1
|
Casella R, Miniello A, Buta F, Yacoub MR, Nettis E, Pioggia G, Gangemi S. Atopic Dermatitis and Autism Spectrum Disorders: Common Role of Environmental and Clinical Co-Factors in the Onset and Severity of Their Clinical Course. Int J Mol Sci 2024; 25:8936. [PMID: 39201625 PMCID: PMC11354676 DOI: 10.3390/ijms25168936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Increasing evidence suggests an association between atopic dermatitis, the most chronic inflammatory disease of the skin, and autism spectrum disorders, which are a group of neurodevelopmental diseases. Inflammation and immune dysregulation associated with genetic and environmental factors seem to characterize the pathophysiological mechanisms of both conditions. We conducted a literature review of the PubMed database aimed at identifying the clinical features and alleged risk factors that could be used in clinical practice to predict the onset of ASD and/or AD or worsen their prognosis in the context of comorbidities.
Collapse
Affiliation(s)
- Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Federica Buta
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Hospital San Raffaele, 20132 Milan, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| |
Collapse
|
2
|
Elgenidy A, Gad EF, Shabaan I, Abdelrhem H, Wassef PG, Elmozugi T, Abdelfattah M, Mousa H, Nasr M, Salah-Eldin M, Altaweel A, Hussein A, Bazzazeh M, Elganainy MA, Ali AM, Ezzat M, Elhoufey A, Alatram AA, Hammour A, Saad K. Examining the association between autism spectrum disorder and atopic eczema: meta-analysis of current evidence. Pediatr Res 2024:10.1038/s41390-024-03456-1. [PMID: 39128926 DOI: 10.1038/s41390-024-03456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVES This study aims to investigate the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. METHODS A comprehensive review of literature was conducted to identify relevant studies published up to August 2023. Various electronic databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane, were searched using specific keywords related to ASD and AE. RESULTS The meta-analysis covered a total of 30 studies. The first analysis included 23 studies with a combined total of 147430 eczema patients in the ASD group and 8895446 eczema patients in non-ASD group. We calculated the risk ratio of eczema in ASD and non-ASD groups, which revealed a significantly higher risk of eczema in patients with ASD (RR 1.34; 95% CI 1.03, 1.76). The second analysis included seven studies with a combined total of 3570449 ASD patients in the AE group and 3253973 in the non-Eczema group. The risk ratio of ASD in the Eczema and Non-Eczema groups showed an insignificantly increased risk of ASD in patients with eczema (RR 1.67; 95% CI 0.91, 3.06). CONCLUSION This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association. IMPACT Our study conducted a meta-analysis on the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. The review we conducted covered a total of 30 studies. This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association.
Collapse
Affiliation(s)
| | - Eman F Gad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Islam Shabaan
- Department of Psychiatry, Faculty of Medicine, Al Azhar University, Assiut, Egypt
| | | | | | - Taher Elmozugi
- Faculty of Medicine, Benghazi University, Benghazi, Libya
| | | | - Hisham Mousa
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Nasr
- Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| | | | - Ahmed Altaweel
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | | | - Ahmed M Ali
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Ezzat
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Abdulrahman A Alatram
- Department of Psychiatry, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Ahmed Hammour
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
3
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
4
|
Mohamed DI, Abo Nahas HH, Elshaer AM, El-Waseef DAEDA, El-Kharashi OA, Mohamed SMY, Sabry YG, Almaimani RA, Almasmoum HA, Altamimi AS, Ibrahim IAA, Alshawwa SZ, Jaremko M, Emwas AH, Saied EM. Unveiling the interplay between NSAID-induced dysbiosis and autoimmune liver disease in children: insights into the hidden gateway to autism spectrum disorders. Evidence from ex vivo, in vivo, and clinical studies. Front Cell Neurosci 2023; 17:1268126. [PMID: 38026692 PMCID: PMC10644687 DOI: 10.3389/fncel.2023.1268126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorders (ASD) represent a diverse group of neuropsychiatric conditions, and recent evidence has suggested a connection between ASD and microbial dysbiosis. Immune and gastrointestinal dysfunction are associated with dysbiosis, and there are indications that modulating the microbiota could improve ASD-related behaviors. Additionally, recent findings highlighted the significant impact of microbiota on the development of autoimmune liver diseases, and the occurrence of autoimmune liver disease in children with ASD is noteworthy. In the present study, we conducted both an in vivo study and a clinical study to explore the relationship between indomethacin-induced dysbiosis, autoimmune hepatitis (AIH), and the development of ASD. Our results revealed that indomethacin administration induced intestinal dysbiosis and bacterial translocation, confirmed by microbiological analysis showing positive bacterial translocation in blood cultures. Furthermore, indomethacin administration led to disturbed intestinal permeability, evidenced by the activation of the NLRP3 inflammasomes pathway and elevation of downstream biomarkers (TLR4, IL18, caspase 1). The histological analysis supported these findings, showing widened intestinal tight junctions, decreased mucosal thickness, inflammatory cell infiltrates, and collagen deposition. Additionally, the disturbance of intestinal permeability was associated with immune activation in liver tissue and the development of AIH, as indicated by altered liver function, elevated ASMA and ANA in serum, and histological markers of autoimmune hepatitis. These results indicate that NSAID-induced intestinal dysbiosis and AIH are robust triggers for ASD existence. These findings were further confirmed by conducting a clinical study that involved children with ASD, autoimmune hepatitis (AIH), and a history of NSAID intake. Children exposed to NSAIDs in early life and complicated by dysbiosis and AIH exhibited elevated serum levels of NLRP3, IL18, liver enzymes, ASMA, ANA, JAK1, and IL6. Further, the correlation analysis demonstrated a positive relationship between the measured parameters and the severity of ASD. Our findings suggest a potential link between NSAIDs, dysbiosis-induced AIH, and the development of ASD. The identified markers hold promise as indicators for early diagnosis and prognosis of ASD. This research highlights the importance of maintaining healthy gut microbiota and supports the necessity for further investigation into the role of dysbiosis and AIH in the etiology of ASD.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Asmaa M. Elshaer
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Soha M. Y. Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmine Gamal Sabry
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulmalik S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Advanced Nanofabrication Imaging and Characterization Center, King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Man MQ, Yang S, Mauro TM, Zhang G, Zhu T. Link between the skin and autism spectrum disorder. Front Psychiatry 2023; 14:1265472. [PMID: 37920540 PMCID: PMC10619695 DOI: 10.3389/fpsyt.2023.1265472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurological disorder. Although the etiologies of ASD have been widely speculated, evidence also supports the pathogenic role of cutaneous inflammation in autism. The prevalence of ASD is higher in individuals with inflammatory dermatoses than in those without inflammatory diseases. Anti-inflammation therapy alleviates symptoms of ASD. Recent studies suggest a link between epidermal dysfunction and ASD. In the murine model, mice with ASD display epidermal dysfunction, accompanied by increased expression levels of proinflammatory cytokines in both the skin and the brain. Children with ASD, which develops in their early lifetime, also exhibit altered epidermal function. Interestingly, improvement in epidermal function alleviates some symptoms of ASD. This line of evidence suggests a pathogenic role of cutaneous dysfunction in ASD. Either an improvement in epidermal function or effective treatment of inflammatory dermatoses can be an alternative approach to the management of ASD. We summarize here the current evidence of the association between the skin and ASD.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, China
| | - Theodora M. Mauro
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
7
|
Up-regulated serum levels of TAM receptor tyrosine kinases in a group of Egyptian autistic children. J Neuroimmunol 2022; 364:577811. [PMID: 35033774 DOI: 10.1016/j.jneuroim.2022.577811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022]
Abstract
TAM receptor family belongs to receptor tyrosine kinases (TAMRTKs). It includes three receptors; Tyro-3, Axl and Mer. TAMRTKs has a great role in resolution of inflammation due to their role in clearance of apoptotic cells by macrophages. Dysregulated TAM signaling pathways are associated with many autoimmune diseases and chronic inflammatory disorders. Autism may be an autoimmune disease in some patients. This work was the first study that investigated serum levels of the soluble ectodomain shed TAMRTKs in a group of autistic children. Serum levels of TAMRTKs were measured by ELISA in 30 autistic children aged between 3.5 and 11 years and 30 age and sex-matched healthy control children. Serum levels of TAMRTKs were significantly higher in autistic children than healthy control children (P < 0.001). Patients with severe autism had significantly higher serum levels of TAMRTKs than patients with mild to moderate autism (P < 0.01). In addition, there were significant positive correlations between scores of the Childhood Autism Rating Scale (CARS) and serum levels of TAMRTKs in autistic patients, (P < 0.01). In conclusions, serum levels of TAMRTKs were up-regulated in autistic children with significant positive correlations with the degree of the disease severity. This initial report requires further studies to investigate the relationship between TAMRTKs and autism.
