1
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
2
|
Shlapa Y, Siposova K, Sarnatskaya V, Drajnova M, Silvestre-Albero J, Lykhova O, Maraloiu VA, Solopan SO, Molcan M, Musatov A, Belous A. Bioactive Carbon@CeO 2 Composites as Efficient Antioxidants with Antiamyloid and Radioprotective Potentials. ACS APPLIED BIO MATERIALS 2024; 7:6749-6767. [PMID: 39320157 DOI: 10.1021/acsabm.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Blending carbon particles (CPs) and nanoscale bioactive cerium dioxide is a promising approach for designing composites for biomedical applications, combining the sorption and antioxidant potentials of each individual component. To address this issue, it is crucial to assess the correlation between the components' ratio, physicochemical parameters, and biofunctionality of the composites. Thus, the current research was aimed at fabricating C@CeO2 composites with different molar ratios and the examination of how the parameters of the composites affect their bioactivity. XRD, X-ray photoelectron spectroscopy, and electron microscopy data verified the formation of C@CeO2 composites. CeO2 nanoparticles (NPs) of 4-6 nm are highly dispersed on the surfaces of amorphous CPs. The presence of CeO2 NPs on the carbon surface decreased its adsorption potential in a dose-dependent manner. Besides, the coexistence of carbon and CeO2 in a single composite promotes some redox interactions between O-functionalities and Ce3+/Ce4+ species, resulting in changes in the chemical state of the surface of the composites. These observations suggest the strong connection between these parameters and the biofunctionality of the composites. The presence of CeO2 NPs on the surface of carbon led to a significant increase in the stability of the prepared composites in their aqueous suspensions. The enhancement of bioactivity of the newly prepared C@CeO2 compared to bare carbon and CeO2 was validated by testing their pseudomimetic (catalase/peroxidase-like and superoxide dismutase-like), antiamyloid, and radioprotective activities.
Collapse
Affiliation(s)
- Yuliia Shlapa
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| | - Katarina Siposova
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
| | - Veronika Sarnatskaya
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Street, Kyiv 03022, Ukraine
| | - Michaela Drajnova
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
- Institute of Chemistry, Faculty of Science, P.J. Safarik University in Kosice, Moyzesova 11, Kosice 040 01, Slovakia
| | - Joaquin Silvestre-Albero
- Laboratorio de Materiales Avanzados, Instituto Universitario de Materiales-Departamento de Química Inorgánica, University of Alicante, Ctra. San Vicente-Alicante s/n, Alicante E-03080, Spain
| | - Olexandra Lykhova
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Street, Kyiv 03022, Ukraine
| | | | - Sergii Oleksandrovich Solopan
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| | - Matus Molcan
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
| | - Andrey Musatov
- Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, Kosice 040 01, Slovakia
| | - Anatolii Belous
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| |
Collapse
|
3
|
Choi KE, Ryu DW, Oh YS, Kim JS. Fasting Plasma Glucose Levels and Longitudinal Motor and Cognitive Outcomes in Parkinson's Disease Patients. J Mov Disord 2024; 17:198-207. [PMID: 38444294 PMCID: PMC11082616 DOI: 10.14802/jmd.23264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE Hyperglycemia and diabetes mellitus have been identified as poor prognostic factors for motor and nonmotor outcomes in patients with Parkinson's disease (PD), although there is some controversy with this finding. In the present study, we investigated the effects of fasting plasma glucose (FPG) levels on longitudinal motor and cognitive outcomes in PD patients. METHODS We included a total of 201 patients who were diagnosed with PD between January 2015 and January 2020. The patients were categorized based on FPG level into euglycemia (70 mg/dL < FPG < 100 mg/dL), intermediate glycemia (100 mg/dL ≤ FPG < 126 mg/dL), and hyperglycemia (FPG ≥ 126 mg/dL), and longitudinal FPG trajectories were analyzed using group-based trajectory modeling. Survival analysis was conducted to determine the time until motor outcome (Hoehn and Yahr stage ≥ 2) and the conversion from normal cognition to mild cognitive impairment. RESULTS Among the patient cohort, 82 had euglycemia, 93 had intermediate glycemia, and 26 had hyperglycemia. Intermediate glycemia (hazard ratio 1.747, 95% confidence interval [CI] 1.083-2.816, p = 0.0221) and hyperglycemia (hazard ratio 3.864, 95% CI 1.996-7.481, p < 0.0001) were found to be significant predictors of worsening motor symptoms. However, neither intermediate glycemia (hazard ratio 1.183, 95% CI 0.697-2.009, p = 0.5339) nor hyperglycemia (hazard ratio 1.297, 95% CI 0.601-2.800, p = 0.5078) demonstrated associations with the longitudinal progression of cognitive impairment. Diabetes mellitus, defined by self-reported medical history, was not related to poor motor or cognitive impairment outcomes. CONCLUSION Our. RESULTS suggest that both impaired glucose tolerance and hyperglycemia could be associated with motor progression in PD patients.
