1
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
You Q, Liang F, Wu G, Cao F, Liu J, He Z, Wang C, Zhu L, Chen X, Yang Y. The Landscape of Biomimetic Nanovesicles in Brain Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306583. [PMID: 37713652 DOI: 10.1002/adma.202306583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Brain diseases, such as brain tumors, neurodegenerative diseases, cerebrovascular diseases, and brain injuries, are caused by various pathophysiological changes, which pose a serious health threat. Brain disorders are often difficult to treat due to the presence of the blood-brain barrier (BBB). Biomimetic nanovesicles (BNVs), including endogenous extracellular vesicles (EVs) derived from various cells and artificial nanovesicles, possess the ability to penetrate the BBB and thus can be utilized for drug delivery to the brain. BNVs, especially endogenous EVs, are widely distributed in body fluids and usually carry various disease-related signal molecules such as proteins, RNA, and DNA, and may also be analyzed to understand the etiology and pathogenesis of brain diseases. This review covers the exhaustive classification and characterization of BNVs and pathophysiological roles involved in various brain diseases, and emphatically focuses on nanotechnology-integrated BNVs for brain disease theranostics, including various diagnosis strategies and precise therapeutic regulations (e.g., immunity regulation, disordered protein clearance, anti-neuroinflammation, neuroregeneration, angiogenesis, and the gut-brain axis regulation). The remaining challenges and future perspectives regarding the nanotechnology-integrated BNVs for the diagnosis and treatment of brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Mattera V, Occhiuzzi F, Correale J, Pasquini JM. Remyelinating effect driven by transferrin-loaded extracellular vesicles. Glia 2024; 72:338-361. [PMID: 37860913 DOI: 10.1002/glia.24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination.
Collapse
Affiliation(s)
- Vanesa Mattera
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Federico Occhiuzzi
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Jorge Correale
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| | - Juana M Pasquini
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Huber CC, Wang H. Pathogenic and therapeutic role of exosomes in neurodegenerative disorders. Neural Regen Res 2024; 19:75-79. [PMID: 37488847 PMCID: PMC10479842 DOI: 10.4103/1673-5374.375320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 07/26/2023] Open
Abstract
Neurodegenerative disorders affect millions of people worldwide, and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years. While therapies exist to aid in symptomatic relief, effective treatments that can stop or reverse the progress of each neurodegenerative disease are lacking. Recently, research on the role of extracellular vesicles as disease markers and therapeutics has been intensively studied. Exosomes, 30-150 nm in diameter, are one type of extracellular vesicles facilitating cell-to-cell communication. Exosomes are thought to play a role in disease propagation in a variety of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Accordingly, the exosomes derived from the patients are an invaluable source of disease biomarkers. On the other hand, exosomes, especially those derived from stem cells, could serve as a therapeutic for these disorders, as seen by a rapid increase in clinical trials investigating the therapeutic efficacy of exosomes in different neurological diseases. This review summarizes the pathological burden and therapeutic approach of exosomes in neurodegenerative disorders. We also highlight how heat shock increases the yield of exosomes while still maintaining their therapeutic efficacy. Finally, this review concludes with outstanding questions that remain to be addressed in exosomal research.
Collapse
Affiliation(s)
- Christa C. Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
5
|
Cheng WX, Wei SB, Zhou Y, Shao Y, Li MY. Exosomes: potential diagnostic markers and drug carriers for adenomyosis. Front Pharmacol 2023; 14:1216149. [PMID: 37680720 PMCID: PMC10482052 DOI: 10.3389/fphar.2023.1216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Adenomyosis is a common benign gynecological disorder and an important factor leading to infertility in fertile women. Adenomyosis can cause deep lesions and is persistent and refractory in nature due to its tumor-like biological characteristics, such as the ability to implant, adhere, and invade. The pathogenesis of adenomyosis is currently unclear. Therefore, new therapeutic approaches are urgently required. Exosomes are nanoscale vesicles secreted by cells that carry proteins, genetic materials and other biologically active components. Exosomes play an important role in maintaining tissue homeostasis and regulating immune responses and metabolism. A growing body of work has shown that exosomes and their contents are key to the development and progression of adenomyosis. This review discusses the current research progress, future prospects and challenges in this emerging therapeutic tool by providing an overview of the changes in the adenomyosis uterine microenvironment and the biogenesis and functions of exosomes, with particular emphasis on the role of exosomes and their contents in the regulation of cell migration, proliferation, fibrosis formation, neovascularization, and inflammatory responses in adenomyosis.
Collapse
Affiliation(s)
- Wen-Xiu Cheng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shao-Bin Wei
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Zhou
- Trauma Center, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong, China
| | - Yu Shao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mao-Ya Li
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Guo C, Lv H, Bai Y, Guo M, Li P, Tong S, He K. Circular RNAs in extracellular vesicles: Promising candidate biomarkers for schizophrenia. Front Genet 2023; 13:997322. [PMID: 36685830 PMCID: PMC9852742 DOI: 10.3389/fgene.2022.997322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
As one of common and severe mental illnesses, schizophrenia is difficult to be diagnosed exactly. Both its pathogenesis and the causes of its development are still uncertain because of its etiology complexity. At present, the diagnosis of schizophrenia is mainly based on the patient's symptoms and signs, lacking reliable biomarkers that can be used for diagnosis. Circular RNAs in extracellular vesicles (EV circRNAs) can be used as promising candidate biomarkers for schizophrenia and other diseases, for they are not only high stability and disease specificity, but also are rich in contents and easy to be detected. The review is to focus on the research progress of the correlation between circRNAs and schizophrenia, and then to explores the possibility of EV circRNAs as new biomarkers for the schizophrenia diagnosis.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Haibing Lv
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Yulong Bai
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Meng Guo
- Network Center, Inner Mongolia Minzu University, Tongliao, China
| | - Pengfei Li
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Shuping Tong
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China,*Correspondence: Kuanjun He,
| |
Collapse
|
8
|
Wang M, Peng Y. Advances in brain-heart syndrome: Attention to cardiac complications after ischemic stroke. Front Mol Neurosci 2022; 15:1053478. [PMID: 36504682 PMCID: PMC9729265 DOI: 10.3389/fnmol.2022.1053478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Neurocardiology is an emerging field that studies the interaction between the brain and the heart, namely the effects of heart injury on the brain and the effects of brain damage on the heart. Acute ischemic stroke has long been known to induce heart damage. Most post-stroke deaths are attributed to nerve damage, and cardiac complications are the second leading cause of death after stroke. In clinical practice, the proper interpretation and optimal treatment for the patients with heart injury complicated by acute ischemic stroke, recently described as stroke-heart syndrome (SHS), are still unclear. Here, We describe a wide range of clinical features and potential mechanisms of cardiac complications after ischemic stroke. Autonomic dysfunction, microvascular dysfunction and coronary ischemia process are interdependent and play an important role in the process of cardiac complications caused by stroke. As a unique comprehensive view, SHS can provide theoretical basis for research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Ya Peng,
| |
Collapse
|
9
|
Canseco-Rodriguez A, Masola V, Aliperti V, Meseguer-Beltran M, Donizetti A, Sanchez-Perez AM. Long Non-Coding RNAs, Extracellular Vesicles and Inflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:13171. [PMID: 36361952 PMCID: PMC9654199 DOI: 10.3390/ijms232113171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 08/10/2023] Open
Abstract
Alzheimer's Disease (AD) has currently no effective treatment; however, preventive measures have the potential to reduce AD risk. Thus, accurate and early prediction of risk is an important strategy to alleviate the AD burden. Neuroinflammation is a major factor prompting the onset of the disease. Inflammation exerts its toxic effect via multiple mechanisms. Amongst others, it is affecting gene expression via modulation of non-coding RNAs (ncRNAs), such as miRNAs. Recent evidence supports that inflammation can also affect long non-coding RNA (lncRNA) expression. While the association between miRNAs and inflammation in AD has been studied, the role of lncRNAs in neurodegenerative diseases has been less explored. In this review, we focus on lncRNAs and inflammation in the context of AD. Furthermore, since plasma-isolated extracellular vesicles (EVs) are increasingly recognized as an effective monitoring strategy for brain pathologies, we have focused on the studies reporting dysregulated lncRNAs in EVs isolated from AD patients and controls. The revised literature shows a positive association between pro-inflammatory lncRNAs and AD. However, the reports evaluating lncRNA alterations in EVs isolated from the plasma of patients and controls, although still limited, confirm the value of specific lncRNAs associated with AD as reliable biomarkers. This is an emerging field that will open new avenues to improve risk prediction and patient stratification, and may lead to the discovery of potential novel therapeutic targets for AD.
