1
|
Maehashi S, Arora K, Fisher AL, Schweitzer DR, Akefe IO. Neurolipidomic insights into anxiety disorders: Uncovering lipid dynamics for potential therapeutic advances. Neurosci Biobehav Rev 2024; 163:105741. [PMID: 38838875 DOI: 10.1016/j.neubiorev.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.
Collapse
Affiliation(s)
- Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
2
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
3
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
5
|
Iliyasu MO, Musa SA, Oladele SB, Iliya AI. Amyloid-beta aggregation implicates multiple pathways in Alzheimer's disease: Understanding the mechanisms. Front Neurosci 2023; 17:1081938. [PMID: 37113145 PMCID: PMC10128090 DOI: 10.3389/fnins.2023.1081938] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by tau pathology and accumulations of neurofibrillary tangles (NFTs) along with amyloid-beta (Aβ). It has been associated with neuronal damage, synaptic dysfunction, and cognitive deficits. The current review explained the molecular mechanisms behind the implications of Aβ aggregation in AD via multiple events. Beta (β) and gamma (γ) secretases hydrolyzed amyloid precursor protein (APP) to produce Aβ, which then clumps together to form Aβ fibrils. The fibrils increase oxidative stress, inflammatory cascade, and caspase activation to cause hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), which ultimately lead to neuronal damage. Acetylcholine (Ach) degradation is accelerated by upstream regulation of the acetylcholinesterase (AChE) enzyme, which leads to a deficiency in neurotransmitters and cognitive impairment. There are presently no efficient or disease-modifying medications for AD. It is necessary to advance AD research to suggest novel compounds for treatment and prevention. Prospectively, it might be reasonable to conduct clinical trials with unclean medicines that have a range of effects, including anti-amyloid and anti-tau, neurotransmitter modulation, anti-neuroinflammatory, neuroprotective, and cognitive enhancement.
Collapse
Affiliation(s)
- Musa O. Iliyasu
- Department of Anatomy, Kogi State University, Anyigba, Nigeria
- *Correspondence: Musa O. Iliyasu, ;
| | - Sunday A. Musa
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday B. Oladele
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
6
|
GPBAR1 preserves neurite and synapse of dopaminergic neurons via RAD21-OPCML signaling: Role in preventing Parkinson's disease in mouse model and human patients. Pharmacol Res 2022; 184:106459. [PMID: 36152741 DOI: 10.1016/j.phrs.2022.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) exhibits systemic impacts on the metabolism, while metabolic alteration contributes to the risk and progression of PD. Bile acids (BA) metabolism disturbance has been linked to PD pathology. Membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1) is expressed in the brain and thought to be neuroprotective; however, the role of GPBAR1 in PD remains unknown. The current study aimed to explore the effect of GPBAR1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice with dopaminergic (DA) neuron-specific Gpbar1 knockdown or central GPBAR1 activation. The underlying mechanisms were investigated using mesencephalic primary neurons analyzed. Our study found that GPBAR1 was reduced in the substantia nigra of PD patients and MPTP-PD mice, and its expression was negatively correlated with the severity of PD-related features. Genetic downregulation of Gpbar1 in mouse mesencephalic DA neurons exacerbated MPTP-induced neurobehavioral and neuropathological deficits, whereas activation of central GPBAR1 with INT-777 (INT) relieved it. Moreover, in vivo and in vitro experiments showed the neurite- and synapse-protective effects of GPBAR1 activation in PD model. Mechanistically, by promoting the nuclear localization of cohesin subunit RAD21, GPBAR1 activation increased opioid-binding cell adhesion molecule (Opcml) expression, thereby inhibiting neurite and synapse degeneration of DA neurons in PD model. Collectively, our findings demonstrate that GPBAR1 is implicated in PD pathogenesis and activation of central GPBAR1 with INT antagonizes neurodegenerative pathology in PD model. This neuroprotection, at least in part, is attributed to the RAD21-OPCML signaling in neurons. Hence, GPBAR1 may serve as a promising candidate target for PD treatment.
Collapse
|
7
|
Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. Int J Mol Sci 2022; 23:ijms23158683. [PMID: 35955821 PMCID: PMC9369131 DOI: 10.3390/ijms23158683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2022] Open
Abstract
Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and Niemann–Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol–purine reciprocal control could hopefully promote further research.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Patrizia Di Iorio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Henning Ulrich
- Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-087-440-4897
| |
Collapse
|
8
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
9
|
Ho WY, Hartmann H, Ling SC. Central nervous system cholesterol metabolism in health and disease. IUBMB Life 2022; 74:826-841. [PMID: 35836360 DOI: 10.1002/iub.2662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Cholesterol is a ubiquitous and essential component of cellular membranes, as it regulates membrane structure and fluidity. Furthermore, cholesterol serves as a precursor for steroid hormones, oxysterol, and bile acids, that are essential for maintaining many of the body's metabolic processes. The biosynthesis and excretion of cholesterol is tightly regulated in order to maintain homeostasis. Although virtually all cells have the capacity to make cholesterol, the liver and brain are the two main organs producing cholesterol in mammals. Once produced, cholesterol is transported in the form of lipoprotein particles to other cell types and tissues. Upon formation of the blood-brain barrier (BBB) during embryonic development, lipoproteins cannot move between the central nervous system (CNS) and the rest of the body. As such, cholesterol biosynthesis and metabolism in the CNS operate autonomously without input from the circulation system in normal physiological conditions. Nevertheless, similar regulatory mechanisms for maintaining cholesterol homeostasis are utilized in both the CNS and peripheral systems. Here, we discuss the functions and metabolism of cholesterol in the CNS. We further focus on how different CNS cell types contribute to cholesterol metabolism, and how ApoE, the major CNS apolipoprotein, is involved in normal and pathophysiological functions. Understanding these basic mechanisms will aid our ability to elucidate how CNS cholesterol dysmetabolism contributes to neurogenerative diseases.
Collapse
Affiliation(s)
- Wan Y Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore
| | - Hannelore Hartmann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore.,Healthy Longevity Translational Research Programme, National University Health System, Singapore
| |
Collapse
|
10
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
11
|
Bai X, Mai M, Yao K, Zhang M, Huang Y, Zhang W, Guo X, Xu Y, Zhang Y, Qurban A, Duan L, Bu J, Zhang J, Wu J, Zhao Y, Yuan X, Zu H. The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. Acta Neuropathol Commun 2022; 10:35. [PMID: 35296367 PMCID: PMC8925223 DOI: 10.1186/s40478-022-01338-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that 3β-hydroxysterol-Δ24 reductase (DHCR24) has a remarked decline in the brain of AD patients. In brain cholesterol synthetic metabolism, DHCR24 is known as the heavily key synthetase in cholesterol synthesis. Moreover, mutations of DHCR24 gene result in inhibition of the enzymatic activity of DHCR24, causing brain cholesterol deficiency and desmosterol accumulation. Furthermore, in vitro studies also demonstrated that DHCR24 knockdown lead to the inhibition of cholesterol synthesis, and the decrease of plasma membrane cholesterol and intracellular cholesterol level. Obviously, DHCR24 could play a crucial role in maintaining cholesterol homeostasis via the control of cholesterol synthesis. Over the past two decades, accumulating data suggests that DHCR24 activity is downregulated by major risk factors for AD, suggesting a potential link between DHCR24 downregulation and AD pathogenesis. Thus, the brain cholesterol loss seems to be induced by the major risk factors for AD, suggesting a possible causative link between brain cholesterol loss and AD. According to previous data and our study, we further found that the reduced cholesterol level in plasma membrane and intracellular compartments by the deficiency of DHCR24 activity obviously was involved in β-amyloid generation, tau hyperphosphorylation, apoptosis. Importantly, increasing evidences reveal that the brain cholesterol loss and lipid raft disorganization are obviously linked to neuropathological impairments which are associated with AD pathogenesis. Therefore, based on previous data and research on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the pathogenesis of AD.