Collapse
Affiliation(s)
- Ko-Eun Choi
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Woo Ryu
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon-Sang Oh
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Tatenhorst L, Maass F, Paul H, Dambeck V, Bähr M, Dono R, Lingor P. Glypican-4 serum levels are associated with cognitive dysfunction and vascular risk factors in Parkinson's disease. Sci Rep 2024; 14:5005. [PMID: 38424123 PMCID: PMC10904781 DOI: 10.1038/s41598-024-54800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Glypicans are biomarkers for various pathologies, including cardiovascular disease, cancer and diabetes. Increasing evidence suggests that glypicans also play a role in the context of neurodegenerative disorders. Initially described as supporting functionality of synapses via glutamate receptors during CNS development, Glypican 4 (GPC-4) also plays a role in the context of dementia via tau hyperphosphorylation in Alzheimer's disease, which is also a co-pathology in Parkinson's disease dementia. However, clinical evidence of circulating GPC-4 in Parkinson's disease (PD) is missing so far. We therefore investigated GPC-4 in biofluids of PD patients. We analyzed GPC-4 levels in cerebrospinal fluid (CSF, n = 140), serum (n = 80), and tear fluid samples (n = 70) of PD patients and control subjects in a similar age range by ELISA (serum, CSF) and western blot (tear fluid). Expression of circulating GPC-4 was confirmed in all three biofluids, with highest levels in serum. Interestingly, GPC-4 levels were age-dependent, and multiple regression analysis revealed a significant association between GPC-4 serum levels and MoCA score, suggesting an involvement of GPC-4 in PD-associated cognitive decline. Furthermore, stratification of PD patients for vascular risk factors revealed a significant increase of GPC-4 serum levels in PD patients with vascular risk factors. Our results suggest GPC-4 as a clinical biomarker for vascular risk stratification in order to identify PD patients with increased risk of developing dementia.
Collapse
Affiliation(s)
- Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Hannah Paul
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, 13288, Marseille, France
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany.
- Clinical Department of Neurology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81679, Munich, Germany.
| |
Collapse
|
5
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
6
|
Santiago JA, Karthikeyan M, Lackey M, Villavicencio D, Potashkin JA. Diabetes: a tipping point in neurodegenerative diseases. Trends Mol Med 2023; 29:1029-1044. [PMID: 37827904 PMCID: PMC10844978 DOI: 10.1016/j.molmed.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Diabetes is associated with an increased risk and progression of Alzheimer's (AD) and Parkinson's (PD) diseases. Conversely, diabetes may confer neuroprotection against amyotrophic lateral sclerosis (ALS). It has been posited that perturbations in glucose and insulin regulation, cholesterol metabolism, and mitochondrial bioenergetics defects may underlie the molecular underpinnings of diabetes effects on the brain. Nevertheless, the precise molecular mechanisms remain elusive. Here, we discuss the evidence from molecular, epidemiological, and clinical studies investigating the impact of diabetes on neurodegeneration and highlight shared dysregulated pathways between these complex comorbidities. We also discuss promising antidiabetic drugs, molecular diagnostics currently in clinical trials, and outstanding questions and challenges for future pursuit.