Collapse
Affiliation(s)
- Ania Canseco-Rodriguez
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
| | - Valeria Masola
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Maria Meseguer-Beltran
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Ana María Sanchez-Perez
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
| |
Collapse
|
10
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
11
|
Cun Y, Jin Y, Wu D, Zhou L, Zhang C, Zhang S, Yang X, Zuhong Wang, Zhang P. Exosome in Crosstalk between Inflammation and Angiogenesis: A Potential Therapeutic Strategy for Stroke. Mediators Inflamm 2022; 2022:7006281. [PMID: 36052309 PMCID: PMC9427301 DOI: 10.1155/2022/7006281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The endothelial dysfunction, associated with inflammation and vascular permeability, remains the key event in the pathogenesis of cerebral ischemic stroke. Angiogenesis is essential for neuroprotection and neural repair following stroke. The neuroinflammatory reaction plays a vital role in stroke, and inhibition of inflammation contributes to establishing an appropriate external environment for angiogenesis. Exosomes are the heterogeneous population of extracellular vesicles which play critical roles in intercellular communication through transmitting various proteins and nucleic acids to nearby and distant recipient cells by body fluids and circulation. Recent reports have shown that exosomal therapy is a valuable and potential treatment strategy for stroke. In this review, we discussed the exosomes in complex interaction mechanisms of angiogenesis and inflammation following stroke as well as the challenges of exosomal studies such as secretion, uptake, modification, and application.
Collapse
Affiliation(s)
- Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Xicheng Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Zuhong Wang
- Acupuncture Department, Kunming Traditional Chinese Medicine Hospital, Kunming 650500, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
12
|
Soukup J, Kostelanská M, Kereïche S, Hujacová A, Pavelcová M, Petrák J, Kubala Havrdová E, Holada K. Flow Cytometry Analysis of Blood Large Extracellular Vesicles in Patients with Multiple Sclerosis Experiencing Relapse of the Disease. J Clin Med 2022; 11:jcm11102832. [PMID: 35628959 PMCID: PMC9145450 DOI: 10.3390/jcm11102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
The number of people living with multiple sclerosis (MS) in developed countries is increasing. The management of patients is hindered by the absence of reliable laboratory tests accurately reflecting the disease activity. Extracellular vesicles (EVs) of different cell origin were reportedly elevated in MS patients. We assessed the diagnostic potential, with flow cytometry analysis, of fresh large EVs (lEVs), which scattered more light than the 590 nm silica beads and were isolated from the blood plasma of relapsing remitting MS patients. Venous blood was collected from 15 patients and 16 healthy controls (HC). The lEVs were isolated from fresh platelet-free plasma by centrifugation, labelled with antibodies and the presence of platelet (CD41+, CD36+), endothelial (CD105+), erythrocyte (CD235a+), leukocyte (CD45+, CD19+, CD3+) and phosphatidylserine (Annexin V+) positive lEVs was analyzed using standard flow cytometry. Cryo-electron microscopy was used to verify the presence of EVs in the analyzed plasma fractions. MS patients experiencing acute relapse had slightly reduced relative levels (% of positive lEVs) of CD105+, CD45+, CD3+, CD45+CD3+ or CD19+ labelled lEVs in comparison to healthy controls. An analysis of other markers or a comparison of absolute lEV counts (count of lEVs/µL) did not yield any significant differences. Our data do not support the hypothesis that the exacerbation of the disease in RRMS patients leads to an increased numbers of circulating plasma lEVs which can be monitored by standard flow cytometry.
Collapse
Affiliation(s)
- Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
- Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Marie Kostelanská
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Andrea Hujacová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
| | - Miluše Pavelcová
- Department of Neurology and Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 21 Prague, Czech Republic; (M.P.); (E.K.H.)
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic;
| | - Eva Kubala Havrdová
- Department of Neurology and Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 21 Prague, Czech Republic; (M.P.); (E.K.H.)
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
- Correspondence:
| |
Collapse
|
13
|
Benameur T, Panaro MA, Porro C. Exosomes and their Cargo as a New Avenue for Brain and Treatment of CNS-Related Diseases. Open Neurol J 2022. [DOI: 10.2174/1874205x-v16-e2201190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extracellular Vesicles (EVs), which belong to nanoscale vesicles, including microvesicles (MVs) and exosomes, are now considered a new important tool for intercellular neuronal communication in the Central Nervous System (CNS) under physiological and pathological conditions. EVs are shed into blood, peripheral body fluids and cerebrospinal fluid (CSF) by a large variety of cells.
EVs can act locally on neighboring and distant cells. EVs represent the fingerprints of the originating cells and can carry a variety of molecular constituents of their cell of origin, including protein, lipids, DNA and microRNAs (miRNAs).
The most studied EVs are the exosomes because they are ubiquitous and have the capacity to transfer cell-derived components and bioactive molecules to target cells. In this minireview, we focused on cell-cell communication in CNS mediated by exosomes and their important cargo as an innovative way to treat or follow up with CNS diseases.
Collapse
|
14
|
Li S, Li G, Luo X, Huang Y, Wen L, Li J. Endothelial Dysfunction and Hyperhomocysteinemia-Linked Cerebral Small Vessel Disease: Underlying Mechanisms and Treatment Timing. Front Neurol 2021; 12:736309. [PMID: 34899561 PMCID: PMC8651556 DOI: 10.3389/fneur.2021.736309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (cSVD)—a common cause of stroke and vascular dementia—is a group of clinical syndromes that affects the brain's small vessels, including arterioles, capillaries, and venules. Its pathogenesis is not fully understood, and effective treatments are limited. Increasing evidence indicates that an elevated total serum homocysteine level is directly and indirectly associated with cSVD, and endothelial dysfunction plays an active role in this association. Hyperhomocysteinemia affects endothelial function through oxidative stress, inflammatory pathways, and epigenetic alterations at an early stage, even before the onset of small vessel injuries and the disease. Therefore, hyperhomocysteinemia is potentially an important therapeutic target for cSVD. However, decreasing the homocysteine level is not sufficiently effective, possibly due to delayed treatment, which underlying reason remains unclear. In this review, we examined endothelial dysfunction to understand the close relationship between hyperhomocysteinemia and cSVD and identify the optimal timing for the therapy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guangjian Li
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Zhao S, Wang H, Xu H, Tan Y, Zhang C, Zeng Q, Liu L, Qu S. Targeting the microRNAs in exosome: A potential therapeutic strategy for alleviation of diabetes-related cardiovascular complication. Pharmacol Res 2021; 173:105868. [PMID: 34481974 DOI: 10.1016/j.phrs.2021.105868] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
Diabetes-related cardiovascular disease (CVD) is a global health issue that causes thousands of people's death around the world annually. Diabetes-related CVD is still prevailing despite the progression being made in its diagnosis and treatment. Therefore it is urgent to find therapeutic strategies.to prevent it. MicroRNA (miRNA) is a single-stranded non-coding RNA involved in the process of post-transcriptional control of gene expression in eukaryotes. A large number of literatures reveal that miRNAs are implicated in diabetes-related CVD. The increase of miRNAs in exosomes may promote the occurrence and development of diabetes-related cardiovascular complication. However, some other studies identify that miRNAs in exosomes are supposed to be involved in cardiac regeneration and confer cardiac protection effect. Therefore, targeting the miRNA in exosome is regarded as a potent therapeutic measure to alleviate diabetes-related CVD. In this article, we review current knowledge about the role of exosomal miRNAs in diabetes-related cardiovascular complication, such as coronary heart disease, Peripheral artery disease, stroke, diabetic cardiomyopathy, diabetic nephropathy and diabetic retinopathy. Exosomal miRNAs are considered to be central regulators of diabetes-Related CVD and provide a therapeutic tool for diagnosis and treatment of diabetes-related cardiovascular complication.
Collapse
Affiliation(s)
- Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Hengquan Wang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Haiqiang Xu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Chi Zhang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Qian Zeng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Lingyun Liu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China; Clinic Department, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
16
|
Nuzzo D, Picone P. Multiple Sclerosis: Focus on Extracellular and Artificial Vesicles, Nanoparticles as Potential Therapeutic Approaches. Int J Mol Sci 2021; 22:8866. [PMID: 34445572 PMCID: PMC8396338 DOI: 10.3390/ijms22168866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the Central Nervous System, characterized by an inflammatory process leading to the destruction of myelin with neuronal death and neurodegeneration. In MS, lymphocytes cross the blood-brain barrier, creating inflammatory demyelinated plaques located primarily in the white matter. MS potential treatments involve various mechanisms of action on immune cells, immunosuppression, inhibition of the passage through the blood-brain barrier, and immunotolerance. Bio-nanotechnology represents a promising approach to improve the treatment of autoimmune diseases by its ability to affect the immune responses. The use of nanotechnology has been actively investigated for the development of new MS therapies. In this review, we summarize the results of the studies on natural and artificial vesicles and nanoparticles, and take a look to the future clinical perspectives for their application in the MS therapy.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
17
|
Porro C, Pennella A, Panaro MA, Trotta T. Functional Role of Non-Muscle Myosin II in Microglia: An Updated Review. Int J Mol Sci 2021; 22:ijms22136687. [PMID: 34206505 PMCID: PMC8267657 DOI: 10.3390/ijms22136687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Myosins are a remarkable superfamily of actin-based motor proteins that use the energy derived from ATP hydrolysis to translocate actin filaments and to produce force. Myosins are abundant in different types of tissues and involved in a large variety of cellular functions. Several classes of the myosin superfamily are expressed in the nervous system; among them, non-muscle myosin II (NM II) is expressed in both neurons and non-neuronal brain cells, such as astrocytes, oligodendrocytes, endothelial cells, and microglia. In the nervous system, NM II modulates a variety of functions, such as vesicle transport, phagocytosis, cell migration, cell adhesion and morphology, secretion, transcription, and cytokinesis, as well as playing key roles during brain development, inflammation, repair, and myelination functions. In this review, we will provide a brief overview of recent emerging roles of NM II in resting and activated microglia cells, the principal regulators of immune processes in the central nervous system (CNS) in both physiological and pathological conditions. When stimulated, microglial cells react and produce a number of mediators, such as pro-inflammatory cytokines, free radicals, and nitric oxide, that enhance inflammation and contribute to neurodegenerative diseases. Inhibition of NM II could be a new therapeutic target to treat or to prevent CNS diseases.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (C.P.); (A.P.)
| | - Antonio Pennella
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (C.P.); (A.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (C.P.); (A.P.)