Collapse
|
12
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
13
|
The CC Genotype of Insulin-Induced Gene 2 rs7566605 Is a Protective Factor of Hypercholesteremia Susceptible to Mild Cognitive Impairment, Especially to the Executive Function of Patients with Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2021; 2020:4935831. [PMID: 32596317 PMCID: PMC7303749 DOI: 10.1155/2020/4935831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/04/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Methods 233 T2DM patients with MCI or without MCI were recruited. Baseline data and genotype frequency were compared between MCI and non-MCI groups. Demographic parameters and neuropsychological tests results were analyzed among patients with different genotypes. Further correlation and regression analysis were conducted to find the association between cognition and cholesterol. Results Despite no significant statistical difference was detected, we observed higher levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) in patients with MCI than those without MCI. In addition, we observed higher TC and LDL levels in patients with GG or GC genotypes than those with CC genotype (P < 0.001, P = 0.004, or P < 0.001, P = 0.002). Interestingly, increased MoCA and decreased TMTB scores were found in patients with CC genotype, compared to those with GG or CG genotype (P = 0.009, P = 0.024, or P = 0.005, P = 0.109). Moreover, partial correlation (P = 0.030 and P = 0.004, respectively) and multiple linear regression (P = 0.030 and P = 0.005, respectively) showed that TC and LDL levels are associated with the TMTB score, indicating the executive function. Conclusions CC genotype of INSIG-2 rs7566605 may be a protective factor of hypercholesteremia susceptible to MCI, especially to the executive function of T2DM. This trial is registered with ChiCTROCC15006060.
Collapse
|
14
|
Abuelezz SA, Hendawy N. HMGB1/RAGE/TLR4 axis and glutamate as novel targets for PCSK9 inhibitor in high fat cholesterol diet induced cognitive impairment and amyloidosis. Life Sci 2021; 273:119310. [PMID: 33667517 DOI: 10.1016/j.lfs.2021.119310] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/15/2022]
Abstract
AIMS Alzheimer's disease (AD) is a leading health problem in which increased amyloid β (Aβ) accumulation may occur due to abnormal Aβ precursor protein processing by β-secretase 1 (BACE1) enzyme. Lately, neuro-inflammation was recognized as a significant contributor to its pathogenesis. Although the causes of AD are not yet well understood, much evidence has suggested that dyslipidemia has harmful effects on cognitive function and is inextricably involved in AD pathogenesis. Cholesterol is a vital molecule involved in neuronal development. Alteration in neuronal cholesterol levels affects Aβ metabolism and results in neurodegeneration. Proprotein-convertase-subtilisin/kexin type-9 (PCSK9) was found to decrease neuronal cholesterol uptake by degradation of LDL-receptor related protein 1 (LRP-1) responsible for neuronal cholesterol uptake. Accordingly, this study was designed to evaluate the effect of PCSK9-inhibition by alirocumab (Aliro) in high-fat-cholesterol-diet (HFCD)-induced-AD-like condition. MAIN METHODS Wistar Rats were divided into six groups; control; HFCD; HFCD and Memantine; HFCD and Aliro (4, 8 and 16 mg/kg/week) to test for ability of Aliro to modulate cognitive impairment, amyloidosis, brain cholesterol homeostasis and neuro-inflammation in HFCD-induced-AD-like condition. KEY FINDINGS Our results demonstrated an association between PCSK9 inhibition by Aliro and amelioration of cognitive deficit, cholesterol hemostasis and reduction of neuro-inflammation. Aliro was able to alleviate hippocampal LRP-1expression levels and reduce brain cholesterol, hippocampal BACE1, Aβ42, high-mobility-group-box-1 protein, receptor for advanced-glycation-end-products and toll like receptor-4 with subsequent decrease of different inflammatory mediators as nuclear-factor-kappa-B (NF-κB), tumor-necrosis-factor-alpha (TNF-α), interleukin-1beta (IL-1β) and IL-6. SIGNIFICANCE PCSK9-inhibition may represent a new therapeutic target in AD especially for HFCD-induced-AD-like condition.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine Ain-Shams University, Cairo, Egypt.
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine Ain-Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Guo Y, Zou G, Qi K, Jin J, Yao L, Pan Y, Xiong W. Simvastatin impairs hippocampal synaptic plasticity and cognitive function in mice. Mol Brain 2021; 14:41. [PMID: 33627175 PMCID: PMC7905661 DOI: 10.1186/s13041-021-00758-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Lipophilic statins which are blood brain barrier (BBB) permeable are speculated to affect the cholesterol synthesis and neural functions in the central nervous system. However, whether these statins can affect cholesterol levels and synaptic plasticity in hippocampus and the in vivo consequence remain unclear. Here, we report that long-term subcutaneous treatments of simvastatin significantly impair mouse hippocampal synaptic plasticity, reflected by the attenuated long-term potentiation of field excitatory postsynaptic potentials. The simvastatin administration causes a deficiency in recognition and spatial memory but fails to affect motor ability and anxiety behaviors in the mice. Mass spectrometry imaging indicates a significant decrease in cholesterol intensity in hippocampus of the mice receiving chronic simvastatin treatments. Such effects of simvastatin are transient because drug discontinuation can restore the hippocampal cholesterol level and synaptic plasticity and the memory function. These findings may provide further clues to elucidate the mechanisms of neurological side effects, especially the brain cognitive function impairment, caused by long-term usage of BBB-permeable statins.
Collapse
Affiliation(s)
- Yujun Guo
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guichang Zou
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Jin Jin
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Yao
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wei Xiong
- Department of Neurosurgery, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230026, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
16
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
17
|
Paroni G, Bisceglia P, Seripa D. Understanding the Amyloid Hypothesis in Alzheimer's Disease. J Alzheimers Dis 2020; 68:493-510. [PMID: 30883346 DOI: 10.3233/jad-180802] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The amyloid hypothesis (AH) is still the most accepted model to explain the pathogenesis of inherited Alzheimer's disease (IAD). However, despite the neuropathological overlapping with the non-inherited form (NIAD), AH waver in explaining NIAD. Thus, 30 years after its first statement several questions are still open, mainly regarding the role of amyloid plaques (AP) and apolipoprotein E (APOE). Accordingly, a pathogenetic model including the role of AP and APOE unifying IAD and NIAD pathogenesis is still missing. In the present understanding of the AH, we suggested that amyloid-β (Aβ) peptides production and AP formation is a physiological aging process resulting from a systemic age-related decrease in the efficiency of the proteins catabolism/clearance machinery. In this pathogenetic model Aβ peptides act as neurotoxic molecules, but only above a critical concentration [Aβ]c. A threshold mechanism triggers IAD/NIAD onset only when [Aβ]≥[Aβ]c. In this process, APOE modifies [Aβ]c threshold in an isoform-specific way. Consequently, all factors influencing Aβ anabolism, such as amyloid beta precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) gene mutations, and/or Aβ catabolism/clearance could contribute to exceed the threshold [Aβ]c, being characteristic of each individual. In this model, AP formation does not depend on [Aβ]c. The present interpretation of the AH, unifying the pathogenetic theories for IAD and NIAD, will explain why AP and APOE4 may be observed in healthy aging and why they are not the cause of AD. It is clear that further studies are needed to confirm our pathogenetic model. Nevertheless, our suggestion may be useful to better understand the pathogenesis of AD.