Collapse
|
8
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
9
|
Thorsteinsdottir S, Olsen A, Olafsdottir AS. Fussy Eating among Children and Their Parents: Associations in Parent-Child Dyads, in a Sample of Children with and without Neurodevelopmental Disorders. Nutrients 2021; 13:2196. [PMID: 34202394 PMCID: PMC8308294 DOI: 10.3390/nu13072196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Parents are important agents in shaping children's eating habits. However, the associations between children's and parents' eating behaviors are complex and may be convoluted for various reasons, such as parenting feeding styles, stressful mealtimes, and children's neurodevelopmental disorders (ND), such as Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD). The purpose of this study was to analyze associations between parents and their children's fussy eating, in a cross-sectional sample of children, with and without ND. Ninety-seven parents answered screening questionnaires prior to an intervention study. Associations were investigated using two-way ANOVAs and chi-square analyses. Overall, children with ND accepted fewer food items and consumed unhealthier foods more frequently than children without ND. Fussy eating parents had children who accepted fewer food items and consumed unhealthier foods more frequently than children whose parents were not fussy eaters. Interaction effects were not significant. A higher proportion of fussy eating parents, than non-fussy eating parents, had children who had difficulties with combined foods and hidden ingredients. The findings highlight the need for further investigation into the relationships between parents' influence on their children's eating behavior and food consumption, as well as possible reciprocal impacts.
Collapse
Affiliation(s)
- Sigrun Thorsteinsdottir
- Faculty of Health Promotion, Sport and Leisure Studies, School of Education, University of Iceland, 105 Reykjavík, Iceland;
| | - Annemarie Olsen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark;
| | - Anna S. Olafsdottir
- Faculty of Health Promotion, Sport and Leisure Studies, School of Education, University of Iceland, 105 Reykjavík, Iceland;
| |
Collapse
|
10
|
Kern JK, Geier DA, Mehta JA, Homme KG, Geier MR. Mercury as a hapten: A review of the role of toxicant-induced brain autoantibodies in autism and possible treatment considerations. J Trace Elem Med Biol 2020; 62:126504. [PMID: 32534375 DOI: 10.1016/j.jtemb.2020.126504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mercury has many direct and well-recognized neurotoxic effects. However, its immune effects causing secondary neurotoxicity are less well-recognized. Mercury exposure can induce immunologic changes in the brain indicative of autoimmune dysfunction, including the production of highly specific brain autoantibodies. Mercury, and in particular, Thimerosal, can combine with a larger carrier, such as an endogenous protein, thereby acting as a hapten, and this new molecule can then elicit the production of antibodies. METHODS A comprehensive search using PubMed and Google Scholar for original studies and reviews related to autism, mercury, autoantibodies, autoimmune dysfunction, and haptens was undertaken. All articles providing relevant information from 1985 to date were examined. Twenty-three studies were identified showing autoantibodies in the brains of individuals diagnosed with autism and all were included and discussed in this review. RESULTS Research shows mercury exposure can result in an autoimmune reaction that may be causal or contributory to autism, especially in children with a family history of autoimmunity. The autoimmune pathogenesis in autism is demonstrated by the presence of brain autoantibodies (neuroantibodies), which include autoantibodies to: (1) human neuronal progenitor cells; (2) myelin basic protein (MBP); (3) neuron-axon filament protein (NAFP); (4) brain endothelial cells; (5) serotonin receptors; (6) glial fibrillary acidic protein (GFAP); (7) brain derived neurotrophic factor (BDNF); (8) myelin associated glycoprotein (MAG); and (9) various brain proteins in the cerebellum, hypothalamus, prefrontal cortex, cingulate gyrus, caudate putamen, cerebral cortex and caudate nucleus. CONCLUSION Recent evidence suggests a relationship between mercury exposure and brain autoantibodies in individuals diagnosed with autism. Moreover, brain autoantibody levels in autism are found to correlate with both autism severity and blood mercury levels. Treatments to reduce mercury levels and/or brain autoantibody formation should be considered in autism.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA; CONEM US Autism Research Group, Allen, TX, USA.
| | - David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA
| | - Jyutika A Mehta
- Texas Woman's University, Department of Communication Sciences and Disorders, Denton, TX, USA
| | - Kristin G Homme
- CoMeD, Inc., Silver Spring, MD, USA; International Academy of Oral Medicine and Toxicology, Champions Gate, FL, USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA
| |
Collapse
|
11
|
Alzghoul L. Role of Vitamin D in Autism Spectrum Disorder. Curr Pharm Des 2020; 25:4357-4367. [DOI: 10.2174/1381612825666191122092215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
:
Autism spectrum disorder (ASD) is a pervasive developmental disorder with heterogeneous etiology.
Vitamin D can function as a fat-soluble vitamin as well as a hormone, and can exert its effect through both genomic
and non-genomic mechanisms. In the last decades, several studies have examined the relationship between
vitamin D levels and ASD. These studies demonstrated that low vitamin D status in early development has been
hypothesized as an environmental risk factor for ASD. Both in vivo and in vitro studies have demonstrated that
vitamin D deficiency in early life can alter brain development, dysregulates neurotransmitter balance in the brain,
decreases body and brain antioxidant ability, and alters the immune system in ways that resemble pathological
features commonly seen in ASD. In this review, we focused on the association between vitamin D and ASD. In
addition, the above-mentioned mechanisms of action that link vitamin D deficiency with ASD were also discussed.
Finally, clinical trials of vitamin D supplementation treatment of ASD have also been discussed.