- Correspondence:
| |
Collapse
|
18
|
Wei M, Li C, Yan Z, Hu Z, Dong L, Zhang J, Wang X, Li Y, Zhang H. Activated Microglia Exosomes Mediated miR-383-3p Promotes Neuronal Necroptosis Through Inhibiting ATF4 Expression in Intracerebral Hemorrhage. Neurochem Res 2021; 46:1337-1349. [PMID: 33594583 DOI: 10.1007/s11064-021-03268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is the second largest type of stroke, with high mortality and morbidity, and most patients have severe sequelae. Brain injury induced by ICH includes primary damage and secondary damage, and the secondary brain injury is the main reason of neurological impairment. The hallmark of secondary brain injury is cell death. Necroptosis is a type of the cell death and plays vital roles in various neurological diseases, but the roles of necroptosis in ICH are still not fully known. Microglia cell is the type of immune cell, plays protective roles in nerve damage and modulates the activity of neurons through secreting exosomes. Exosome-contained miRNAs are also involved in the regulating neuronal activity. However, the roles and the mechanisms of microglia-secreted exosomes miRNAs in ICH neurons necroptosis need to further explore. In this study, ICH model was construct in rats and cells. Injury of cells in brain was detected by PI staining. Necroptosis in rats and cells was detected by western blot and flow cytometry. The expression of miR-383-3p was detected by RT-qPCR. The roles of activated microglia-secreted exosomes and exosome-contained miR-383-3p were detected through co-culturing medium or exosomes with neurons. The target gene of miR-383-3p was determined by luciferase assay and the expression of target gene was detected by western blot. Rescue experiments were used to confirm the mechanism of miR-383-3p in neurons necroptosis. The miR-383-3p role was verified in vivo through injecting miR-383-3p mimic into ICH rats. Here, we found that the necroptosis of neurons was increased in ICH rats through detecting the expression of RIP1 and RIP3 and PI staining. Microglia that activated by ICH promote neurons necroptosis through secreting exosomes and transferring miR-383-3p into neurons. In mechanism, miR-383-3p negatively regulated the expression of ATF4 and then promoted the necroptosis of neurons. Overall, our results provide a novel molecular basis to neurons necroptosis in ICH and may provide a new strategy to retard the secondary brain injury of ICH.
Collapse
Affiliation(s)
- Min Wei
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Chen Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengcun Yan
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengwei Hu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Jun Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, No. 98 of Nantong West Road, Yangzhou, 225001, Jiangsu Province, China.
| |
Collapse
|
19
|
Sun H, Su X, Li S, Mu D, Qu Y. Roles of glia-derived extracellular vesicles in central nervous system diseases: an update. Rev Neurosci 2021; 32:833-849. [PMID: 33792214 DOI: 10.1515/revneuro-2020-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/06/2021] [Indexed: 11/15/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous vesicles secreted by various cells in the extracellular space. Accumulating evidence shows that EVs regulate cell-to-cell communication and signaling in the pathological processes of various diseases by carrying proteins, lipids, and nucleic acids to recipient cells. Glia-derived EVs act as a double-edged sword in the pathogenesis of central nervous system (CNS) diseases. They may be vectors for the spread of diseases or act as effective clearance systems to protect tissues. In this review, we summarize recent studies on glia-derived EVs with a focus on their relationships with CNS diseases.
Collapse
Affiliation(s)
- Hao Sun
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Xiaojuan Su
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Shiping Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
20
|
Jayachandran M, Miller VM, Lahr BD, Bailey KR, Lowe VJ, Fields JA, Mielke MM, Kantarci K. Peripheral Markers of Neurovascular Unit Integrity and Amyloid-β in the Brains of Menopausal Women. J Alzheimers Dis 2021; 80:397-405. [PMID: 33554914 PMCID: PMC8075395 DOI: 10.3233/jad-201410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The identification of blood-borne biomarkers for the diagnosis and prognosis of Alzheimer's disease and related dementias is more feasible at the population level than obtaining cerebrospinal fluid or neuroimaging markers. OBJECTIVE This study determined the association of blood microvesicles, derived from cells of the neurovascular unit, with brain amyloid-β deposition in menopausal women. METHODS A subset of women from the Kronos Early Estrogen Prevention Study underwent brain amyloid-β positron emission tomography three years following cessation of study treatment with placebo (PL, n = 29), transdermal 17β-estradiol (tE2; n = 21), or oral conjugated equine estrogen (oCEE; n = 17). Isolated peripheral venous blood microvesicles were analyzed by digital flow cytometry using fluorophore conjugated antibodies directed toward total tau, amyloid-β 1-42 (Aβ1-42), neuron specific class III β-tubulin (Tuj1), microglia ionized calcium -binding adaptor molecule 1(Iba1), glial fibrillary acid protein (GFAP), and low density lipoprotein receptor-related protein1 (LRP1). Principal components analysis reduced the dimensionality of these selected six markers to two principal components (PCs). Proportional odds ordinal logistic regression analysis was used with amyloid-β deposition regressed on these PCs. RESULTS Only the number of microvesicles positive for Aβ1-42 differed statistically among prior treatment groups (median [IQR]: 6.06 [2.11, 12.55] in PL; 2.49 [0.73, 3.59] in tE2; and 4.96 [0.83, 10.31] in oCEE; p = 0.032). The joint association between the 2 PCs and brain amyloid-β deposition was significant (p = 0.045). CONCLUSION Six selected markers expressing peripheral blood microvesicles derived from cells of the neurovascular unit, when summarized into two principal components, were associated with brain amyloid-β deposition.
Collapse
Affiliation(s)
- Muthuvel Jayachandran
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Divisions of Nephrology and Hypertension and Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Virginia M Miller
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Brian D Lahr
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kent R Bailey
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Azizi F, Askari S, Javadpour P, Hadjighassem M, Ghasemi R. Potential role of exosome in post-stroke reorganization and/or neurodegeneration. EXCLI JOURNAL 2020; 19:1590-1606. [PMID: 33408596 PMCID: PMC7783471 DOI: 10.17179/excli2020-3025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/05/2020] [Indexed: 12/29/2022]
Abstract
Currently, stroke is a common and devastating condition, which is sometimes associated with permanent cerebral damages. Although in early time after stroke, the related treatments are mainly focused on the restoration of cerebral blood flow (CBF), at the same time, some changes are commencing that continue for a long time and need to be specially noticed. Previous studies have proposed several molecular mechanisms in these post-stroke events. Exosomes are a type of vesicle, which are formed and secreted by most cells as a mean to transfer cellular constituents such as proteins, DNA and/or RNA to distant cells. Therefore, they are considered as a novel mechanism of cellular communication. Herein, we reviewed the current knowledge on cascades, which are activated after stroke and consequently lead to the reorganization and/or continuance of tissue damage and development of other disorders such as Neurodegenerative diseases (ND). Thereafter, we summarized the latest proofs about the possible participation of exosomes in transferring some components such as proteins and micro-RNAs (miRs), from the affected areas to other parts of the brain and eventually cause the above-mentioned post-stroke events.