Collapse
Affiliation(s)
- Giulia Paroni
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
18
|
Chun YS, Chung S. High-Cholesterol Diet Decreases the Level of Phosphatidylinositol 4,5-Bisphosphate by Enhancing the Expression of Phospholipase C (PLCβ1) in Rat Brain. Int J Mol Sci 2020; 21:ijms21031161. [PMID: 32050555 PMCID: PMC7038105 DOI: 10.3390/ijms21031161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is a critical component of eukaryotic membranes, where it contributes to regulating transmembrane signaling, cell-cell interaction, and ion transport. Dysregulation of cholesterol levels in the brain may induce neurodegenerative diseases, such as Alzheimer's disease, Parkinson disease, and Huntington disease. We previously reported that augmenting membrane cholesterol level regulates ion channels by decreasing the level of phosphatidylinositol 4,5-bisphosphate (PIP2), which is closely related to β-amyloid (Aβ) production. In addition, cholesterol enrichment decreased PIP2 levels by increasing the expression of the β1 isoform of phospholipase C (PLC) in cultured cells. In this study, we examined the effect of a high-cholesterol diet on phospholipase C (PLCβ1) expression and PIP2 levels in rat brain. PIP2 levels were decreased in the cerebral cortex in rats on a high-cholesterol diet. Levels of PLCβ1 expression correlated with PIP2 levels. However, cholesterol and PIP2 levels were not correlated, suggesting that PIP2 level is regulated by cholesterol via PLCβ1 expression in the brain. Thus, there exists cross talk between cholesterol and PIP2 that could contribute to the pathogenesis of neurodegenerative diseases.
Collapse
|
19
|
Freitas-Silva M, Medeiros R, Nunes JPL. Low density lipoprotein cholesterol values and outcome of stroke patients: influence of previous aspirin therapy. Neurol Res 2020; 42:267-274. [PMID: 32024449 DOI: 10.1080/01616412.2020.1724463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The link between low-density lipoprotein cholesterol (LDL-C) and stroke risk remains controversial and few studies have evaluated the effect of LDL-C after stroke survival.Aims: We assessed the hypothesis proposing the effect of LDL-C on the outcome of stroke patients under the influence of previous Aspirin Therapy.Methods: Associations between LDL-C and outcomes. The effect of LDL cholesterol on stoke outcome was evaluated using Kaplan-Meier methodology, log-rank test, Cox proportional hazard models and Bootstrap Analysis.Results: In a cohort of 342 cases, we observed that among stroke patients with no record of previous aspirin therapy LDL-C levels within recommended range (nLDL-C) are associated to a poor overall survival on (p < 0.001, log-rank test) leading to a 4-fold increased mortality risk in both timeframes of 12 (HR 4.45, 95% CI 1.55-12.71; p = 0.004) or 24 months (HR 4.13, 95%CI 1.62-10.50;p = 0.003) after the first event of stroke. Moreover, modelling the risk of a second event after the first stroke in the timeframe of 24 months demonstrated a predictive capacity for nLDL-C plasmatic levels (HR 3.94, 95%CI 1.55-10.05; p = 0.004) confirmed by Bootstrap analysis (p = 0.003; 1000 replications). In a further step, the inclusion of LDL-C in simulating models equations to predict the risk of a second event in the timeframe of 12 months increased nearly 20% the predictive ability (c-index from 0.763 to 0.956).Conclusion: A worse outcome was seen in stroke patients with normal levels of LDLC, but this finding was restricted to patients not under previous aspirin therapy.
Collapse
Affiliation(s)
- Margarida Freitas-Silva
- Department of Medicine, Centro Hospitalar São João, Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Medeiros
- FMUP, Faculty of Medicine, University of Porto, Porto, Portugal.,LPCC, Research Department Portuguese League against Cancer (Liga Portuguesa Contra O Cancro, Núcleo Regional Do Norte), Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (Ipo-porto), Porto, Portugal
| | - José Pedro L Nunes
- Department of Medicine, Centro Hospitalar São João, Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Jang SA, Namkoong S, Lee SR, Lee JW, Park Y, So G, Kim SH, Kim MJ, Jang KH, Avolio AP, Gangoda SVS, Koo HJ, Kim MK, Kang SC, Sohn EH. Multi-tissue lipotoxicity caused by high-fat diet feeding is attenuated by the supplementation of Korean red ginseng in mice. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-00056-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Guermech I, Lassoued MA, Abdelhamid A, Sfar S. Development and Assessment of Lipidic Nanoemulsions Containing Sodium Hyaluronate and Indomethacin. AAPS PharmSciTech 2019; 20:330. [PMID: 31677079 DOI: 10.1208/s12249-019-1543-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
The present work attempts to develop and optimize the formula of a lipidic nanoemulsion (NE) containing sodium hyaluronate (HNa) and indomethacin (Ind) as HNa-Ind for enhanced transdermal antiarthritic activity. NEs were prepared by the spontaneous emulsification method and characterized by Fourier-transform infrared (FTIR) spectroscopy. The composition of the optimal formulation was statistically optimized using Box-Behnken experimental design method with three independent factors and was characterized for particle size, polydispersity index, and percent transmittance. The selected formula was tested for its in vitro antioxidant activity and in vivo anti-inflammatory activity. The optimized HNa-Ind NE formula was characterized and displayed a particle size of 12.87 ± 0.032 nm, polydispersity index of 0.606 ± 0.082, and 99.4 ± 0.1 percentage of transmittance. FTIR showed no interaction between HNa and Ind as a physical mixture. In addition, the optimized HNa-Ind NE was able to preserve the antioxidant ability of the two drugs, as evidenced through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assay used to assess free radical scavenging ability. The cell viability was increased while the free radical scavenging activity was decreased (94.28% inhibition at higher concentrations compared with vitamin C as a reference with an inhibition of 100%). Moreover, the pharmacological anti-inflammatory potential of the optimized HNa-Ind NE formulation was assessed using an in vivo model. Compared with reference drugs (ibuprofen gel 5%), the remarkable activity of the optimized formulation was established using xylene-induced ear edema in mice model, in which the inflamed region reduced by 92.5% upon treatment. The optimized HNa-Ind NE formulation showed considerably higher skin permeation and drug deposition capability compared with the HNa-Ind solution. HNa-Ind NE was demonstrated to be a successful carrier with enhanced antioxidant and anti-inflammatory potential while showing better skin penetration, thus being a promising vehicle for transdermal drug delivery.
Collapse
|
22
|
Buss SS, Padmanabhan J, Saxena S, Pascual-Leone A, Fried PJ. Atrophy in Distributed Networks Predicts Cognition in Alzheimer's Disease and Type 2 Diabetes. J Alzheimers Dis 2019; 65:1301-1312. [PMID: 30149455 DOI: 10.3233/jad-180570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and type 2 diabetes (T2DM) are common causes of cognitive decline among older adults and share strong epidemiological links. Distinct patterns of cortical atrophy are observed in AD and T2DM, but robust comparisons between structure-function relationships across these two disease states are lacking. OBJECTIVE To compare how atrophy within distributed brain networks is related to cognition across the spectrum of cognitive aging. METHODS The relationship between structural MRI changes and cognition was studied in 22 mild-to-moderate AD, 28 T2DM, and 27 healthy participants. Cortical thickness measurements were obtained from networks of interest (NOIs) matching the limbic, default, and frontoparietal resting-state networks. Composite cognitive scores capturing domains of global cognition, memory, and executive function were created. Associations between cognitive scores and the NOIs were assessed using linear regression, with age as a covariate. Within-network General Linear Model (GLM) analysis was run in Freesurfer 6.0 to visualize differences in patterns of cortical atrophy related to cognitive function in each group. A secondary analysis examined hemispheric differences in each group. RESULTS Across all groups, cortical atrophy within the limbic NOI was significantly correlated with Global Cognition (p = 0.009) and Memory Composite (p = 0.002). Within-network GLM analysis and hemispheric analysis revealed qualitatively different patterns of atrophy contributing to cognitive dysfunction between AD and T2DM. CONCLUSION Brain network atrophy is related to cognitive function across AD, T2DM, and healthy participants. Differences in cortical atrophy patterns were seen between AD and T2DM, highlighting neuropathological differences.