Collapse
Affiliation(s)
- Loai Alzghoul
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
12
|
Fujii T, Yamasaki R, Kira JI. Novel Neuropathic Pain Mechanisms Associated With Allergic Inflammation. Front Neurol 2019; 10:1337. [PMID: 31920952 PMCID: PMC6928142 DOI: 10.3389/fneur.2019.01337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases are associated with central and peripheral nervous system diseases such as autism spectrum disorders and eosinophilic granulomatosis with polyangiitis, which frequently causes mononeuritis multiplex. Thus, it is possible that patients with an atopic constitution might develop multifocal inflammation in central and peripheral nervous system tissues. In a previous study in Japan, we reported a rare form of myelitis with persistent neuropathic pain (NeP) in patients with allergic disorders. However, the underlying mechanism of allergic inflammation-related NeP remains to be elucidated. First, we analyzed the effect of allergic inflammation on the nociceptive system in the spinal cord. Mice with atopy showed microglial and astroglial activation in the spinal cord and tactile allodynia. In a microarray analysis of isolated microglia from the spinal cord, endothelin receptor type B (EDNRB) was the most upregulated cell surface receptor in mice with atopy. Immunohistochemical analysis demonstrated EDNRB expression was upregulated in microglia and astroglia. The EDNRB antagonist BQ788 abolished glial activation and allodynia. These findings indicated that allergic inflammation induced widespread glial activation through the EDNRB pathway and NeP. Second, we investigated whether autoantibody-mediated pathogenesis underlies allergic inflammation-related NeP. We detected specific autoantibodies to small dorsal root ganglion (DRG) neurons and their nerve terminals in the dorsal horns of NeP patients with allergic disorders. An analysis of IgG subclasses revealed a predominance of IgG2. These autoantibodies were mostly colocalized with isolectin B4- and P2X3-positive unmyelinated C-fiber type small DRG neurons. By contrast, immunostaining for S100β, a myelinated DRG neuron marker, showed no colocalization with patient IgG. Immunoprecipitation and liquid chromatography-tandem mass spectrometry identified plexin D1 as a target autoantigen. Patients with anti-plexin D1 antibodies often present with burning pain and thermal hyperalgesia. Immunotherapies, including plasma exchange, are effective for NeP management. Therefore, anti-plexin D1 antibodies may be pathogenic for immune-mediated NeP, especially under allergic inflammation conditions. Thus, allergic inflammation may induce NeP through glial inflammation in the spinal cord and the anti-plexin D1 antibody-mediated impairment of small DRG neurons.
Collapse
Affiliation(s)
- Takayuki Fujii
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
14
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
15
|
Feng JY, Li HH, Shan L, Wang B, Jia FY, DU L. [Clinical effect of vitamin D 3 combined with the Early Start Denver Model in the treatment of autism spectrum disorder in toddlers]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:337-341. [PMID: 31014425 PMCID: PMC7389219 DOI: 10.7499/j.issn.1008-8830.2019.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the clinical effect of vitamin D3 (VitD3) combined with the Early Start Denver Model (ESDM) in the treatment of autism spectrum disorder (ASD) in toddlers. METHODS A total of 102 toddlers with ASD, aged 1 to 3 years, were enrolled. According to the wishes of their parents, they were divided into conventional rehabilitation, ESDM and ESDM+VitD3 groups. Autism Behavior Checklist (ABC) and Childhood Autism Rating Scale (CARS) were used evaluate behavior problems before treatment and after 3 months of treatment. RESULTS The conventional rehabilitation group had significant reductions in the total score and the scores on somatic movement and self-care subscales of the ABC scale after 3 months of treatment (P<0.05). After 3 months of treatment, the ESDM group had significant reductions in the total score and the scores on somatic movement, self-care, social interaction and language subscales of the ABC scale (P<0.05), as well as a significant reduction in the total score of the CARS (P<0.05). After 3 months of treatment, the ESDM+VitD3 group had a significant increase in the level of 25(OH)D and significant reductions in the total score and the scores on self-care, sensation, social interaction and language subscales of the ABC scale (P<0.05), as well as a significant reduction in the total score of the CARS (P<0.05). The ESDM group had a significantly greater reduction in the score on social interaction subscale than the conventional rehabilitation group (P<0.05). The ESDM+VitD3 group had a significantly greater reduction in the score on social interaction subscale than the other two groups (P<0.05). CONCLUSIONS ESDM can effectively improve the clinical symptoms of toddlers with ASD, with a significantly better clinical effect in improving social interaction and somatic movement than conventional rehabilitation. ESDM combined with VitD3 has a significantly better clinical effect in improving social communication skills and may be one of the best strategies for improving the clinical symptoms of toddlers with ASD.
Collapse
Affiliation(s)
- Jun-Yan Feng
- Department of Developmental-Behavioral Pediatrics, First Hospital of Jilin University, Changchun 130021, China.
| | | | | | | | | | | |
Collapse
|
16
|
Di Salvo E, Casciaro M, Quartuccio S, Genovese L, Gangemi S. Do Alarmins Have a Potential Role in Autism Spectrum Disorders Pathogenesis and Progression? Biomolecules 2018; 9:E2. [PMID: 30577568 PMCID: PMC6358895 DOI: 10.3390/biom9010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) represent a disabling condition in early childhood. A number of risk factors were proposed in order to explain their pathogenesis. A multifactorial model was proposed, and data supported the implication of genetic and environmental factors. One of the most accepted speculations is the existence of an imbalance of the immune system. Altered levels of cytokines, chemokines and immunoglobulins were demonstrated in patients with ASDs; in particular, proinflammatory mediators were significantly increased. Alarmins are a multifunctional heterogeneous group of proteins, structurally belonging to specific cells or incorporated by them. They are released in the surrounding tissues as a consequence of cell damage or inflammation. Their functions are multiple as they could activate innate immunity or recruit and activate antigen-presenting cells stimulating an adaptive response. Alarmins are interesting both for understanding the inflammatory process and for diagnostic purposes as biomarkers. Moreover, recent studies, separately, showed that alarmins like interleukin (IL)-33, high-mobility group box 1 (HMGB1), heat-shock protein (HSP) and S100 protein (S100) could play a relevant role in the pathogenesis of ASDs. According to the literature, some of these alarmins could be suitable as biomarkers of inflammation in ASD. Other alarmins, by interfering with the immune system blocking pro-inflammatory mediators, could be the key for ameliorating symptoms and behaviours in autistic disorders.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- National Research Council of Italy (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), Messina 98122, Italy.
- National Research Council of Italy (CNR), Institute of Applied Science and Intelligent System (ISASI), Messina 98164, Italy.
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy.
| | | | - Lucrezia Genovese
- National Research Council of Italy (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), Messina 98122, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy.