Collapse
Affiliation(s)
- Fateme Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
The Potential of Liquid Biopsy of the Brain Using Blood Extracellular Vesicles: The First Step Toward Effective Neuroprotection Against Neurodegenerative Diseases. Mol Diagn Ther 2020; 24:703-713. [PMID: 32975732 DOI: 10.1007/s40291-020-00493-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Early diagnosis and biomarker-based ante-mortem tests are essential in efforts against the development of neurodegenerative diseases and can be considered primary neuroprotective measures. Blood is the ideal biofluid for a routine ante-mortem screening test. However, biomarker discovery in the blood is particularly difficult because of interference from factors both intrinsic and extrinsic to blood with the detection of hallmark neurodegenerative biomarkers, such as the pathological prion protein, amyloid-β, and others. Blood extracellular vesicles (EVs), such as exosomes, are cell-derived vesicles released into the blood from all parts of the body (including the brain and spinal cord). They are an enriched source of neural-derived EVs containing neurodegenerative biomarkers that mirror (in the blood) the condition present in the brain. The feasibility of using, and the reliability of, neural-derived blood EVs (NDBEVs) as a method of diagnosing Alzheimer disease and other neurodegenerative diseases has been assessed in strong proof-of-concept studies. Results from these studies strongly suggest that NDBEVs might represent the right strategy for specific, reliable, and early diagnosis of neurodegenerative diseases. Based on these results, NDBEVs might enable the creation of an ante-mortem blood test (liquid biopsy of the brain) for neurodegenerative diseases. This would enormously accelerate the therapy of neurodegenerative diseases. This review highlights the powerful potential of liquid biopsy of the brain using NDBEVs for early diagnosis and treatment of neurodegenerative diseases, and the challenges and limitations related to the identification of clinically applicable EV (exosomal) biomarkers using blood are discussed.
Collapse
|
23
|
Chand S, Jo A, Vellichirammal NN, Gowen A, Guda C, Schaal V, Odegaard K, Lee H, Pendyala G, Yelamanchili SV. Comprehensive Characterization of Nanosized Extracellular Vesicles from Central and Peripheral Organs : Implications for Preclinical and Clinical Applications. ACS APPLIED NANO MATERIALS 2020; 3:8906-8919. [PMID: 33385108 PMCID: PMC7771629 DOI: 10.1021/acsanm.0c01654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EV) are nano-sized vesicles that have been garnering a lot of attention for their valuable role as potential diagnostic markers and therapeutic vehicles for a plethora of pathologies. Whilst EV markers from biofluids such as plasma, serum, urine, cerebrospinal fluid and in vitro cell culture based platforms have been extensively studied, a significant knowledge gap that remains is the characterization of specific organ derived EVs (ODE). Here, we present a standardized protocol for isolation and characterization of purified EV isolated from brain, heart, lung, kidney and liver from rat and postmortem human tissue. Next, using quantitative mass spectrometry based proteomics, we characterized the respective tissue EV proteomes that identified synaptophysin (SYP), caveolin-3 (CAV3), solute carrier family 22 member 2 (SLC22A2), surfactant protein B (SP-B), and fatty acid-binding protein 1 (FABP1) as potential markers for the brain, heart, kidney, lung, and liver-EV, respectively. These respective tissue specific markers were further validated using both immunoblotting and a nanoplasmonic platform- single EV imaging analysis in the two species. To summarize, our study for the first time using traditional biochemical and high precision technology platforms provide a valuable proof of concept approach in defining specific ODE markers which further could be developed as potential therapeutic candidates for respective end-organ associated pathologies.
Collapse
Affiliation(s)
- Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Victoria Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Katherine Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Address for correspondence: Dr. Sowmya V. Yelamanchili, Lied Transplant Center 10736, 984455 Nebraska Medical Center, Omaha, NE 68198-4455, Telephone: 402-559-5348,
| |
Collapse
|
24
|
Chung CC, Huang PH, Chan L, Chen JH, Chien LN, Hong CT. Plasma Exosomal Brain-Derived Neurotrophic Factor Correlated with the Postural Instability and Gait Disturbance-Related Motor Symptoms in Patients with Parkinson's Disease. Diagnostics (Basel) 2020; 10:E684. [PMID: 32932791 PMCID: PMC7555255 DOI: 10.3390/diagnostics10090684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin, responsible for neuronal development, function, and survival. Assessments of peripheral blood BDNF in patients with Parkinson's disease (PD) previously yielded inconsistent results. Plasma exosomes can carry BDNF, so this study investigated the role of plasma exosomal BDNF level as a biomarker of PD. A total of 114 patients with mild to moderate PD and 42 non-PD controls were recruited, and their clinical presentations were evaluated. Plasma exosomes were isolated with exoEasy Maxi Kits, and enzyme-linked immunosorbent assay was used to assess plasma exosomal BDNF levels. Statistical analysis was performed using SPSS version 19.0, and findings were considered significant at p < 0.05. The analysis revealed no significant differences in plasma exosomal BDNF levels between patients with PD and controls. Patients with PD with low plasma exosomal BDNF levels (in the lowest quartile) exhibited a significant association with daily activity dysfunction but not with cognition/mood or overall motor symptoms as assessed using the Unified Parkinson's Disease Rating Scale (UPDRS). Investigation of UPDRS part III subitems revealed that low plasma exosomal BDNF level was significantly associated with increased motor severity of postural instability and gait disturbance (PIGD)-associated symptoms (rising from a chair, gait, and postural stability) after adjustment for age and sex. In conclusion, although plasma exosomal BDNF level could not distinguish patients with PD from controls, the association with PIGD symptoms in patients with PD may indicate its potential role as a biomarker. Follow-up studies should investigate the association between plasma exosomal BDNF levels and changes in clinical symptoms.
Collapse
Affiliation(s)
- Chen Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan
| | - Pai Hao Huang
- Department of Neurology, Cathay General Hospital, Taipei 106, Taiwan;
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
| | - Li-Nien Chien
- School of Health Care Administration, College of Management, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chien Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
25
|
Koul S, Schaal VL, Chand S, Pittenger ST, Nanoth Vellichirammal N, Kumar V, Guda C, Bevins RA, Yelamanchili SV, Pendyala G. Role of Brain Derived Extracellular Vesicles in Decoding Sex Differences Associated with Nicotine Self-Administration. Cells 2020; 9:cells9081883. [PMID: 32796722 PMCID: PMC7464419 DOI: 10.3390/cells9081883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Smoking remains a significant health and economic concern in the United States. Furthermore, the emerging pattern of nicotine intake between sexes further adds a layer of complexity. Nicotine is a potent psychostimulant with a high addiction liability that can significantly alter brain function. However, the neurobiological mechanisms underlying nicotine’s impact on brain function and behavior remain unclear. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation. To fill in this critical knowledge gap, our current study focused on identifying sex-specific brain-derived extracellular vesicles (BDEV) signatures in male and female rats post nicotine self-administration. Extracellular vesicles (EVs) are comprised of phospholipid nanovesicles such as apoptotic bodies, microvesicles (MVs), and exosomes based on their origin or size. EVs are garnering significant attention as molecules involved in cell–cell communication and thus regulating the pathophysiology of several diseases. Interestingly, females post nicotine self-administration, showed larger BDEV sizes, along with impaired EV biogenesis compared to males. Next, using quantitative mass spectrometry-based proteomics, we identified BDEV signatures, including distinct molecular pathways, impacted between males and females. In summary, this study has identified sex-specific changes in BDEV biogenesis, protein cargo signatures, and molecular pathways associated with long-term nicotine self-administration.
Collapse
Affiliation(s)
- Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Steven T. Pittenger
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Neetha Nanoth Vellichirammal
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
26
|
Zhang S, Jin T, Wang L, Liu W, Zhang Y, Zheng Y, Lin Y, Yang M, He X, Lin H, Chen L, Tao J. Electro-Acupuncture Promotes the Differentiation of Endogenous Neural Stem Cells via Exosomal microRNA 146b After Ischemic Stroke. Front Cell Neurosci 2020; 14:223. [PMID: 32792909 PMCID: PMC7385414 DOI: 10.3389/fncel.2020.00223] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Evidences indicate that exosomes-mediated delivery of microRNAs (miRNAs or miRs) is involved in the neurogenesis of stroke. This study was to investigate the role of exosomal miRNAs in non-drug therapy of electro-acupuncture (EA) regulating endogenous neural stem cells for stroke recovery. Methods: The model of focal cerebral ischemia and reperfusion in rats were established by middle cerebral artery occlusion (MCAO) and treated by EA. The exosomes were extracted from peri-ischemic striatum and identified by exosomal biomarkers, and detected differentially expressed miRNAs with microarray chip. Primary stem cells were cultured, and oxygen–glucose deprivation and reperfusion (OGD/R) was used to mimic vitro ischemic injury. Results: The levels of exosomal biomarkers TSG101 and CD81 were increased in peri-ischemic striatum after EA treatment, and we revealed 25 differentially expressed miRNAs in isolated exosomes, of which miR-146b was selected for further analysis, and demonstrated that EA increased miR-146b expression and its inhibitors could block the effects. Subsequently, we confirmed that EA upregulated miR-146b expression to promote neural stem cells differentiation into neurons in peri-ischemic striatum. In vitro, it was verified that OGD/R hindered neural stem cells differentiation, and miR-146b inhibitors furtherly suppressed its differentiation, simultaneously NeuroD1 was involved in neural stem cells differentiation into neurons. Moreover, in vivo we found EA promoted NeuroD1-mediated neural stem cells differentiation via miR-146b. In addition, EA also could improve neurological deficits through miR-146b after ischemic stroke. Conclusion: EA promotes the differentiation of endogenous neural stem cells via exosomal miR-146b to improve neurological injury after ischemic stroke.