Collapse
Affiliation(s)
- Stephanie S Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jaya Padmanabhan
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sadhvi Saxena
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Institut Guttman, Universitat Autonoma de Barcelona, Badalona, Barcelona, Spain
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
24
|
Marchi C, Adorni MP, Caffarra P, Ronda N, Spallazzi M, Barocco F, Galimberti D, Bernini F, Zimetti F. ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer's disease. J Lipid Res 2019; 60:1449-1456. [PMID: 31167810 DOI: 10.1194/jlr.p091033] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/25/2019] [Indexed: 01/18/2023] Open
Abstract
HDL-like particles in human cerebrospinal fluid (CSF) promote the efflux of cholesterol from astrocytes toward the neurons that rely on this supply for their functions. We evaluated whether cell cholesterol efflux capacity of CSF (CSF-CEC) is impaired in Alzheimer's disease (AD) by analyzing AD (n = 37) patients, non-AD dementia (non-AD DEM; n = 16) patients, and control subjects (n = 39). As expected, AD patients showed reduced CSF Aβ 1-42, increased total and phosphorylated tau, and a higher frequency of the apoε4 genotype. ABCA1- and ABCG1-mediated CSF-CEC was markedly reduced in AD (-73% and -33%, respectively) but not in non-AD DEM patients, in which a reduced passive diffusion CEC (-40%) was observed. Non-AD DEM patients displayed lower CSF apoE concentrations (-24%) compared with controls, while apoA-I levels were similar among groups. No differences in CSF-CEC were found by stratifying subjects for apoε4 status. ABCG1 CSF-CEC positively correlated with Aβ 1-42 (r = 0.305, P = 0.025), while ABCA1 CSF-CEC inversely correlated with total and phosphorylated tau (r = -0.348, P = 0.018 and r = -0.294, P = 0.048, respectively). The CSF-CEC impairment and the correlation with the neurobiochemical markers suggest a pathophysiological link between CSF HDL-like particle dysfunction and neurodegeneration in AD.
Collapse
Affiliation(s)
- Cinzia Marchi
- Department of Food and Drug University of Parma, Parma, Italy
| | | | - Paolo Caffarra
- Department of Medicine and Surgery, Section of Neurology University of Parma, Parma, Italy.,Alzheimer Center Briolini Hospital, Gazzaniga, Bergamo, Italy
| | - Nicoletta Ronda
- Department of Food and Drug University of Parma, Parma, Italy
| | - Marco Spallazzi
- Department of Medicine and Surgery, Section of Neurology University of Parma, Parma, Italy
| | - Federica Barocco
- Department of Medicine and Surgery, Section of Neurology University of Parma, Parma, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, University of Milano, Milano, Italy.,Neurodegenerative Diseases Unit Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Franco Bernini
- Department of Food and Drug University of Parma, Parma, Italy
| | | |
Collapse
|
25
|
Adorni MP, Ruscica M, Ferri N, Bernini F, Zimetti F. Proprotein Convertase Subtilisin/Kexin Type 9, Brain Cholesterol Homeostasis and Potential Implication for Alzheimer's Disease. Front Aging Neurosci 2019; 11:120. [PMID: 31178716 PMCID: PMC6538876 DOI: 10.3389/fnagi.2019.00120] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) has been associated with dysregulation of brain cholesterol homeostasis. Proprotein convertase subtilisin/kexin type 9 (PCSK9), beyond the known role in the regulation of plasma low-density lipoprotein cholesterol, was first identified in the brain with a potential involvement in brain development and apoptosis. However, its role in the central nervous system (CNS) and in AD pathogenesis is still far from being understood. While in vitro and in vivo evidence led to controversial results, genetic studies apparently did not find an association between PCSK9 loss of function mutations and AD risk or prevalence. In addition, a potential impairment of cognitive performances by the treatment with the PCSK9 inhibitors, alirocumab and evolocumab, have been excluded, although ongoing studies with longer follow-up will provide further insights. PCSK9 is able to affect the expression of neuronal receptors involved in cholesterol homeostasis and neuroinflammation, and higher PCSK9 concentrations have been found in the cerebrospinal fluid (CSF) of AD patients. In this review article, we critically examined the science of PCSK9 with respect to its modulatory role of the mechanisms underlying the pathogenesis of AD. In addition, based on literature data, we made the hypothesis to consider brain PCSK9 as a negative modulator of brain cholesterol homeostasis and neuroinflammation and a potential pharmacological target for treatment.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Franco Bernini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Francesca Zimetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| |
Collapse
|
26
|
Reshef YA, Finucane HK, Kelley DR, Gusev A, Kotliar D, Ulirsch JC, Hormozdiari F, Nasser J, O'Connor L, van de Geijn B, Loh PR, Grossman SR, Bhatia G, Gazal S, Palamara PF, Pinello L, Patterson N, Adams RP, Price AL. Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk. Nat Genet 2018; 50:1483-1493. [PMID: 30177862 PMCID: PMC6202062 DOI: 10.1038/s41588-018-0196-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Biological interpretation of genome-wide association study data frequently involves assessing whether SNPs linked to a biological process, for example, binding of a transcription factor, show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biological process can enable stronger statements about disease mechanism. We introduce a method, signed linkage disequilibrium profile regression, for detecting genome-wide directional effects of signed functional annotations on disease risk. We validate the method via simulations and application to molecular quantitative trait loci in blood, recovering known transcriptional regulators. We apply the method to expression quantitative trait loci in 48 Genotype-Tissue Expression tissues, identifying 651 transcription factor-tissue associations including 30 with robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits (average n = 290 K), identifying 77 annotation-trait associations representing 12 independent transcription factor-trait associations, and characterize the underlying transcriptional programs using gene-set enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms.
Collapse
Affiliation(s)
- Yakir A Reshef
- Department of Computer Science, Harvard University, Cambridge, MA, USA.