| |
Collapse
|
17
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
18
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Al-Ayadhi LY, Attia SM. Downregulation in Helios transcription factor signaling is associated with immune dysfunction in blood leukocytes of autistic children. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:98-104. [PMID: 29698674 DOI: 10.1016/j.pnpbp.2018.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder in which immunological imbalance has been suggested to be a major etiological component. Helios, a transcription factor, has been studied extensively in the context of human T cell regulation in health and disease, yet the role of Helios signaling has not been examined in children with ASD. In the present study, we investigated the production of Helios in CD4+, CD8+, and TIM-3+, CXCR3+ cells in typically developing (TD) controls and children with ASD and in peripheral blood mononuclear cells (PBMCs). We assayed the production of IFN-γ+Helios+, IL-21+Helios+, T-bet+Helios+, and Foxp3+Helios+ cells, and determined Helios mRNA and protein expression levels in PBMCs, in TD controls and children with ASD. Our results revealed that children with ASD had lower numbers of CD4+Helios+ CD8+Helios+, TIM-3+Helios+, and CXCR3+Helios+ cells as compared to TD controls. Our results also showed that children with ASD had decreased IFN-γ+Helios+, IL-21+Helios+, T-bet+Helios+, and Helios+Foxp3+ production compared to that in TD controls. Moreover, our results indicated that children with ASD had lower Helios mRNA and protein expression levels compared to those in TD controls. These results suggest that the Helios transcription factor may be critical to immune alterations in children with ASD. Therefore, our results suggest that targeting Helios signaling might offer a strategy for developing ASD therapies.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Yousef Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
|
20
|
Casanova EL, Sharp JL, Edelson SM, Kelly DP, Casanova MF. A Cohort Study Comparing Women with Autism Spectrum Disorder with and without Generalized Joint Hypermobility. Behav Sci (Basel) 2018; 8:bs8030035. [PMID: 29562607 PMCID: PMC5867488 DOI: 10.3390/bs8030035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023] Open
Abstract
Reports suggest comorbidity between autism spectrum disorder (ASD) and the connective tissue disorder, Ehlers-Danlos syndrome (EDS). People with EDS and the broader spectrum of Generalized Joint Hypermobility (GJH) often present with immune- and endocrine-mediated conditions. Meanwhile, immune/endocrine dysregulation is a popular theme in autism research. We surveyed a group of ASD women with/without GJH to determine differences in immune/endocrine exophenotypes. ASD women 25 years or older were invited to participate in an online survey. Respondents completed a questionnaire concerning diagnoses, immune/endocrine symptom history, experiences with pain, and seizure history. ASD women with GJH (ASD/GJH) reported more immune- and endocrine-mediated conditions than their non-GJH counterparts (p = 0.001). Autoimmune conditions were especially prominent in the ASD/GJH group (p = 0.027). Presence of immune-mediated symptoms often co-occurred with one another (p < 0.001–0.020), as did endocrine-mediated symptoms (p < 0.001–0.045), irrespective of the group. Finally, the numbers of immune- and endocrine-mediated symptoms shared a strong inter-relationship (p < 0.001), suggesting potential system crosstalk. While our results cannot estimate comorbidity, they reinforce concepts of an etiological relationship between ASD and GJH. Meanwhile, women with ASD/GJH have complex immune/endocrine exophenotypes compared to their non-GJH counterparts. Further, we discuss how connective tissue regulates the immune system and how the immune/endocrine systems in turn may modulate collagen synthesis, potentially leading to higher rates of GJH in this subpopulation.
Collapse
Affiliation(s)
- Emily L Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA.
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| | - Julia L Sharp
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Desmond P Kelly
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA.
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| |
Collapse
|
21
|
Hu CC, Xu X, Xiong GL, Xu Q, Zhou BR, Li CY, Qin Q, Liu CX, Li HP, Sun YJ, Yu X. Alterations in plasma cytokine levels in chinese children with autism spectrum disorder. Autism Res 2018. [PMID: 29522267 DOI: 10.1002/aur.1940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic alterations, together with environmental risk factors during infancy and childhood, contribute significantly to the etiology of autism spectrum disorder (ASD), a heterogeneous neurodevelopmental condition characterized by impairments in social interaction and restricted, repetitive behaviors. Mounting evidence points to a critical contribution of immunological risk factors to the development of ASD. By affecting multiple neurodevelopmental processes, immune system dysfunction could act as a point of convergence between genetics and environmental factors in ASD. Previous studies have shown altered cytokine levels in individuals with ASD, but research in Asian populations are limited. Here, we measured the plasma levels of 11 candidate cytokines in ASD and typically developing (TD) children. The cohort included 41 TD children and 87 children with ASD, aged 1-6 years. We found that as compared to the TD group, children with ASD had higher plasma levels of Eotaxin, TGF-β1 and TNF-α. The increase in TGF-β1 level was most significant in males, while the increase in Eotaxin was most significant in females. Eotaxin level negatively correlated with the social affect score (SA) in ADOS, while TNF-α level positively correlated with total development quotient (DQ), measured using GMDS. These pilot findings suggest potentially important roles of Eotaxin, TGF-β1 and TNF-α in ASD in the Chinese population. Autism Res 2018, 11: 989-999. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Alteration of immune system function is an important risk factor for autism spectrum disorder (ASD). Here we found that the levels of cytokines, including Eotaxin, TGF-β1 and TNF-α, are elevated in Chinese children with ASD, as compared to typically developing children. The change in TGF-β1 level was most prominent in boys, while that of Eotaxin was more significant in girls. These results provide evidence for changes in cytokine profile in Chinese children with ASD.
Collapse
Affiliation(s)
- Chun-Chun Hu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Guo-Liang Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Bing-Rui Zhou
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Chun-Yang Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Xue Liu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Hui-Ping Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Yun-Jun Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
MÁČOVÁ L, BIČÍKOVÁ M, OSTATNÍKOVÁ D, HILL M, STÁRKA L. Vitamin D, Neurosteroids and Autism. Physiol Res 2017; 66:S333-S340. [DOI: 10.33549/physiolres.933721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin D had been for a long time investigated for its effects on bone metabolism. Recently has been observed that the incidence of some neurodevelopmental disorders (including autism) increases hand in hand with vitamin D deficiency. Indeed, vitamin D was reported to modulate the biosynthesis of neurotransmitters and neurotrophic factors; moreover, its receptor was found in the central nervous system. Vitamin D deficiency was therefore assessed as a risk factor for autism, however the biological mechanism has not yet been revealed. In our review we focused on potential connections among vitamin D, steroids and autism. Potential mechanisms of vitamin D action are also discussed.
Collapse
Affiliation(s)
- L. MÁČOVÁ
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
24
|
Serologic Markers of Autism Spectrum Disorder. J Mol Neurosci 2017; 62:420-429. [PMID: 28730336 DOI: 10.1007/s12031-017-0950-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
Abstract
According to WHO data, about 67 million people worldwide are affected by autism, and this number grows by 14% annually. Among the possible causes of autism are genetic modifications, organic lesions of the central nervous system, metabolic disorders, influence of viral and bacterial infections, chemical influence to the mother's body during pregnancy, etc. The conducted research shows that research papers published until today do not name any potential protein markers that meet the requirements of the basic parameters for evaluating the efficiency of disease diagnostics, in particular high sensitivity, specificity, and accuracy. Conducting proteomic research on a big scale in order to detect serologic markers of protein nature associated with development of autism spectrum disorders seems to be highly relevant.