Collapse
Affiliation(s)
- Shenghang Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,The 900 Hospital of the Joint Logistic Team, Fuzhou, China
| | - Tingting Jin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lulu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- Fujian University of Traditional Chinese Medicine, The Academy of Rehabilitation Industry, Fuzhou, China
| | - Yuhao Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunjiao Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- Fujian University of Traditional Chinese Medicine, The Academy of Rehabilitation Industry, Fuzhou, China
| | - Xiaojun He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
27
|
Extracellular Vesicles miRNA Cargo for Microglia Polarization in Traumatic Brain Injury. Biomolecules 2020; 10:biom10060901. [PMID: 32545705 PMCID: PMC7356143 DOI: 10.3390/biom10060901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide, and despite its high dissemination, effective pharmacotherapies are lacking. TBI can be divided into two phases: the instantaneous primary mechanical injury, which occurs at the moment of insult, and the delayed secondary injury, which involves a cascade of biological processes that lead to neuroinflammation. Neuroinflammation is a hallmark of both acute and chronic TBI, and it is considered to be one of the major determinants of the outcome and progression of disease. In TBI one of the emerging mechanisms for cell–cell communication involved in the immune response regulation is represented by Extracellular Vesicles (EVs). These latter are produced by all cell types and are considered a fingerprint of their generating cells. Exosomes are the most studied nanosized vesicles and can carry a variety of molecular constituents of their cell of origin, including microRNAs (miRNAs). Several miRNAs have been shown to target key neuropathophysiological pathways involved in TBI. The focus of this review is to analyze exosomes and their miRNA cargo to modulate TBI neuroinflammation providing new strategies for prevent long-term progression of disease.
Collapse
|
28
|
Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis. Cell Death Dis 2020; 11:290. [PMID: 32341353 PMCID: PMC7184756 DOI: 10.1038/s41419-020-2490-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023]
Abstract
Hypoxia limits the survival and function of neurons in the development of Alzheimer’s diseases. Exosome-dependent intercellular communication is an emerging signaling mechanism involved in tissue repair and regeneration; however, the effect and underlying mechanism of mesenchymal stem cell-derived exosomes in regulating neuronal cell apoptosis have not been determined. Here, we showed that the establishment of an AD cell model was accompanied by increased HIF-1α expression and cell apoptosis, impaired cell migration, and decreased miR-223. MSC-derived exosomes were internalized by the AD cell coculture model in a time-dependent manner, resulting in reduced cell apoptosis, enhanced cell migration and increased miR-223, and these effects were reversed by KC7F2, a hypoxic inhibitor. Furthermore, MSC-derived exosomal miR-223 inhibited the apoptosis of neurons in vitro by targeting PTEN, thus activating the PI3K/Akt pathway. In addition, exosomes isolated from the serum of AD patients promoted cell apoptosis. In short, our study showed that MSC-derived exosomal miR-223 protected neuronal cells from apoptosis through the PTEN-PI3K/Akt pathway and provided a potential therapeutic approach for AD.
Collapse
|
29
|
The Emerging Role of Curcumin in the Modulation of TLR-4 Signaling Pathway: Focus on Neuroprotective and Anti-Rheumatic Properties. Int J Mol Sci 2020; 21:ijms21072299. [PMID: 32225104 PMCID: PMC7177421 DOI: 10.3390/ijms21072299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Natural products have been used in medicine for thousands of years. Given their potential health benefits, they have gained significant popularity in recent times. The administration of phytochemicals existed shown to regulate differential gene expression and modulate various cellular pathways implicated in cell protection. Curcumin is a natural dietary polyphenol extracted from Curcuma Longa Linn with different biological and pharmacological effects. One of the important targets of curcumin is Toll-like receptor-4 (TLR-4), the receptor which plays a key role in the modulation of the immune responses and the stimulation of inflammatory chemokines and cytokines production. Different studies have demonstrated that curcumin attenuates inflammatory response via TLR-4 acting directly on receptor, or by its downstream pathway. Curcumin bioavailability is low, so the use of exosomes, as nano drug delivery, could improve the efficacy of curcumin in inflammatory diseases. The focus of this review is to explore the therapeutic effect of curcumin interacting with TLR-4 receptor and how this modulation could improve the prognosis of neuroinflammatory and rheumatic diseases.
Collapse
|
30
|
Ge X, Guo M, Hu T, Li W, Huang S, Yin Z, Li Y, Chen F, Zhu L, Kang C, Jiang R, Lei P, Zhang J. Increased Microglial Exosomal miR-124-3p Alleviates Neurodegeneration and Improves Cognitive Outcome after rmTBI. Mol Ther 2019; 28:503-522. [PMID: 31843449 PMCID: PMC7001001 DOI: 10.1016/j.ymthe.2019.11.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI) is considered to be an important risk factor for long-term neurodegenerative disorders such as Alzheimer's disease, which is characterized by β-amyloid abnormalities and impaired cognitive function. Microglial exosomes have been reported to be involved in the transportation, distribution, and clearance of β-amyloid in Alzheimer's disease. However, their impacts on the development of neurodegeneration after rmTBI are not yet known. The role of miRNAs in microglial exosomes on regulating post-traumatic neurodegeneration was investigated in the present study. We demonstrated that miR-124-3p level in microglial exosomes from injured brain was significantly altered in the acute, sub-acute, and chronic phases after rmTBI. In in vitro experiments, microglial exosomes with upregulated miR-124-3p (EXO-124) alleviated neurodegeneration in repetitive scratch-injured neurons. The effects were exerted by miR-124-3p targeting Rela, an inhibitory transcription factor of ApoE that promotes the β-amyloid proteolytic breakdown, thereby inhibiting β-amyloid abnormalities. In mice with rmTBI, the intravenously injected microglial exosomes were taken up by neurons in injured brain. Besides, miR-124-3p in the exosomes was transferred into hippocampal neurons and alleviated neurodegeneration by targeting the Rela/ApoE signaling pathway. Consequently, EXO-124 treatments improved the cognitive outcome after rmTBI, suggesting a promising therapeutic strategy for future clinical translation.
Collapse
Affiliation(s)
- Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin 300052, China
| | - Mengtian Guo
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin 300052, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianpeng Hu
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin 300052, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenzhu Li
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin 300052, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shan Huang
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin 300052, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyu Yin
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin 300052, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Li
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin 300052, China
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin 300052, China
| | - Luoyun Zhu
- Department of Medical Examination, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunsheng Kang
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin 300052, China.
| | - Ping Lei
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin 300052, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin 300052, China.
| |
Collapse
|
31
|
Chen Z, Chopp M, Zacharek A, Li W, Venkat P, Wang F, Landschoot-Ward J, Chen J. Brain-Derived Microparticles (BDMPs) Contribute to Neuroinflammation and Lactadherin Reduces BDMP Induced Neuroinflammation and Improves Outcome After Stroke. Front Immunol 2019; 10:2747. [PMID: 31993045 PMCID: PMC6968774 DOI: 10.3389/fimmu.2019.02747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
Microparticles (MPs, ~size between 0.1 and 1 mm) are lipid encased containers derived from intact cells which contain antigen from the parent cells. MPs are involved in intercellular communication and regulate inflammation. Stroke increases secretion of brain derived MP (BDMP) which activate macrophages/microglia and induce neuroinflammation. Lactadherin (Milk fat globule–EGF factor-8) binds to anionic phospholipids and extracellular matrices, promotes apoptotic cell clearance and limits pathogenic antigen cross presentation. In this study, we investigate whether BDMP affects stroke-induced neuroinflammation and whether Lactadherin treatment reduces stroke initiated BDMP-induced neuroinflammation, thereby improving functional outcome after stroke. Middle aged (8–9 months old) male C57BL/6J mice were subjected to distal middle cerebral artery occlusion (dMCAo) stroke, and BDMPs were extracted from ischemic brain 24 h after dMCAo by ultracentrifugation. Adult male C57BL/6J mice were subjected to dMCAo and treated via tail vein injection at 3 h after stroke with: (A) +PBS (n = 5/group); (B) +BDMPs (1.5 × 108, n = 6/group); (C) +Lactadherin (400 μg/kg, n = 5/group); (D) +BDMP+Lactadherin (n = 6/group). A battery of neurological function tests were performed and mice sacrificed for immunostaining at 14 days after stroke. Blood plasma was used for Western blot assay. Our data indicate: (1) treatment of Stroke with BDMP significantly increases lesion volume, neurological deficits, blood brain barrier (BBB) leakage, microglial activation, inflammatory cell infiltration (CD45, microglia/macrophages, and neutrophils) into brain, inflammatory factor (TNFα, IL6, and IL1β) expression in brain, increases axon/white matter (WM) damage identified by decreased axon and myelin density, and increases inflammatory factor expression in the plasma when compared to PBS treated stroke mice; (2) when compared to PBS and BDMP treated stroke mice, Lactadherin and BDMP+Lactadherin treatment significantly improves neurological outcome, and decreases lesion volume, BBB leakage, axon/WM injury, inflammatory cell infiltration and inflammatory factor expression in the ischemic brain, respectively. Lactadherin treatment significantly increases anti-inflammatory factor (IL10) expression in ischemic brain and decreases IL1β expression in plasma compared to PBS and BDMP treated stroke mice, respectively. BDMP increases neuroinflammation and aggravates ischemic brain damage after stroke. Thus, Lactadherin exerts anti-inflammatory effects and improves the clearance of MPs to reduce stroke and BDMP induced neurological deficits.