- Harvard/MIT MD/PhD Program, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | - David R Kelley
- California Life Sciences LLC, South San Francisco, CA, USA
| | | | - Dylan Kotliar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Farhad Hormozdiari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke O'Connor
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA
| | - Bryce van de Geijn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon R Grossman
- Harvard/MIT MD/PhD Program, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gaurav Bhatia
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Steven Gazal
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pier Francesco Palamara
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, University of Oxford, Oxford, UK
| | - Luca Pinello
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Ryan P Adams
- Google Brain, New York, NY, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
27
|
Hunter S, Smailagic N, Brayne C. Dementia Research: Populations, Progress, Problems, and Predictions. J Alzheimers Dis 2018; 64:S119-S143. [DOI: 10.3233/jad-179927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sally Hunter
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Nadja Smailagic
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Wang C, Shou Y, Pan J, Du Y, Liu C, Wang H. The relationship between cholesterol level and Alzheimer’s disease-associated APP proteolysis/Aβ metabolism. Nutr Neurosci 2018; 22:453-463. [DOI: 10.1080/1028415x.2017.1416942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chaoqun Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Yikai Shou
- School of Medicine, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Jie Pan
- Department of Endocrinology and Metabolism, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Du
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Cuiqing Liu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, People’s Republic of China
| |
Collapse
|
29
|
Zbesko JC, Nguyen TVV, Yang T, Frye JB, Hussain O, Hayes M, Chung A, Day WA, Stepanovic K, Krumberger M, Mona J, Longo FM, Doyle KP. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol Dis 2018; 112:63-78. [PMID: 29331263 PMCID: PMC5851450 DOI: 10.1016/j.nbd.2018.01.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/12/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022] Open
Abstract
Following stroke, the damaged tissue undergoes liquefactive necrosis, a stage of infarct resolution that lasts for months although the exact length of time is currently unknown. One method of repair involves reactive astrocytes and microglia forming a glial scar to compartmentalize the area of liquefactive necrosis from the rest of the brain. The formation of the glial scar is a critical component of the healing response to stroke, as well as other central nervous system (CNS) injuries. The goal of this study was to evaluate the toxicity of the extracellular fluid present in areas of liquefactive necrosis and determine how effectively it is segregated from the remainder of the brain. To accomplish this goal, we used a mouse model of stroke in conjunction with an extracellular fluid toxicity assay, fluorescent and electron microscopy, immunostaining, tracer injections into the infarct, and multiplex immunoassays. We confirmed that the extracellular fluid present in areas of liquefactive necrosis following stroke is toxic to primary cortical and hippocampal neurons for at least 7 weeks following stroke, and discovered that although glial scars are robust physical and endocytic barriers, they are nevertheless permeable. We found that molecules present in the area of liquefactive necrosis can leak across the glial scar and are removed by a combination of paravascular clearance and microglial endocytosis in the adjacent tissue. Despite these mechanisms, there is delayed atrophy, cytotoxic edema, and neuron loss in regions adjacent to the infarct for weeks following stroke. These findings suggest that one mechanism of neurodegeneration following stroke is the failure of glial scars to impermeably segregate areas of liquefactive necrosis from surviving brain tissue.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Thuy-Vi V Nguyen
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Omar Hussain
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Megan Hayes
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Amanda Chung
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - W Anthony Day
- Arizona Health Sciences Center Imaging Core Facility, Arizona Research Labs, University of Arizona, Tucson, AZ 85719, USA
| | | | - Maj Krumberger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Justine Mona
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA; Arizona Center on Aging, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
30
|
Hunter S, Brayne C. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease. Mol Psychiatry 2018; 23:81-93. [PMID: 29112196 DOI: 10.1038/mp.2017.218] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
Many models of disease progression in Alzheimer's disease (AD) have been proposed to help guide experimental design and aid the interpretation of results. Models focussing on the genetic evidence include the amyloid cascade (ACH) and presenilin (PSH) hypotheses and the amyloid precursor protein (APP) matrix approach (AMA), of which the ACH has held a dominant position for over two decades. However, the ACH has never been fully accepted and has not yet delivered on its therapeutic promise. We review the ACH, PSH and AMA in relation to levels of APP proteolytic fragments reported from AD-associated mutations in APP. Different APP mutations have diverse effects on the levels of APP proteolytic fragments. This evidence is consistent with at least three disease pathways that can differ between familial and sporadic AD and two pathways associated with cerebral amyloid angiopathy. We cannot fully evaluate the ACH, PSH and AMA in relation to the effects of mutations in APP as the APP proteolytic system has not been investigated systematically. The confounding effects of sequence homology, complexity of competing cleavages and antibody cross reactivities all illustrate limitations in our understanding of the roles these fragments and the APP proteolytic system as a whole in normal aging and disease play. Current experimental design should be refined to generate clearer evidence, addressing both aging and complex disorders with standardised reporting formats. A more flexible theoretical framework capable of accommodating the complexity of the APP proteolytic system is required to integrate available evidence.
Collapse
Affiliation(s)
- S Hunter
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - C Brayne
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
31
|
Patel TK, Patel VB, Rana DG. Possible anti-depressant effect of efavirenz and pro-depressive-like effect of voriconazole in specified doses in various experimental models of depression in mice. Pharmacol Rep 2017; 69:1082-1087. [DOI: 10.1016/j.pharep.2017.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 01/20/2023]
|
32
|
Neurometabolic roles of ApoE and Ldl-R in mouse brain. J Bioenerg Biomembr 2015; 48:13-21. [PMID: 26686234 DOI: 10.1007/s10863-015-9636-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Polymorphisms in ApoE are highly correlated with the progression of neurodegenerative disease, in particular Alzheimer's disease. Little is known, however, about the role of ApoE or cholesterol metabolism on brain neurochemistry in general. To better understand the role of lipoprotein and cholesterol metabolism in the brain, we profiled 6 and 12-week old Apoe KO and Ldlr KO mouse models via unbiased metabolomics to determine which metabolites were affected at an early age to identify those that may play a role in triggering pathology later in life. Steady-state metabolomics revealed only subtle differences among Apoe KO, Ldlr KO and WT mouse brains. Ldlr KO mice exhibited alterations in metabolites involved in neurotransmitter, amino acid and cholesterol metabolism. In contrast, Apoe KO mice only showed subtle changes in amino acid and neurotransmitter metabolism. These subtle changes in a broad range of metabolites indicate that ApoE and Ldl-R alone may not play a significant role in these mouse models at an early age, but instead require the cumulative effect from different pathways that lead to dysfunction at a much later stage of life.
Collapse
|
33
|
Kreilaus F, Spiro AS, McLean CA, Garner B, Jenner AM. Evidence for altered cholesterol metabolism in Huntington's disease post mortem brain tissue. Neuropathol Appl Neurobiol 2015; 42:535-46. [PMID: 26373857 DOI: 10.1111/nan.12286] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
AIMS Cholesterol plays an essential role in membrane structure and function, being especially important in the brain. Alteration of brain cholesterol synthesis and metabolism has been demonstrated in several Huntington's disease (HD) mouse and cell models; however, less is known about these alterations in human tissue. This study aimed to identify alterations to cholesterol synthetic and metabolic pathways in human HD brain tissue. METHODS A broad range of cholesterol synthetic precursors, metabolites and oxidation products were measured by gas chromatography-tandem mass spectrometry in five regions of human post mortem HD brain and compared with age- and sex-matched control tissues. The level of enzymes that regulate cholesterol homeostasis, cholesterol 24-hydroxylase and delta(24)-sterol reductase were investigated by Western blotting and qPCR in putamen. RESULTS The most significant changes were localized to the putamen, where a 60% decrease in 24(S)-hydroxycholesterol, 30% increase in cholesterol and 100-200% increase in synthetic precursors (lathosterol, zymosterol and desmosterol) was detected. The enzymes cholesterol 24-hydroxylase and delta(24)-sterol reductase were also significantly decreased in HD putamen as compared with control tissues. Free radical-generated cholesterol oxidation products 7-keto cholesterol and 7β-hydroxycholesterol were also increased by 50-70% in HD putamen. CONCLUSION Human HD brain has significantly decreased cholesterol metabolism and disrupted cholesterol homeostasis. Our data also indicate that lipid oxidative stress accompanies HD pathology.
