxidative stress (indicated by nicotinamide adenine dinucleotide phosphate [NADPH] oxidase activity, dihydroethidium staining, and quantitative real-time PCR analysis). Moreover, the blood CXCR2+ cells in normotensive controls and hypertension patients were analyzed by flow cytometry. Results: Angiotensin II significantly upregulated the expression of CXCR2 mRNA and protein and increased the number of CD45+ CXCR2+ cells in mouse aorta (n=8 per group). Selective CXCR2 knockout (CXCR2-/-) or pharmacological inhibition of CXCR2 markedly reduced angiotensin II- or DOCA-salt-induced blood pressure elevation, aortic thickness and collagen deposition, accumulation of proinflammatory cells into the vascular wall, and expression of cytokines (n=8 per group). CXCR2 inhibition also ameliorated angiotensin II-induced vascular dysfunction and reduced vascular superoxide formation, NADPH activity, and expression of NADPH oxidase subunits (n=6 per group). Bone marrow reconstitution of wild-type mice with CXCR2-/- bone marrow cells also significantly abolished angiotensin II-induced responses (n=6 per group). It is important to note that CXCR2 blockade reversed established hypertension induced by angiotensin II or DOCA-salt challenge (n=10 per group). Furthermore, we demonstrated that CXCR2+ proinflammatory cells were higher in hypertensive patients (n=30) compared with normotensive individuals (n=20). Conclusions: Infiltration of CXCR2+ cells plays a pathogenic role in arterial hypertension and vascular dysfunction. Inhibition of CXCR2 pathway may represent a novel therapeutic approach to treat hypertension.
Collapse
Affiliation(s)
- Lei Wang
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Xue-Chen Zhao
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Wei Cui
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yong-Qiang Ma
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Hua-Liang Ren
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Xin Zhou
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - John Fassett
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yan-Zong Yang
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yingjie Chen
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yun-Long Xia
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Jie Du
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Hui-Hua Li
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.).
| |
Collapse
|
50
|
Ricard-Blum S, Vallet SD. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells. Front Pharmacol 2016; 7:11. [PMID: 26869928 PMCID: PMC4740388 DOI: 10.3389/fphar.2016.00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| | - Sylvain D Vallet
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| |
Collapse
|