Collapse
Affiliation(s)
- Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Fenjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
32
|
Li H, Luo Y, Zhu L, Hua W, Zhang Y, Zhang H, Zhang L, Li Z, Xing P, Zhang Y, Hong B, Yang P, Liu J. Glia-derived exosomes: Promising therapeutic targets. Life Sci 2019; 239:116951. [PMID: 31626787 DOI: 10.1016/j.lfs.2019.116951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023]
Abstract
Glia is an important component of the nervous system that is involved in neurotransmitter uptake, signal transduction, myelin synthesis, neurodevelopment, and immune response. Exosomes are extracellular vesicles that are secreted from certain types of cells, and are known to mediate glia function. Glia-derived exosomes (GDEs) can transport proteins, nucleotides and cellular waste, and exert both protective and toxic effects on the nervous system. GDEs promote glia-neuron communication, anti-stress responses, anti-inflammation and neurite outgrowth, and may also be involved in neurological disease such as glioma, glioblastoma, Alzheimer's disease, Parkinson disease and neuronal HIV infections. This review summarizes the current research on GDEs and their functions, with emphasis on their therapeutic potential.
Collapse
Affiliation(s)
- He Li
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Graduate School, Second Military Medical University, Shanghai, China
| | - Yin Luo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Luojiang Zhu
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Graduate School, Second Military Medical University, Shanghai, China
| | - Weilong Hua
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Graduate School, Second Military Medical University, Shanghai, China
| | - Yongxin Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongjian Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zifu Li
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Pengfei Xing
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongwei Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bo Hong
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Pengfei Yang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Liu
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
33
|
Porro C, Panaro MA, Lofrumento DD, Hasalla E, Trotta T. The multiple roles of exosomes in Parkinson's disease: an overview. Immunopharmacol Immunotoxicol 2019; 41:469-476. [PMID: 31405314 DOI: 10.1080/08923973.2019.1650371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular vesicles (EVs) represent a relatively new field of research in neurodegenerative disease and they are thought to be one of the ways that neurodegenerative pathologies, such as Parkinson's Disease (PD), spread in the brain. EVs are membrane vesicles released from cells into the extracellular space and they are produced by all cells of the nervous tissue. The classification of the vesicle subtypes comprises exosomes, microvesicles/microparticles, apoptotic bodies. EVs change in number and content in response to environmental conditions and may function as shuttles for the delivery of cargo between cells. Recent data suggest that exosomes secreted by both activated microglia and neurons play an important role in α-synuclein (α-syn) spreading and increase of neuroinflammation, thus exacerbating neuronal dysfunction and disease progression. α-syn is a presynaptic protein secreted by neurons in small amounts, and it is the main component of Lewy bodies, one of the histopathological features of PD. Several factors have shown to induce and/or modulate α-syn structure and oligomerization in vitro. Under pathological conditions, progressive accumulation of α-syn and the formation of oligomers have been proposed to play a critical role in the pathogenesis of PD. This review gives an overview about the multiple roles of exosomes in PD, despite their role in the progression of neurodegeneration, exosomes could represent a specific drug delivery tool for a difficult target such as the brain, which poses an obstacle to most drugs and they could also represent new biomarkers to track the progression of PD.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari , Italy
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento , Lecce , Italy
| | - Elona Hasalla
- Department of Pre-Clinic Subjects, Faculty of Medical Sciences, University of Elbasan "Aleksander Xhuvani" , Elbasan , Albania
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| |
Collapse
|
34
|
Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 2019; 94:138-151. [PMID: 31112798 DOI: 10.1016/j.semcdb.2019.05.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival. This review focuses on the signaling pathways responsible for neuron-microglia crosstalk, highlighting their physiological roles and their alteration or specific involvement in disease. In particular, we discuss studies, establishing how these signaling allow microglial cells to control relevant physiological functions during brain development, including synaptic formation and circuit refinement. In addition, we highlight how microglia and neurons interact functionally to regulate highly dynamical synaptic functions. Microglia are able to release several signaling molecules involved in the regulation of synaptic activity and plasticity. On the other side, molecules of neuronal origin control microglial processes motility in an activity-dependent manner. Indeed, the continuous crosstalk between microglia and neurons is required for the sensing and housekeeping functions of microglia and contributes to the maintenance of brain homeostasis and, particularly, to the sculpting of neuronal connections during development. These interactions lay on the delicate edge between physiological processes and homeostasis alteration in pathology and are themselves altered during neuroinflammation. The full description of these processes could be fundamental for understanding brain functioning in health and disease.
Collapse
|
35
|
Trotta T, Panaro MA, Prifti E, Porro C. Modulation of Biological Activities in Glioblastoma Mediated by Curcumin. Nutr Cancer 2019; 71:1241-1253. [PMID: 31007066 DOI: 10.1080/01635581.2019.1604978] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curcumin is an alkaloid with various pharmacologic properties; numerous investigations have suggested that in the Central Nervous System, Curcumin has anti-inflammatory, antimicrobial, antioxidant, and antitumor effects. Gliomas are the most common primary intracranial tumors in adults. The prognosis of glioblastoma is still dismal. In this review, we profile that Curcumin could suppress cell proliferation and induce apoptosis of cancer cells and genomic modulation. In particular, Curcumin could exert its therapeutic effect via modulating miRNA, affecting a variety of miRNAs involved in the response to cancer therapy. The combination of Curcumin with chemotherapeutic drugs or radiotherapy could prime the sensitivity of cancer cells to chemotherapy or radiotherapy. We also discuss the use of exosomes as Curcumin delivery vehicles. In this context, exosomes containing Curcumin may change the behavior of recipient cells by targeting a sequence of cellular and molecular pathways. Hence, the application of exosomes containing Curcumin may prove to be an emerging area of research in cancer therapy.
Collapse
Affiliation(s)
- Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari , Bari , Italy
| | - Elona Prifti
- Department of Clinical Materies, University of Elbasan "Aleksander Xhuvani", Faculty of Medical and Technical Science , Albania
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| |
Collapse
|
36
|
Portrait of blood-derived extracellular vesicles in patients with Parkinson’s disease. Neurobiol Dis 2019; 124:163-175. [DOI: 10.1016/j.nbd.2018.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/09/2018] [Accepted: 11/03/2018] [Indexed: 12/17/2022] Open
|
37
|
Kosgodage US, Uysal-Onganer P, MacLatchy A, Mould R, Nunn AV, Guy GW, Kraev I, Chatterton NP, Thomas EL, Inal JM, Bell JD, Lange S. Cannabidiol Affects Extracellular Vesicle Release, miR21 and miR126, and Reduces Prohibitin Protein in Glioblastoma Multiforme Cells. Transl Oncol 2019; 12:513-522. [PMID: 30597288 PMCID: PMC6314156 DOI: 10.1016/j.tranon.2018.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumor in adults, with poor prognosis. Extracellular vesicles (EVs) are key-mediators for cellular communication through transfer of proteins and genetic material. Cancers, such as GBM, use EV release for drug-efflux, pro-oncogenic signaling, invasion and immunosuppression; thus the modulation of EV release and cargo is of considerable clinical relevance. As EV-inhibitors have been shown to increase sensitivity of cancer cells to chemotherapy, and we recently showed that cannabidiol (CBD) is such an EV-modulator, we investigated whether CBD affects EV profile in GBM cells in the presence and absence of temozolomide (TMZ). Compared to controls, CBD-treated cells released EVs containing lower levels of pro-oncogenic miR21 and increased levels of anti-oncogenic miR126; these effects were greater than with TMZ alone. In addition, prohibitin (PHB), a multifunctional protein with mitochondrial protective properties and chemoresistant functions, was reduced in GBM cells following 1 h CBD treatment. This data suggests that CBD may, via modulation of EVs and PHB, act as an adjunct to enhance treatment efficacy in GBM, supporting evidence for efficacy of cannabinoids in GBM.
Collapse
Affiliation(s)
- Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, UK.
| | - Amy MacLatchy
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Rhys Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Alistair V Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Geoffrey W Guy
- GW Research, Sovereign House, Vision Park, Cambridge, CB24 9BZ, UK.
| | - Igor Kraev
- The Open University, Walton Hall, Milton Keynes, UK.
| | | | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Jameel M Inal
- Extracellular Vesicle Research Unit and Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK.