Collapse
Affiliation(s)
- Fabian Kreilaus
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| | - Adena S Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Andrew M Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
34
|
Agarwal R, Talwar P, Kushwaha SS, Tripathi CB, Kukreti R. Effect of apolipoprotein E (APO E) polymorphism on leptin in Alzheimer's disease. Ann Indian Acad Neurol 2015; 18:320-6. [PMID: 26425011 PMCID: PMC4564468 DOI: 10.4103/0972-2327.157255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Leptin, a 16 kDa peptide hormone synthesized and secreted specifically from white adipose cells protects neurons against amyloid β-induced toxicity, by increasing Apolipoprotein E (APO E)-dependent uptake of β amyloid into the cells, thereby, protect individuals from developing Alzheimer's disease (AD). The APO E ε4 allele is a known genetic risk factor for AD by accelerating onset. It is estimated that the lifetime risk of developing AD increases to 29% for carriers with one ε4 allele and 9% for those with no ε4 allele. Objectives: To determine the levels of serum leptin, cholesterol, low density lipoprotein (LDL-C), and high density lipoprotein (HDL-C) in the diagnosed cases of AD and the association of them with cognitive decline and Apolipoprotein E (APO E) genotypes in AD. Materials and Methods: Serum levels of serum leptin, cholesterol, LDL-C, and HDL-C along with APO E polymorphism were studied in 39 subjects with probable AD and 42 cognitive normal individuals. Results: AD group showed significantly lower levels of leptin (P = 0.00) as compared to control group. However, there was no significant difference in cholesterol, triglycerides, LDL-C, and HDL-C levels in AD and control groups. The frequency of ε4 allele in AD (38.5%) was found to be significantly higher than in control (10.3%). ε3 allele was more frequent than ε4 allele in AD and control group.
Collapse
Affiliation(s)
- Rachna Agarwal
- Department of Neurochemistry, Institute of Human Behaviour and Allied Sciences, Delhi, India
| | - Puneet Talwar
- Genetics and Molecular Medicine, Institute of Genomics and Integrated Biology, Delhi, India
| | - Suman S Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Delhi, India
| | | | - Ritushree Kukreti
- Genetics and Molecular Medicine, Institute of Genomics and Integrated Biology, Delhi, India
| |
Collapse
|
35
|
The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1095-105. [DOI: 10.1016/j.bbalip.2014.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 02/02/2023]
|
36
|
Simpson JE, Ince PG, Minett T, Matthews FE, Heath PR, Shaw PJ, Goodall E, Garwood CJ, Ratcliffe LE, Brayne C, Rattray M, Wharton SB. Neuronal DNA damage response-associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of Alzheimer-type pathology. Neuropathol Appl Neurobiol 2015; 42:167-79. [PMID: 26095650 PMCID: PMC5102584 DOI: 10.1111/nan.12252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
Abstract
Aims Oxidative damage and an associated DNA damage response (DDR) are evident in mild cognitive impairment and early Alzheimer's disease, suggesting that neuronal dysfunction resulting from oxidative DNA damage may account for some of the cognitive impairment not fully explained by Alzheimer‐type pathology. Methods Frontal cortex (Braak stage 0–II) was obtained from the Medical Research Council's Cognitive Function and Ageing Study cohort. Neurones were isolated from eight cases (four high and four low DDR) by laser capture microdissection and changes in the transcriptome identified by microarray analysis. Results Two thousand three hundred seventy‐eight genes were significantly differentially expressed (1690 up‐regulated, 688 down‐regulated, P < 0.001) in cases with a high neuronal DDR. Functional grouping identified dysregulation of cholesterol biosynthesis, insulin and Wnt signalling, and up‐regulation of glycogen synthase kinase 3β. Candidate genes were validated by quantitative real‐time polymerase chain reaction. Cerebrospinal fluid levels of 24(S)‐hydroxycholesterol associated with neuronal DDR across all Braak stages (rs = 0.30, P = 0.03). Conclusions A persistent neuronal DDR may result in increased cholesterol biosynthesis, impaired insulin and Wnt signalling, and increased GSK3β, thereby contributing to neuronal dysfunction independent of Alzheimer‐type pathology in the ageing brain.
Collapse
Affiliation(s)
- Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thais Minett
- Institute of Public Health, University of Cambridge, Cambridge, UK.,Department of Radiology, University of Cambridge, Cambridge, UK
| | - Fiona E Matthews
- MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK.,Institute of Health and Society, University of Newcastle, Newcastle, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Goodall
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Laura E Ratcliffe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Magnus Rattray
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.,Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
37
|
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Front Aging Neurosci 2015; 7:119. [PMID: 26150787 PMCID: PMC4473000 DOI: 10.3389/fnagi.2015.00119] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aβ peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| |
Collapse
|
38
|
Rana DG, Patel AK, Joshi CG, Jhala MK, Goyal RK. Alteration in the expression of exon IIC transcripts of brain-derived neurotrophic factor gene by simvastatin [correction of simvastain] in chronic mild stress in mice: a possible link with dopaminergic pathway. Can J Physiol Pharmacol 2014; 92:985-92. [PMID: 25389630 DOI: 10.1139/cjpp-2014-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the influence of dopaminergic agents on the expression of brain-derived neurotrophic factor (BDNF) gene in relation with lipid levels in chronic mild stress (CMS). Mice subjected to CMS were treated with simvastatin (10 mg/kg, per os (orally)) along with bromocriptine (2 mg/kg, intraperitoneally (ip)), levodopa (200 mg/kg, ip), or haloperidol (0.1 mg/kg, ip) for 14 days. CMS produced a decrease in sucrose intake and an increase in serum cholesterol and triglycerides levels with a decrease in high-density lipoprotein cholesterol, which were prevented by simvastatin. This was greater when it was combined with bromocriptine or levodopa. Haloperidol significantly prevented the simvastatin-induced increase in sucrose intake but not the alterations in lipids. There was an upregulation in the expression of BDNF exon-IIA and -IIB transcripts by CMS but not the exon-IIC transcripts. Simvastatin could increase expression of exon-IIC transcripts in stressed mice. This was partially increased by bromocriptine. Haloperidol significantly prevented simvastatin-induced increase in expression of BDNF exon-IIC transcripts. The results showed a positive correlation between expression of BDNF exon-IIC transcripts and sucrose intake. In conclusion, our data suggest the involvement of lipid levels and BDNF exon-IIC transcripts in CMS-induced behaviour in mice, possibly through the dopaminergic system.
Collapse
Affiliation(s)
- Digvijay G Rana
- a Faculty of Pharmacy, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | | | | | | | | |
Collapse
|
39
|
Mandas A, Congiu MG, Abete C, Dessi S, Manconi PE, Musio M, Columbu S, Racugno W. Cognitive decline and depressive symptoms in late-life are associated with statin use: evidence from a population-based study of Sardinian old people living in their own home. Neurol Res 2014; 36:247-54. [PMID: 24512018 DOI: 10.1179/1743132813y.0000000287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study was designed to provide further insights into the effects of dyslipidemia (Dys-y) and use of statins (St-y) on cognitive functions and mood in older people. METHODS Three hundred and twenty-nine subjects aged > or = 65 years were screened for cognitive dysfunction using mini mental state examination (MMSE). The geriatric depression scale (GDS) was used to detect depression. Interview questionnaires surveyed activities of daily living (ADL) and instrumental ADL (IADL), as well as other functional disabilities. The presence of neutral lipids (NLs) in cytoplasm of peripheral blood mononuclear cells (PBMCs) was determined with the Oil red O (ORO) staining. RESULTS There was no significant difference in MMSE and GDS scores between normal (Dys-n) and Dys-y. However, when Dys-y subjects were divided into St-y and non-statin users (St-n), significant differences emerged in the scores of MMSE and GDS: St-y had lower MMSE and higher GDS than St-n. Multiple correspondence analysis and logistic regression provided further evidence that elderly St-y were much more likely to suffer of cognitive impairment and depression than St-n. Another interesting finding was that the intensity of NL-PBMCs measured by ORO staining was greater in subjects with altered MMSE compared with cognitively normal subjects. In addition St-y had higher ORO score than St-n. DISCUSSION This is an observational study and cannot, therefore, prove a causal relationship between St-y in the elderly and a higher cognitive decline, nevertheless it provides substantial indications that caution should be exercised in the provision of statins in elderly subjects to avoid accelerated memory loss.