Collapse
|
25
|
Esnafoglu E, Ayyıldız SN, Cırrık S, Erturk EY, Erdil A, Daglı A, Noyan T. Evaluation of serum Neuron‐specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder. Int J Dev Neurosci 2017; 61:86-91. [DOI: 10.1016/j.ijdevneu.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Erman Esnafoglu
- Department of Child and Adolescent PsychiatryTraining and Research HospitalFaculty of MedicineOrdu UniversityOrduTurkey
| | - Sema Nur Ayyıldız
- Department of BiochemistryTraining and Research HospitalFaculty of MedicineOrdu UniversityOrduTurkey
| | - Selma Cırrık
- Department of Medical Physiology, Faculty of MedicineOrdu UniversityOrduTurkey
| | - Emine Yurdakul Erturk
- Department of PediatryTraining and Research HospitalFaculty of MedicineOrdu UniversityOrduTurkey
| | - Abdullah Erdil
- Department of PediatryTraining and Research HospitalFaculty of MedicineOrdu UniversityOrduTurkey
| | - Abdullah Daglı
- Department of PediatryTraining and Research HospitalFaculty of MedicineOrdu UniversityOrduTurkey
| | - Tevfik Noyan
- Department of BiochemistryTraining and Research HospitalFaculty of MedicineOrdu UniversityOrduTurkey
| |
Collapse
|
26
|
Hori D, Tsujiguchi H, Kambayashi Y, Hamagishi T, Kitaoka M, Mitoma J, Asakura H, Suzuki F, Anyenda EO, Thao NTT, Yamada Y, Tamai S, Hayashi K, Hibino Y, Shibata A, Sagara T, Sasahara S, Matsuzaki I, Nakamura H. The Association of Autism Spectrum Disorders and Symptoms of Asthma, Allergic Rhinoconjunctivitis and Eczema among Japanese Children Aged 3 - 6 Years. Health (London) 2017. [DOI: 10.4236/health.2017.98089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Kharrazian D, Vojdani A. Correlation between antibodies to bisphenol A, its target enzyme protein disulfide isomerase and antibodies to neuron-specific antigens. J Appl Toxicol 2016; 37:479-484. [PMID: 27610592 PMCID: PMC5324640 DOI: 10.1002/jat.3383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022]
Abstract
Evidence continues to increase linking autoimmunity and other complex diseases to the chemicals commonly found in our environment. Bisphenol A (BPA) is a synthetic monomer used widely in many forms, from food containers to toys, medical products and many others. The potential for BPA to participate as a triggering agent for autoimmune diseases is likely due to its known immunological influences. The goal of this research was to determine if immune reactivity to BPA has any correlation with neurological antibodies. BPA binds to a target enzyme called protein disulfide isomerase (PDI). Myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) are neuronal antigens that are target sites for neuroinflammation and neuroautoimmunity. We determined the co‐occurrence of anti‐MBP and anti‐MOG antibodies with antibodies made against BPA bound to human serum albumin in 100 healthy human subjects. Correlation between BPA to PDI, BPA to MOG, BPA to MBP, PDI to MBP and PDI to MOG were all highly statistically significant (P < 0.0001). The outcome of our study suggests that immune reactivity to BPA‐human serum albumin and PDI has a high degree of statistical significance with substantial correlation with both MBP and MOG antibody levels. This suggests that BPA may be a trigger for the production of antibodies against PDI, MBP and MOG. Immune reactivity to BPA bound to human tissue proteins may be a contributing factor to neurological autoimmune disorders. Further research is needed to determine the exact relationship of these antibodies with neuroautoimmunities. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. This study investigated correlation of bisphenol A bound to human albumin antibodies with protein disulfide isomerase antibodies, myelin oligodendrocyte glycoprotein antibodies and myelin basic protein antibodies.
Collapse
Affiliation(s)
- Datis Kharrazian
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Aristo Vojdani
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.,Immunosciences Lab., Inc., Los Angeles, CA, 90035, USA
| |
Collapse
|
28
|
Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry 2016; 6:e844. [PMID: 27351598 PMCID: PMC4931610 DOI: 10.1038/tp.2016.77] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) affect as many as 1 in 45 children and are characterized by deficits in sociability and communication, as well as stereotypic movements. Many children also show severe anxiety. The lack of distinct pathogenesis and reliable biomarkers hampers the development of effective treatments. As a result, most children with ASD are prescribed psychopharmacologic agents that do not address the core symptoms of ASD. Autoantibodies against brain epitopes in mothers of children with ASD and many such children strongly correlate with allergic symptoms and indicate an aberrant immune response, as well as disruption of the blood-brain barrier (BBB). Recent epidemiological studies have shown a strong statistical correlation between risk for ASD and either maternal or infantile atopic diseases, such as asthma, eczema, food allergies and food intolerance, all of which involve activation of mast cells (MCs). These unique tissue immune cells are located perivascularly in all tissues, including the thalamus and hypothalamus, which regulate emotions. MC-derived inflammatory and vasoactive mediators increase BBB permeability. Expression of the inflammatory molecules interleukin (IL-1β), IL-6, 1 L-17 and tumor necrosis factor (TNF) is increased in the brain, cerebrospinal fluid and serum of some patients with ASD, while NF-kB is activated in brain samples and stimulated peripheral blood immune cells of other patients; however, these molecules are not specific. Instead the peptide neurotensin is uniquely elevated in the serum of children with ASD, as is corticotropin-releasing hormone, secreted from the hypothalamus under stress. Both peptides trigger MC to release IL-6 and TNF, which in turn, stimulate microglia proliferation and activation, leading to disruption of neuronal connectivity. MC-derived IL-6 and TGFβ induce maturation of Th17 cells and MCs also secrete IL-17, which is increased in ASD. Serum IL-6 and TNF may define an ASD subgroup that benefits most from treatment with the natural flavonoid luteolin. Atopic diseases may create a phenotype susceptible to ASD and formulations targeting focal inflammation of the brain could have great promise in the treatment of ASD.
Collapse
Affiliation(s)
- T C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Program in Cell, Molecular and Developmental Biology, Tufts University, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - I Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - A B Patel
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Program in Cell, Molecular and Developmental Biology, Tufts University, Boston, MA, USA
| | - R Doyle
- Department of Child Psychiatry, Harvard Medical School, Massachusetts General Hospital and McLean Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Zheng Z, Zhang L, Zhu T, Huang J, Qu Y, Mu D. Association between Asthma and Autism Spectrum Disorder: A Meta-Analysis. PLoS One 2016; 11:e0156662. [PMID: 27257919 PMCID: PMC4892578 DOI: 10.1371/journal.pone.0156662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
Abstract
Objective We conducted a meta-analysis to summarize the evidence from epidemiological studies of the association between asthma and autism spectrum disorder (ASD). Methods A literature search was conducted using PubMed, Embase, and Cochrane library for studies published before February 2nd, 2016. Observational studies investigating the association between asthma and ASD were included. A random effects model was used to calculate the pooled risk estimates for the outcome. Subgroup analysis was used to explore potential sources of heterogeneity and publication bias was estimated using Begg's and Egger's tests. Results Ten studies encompassing 175,406 participants and 8,809 cases of ASD were included in this meta-analysis. In the cross-sectional studies, the prevalence of asthma in ASD was 20.4%, while the prevalence of asthma in controls was 15.4% (P < 0.001). The pooled odds ratio (OR) for the prevalence of asthma in ASD in the cross-sectional studies was 1.26 (95% confidence interval (CI): 0.98–1.61) (P = 0.07), with moderate heterogeneity (I2 = 65.0%, P = 0.02) across studies. In the case-control studies, the pooled OR for the prevalence of asthma in ASD was 0.98 (95% CI: 0.68–1.43) (P = 0.94), and there was no evidence of an association between asthma and ASD. No evidence of significant publication bias on the association between asthma and ASD was found. Conclusions In conclusion, the results of this meta-analysis do not suggest an association between asthma and ASD. Further prospective studies ascertaining the association between asthma and ASD are warranted.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Tingting Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jichong Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- Department of Pediatrics and Neurology, University of California San Francisco, San Francisco, CA 94143, United States of America
- * E-mail:
| |
Collapse
|
30
|
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther 2016; 37:984-95. [PMID: 26046241 DOI: 10.1016/j.clinthera.2015.04.002] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. METHODS Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. FINDINGS Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. IMPLICATIONS Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed.
Collapse
Affiliation(s)
- Anastasia I Petra
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pio Conti
- Department of Medical Sciences, Immunology Division, University of Chieti, Via dei Vestini, Chieti, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
31
|
Stubbs G, Henley K, Green J. Autism: Will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings? Med Hypotheses 2016; 88:74-8. [PMID: 26880644 DOI: 10.1016/j.mehy.2016.01.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitamin D deficiency is widespread in the world including the vulnerable group of pregnant women. Vitamin D deficiency during pregnancy is hypothesized to contribute to the cause of autism. Further, it is hypothesized that vitamin D supplementation during pregnancy and early childhood will reduce the recurrence rate of autism in newborn siblings. METHODS To investigate the hypothesis an open label prospective study was performed prescribing vitamin D during pregnancy to mothers of children with autism at a dose of 5000IU/day. The newborn siblings were at high risk for the recurrence of autism. The newborn infants were also prescribed vitamin D, 1000IU/day to their third birthday. The newborn siblings were followed for three years and during that time, were assessed for autism on two separate occasions: at 18months and 36months of age. The results were compared to the reported recurrence rates in siblings of autistic children in the literature. RESULTS The final outcome was 1 out of 19 (5%) developed autism in contrast to the recurrence rate of approximately 20% in the literature. We did not have a control group, nor was there blinding. CONCLUSIONS The results are promising, however, this is a preliminary study with very small numbers and was uncontrolled. Further study with larger numbers is indicated. The ethics of prescribing a low dosage of vitamin D such as 400IU D3/day to a control group of mothers in comparison to a large dose such as 5000IU D3/day are problematic in our opinion.