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, UK.
| |
Collapse
|
38
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
39
|
Tsilioni I, Theoharides TC. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1β. J Neuroinflammation 2018; 15:239. [PMID: 30149804 PMCID: PMC6112123 DOI: 10.1186/s12974-018-1275-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
Background Autism spectrum disorder (ASD) has been associated with brain inflammation as indicated by the activation of microglia, but the triggers are not known. Extracellular vesicles (EVs) are secreted from many cells in the blood and other biological fluids and carry molecules that could influence the function of target cells. EVs have been recently implicated in several diseases, but their presence or function in ASD has not been studied. Methods EVs were isolated from the serum of children with ASD (n = 20, 16 males and 4 females, 4–12 years old) and unrelated age and sex-matched normotypic controls (n = 8, 6 males and 2 females, 4–12 years old) using the exoEasy Qiagen kit. EVs were characterized by determining the CD9 and CD81 membrane-associated markers with Western blot analysis, while their morphology and size were assessed by transmission electron microscopy (TEM). Human microglia SV40 were cultured for 24 h and then stimulated with EVs (1 or 5 μg/mL), quantitated as total EV-associated protein, for 24 or 48 h. IL-1β secretion was measured by ELISA. The results were analyzed using the Mann-Whitney U non-parametric test, and all statistical analyses were performed using Graph Pad Prism 5. Results EVs were isolated and shown to be spherical structures (about 100 nm) surrounded by a membrane. Total EV-associated protein was found to be significantly increased (p = 0.02) in patients as compared to normotypic controls. EVs (5 μg/mL) isolated from the serum of patients with ASD stimulated cultured human microglia to secrete significantly more of the pro-inflammatory cytokine interleukin IL-1β (163.5 ± 13.34 pg/mL) as compared to the control (117.7 ± 3.96 pg/mL, p < 0.0001). The amount of mitochondrial DNA (mtDNA7S) contained in EVs from children with ASD was found to be increased (p = 0.046) compared to the normotypic controls. Conclusions These findings provide novel information that may help explain what triggers inflammation in the brain of children with ASD and could lead to novel effective treatments.
Collapse
Affiliation(s)
- Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite J304, Boston, MA, 02111, USA
| | - Theoharis C Theoharides
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite J304, Boston, MA, 02111, USA. .,Sackler School of Graduate Biomedical Sciences, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA. .,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA. .,Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
40
|
Kosgodage US, Mould R, Henley AB, Nunn AV, Guy GW, Thomas EL, Inal JM, Bell JD, Lange S. Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Front Pharmacol 2018; 9:889. [PMID: 30150937 PMCID: PMC6099119 DOI: 10.3389/fphar.2018.00889] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/23/2018] [Indexed: 01/05/2023] Open
Abstract
Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors. Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth in vivo. Cannabidiol (CBD), a phytocannabinoid derived from Cannabis sativa, has anti-inflammatory and anti-oxidant properties, and displays anti-proliferative activity. Here we report a novel role for CBD as a potent inhibitor of EMV release from three cancer cell lines: prostate cancer (PC3), hepatocellular carcinoma (HEPG2) and breast adenocarcinoma (MDA-MB-231). CBD significantly reduced exosome release in all three cancer cell lines, and also significantly, albeit more variably, inhibited microvesicle release. The EMV modulating effects of CBD were found to be dose dependent (1 and 5 μM) and cancer cell type specific. Moreover, we provide evidence that this may be associated with changes in mitochondrial function, including modulation of STAT3 and prohibitin expression, and that CBD can be used to sensitize cancer cells to chemotherapy. We suggest that the known anti-cancer effects of CBD may partly be due to the regulatory effects on EMV biogenesis, and thus CBD poses as a novel and safe modulator of EMV-mediated pathological events.
Collapse
Affiliation(s)
- Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Rhys Mould
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Aine B Henley
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Geoffrey W Guy
- GW Research, Sovereign House Vision Park, Cambridge, United Kingdom
| | - E L Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Jameel M Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, United Kingdom.,Department of Pharmacology, University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
41
|
Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci 2018; 21:1218-1228. [DOI: 10.1038/s41593-018-0208-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
|
42
|
Casella G, Colombo F, Finardi A, Descamps H, Ill-Raga G, Spinelli A, Podini P, Bastoni M, Martino G, Muzio L, Furlan R. Extracellular Vesicles Containing IL-4 Modulate Neuroinflammation in a Mouse Model of Multiple Sclerosis. Mol Ther 2018; 26:2107-2118. [PMID: 30017878 DOI: 10.1016/j.ymthe.2018.06.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a major role in cell-to-cell communication in physiological and pathological conditions, and their manipulation may represent a promising therapeutic strategy. Microglia, the parenchymal mononuclear phagocytes of the brain, modulate neighboring cells also through the release of EVs. The production of custom EVs filled with desired molecules, possibly targeted to make their uptake cell specific, and their administration in biological fluids may represent a valid approach for drug delivery. We engineered a murine microglia cell line, BV-2, to release EVs overexpressing the endogenous "eat me" signal Lactadherin (Mfg-e8) on the surface to target phagocytes and containing the anti-inflammatory cytokine IL-4. A single injection of 107 IL-4+Mfg-e8+ EVs into the cisterna magna modulated established neuroinflammation and significantly reduced clinical signs in the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Injected IL-4+Mfg-e8+ EVs target mainly phagocytes (i.e., macrophages and microglia) surrounding liquoral spaces, and their cargo promote the upregulation of anti-inflammatory markers chitinase 3-like 3 (ym1) and arginase-1 (arg1), significantly reducing tissue damage. Engineered EVs may represent a biological drug delivery tool able to deliver multiple functional molecules simultaneously to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Giacomo Casella
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federico Colombo
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Hélène Descamps
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gerard Ill-Raga
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Podini
- Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Bastoni
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
43
|
Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018; 15:19. [PMID: 29960602 PMCID: PMC6026502 DOI: 10.1186/s12987-018-0104-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous, nano-sized vesicles that are shed into the blood and other body fluids, which disperse a variety of bioactive molecules (e.g., protein, mRNA, miRNA, DNA and lipids) to cellular targets over long and short distances. EVs are thought to be produced by nearly every cell type, however this review will focus specifically on EVs that originate from cells at the interface of CNS barriers. Highlighted topics include, EV biogenesis, the production of EVs in response to neuroinflammation, role in intercellular communication and their utility as a therapeutic platform. In this review, novel concepts regarding the use of EVs as biomarkers for BBB status and as facilitators for immune neuroinvasion are also discussed. Future directions and prospective are covered along with important unanswered questions in the field of CNS endothelial EV biology.
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Debayon Paul
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA
| | - Joel S Pachter
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA.
| |
Collapse
|
44
|
Chen J, Chopp M. Exosome Therapy for Stroke. Stroke 2018; 49:1083-1090. [PMID: 29669873 PMCID: PMC6028936 DOI: 10.1161/strokeaha.117.018292] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Geriatrics, Tianjin Medical University General Hospital, China (J.C.)
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, China (J.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Physics, Oakland University, Rochester, MI (M.C.)
| |
Collapse
|
45
|
Mondello S, Thelin EP, Shaw G, Salzet M, Visalli C, Cizkova D, Kobeissy F, Buki A. Extracellular vesicles: pathogenetic, diagnostic and therapeutic value in traumatic brain injury. Expert Rev Proteomics 2018; 15:451-461. [PMID: 29671356 DOI: 10.1080/14789450.2018.1464914] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Accurate classification according to injury-specific and patient-specific characteristics is critical to help informed clinical decision-making and to the pursuit of precision medicine in TBI. Reliable biomarker signatures for improved TBI diagnostics are required but still an unmet need. Areas covered: Extracellular vesicles (EVs) represent a new class of biomarker candidates in TBI. These nano-sized vesicles have key roles in cell signaling profoundly impacting pathogenic pathways, progression and long-term sequelae of TBI. As such EVs might provide novel neurobiological insights, enhance our understanding of the molecular mechanisms underlying TBI pathophysiology and recovery, and serve as biomarker signatures and therapeutic targets and delivery systems. Expert commentary: EVs are fast gaining momentum in TBI research, paving the way for new transformative diagnostic and treatment approaches. Their potential to sort out TBI variability and active involvement in the mechanisms underpinning different clinical phenotypes point out unique opportunities for improved classification, risk-stratification ad intervention, harboring promise of predictive, personalized, and even preemptive therapeutic strategies. Although a great deal of progress has been made, substantial efforts are still required to ensure the needed rigorous validation and reproducibility for clinical implementation of EVs.