Collapse
|
40
|
Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL. H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 2014; 35:1511.e1-12. [DOI: 10.1016/j.neurobiolaging.2013.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
|
41
|
Leoni V, Caccia C. Study of cholesterol metabolism in Huntington's disease. Biochem Biophys Res Commun 2014; 446:697-701. [PMID: 24525128 DOI: 10.1016/j.bbrc.2014.01.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of a CAG repeat in the huntingtin gene. Neurodegeneration of striatum and cortex with a severe atrophy at MRI are common findings in HD. The expression of genes involved in the cholesterol biosynthetic pathway such as HMG-CoA reductase and the levels of cholesterol, lanosterol, lathosterol and 24S-hydroxycholesterol are reduced in the brain, striatum and cortex in several HD mouse models. Mutant huntingtin affects the maturation and translocation of SREBP and cannot up-regulate LXR. There is a lower synthesis and transport of cholesterol from astrocytes to neurons via ApoE. In primary oligodendrocytes, mutant huntingtin inhibits the regulatory effect of PGC1α on cholesterol metabolism and the expression of Myelin Basic Protein. In humans the decrease of plasma 24S-hydroxycholesterol follows disease progression proportionally to motor and neuropsychiatric dysfunctions and MRI brain atrophy. Huntingtin seems to play a regulatory role in lipid metabolism. Dysregulation of PGC1α and mitochondrial dysfunction may reduce synthesis of Acetyl-CoA and ATP contributing to the cerebral and whole body impairment of cholesterol metabolism.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Institute of Neurology Carlo Besta, Milano, Italy.
| | - Claudio Caccia
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Institute of Neurology Carlo Besta, Milano, Italy
| |
Collapse
|
42
|
Bucciantini M, Rigacci S, Stefani M. Amyloid Aggregation: Role of Biological Membranes and the Aggregate-Membrane System. J Phys Chem Lett 2014; 5:517-27. [PMID: 26276603 DOI: 10.1021/jz4024354] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several human degenerative diseases involve amyloidogenic peptides/proteins with high conformational plasticity and propensity to self-aggregate into polymeric fibrillar assemblies sharing the cross-β structure and endowed with cytotoxic potential. Although the mechanisms of amyloid growth and toxicity are not fully understood, a common property of amyloids is their ability to interact with lipid bilayers disturbing membrane integrity. Lipid bilayers can also act as conformational catalysts, favoring protein misfolding and inducing the growth of aggregation nuclei, early oligomers, and mature fibrils with specific biophysical, structural, and toxicity features. This Perspective will highlight these effects in the context of a membrane-oligomer system where the conformational/biophysical features of either component affect those of the other. In this context, we will highlight the modulation of the protein-cell surface interaction by the content of membrane cholesterol and gangliosides, notably GM1. In particular, we will discuss data that indicate how these interactions affect the structural and stability properties of both protein and bilayers as well as the final cytotoxic effect. Our goal is to propose shared membrane-based mechanisms that could apply to any amyloidogenic peptide/protein, providing a biochemical background for amyloid growth and toxicity.
Collapse
Affiliation(s)
- Monica Bucciantini
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
| | - Stefania Rigacci
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- †Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, V.le Morgagni 50, 50134 Florence, Italy
- ‡National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
43
|
The MTHFR 677T allele may influence the severity and biochemical risk factors of Alzheimer's disease in an Egyptian population. DISEASE MARKERS 2013. [PMID: 24223459 DOI: 10.1155/2013/524106]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We evaluated whether the methylenetetrahydrofolate reductase (MTHFR) 677C>T marker influences the risk and severity of Alzheimer's disease (AD) and whether AD is associated with homocysteine, vitamin B12, and cholesterol levels in Egypt. METHODS Forty-three Alzheimer's cases and 32 non-AD controls were genotyped for the 677C>T polymorphism. Clinical characteristics and levels of homocysteine, vitamin B12, and cholesterol were assessed. RESULTS No significant differences in the frequencies of the MTHFR alleles or genotypes between AD cases and controls (P = 0.14) were identified. The 677T mutant allele was significantly overrepresented in AD cases compared to controls (OR = 2.22; P = 0.03). The 677T/T frequency was three times higher in AD patients than in controls, which could increase plasma homocysteine levels. Severe cases of AD were the most frequent in patients with the T/T genotype (11.6%). The effect of the MTHFR polymorphism on the risk of AD may be independent of homocysteine, vitamin B12, or even cholesterol levels. CONCLUSIONS The MTHFR 677C>T polymorphism--especially the presence of one copy of the T allele--appears to confer a potential risk for the development of AD. The T/T genotype may contribute to hypercysteinemia as a sensitive marker.
Collapse
|
44
|
Bihaqi SW, Singh AP, Tiwari M. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AβPP) expression in rat brain. Indian J Pharmacol 2013; 44:593-8. [PMID: 23112420 PMCID: PMC3480791 DOI: 10.4103/0253-7613.100383] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/21/2012] [Accepted: 07/04/2012] [Indexed: 01/20/2023] Open
Abstract
Aim: Scopolamine is known to produce amnesia due to blockade of the cholinergic neurotransmission. The present study investigated the potential of Convolvulus pluricaulis (CP) to attenuate scopolamine (2 mg/kg, i.p) induced increased protein and mRNA levels of tau, amyloid precursor protein (AβPP), amyloid β (Aβ) levels and histopathological changes in rat cerebral cortex. Materials and Methods: The study was conducted on male Wistar rats (250 ± 20 g) divided into four groups of eight animals each. Groups 1 and 2 served as controls receiving normal saline and scopolamine for 4 weeks, respectively. Group 3 received rivastigmine (standard) and group 4 received aqueous extract of CP simultaneously with scopolamine. Western blot and RT-PCR analysis were used to evaluate the levels of protein and mRNA of amyloid precursor protein (AβPP) and tau in rat cortex and ELISA was used to measure the amyloid β (Aβ) levels. Histopathology was also performed on cortical section of all groups. Result: Oral administration of CP extract (150 mg/kg) to scopolamine treated rats reduced the increased protein and mRNA levels of tau and AβPP levels followed by reduction in Aβ levels compared with scopolamine treated group. The potential of extract to prevent scopolamine neurotoxicity was reflected at the microscopic level as well, indicative of its neuroprotective effects. Conclusion: CP treatment alleviated neurotoxic effect of scopolamine reflects its potential as potent neuroprotective agent.