Collapse
Affiliation(s)
- G Stubbs
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States.
| | - K Henley
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - J Green
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| |
Collapse
|
32
|
Miyazaki C, Koyama M, Ota E, Swa T, Amiya RM, Mlunde LB, Tachibana Y, Yamamoto-Hanada K, Mori R. Allergies in Children with Autism Spectrum Disorder: a Systematic Review and Meta-analysis. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2015. [DOI: 10.1007/s40489-015-0059-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
34
|
Billeci L, Tonacci A, Tartarisco G, Ruta L, Pioggia G, Gangemi S. Association Between Atopic Dermatitis and Autism Spectrum Disorders: A Systematic Review. Am J Clin Dermatol 2015; 16:371-88. [PMID: 26254000 DOI: 10.1007/s40257-015-0145-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an allergic disorder caused by both immunological dysregulation and epidermal barrier defect. Several studies have investigated the association between AD and mental health disorders. Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions characterized by impairments in social communication and restricted, stereotyped interests and behaviors. The concurrent increased prevalence of AD and ASD in the last decades has led many scientists to investigate the relationship between the two diseases. OBJECTIVE The aim of this systematic review was to examine the association between AD and ASD. METHODS A systematic review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed and ScienceDirect were searched up to March 2015 for all reports examining the association between ASD and AD. Descriptive statistics of the studies are reported. RESULTS The review included 18 studies assessing the association between ASD and AD. Of these studies, two focused on ASD in relation to AD alone, 14 discussed ASD in relation to both AD and other atopic disorders, and two evaluated AD in parents of children with ASD. Most of these studies found a positive association between the two disorders, although there were some studies going in the opposite direction. The entity of the association is somewhat inconsistent among the different studies given that the frequencies of AD in ASD compared with a control group ranged from 7 to 64.2%. In addition, odds ratios (ORs) or hazard ratios (HRs) gave different results as three studies found a weak association with an OR below 2 and a nonsignificant p value, and three other studies found a moderate or strong association with an OR ranging from 1.52 to 7.17 and a significant p value. When all atopic disorders were considered when evaluating the risk of ASD, the association was strong with an HR of 3.4 or an OR of 1.24 and p < 0.001. CONCLUSIONS Overall, the results of this systematic review seem to reveal an association between ASD and AD, suggesting that subjects with ASD have an increased risk of presenting with AD compared with typically developing controls, and vice versa. This association is supported by clinical/epidemiological aspects, shared genetic background and common immunological and autoimmune processes. However, the variability in study population and design, and the presence of other risk factors acting as confounding factors, sometimes contribute to inconsistent results. Further studies are needed to clarify the underlying pathophysiologic mechanism explaining the association between ASD and AD and to explore the causal association between the two conditions.
Collapse
Affiliation(s)
- Lucia Billeci
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Pisa Unit, Pisa, Italy
| | - Alessandro Tonacci
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Pisa Unit, Pisa, Italy
| | - Gennaro Tartarisco
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Messina Unit, Via C. Valeria, SNC, 98125, Messina, Italy
| | - Liliana Ruta
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Messina Unit, Via C. Valeria, SNC, 98125, Messina, Italy
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Calambrone, Pisa, Italy
| | - Giovanni Pioggia
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Messina Unit, Via C. Valeria, SNC, 98125, Messina, Italy.
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| |
Collapse
|
35
|
Gonzalez-Gronow M, Cuchacovich M, Francos R, Cuchacovich S, Blanco A, Sandoval R, Gomez CF, Valenzuela JA, Ray R, Pizzo SV. Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus. J Neuroimmunol 2015; 287:1-8. [PMID: 26439953 DOI: 10.1016/j.jneuroim.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/21/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
Abstract
Autoantibodies from autistic spectrum disorder (ASD) patients react with multiple proteins expressed in the brain. One such autoantibody targets myelin basic protein (MBP). ASD patients have autoantibodies to MBP of both the IgG and IgA classes in high titers, but no autoantibodies of the IgM class. IgA autoantibodies act as serine proteinases and degrade MBP in vitro. They also induce a decrease in long-term potentiation in the hippocampi of rats either perfused with or previously inoculated with this IgA. Because this class of autoantibody causes myelin sheath destruction in multiple sclerosis (MS), we hypothesized a similar pathological role for them in ASD.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile; Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Miguel Cuchacovich
- Department of Medicine, Clinical Hospital of the University of Chile, Chile
| | - Rina Francos
- Department of Psychiatry, Chilean Association of Parents with Autistic Children (ASPAUT), Chile
| | | | - Angel Blanco
- Department of Child Surgery, Clinica Santa Maria, Santiago, Chile
| | - Rodrigo Sandoval
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Cristian Farias Gomez
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Javier A Valenzuela
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Rupa Ray
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Iqbal M, Bashir S, Al-Ayadhi L. Prevalence of antimitochondrial antibodies in autism spectrum subjects. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Objective: Autism is a neurodevelopmental disorder characterized by impairment in verbal and nonverbal communication, repetitive and stereotypic behavior. Dysregulated immune system has a role in the pathogenesis of Autism. This study was designed to measure the prevalence of antimitochondrial (AM) antibodies in a group of autistic children. Methods: AM antibodies subtype 2 (AMA-M2) were evaluated by indirect solid phase enzyme immunoassay in 62 autistic children and 14 age-matched healthy controls. Autistic activity was assessed by using the Childhood Autism Rating Scale. Results: Significantly elevated levels of AMA-M2 were observed in the sera of autistic children (n = 54, 0.221 ± 0.029 IU/ml [mean ± SEM]) compared with healthy controls (n = 14, 0.111 ± 0.010 IU/ml [mean ± SEM], p = 0.0008) and there was no significant difference in patients with moderate to severe autism (p = 0.49). AM antibodies in autistic patients have no correlation with Childhood Autism Rating Scale score. Conclusion: The current study demonstrated significantly high levels of AMA-M2 in autistic subjects when compared with healthy controls. Further large-scale studies are required to dissect any pathogenic role of these antibodies in the development of autism.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Aging Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, PO box 2925, Riyadh 11461, Saudi Arabia
| | - Shahid Bashir
- KSU-Autism Research & Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, PO box 2925, Riyadh 11461, Saudi Arabia
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laila Al-Ayadhi
- KSU-Autism Research & Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, PO box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
37
|
Zerbo O, Leong A, Barcellos L, Bernal P, Fireman B, Croen LA. Immune mediated conditions in autism spectrum disorders. Brain Behav Immun 2015; 46:232-6. [PMID: 25681541 PMCID: PMC4414798 DOI: 10.1016/j.bbi.2015.02.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/31/2015] [Accepted: 02/01/2015] [Indexed: 01/27/2023] Open
Abstract
We conducted a case-control study among members of Kaiser Permanente Northern California (KPNC) born between 1980 and 2003 to determine the prevalence of immune-mediated conditions in individuals with autism, investigate whether these conditions occur more often than expected, and explore the timing of onset relative to autism diagnosis. Cases were children and young adults with at least two autism diagnoses recorded in outpatient records (n=5565). Controls were children without autism randomly sampled at a ratio of 5 to 1, matched to cases on birth year, sex, and length of KPNC membership (n=27,825). The main outcomes - asthma, allergies, and autoimmune diseases - were identified from KPNC inpatient and outpatient databases. Chi-square tests were used to evaluate case-control differences. Allergies and autoimmune diseases were diagnosed significantly more often among children with autism than among controls (allergy: 20.6% vs. 17.7%, Crude odds ratio (OR)=1.22, 95% confidence interval (CI) 1.13-1.31; autoimmune disease: 1% vs. 0.76%, OR=1.36, 95% CI 1.01-1.83), and asthma was diagnosed significantly less often (13.7% vs. 15.9%; OR=0.83, 95% CI 0.76-0.90). Psoriasis occurred more than twice as often in cases than in controls (0.34% vs. 0.15%; OR=2.35, 95% CI 1.36-4.08). Our results support previous observations that children with autism have elevated prevalence of specific immune-related comorbidities.