Collapse
Affiliation(s)
| | | | | | | | - Judith A Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
7
|
Pradhan SP, Sahu PK, Behera A. New insights toward molecular and nanotechnological approaches to antidiabetic agents for Alzheimer's disease. Mol Cell Biochem 2023; 478:2739-2762. [PMID: 36949264 DOI: 10.1007/s11010-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder affecting a major class of silver citizens. The disorder shares a mutual relationship on account of its cellular and molecular pathophysiology with type-II diabetes mellitus (DM). Chronic DM increases the risk for AD. Emerging evidence recommended that resistance in insulin production develops cognitive dysfunction, which generally leads to AD. Repurposing of antidiabetic drugs can be effective in preventing and treatment of the neurodegenerative disorder. Limitations of antidiabetic drugs restrict the repurposing of the drugs for other disorders. Therefore, nanotechnological intervention plays a significant role in the treatment of neurological disorders. In this review, we discuss the common cellular and molecular pathophysiologies between AD and type-II DM, the relevance of in vivo models of type II DM in the study of AD, and the repurposing of antidiabetic drugs and the nanodelivery systems of antidiabetic drugs against AD.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Zhang Z, Shi M, Li Z, Ling Y, Zhai L, Yuan Y, Ma H, Hao L, Li Z, Zhang Z, Hölscher C. A Dual GLP-1/GIP Receptor Agonist Is More Effective than Liraglutide in the A53T Mouse Model of Parkinson's Disease. PARKINSON'S DISEASE 2023; 2023:7427136. [PMID: 37791037 PMCID: PMC10545468 DOI: 10.1155/2023/7427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is a complex syndrome with many elements, such as chronic inflammation, oxidative stress, mitochondrial dysfunction, loss of dopaminergic neurons, build-up of alpha-synuclein (α-syn) in cells, and energy depletion in neurons, that drive the disease. We and others have shown that treatment with mimetics of the growth factor glucagon-like peptide 1 (GLP-1) can normalize energy utilization, neuronal survival, and dopamine levels and reduce inflammation. Liraglutide is a GLP-1 analogue that recently showed protective effects in phase 2 clinical trials in PD patients and in Alzheimer disease patients. We have developed a novel dual GLP-1/GIP receptor agonist that can cross the blood-brain barrier and showed good protective effects in animal models of PD. Here, we test liraglutide against the dual GLP-1/GIP agonist DA5-CH (KP405) in the A53T tg mouse model of PD which expresses a human-mutated gene of α-synuclein. Drug treatment reduced impairments in three different motor tests, reduced levels of α-syn in the substantia nigra, reduced the inflammation response and proinflammatory cytokine levels in the substantia nigra and striatum, and normalized biomarker levels of autophagy and mitochondrial activities in A53T mice. DA5-CH was superior in almost all parameters measured and therefore may be a better drug treatment for PD than liraglutide.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ming Shi
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhengmin Li
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yuan Ling
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Luke Zhai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ye Yuan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - He Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Li Hao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| |
Collapse
|
9
|
Kulichikhin KY, Malikova OA, Zobnina AE, Zalutskaya NM, Rubel AA. Interaction of Proteins Involved in Neuronal Proteinopathies. Life (Basel) 2023; 13:1954. [PMID: 37895336 PMCID: PMC10608209 DOI: 10.3390/life13101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Proteinopathy is characterized by the accumulation of aggregates of a specific protein in a target organ, tissue, or cell. The aggregation of the same protein can cause different pathologies as single protein can adopt various amyloidogenic, disease-specific conformations. The conformation governs the interaction of amyloid aggregates with other proteins that are prone to misfolding and, thus, determines disease-specific spectrum of concomitant pathologies. In this regard, a detailed description of amyloid protein conformation as well as spectrum of its interaction with other proteins become a key point for drafting of precise description of the disease. The majority of clinical cases of neuronal proteinopathies is caused by the aggregation of rather limited range of amyloidogenic proteins. Here, we provided the characterization of pathologies, related to the aggregation of amyloid β peptide, tau protein, α-synuclein, TDP-43, and amylin, giving a short description of pathologies themselves, recent advances in elucidation of misfolded protein conformation, with emphasis on those protein aggregates extracted from biological samples, what is known about the interaction of this proteins, and the influence of this interaction on the progression of underlying disease and comorbidities.