Collapse
Affiliation(s)
- Syed Waseem Bihaqi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, RI, USA
| | | | | |
Collapse
|
45
|
Cecchi C, Stefani M. The amyloid-cell membrane system. The interplay between the biophysical features of oligomers/fibrils and cell membrane defines amyloid toxicity. Biophys Chem 2013; 182:30-43. [PMID: 23820236 DOI: 10.1016/j.bpc.2013.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022]
Abstract
Amyloid cytotoxicity, structure and polymorphisms are themes of increasing importance. Present knowledge considers any peptide/protein able to undergo misfolding and aggregation generating intrinsically cytotoxic amyloids. It also describes growth and structure of amyloid fibrils and their possible disassembly, whereas reduced information is available on oligomer structure. Recent research has highlighted the importance of the environmental conditions as determinants of the amyloid polymorphisms and cytotoxicity. Another body of evidence describes chemical or biological surfaces as key sites of protein misfolding and aggregation or of interaction with amyloids and the resulting biochemical modifications inducing cell functional/viability impairment. In particular, the membrane lipid composition appears to modulate cell response to toxic amyloids, thus contributing to explain the variable vulnerability to the same amyloids of different cell types. Finally, a recent view describes amyloid toxicity as an emerging property dependent on a complex interplay between the biophysical features of early aggregates and the interacting cell membranes taken as a whole system.
Collapse
Affiliation(s)
- Cristina Cecchi
- Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | | |
Collapse
|
46
|
Hung YH, Bush AI, La Fontaine S. Links between copper and cholesterol in Alzheimer's disease. Front Physiol 2013; 4:111. [PMID: 23720634 PMCID: PMC3655288 DOI: 10.3389/fphys.2013.00111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/30/2013] [Indexed: 01/01/2023] Open
Abstract
Altered copper homeostasis and hypercholesterolemia have been identified independently as risk factors for Alzheimer's disease (AD). Abnormal copper and cholesterol metabolism are implicated in the genesis of amyloid plaques and neurofibrillary tangles (NFT), which are two key pathological signatures of AD. Amyloidogenic processing of a sub-population of amyloid precursor protein (APP) that produces Aβ occurs in cholesterol-rich lipid rafts in copper deficient AD brains. Co-localization of Aβ and a paradoxical high concentration of copper in lipid rafts fosters the formation of neurotoxic Aβ:copper complexes. These complexes can catalytically oxidize cholesterol to generate H2O2, oxysterols and other lipid peroxidation products that accumulate in brains of AD cases and transgenic mouse models. Tau, the core protein component of NFTs, is sensitive to interactions with copper and cholesterol, which trigger a cascade of hyperphosphorylation and aggregation preceding the generation of NFTs. Here we present an overview of copper and cholesterol metabolism in the brain, and how their integrated failure contributes to development of AD.
Collapse
Affiliation(s)
- Ya Hui Hung
- Oxidation Biology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia ; Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | | | |
Collapse
|
47
|
Amyloidosis in Alzheimer's Disease: The Toxicity of Amyloid Beta (A β ), Mechanisms of Its Accumulation and Implications of Medicinal Plants for Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:413808. [PMID: 23762130 PMCID: PMC3671299 DOI: 10.1155/2013/413808] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/10/2013] [Accepted: 04/22/2013] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory deficits and death. While the number of individuals with AD is rising each year due to the longer life expectancy worldwide, current therapy can only somewhat relieve the symptoms of AD. There is no proven medication to cure or prevent the disease, possibly due to a lack of knowledge regarding the molecular mechanisms underlying disease pathogenesis. Most previous studies have accepted the “amyloid hypothesis,” in which the neuropathogenesis of AD is believed to be triggered by the accumulation of the toxic amyloid beta (Aβ) protein in the central nervous system (CNS). Lately, knowledge that may be critical to unraveling the hidden pathogenic pathway of AD has been revealed. This review concentrates on the toxicity of Aβ and the mechanism of accumulation of this toxic protein in the brain of individuals with AD and also summarizes recent advances in the study of these accumulation mechanisms together with the role of herbal medicines that could facilitate the development of more effective therapeutic and preventive strategies.
Collapse
|
48
|
Hunter S, Arendt T, Brayne C. The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol Neurobiol 2013; 48:556-70. [PMID: 23546742 DOI: 10.1007/s12035-013-8445-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/24/2022]
Abstract
Alzheimer disease (AD) is a progressive, neurodegenerative disease characterised in life by cognitive decline and behavioural symptoms and post-mortem by the neuropathological hallmarks including the microtubule-associated protein tau-reactive tangles and neuritic plaques and amyloid-beta-protein-reactive senile plaques. Greater than 95 % of AD cases are sporadic (SAD) with a late onset and <5 % of AD cases are familial (FAD) with an early onset. FAD is associated with various genetic mutations in the amyloid precursor protein (APP) and the presenilins (PS)1 and PS2. As yet, no disease pathway has been fully accepted and there are no treatments that prevent, stop or reverse the cognitive decline associated with AD. Here, we review and integrate available environmental and genetic evidence associated with all forms of AD. We present the senescence hypothesis of AD progression, suggesting that factors associated with AD can be seen as partial stressors within the matrix of signalling pathways that underlie cell survival and function. Senescence pathways are triggered when stressors exceed the cells ability to compensate for them. The APP proteolytic system has many interactions with pathways involved in programmed senescence and APP proteolysis can both respond to and be driven by senescence-associated signalling. Disease pathways associated with sporadic disease may be different to those involving familial genetic mutations. The interpretation we provide strongly points to senescence as an additional underlying causal process in dementia progression in both SAD and FAD via multiple disease pathways.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK,
| | | | | |
Collapse
|
49
|
Elhawary NA, Hewedi D, Arab A, Teama S, Shaibah H, Tayeb MT, Bogari N. The MTHFR 677T allele may influence the severity and biochemical risk factors of Alzheimer's disease in an Egyptian population. DISEASE MARKERS 2013; 35:439-46. [PMID: 24223459 PMCID: PMC3810363 DOI: 10.1155/2013/524106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVE We evaluated whether the methylenetetrahydrofolate reductase (MTHFR) 677C>T marker influences the risk and severity of Alzheimer's disease (AD) and whether AD is associated with homocysteine, vitamin B12, and cholesterol levels in Egypt. METHODS Forty-three Alzheimer's cases and 32 non-AD controls were genotyped for the 677C>T polymorphism. Clinical characteristics and levels of homocysteine, vitamin B12, and cholesterol were assessed. RESULTS No significant differences in the frequencies of the MTHFR alleles or genotypes between AD cases and controls (P = 0.14) were identified. The 677T mutant allele was significantly overrepresented in AD cases compared to controls (OR = 2.22; P = 0.03). The 677T/T frequency was three times higher in AD patients than in controls, which could increase plasma homocysteine levels. Severe cases of AD were the most frequent in patients with the T/T genotype (11.6%). The effect of the MTHFR polymorphism on the risk of AD may be independent of homocysteine, vitamin B12, or even cholesterol levels. CONCLUSIONS The MTHFR 677C>T polymorphism--especially the presence of one copy of the T allele--appears to confer a potential risk for the development of AD. The T/T genotype may contribute to hypercysteinemia as a sensitive marker.
Collapse
Affiliation(s)
- Nasser Attia Elhawary
- 1Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 57543, Makkah 21955, Saudi Arabia
- 2Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
- *Nasser Attia Elhawary:
| | - Doaa Hewedi
- 3Department of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Arwa Arab
- 4Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Salwa Teama
- 5Department of Clinical Pathology, Medical Research Center, Faculty of Medicine, Ain Shams University, P.O. Box 80200, Cairo 11566, Egypt
| | - Hassan Shaibah
- 6Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, P.O. Box 7607, Makkah 21955, Saudi Arabia
| | - Mohammed Taher Tayeb
- 1Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 57543, Makkah 21955, Saudi Arabia
| | - Neda Bogari
- 1Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 57543, Makkah 21955, Saudi Arabia
| |
Collapse
|
50
|
Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits. Prog Neurobiol 2012; 99:226-45. [DOI: 10.1016/j.pneurobio.2012.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
|