Collapse
Affiliation(s)
- Ousseny Zerbo
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, United States.
| | - Albin Leong
- Kaiser Permanente Northern California, Roseville Medical Center
| | - Lisa Barcellos
- Division of Epidemiology, Genetic Epidemiology and Genomics Lab School of Public Health 209 Hildebrand Hall, MC #7356 University of California Berkeley, CA 94720-7356
| | - Pilar Bernal
- Kaiser Permanente Northern California, San Jose Medical Center
| | - Bruce Fireman
- Division of Research, Kaiser Permanente Northern California, Oakland, California 94612
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California 94612
| |
Collapse
|
38
|
Theoharides TC, Stewart JM, Panagiotidou S, Melamed I. Mast cells, brain inflammation and autism. Eur J Pharmacol 2015; 778:96-102. [PMID: 25941080 DOI: 10.1016/j.ejphar.2015.03.086] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/15/2015] [Accepted: 03/05/2015] [Indexed: 12/28/2022]
Abstract
Increasing evidence indicates that brain inflammation is involved in the pathogenesis of neuropsychiatric diseases. Mast cells (MCs) are located perivascularly close to neurons and microglia, primarily in the leptomeninges, thalamus, hypothalamus and especially the median eminence. Corticotropin-releasing factor (CRF) is secreted from the hypothalamus under stress and, together with neurotensin (NT), can stimulate brain MCs to release inflammatory and neurotoxic mediators that disrupt the blood-brain barrier (BBB), stimulate microglia and cause focal inflammation. CRF and NT synergistically stimulate MCs and increase vascular permeability; these peptides can also induce each other׳s surface receptors on MCs leading to autocrine and paracrine effects. As a result, brain MCs may be involved in the pathogenesis of "brain fog," headaches, and autism spectrum disorders (ASDs), which worsen with stress. CRF and NT are significantly increased in serum of ASD children compared to normotypic controls further strengthening their role in the pathogenesis of autism. There are no clinically affective treatments for the core symptoms of ASDs, but pilot clinical trials using natural-antioxidant and anti-inflammatory molecules reported statistically significant benefit.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, USA
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, USA
| | | |
Collapse
|
39
|
Chiang HL, Liu CJ, Hu YW, Chen SC, Hu LY, Shen CC, Yeh CM, Chen TJ, Gau SSF. Risk of cancer in children, adolescents, and young adults with autistic disorder. J Pediatr 2015; 166:418-23.e1. [PMID: 25453246 DOI: 10.1016/j.jpeds.2014.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/02/2014] [Accepted: 10/13/2014] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To investigate whether individuals with autism have an increased risk for cancer relative to the general population. STUDY DESIGN We enrolled patients with autistic disorder from the Taiwan National Health Insurance database in years 1997-2011. A total of 8438 patients diagnosed with autism were retrieved from the Registry for Catastrophic Illness Patients database. The diagnosis of cancers was also based on the certificate of catastrophic illness, which requires histological confirmation. The risk of cancer among the autism cohort was determined with a standardized incidence ratio (SIR). RESULTS During the observation period, cancer occurred in 20 individuals with autism, which was significantly higher than a total number of expected cancers with a SIR estimate of 1.94 (95% CI 1.18-2.99). The number of cancer in males was greater than the expected number with a SIR of 1.95 (1.11-3.16), but no excess risk was found for females with a SIR of 1.91 (0.52-4.88). Cancer developed more than expected in individuals age 15-19 years with the SIR of 3.58 (1.44-7.38), but did not differ in other age range groups. The number of cancers of genitourinary system was significantly in excess of the expected number (SIR 4.15; 95% CI 1.13-10.65), and increased risk was found in ovarian cancer with SIR of 9.21 (1.12-33.29). CONCLUSIONS Our study demonstrated that patients with autistic disorder have an increased risk of cancer.
Collapse
Affiliation(s)
- Huey-Ling Chiang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Jen Liu
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Wen Hu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Public Health, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - San-Chi Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Yu Hu
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Che Shen
- Department of Psychiatry, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
| | - Chiu-Mei Yeh
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Mostafa GA, El-Khashab HY, Al-Ayadhi LY. A possible association between elevated serum levels of brain-specific auto-antibodies and reduced plasma levels of docosahexaenoic acid in autistic children. J Neuroimmunol 2015; 280:16-20. [PMID: 25773150 DOI: 10.1016/j.jneuroim.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/05/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are not only essential for energy production, but they also exhibit a range of immunomodulatory properties that progress through T cell mediated events. Autoimmunity may have a pathogenic role in a subgroup of autistic children. This study is the first to investigate the relationship between serum levels of anti-myelin basic protein (anti-MBP) brain-specific auto-antibodies and reduced plasma levels of PUFAs in autistic children. Plasma levels of PUFAs (including linoleic, alphalinolenic, arachidonic "AA" and docosahexaenoic "DHA" acids) and serum anti-MBP were measured in 80 autistic children, aged between 4 and 12 years, and 80 healthy-matched children. Autistic patients had significantly lower plasma levels of PUFAs than healthy children. On the other hand, ω6/ω3 ratio (AA/DHA) was significantly higher in autistic patients than healthy children. Low plasma DHA, AA, linolenic and linoleic acids were found in 67.5%, 50%, 40% and 35%, respectively of autistic children. On the other hand, 70% of autistic patients had elevated ω6/ω3 ratio. Autistic patients with increased serum levels of anti-MBP auto-antibodies (75%) had significantly lower plasma DHA (P<0.5) and significantly higher ω6/ω3 ratio (P<0.5) than patients who were seronegative for these antibodies. In conclusions, some autistic children have a significant positive association between reduced levels of plasma DHA and increased serum levels of anti-MBP brain-specific auto-antibodies. However, replication studies of larger samples are recommended to validate whether reduced levels of plasma PUFAs are a mere association or have a role in the induction of the production of anti-MBP in some autistic children.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Heba Y El-Khashab
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Hwang SR, Kim CY, Shin KM, Jo JH, Kim HA, Heo Y. Altered expression levels of neurodevelopmental proteins in fetal brains of BTBR T+tf/J mice with autism-like behavioral characteristics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:516-523. [PMID: 25849768 DOI: 10.1080/15287394.2015.1010466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Autism is a brain developmental disorder with characteristics of social interaction defects, language and communication dysfunction, and repetitive behavior. Occurrence of autism is continuously increasing, but the cause of autism is not clearly defined. Genetic linkage or environmental factors were proposed as sources for pathogenesis of autism. BTBR T+tf/J (BTBR) mice were reported as an appropriate animal model for autism investigation because of their similarities in behavioral abnormalities with human autistic subjects. The aim of this study was to evaluate expression levels of proteins involved with brain development at fetal stage of BTBR mice. FVB/NJ mice were used as a control strain because of their social behaviors. Level of fetal brain immunoglobulin (Ig) G deposit was also evaluated. Fetal brains were obtained at d 18 of gestational period. Thirty-one and 27 fetuses were obtained from 3 pregnant BTBR and FVB dams, respectively. The level of glial fibrillary acidic protein expression was significantly lower in fetal brains of BTBR than FVB/NJ mice. Expression of brain-derived neurotrophic factor and myelin basic protein was significantly more upregulated in BTBR than in FVB/NJ mice. No significant difference was obtained for nerve growth factor between the two strains. Levels of IgG isotypes deposited in fetal brain of BTBR mice were significantly higher than in FVB mice except for IgG1. Overall, these results suggest that prenatal alterations in expression of various fetal brain proteins may be implicated in aberrant behavioral characteristics of BTBR mice.