Collapse
Affiliation(s)
- Stefania Mondello
- a Oasi Research Institute-IRCCS , Troina , Italy.,b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Eric P Thelin
- c Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden.,d Department of Clinical Neurosciences, Division of Neurosurgery , University of Cambridge, Cambridge Biomedical Campus , Cambridge , United Kingdom
| | - Gerry Shaw
- e EnCor Biotechnology Inc ., Gainesville , FL , USA
| | - Michel Salzet
- f Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille , Lille , France
| | - Carmela Visalli
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Dasa Cizkova
- g Neuroimmunology , Slovak Academy of Sciences , Bratislava , Slovakia
| | - Firas Kobeissy
- h Department of Psychiatry and Neuroscience , McKnight Brain Institute, University of Florida , Gainesville , FL , USA.,i Department of Biochemistry and Molecular Genetics , American University of Beirut , Beirut , Lebanon
| | - Andras Buki
- j Department of Neurosurgery , Pecs University , Pecs , Hungary
| |
Collapse
|
46
|
Neural Stem Cell-Conditioned Medium Ameliorated Cerebral Ischemia-Reperfusion Injury in Rats. Stem Cells Int 2018; 2018:4659159. [PMID: 29765412 PMCID: PMC5903322 DOI: 10.1155/2018/4659159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Introduction Our previous study suggested that NSC-CM (neural stem cell-conditioned medium) inhibited cell apoptosis in vitro. In addition, many studies have shown that neurotrophic factors and microparticles secreted into a conditioned medium by NSCs had neuroprotective effects. Thus, we hypothesized that NSC-CM had the capacity of protecting against cerebral I/R injury. Methods Adult male Sprague-Dawley rats receiving middle cerebral artery occlusion surgery as an animal model of cerebral I/R injury were randomly assigned to two groups: the control group and NSC-CM-treated group. 1.5 ml NSC-CM or PBS (phosphate buffer saline) was administrated slowly by tail vein at 3 h, 24 h, and 48 h after ischemia onset. Results NSC-CM significantly ameliorated neurological defects and reduced cerebral infarct volume, accompanied by preserved mitochondrial ultrastructure. In addition, we also found that NSC-CM significantly inhibited cell apoptosis in the ischemic hemisphere via improving the expression of Bcl-2 (B-cell lymphoma-2). Conclusion NSC-CM might be an alternative and effective therapeutic intervention for ischemic stroke.
Collapse
|
47
|
Hosseinzadeh S, Noroozian M, Mortaz E, Mousavizadeh K. Plasma microparticles in Alzheimer's disease: The role of vascular dysfunction. Metab Brain Dis 2018; 33:293-299. [PMID: 29209923 DOI: 10.1007/s11011-017-0149-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/14/2017] [Indexed: 11/26/2022]
Abstract
Cerebrovascular lesions, a potent stimulus for endothelial cell activation, trigger cognitive and degenerative changes and contribute to pathology of Alzheimer's disease (AD). Circulating microparticles (MPs) are actively involved in the pathogenesis of AD and cerebrovascular diseases, which share common vascular risk factors. We examined the plasma changes of endothelial MPs (EMPs) and platelet MPs (PMPs) in AD patients with vascular risk factors. The plasma Annexin V+ CD 41a- CD144+ EMPs and Annexin V+ CD41a+ CD144- PMPs of 37 patients with AD, with or without vascular risk factors (hypertension, diabetes, dyslipidemia, stroke, coronary artery disease, and smoking), and 10 age-matched controls were quantified by flow cytometry. Pearson correlation analysis used to evaluate the linear relationship between variables. Significantly higher plasma levels of EMPs were observed in AD patients with vascular risk factors as compared to the patients without vascular risk factors [Mean Difference (MD): 2587.80, 95% confidence interval (CI) 770.30-4404.80], and control subjects (MD: 4990.60, 95% CI, 3054.40-6926.79). Significant correlations were found between circulating EMPs, total MPs, and PMPs. There were no significant correlations between plasma levels of EMPs/ PMPs, and cognitive decline indices. Circulating EMP levels are influenced by AD disease status, and plasma levels of MPs and PMPs are associated with vascular risk factors in patients with AD. EMP phenotyping, as cellular biomarkers of vascular injury/dysfunction, and their effects on cerebral perfusion, and cognitive decline should be further investigated. Graphical abstract Vascular endothelial cell activation results in release of endothelial-derived microparticles (EMPs), which contributing to vascular dysfunction and cognitive decline.
Collapse
Affiliation(s)
- Soheila Hosseinzadeh
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Noroozian
- Memory and Behavioral Neurology Division, Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, 1333795914, Iran.
| | - Esmaeil Mortaz
- Department of Immunology, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Microglia-derived extracellular vesicles in Alzheimer's Disease: A double-edged sword. Biochem Pharmacol 2018; 148:184-192. [PMID: 29305855 DOI: 10.1016/j.bcp.2017.12.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/22/2017] [Indexed: 01/15/2023]
Abstract
Extracellular vesicles (EVs), based on their origin or size, can be classified as apoptotic bodies, microvesicles (MVs)/microparticles (MPs), and exosomes. EVs are one of the new emerging modes of communication between cells that are providing new insights into the pathophysiology of several diseases. EVs released from activated or apoptotic cells contain specific proteins (signaling molecules, receptors, integrins, cytokines), bioactive lipids, nucleic acids (mRNA, miRNA, small non coding RNAs, DNA) from their progenitor cells. In the brain, EVs contribute to intercellular communication through their basal release and uptake by surrounding cells, or release into the cerebrospinal fluid (CSF) and blood. In the central nervous system (CNS), EVs have been suggested as potential carriers in the intercellular delivery of misfolded proteins associated to neurodegenerative disorders, such as tau and amyloid β in Alzheimer's Disease (AD), α-synuclein in Parkinson's Disease (PD), superoxide dismutase (SOD)1 in amyotrophic lateral sclerosis and huntingtin in Huntington's Disease. Multiple studies indicate that EVs are involved in the pathogenesis of AD, although their role has not been completely elucidated. The focus of this review is to analyze the new emerging role of EVs in AD progression, paying particular attention to microglia EVs. Recent data show that microglia are the first myeloid cells to be activated during neuroinflammation. Microglial EVs in fact, could have both a beneficial and a detrimental action in AD. The study of EVs may provide specific, precise information regarding the AD transition stage that may offer possibilities to intervene in order to retain cognition. In chronic neurodegenerative diseases EVs could be a novel biomarker to monitor the progression of the pathology and also represent a new therapeutical approach to CNS diseases.
Collapse
|
49
|
Nekludov M, Bellander BM, Gryth D, Wallen H, Mobarrez F. Brain-Derived Microparticles in Patients with Severe Isolated TBI. Brain Inj 2017; 31:1856-1862. [PMID: 28972406 DOI: 10.1080/02699052.2017.1358395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PRIMARY OBJECTIVE to investigate the presence of circulating microparticles (MPs) of brain tissue origin in the systemic and cerebrovenous blood of patients with severe traumatic brain injury (TBI). RESEARCH DESIGN Prospective observational study in 15 consecutive patients with severe isolated TBI. METHODS AND PROCEDURES We repeatedly measured concentrations of MPs expressing glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE) and aquaporin-4 (AQP4), in arterial and cerebrovenous blood at admittance to hospital and up to 72 hours after the injury. MAIN OUTCOMES AND RESULTS Concentrations of MPs expressing GFAP and AQP4 were significantly higher in the TBI group compared with healthy controls: GFAP 2.0 [1.1-7.9] vs. 1.3 [1-2.1] × 106/mL, p < 0.001; AQP4 0.1 [0.07-0.22] vs. 0.08 [0.06-0.11] × 106/mL, p < 0.001 (median, range). No transcranial gradients were found. Levels of NSE-expressing MPs were also higher in the TBI group compared with healthy controls: 0.4 [0.25-2.1] vs. 0.26 [0.13-0.98] × 106/mL, p < 0.05; however, regarding NSE-positive non-platelet MPs, there were no differences between patients and controls. CONCLUSIONS Patients with TBI have higher numbers of brain-derived MPs. Further studies are needed, however, to identify specific and sensitive MP markers of brain injury.
Collapse
Affiliation(s)
- M Nekludov
- a Karolinska Institutet, Department of Physiology and Pharmacology, section for Anesthesiology and Intensive Care , Karolinska University Hospital Solna , Stockholm , Sweden
| | - B-M Bellander
- b Karolinska Institutet, Department of Clinical Neuroscience, section for Neurosurgery , Karolinska University Hospital Solna , Stockholm , Sweden
| | - D Gryth
- a Karolinska Institutet, Department of Physiology and Pharmacology, section for Anesthesiology and Intensive Care , Karolinska University Hospital Solna , Stockholm , Sweden
| | - H Wallen
- c Karolinska Institutet , Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyds Hospital , Stockholm , Sweden
| | - F Mobarrez
- c Karolinska Institutet , Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyds Hospital , Stockholm , Sweden.,d Karolinska Institutet , Department of Medicine, Rheumatology Unit , Stockholm , Sweden
| |
Collapse
|
50
|
Abstract
Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed.
Collapse
Affiliation(s)
- Zhili Chen
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Poornima Venkat
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Don Seyfried
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Michael Chopp
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Tao Yan
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Jieli Chen
- From the Gerontology and Neurological Institute, Tianjin Medical University General Hospital, China (Z.C., T.Y., J.C.); Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., D.S., M.C., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.).
| |
Collapse
|