Collapse
Affiliation(s)
- So-Ryeon Hwang
- a Department of Occupational Health , College of Medical and Public Health Sciences, Catholic University of Daegu , Gyeongsan-si , Republic of Korea
| | | | | | | | | | | |
Collapse
|
42
|
Theoharides TC, Athanassiou M, Panagiotidou S, Doyle R. Dysregulated brain immunity and neurotrophin signaling in Rett syndrome and autism spectrum disorders. J Neuroimmunol 2014; 279:33-8. [PMID: 25669997 DOI: 10.1016/j.jneuroim.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a neurodevelopmental disorder, which occurs in about 1:15,000 females and presents with neurologic and communication defects. It is transmitted as an X-linked dominant linked to mutations of the methyl-CpG-binding protein (MeCP2), a gene transcription suppressor, but its definitive pathogenesis is unknown thus hindering development of effective treatments. Almost half of children with Rett syndrome also have behavioral symptoms consistent with those of autism spectrum disorders (ASDs). PubMed was searched (2005-2014) using the terms: allergy, atopy, brain, brain-derived neurotrophic factor (BDNF), corticotropin-releasing hormone (CRH), cytokines, gene mutations, inflammation, mast cells (MCs), microglia, mitochondria, neurotensin (NT), neurotrophins, seizures, stress, and treatment. There are a number of intriguing differences and similarities between Rett syndrome and ASDs. Rett syndrome occurs in females, while ASDs more often in males, and the former has neurologic disabilities unlike ASDs. There is evidence of dysregulated immune system early in life in both conditions. Lack of microglial phagocytosis and decreased levels of BDNF appear to distinguish Rett syndrome from ASDs, in which there is instead microglia activation and/or proliferation and possibly defective BDNF signaling. Moreover, brain mast cell (MC) activation and focal inflammation may be more prominent in ASDs than Rett syndrome. The flavonoid luteolin blocks microglia and MC activation, provides BDNF-like activity, reverses Rett phenotype in mouse models, and has a significant benefit in children with ASDs. Appropriate formulations of luteolin or other natural molecules may be useful in the treatment of Rett syndrome.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA.
| | - Marianna Athanassiou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Robert Doyle
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston MA, USA; Harvard Medical School, Boston MA, USA
| |
Collapse
|
43
|
Mostafa GA, El-Sherif DF, Al-Ayadhi LY. Systemic auto-antibodies in children with autism. J Neuroimmunol 2014; 272:94-8. [PMID: 24837704 DOI: 10.1016/j.jneuroim.2014.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023]
Abstract
Autoimmunity to central nervous system may have a role in the pathogenesis of autism. A subset of anti-ds-DNA antibodies has been recently proved to be pathogenic to the brain as well as to the kidney. Due to the paucity of studies investigating the frequency of systemic auto-antibodies in autism, we are the first to investigate the frequency of anti-ds-DNA antibodies in a group of autistic children. The seropositivity of anti-nuclear antibodies (ANA) was also investigated. Serum anti-ds-DNA antibodies and ANA were measured in 100 autistic children, aged between 4 and 11 years, in comparison to 100 healthy-matched children. The seropositivity of anti-ds-DNA antibodies and ANA in autistic children was 34% and 25%, respectively. In addition, 42% of autistic children were seropositive for anti-ds-DNA antibodies and/or ANA. The frequencies of anti-ds-DNA antibodies and ANA in autistic children were significantly higher than that in healthy children (4% and 2%, respectively), (P<0.001 and P<0.001, respectively). Autistic children with a family history of autoimmunity (45%) had significantly higher frequency of serum anti-ds-DNA antibodies (48.9%) than patients without such a history (21.8%), P=0.008. There was a significant positive association between the seropositivity of anti-ds-DNA antibodies and ANA (P<0.001). In conclusion, anti-ds-DNA antibodies and ANA were found in the sera of a subgroup of autistic children. However, replication studies of larger samples are warranted to validate whether these antibodies are a mere association or have a pathogenic role in some autistic children.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Dalia F El-Sherif
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Association between Kawasaki disease and autism: a population-based study in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3705-16. [PMID: 24705358 PMCID: PMC4025040 DOI: 10.3390/ijerph110403705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 12/29/2022]
Abstract
Objective: The association between Kawasaki disease and autism has rarely been studied in Asian populations. By using a nationwide Taiwanese population-based claims database, we tested the hypothesis that Kawasaki disease may increase the risk of autism in Taiwan. Materials and Methods: Our study cohort consisted of patients who had received the diagnosis of Kawasaki disease (ICD-9-CM: 446.1) between 1997 and 2005 (N = 563). For a comparison cohort, five age- and gender-matched control patients for every patient in the study cohort were selected using random sampling (N = 2,815). All subjects were tracked for 5 years from the date of cohort entry to identify whether they had developed autism (ICD-9-CM code 299.0) or not. Cox proportional hazard regressions were then performed to evaluate 5-year autism-free survival rates. Results: The main finding of this study was that patients with Kawasaki disease seem to not be at increased risk of developing autism. Of the total patients, four patients developed autism during the 5-year follow-up period, among whom two were Kawasaki disease patients and two were in the comparison cohort. Further, the adjusted hazard ratios (AHR) (AHR: 4.81; 95% confidence interval: 0.68–34.35; P = 0.117) did not show any statistical significance between the Kawasaki disease group and the control group during the 5-year follow-up. Conclusion: Our study indicated that patients with Kawasaki disease are not at increased risk of autism.
Collapse
|
45
|
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in reciprocal social interactions as well as restricted, repetitive and stereotyped patterns of behavior. The etiology of ASD is not well understood, although many factors have been associated with its pathogenesis, such genetic, neurological, environmental and immunological factors. Several studies have reported the production of numerous autoantibodies that react with specific brain proteins and brain tissues in autistic children and alter the function of the attacked brains tissue. In addition, the potential role of maternal autoantibodies to the fatal brain in the etiology of some cases of autism has also been reported. Identification and understanding of the role of brain autoantibodies as biological biomarkers may allow earlier detection of ASD, lead to a better understanding of the pathogenesis of ASD and have important therapeutic implications.
Collapse
Affiliation(s)
- Nadra E Elamin
- Autism Research & Treatment Center, Shaik AL-Amodi Autism Research Chair, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research & Treatment Center, Shaik AL-Amodi Autism Research Chair, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|