Collapse
Affiliation(s)
- Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Oksana A. Malikova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Anastasia E. Zobnina
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Natalia M. Zalutskaya
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| |
Collapse
|
10
|
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, Chapela S, Montalván M, Morales-López T, Simancas-Racines D, Zambrano AK. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson's Disease Pathogenesis. Nutrients 2023; 15:3585. [PMID: 37630775 PMCID: PMC10458139 DOI: 10.3390/nu15163585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
Collapse
Affiliation(s)
- Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Tania Morales-López
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
11
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
12
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
13
|
Neurotherapeutic Effects of Quercetin and Its Metabolite Compounds on Cognitive Impairment and Parkinson's Disease: An In Silico Study. Eur J Drug Metab Pharmacokinet 2023; 48:151-169. [PMID: 36848007 DOI: 10.1007/s13318-023-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Little is known about the metabolomic profile of quercetin and its biological effects. This study aimed to determine the biological activities of quercetin and its metabolite products, as well as the molecular mechanisms of quercetin in cognitive impairment (CI) and Parkinson's disease (PD). METHODS Key methods used were MetaTox, PASS Online, ADMETlab 2.0, SwissADME, CTD MicroRNA MIENTURNE, AutoDock, and Cytoscape. RESULTS A total of 28 quercetin metabolite compounds were identified by phase I reactions (hydroxylation and hydrogenation reactions) and phase II reactions (methylation, O-glucuronidation, and O-sulfation reactions). Quercetin and its metabolites were found to inhibit cytochrome P450 (CYP) 1A, CYP1A1, and CYP1A2. The studied compounds demonstrated significant gastrointestinal absorption and satisfied Lipinsky's criterion. Due to their high blood-brain barrier permeability, P-glycoprotein inhibition, anticancer, anti-inflammatory, and antioxidant capabilities, quercetin and its metabolite products have been proposed as promising molecular targets for the therapy of CI and PD. By regulating the expression of crucial signaling pathways [mitogen-activated protein kinase (MAPK) signaling pathway, and neuroinflammation and glutamatergic signaling], genes [brain derived neurotrophic factor (BDNF), human insulin gene (INS), and dopamine receptor D2 (DRD2), miRNAs (hsa-miR-16-5p, hsa-miR-26b-5p, hsa-miR-30a-5p, hsa-miR-125b-5p, hsa-miR-203a-3p, and hsa-miR-335-5p], and transcription factors [specificity protein 1 (SP1), v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), and nuclear factor Kappa B subunit 1 (NFKB1)], quercetin exhibited its neurotherapeutic effects in CI and PD. In addition to inhibiting β-N-acetylhexosaminidase, quercetin also showed robust interactions and binding affinities with heme oxygenase 1 (HMOX1), superoxide dismutase 2 (SOD2), tumor necrosis factor (TNF), nitric oxide synthase 2 (NOS2), brain-derived neurotrophic factor (BDNF), INS, DRD2, and γ-aminobutyric acid type A (GABAa). CONCLUSION This study identified 28 quercetin metabolite products. The metabolites have similar characteristics to quercetin such as physicochemical properties, absorption, distribution, metabolism, and excretion (ADME), and biological activities. More research, especially clinical trials, is needed to find out how quercetin and its metabolites protect against CI and PD.
Collapse
|
14
|
Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, Pucha KA, Dalrymple-Alford J, Shoorangiz R, Meissner WG, Anderson T, Kapogiannis D. Extracellular vesicle biomarkers for cognitive impairment in Parkinson's disease. Brain 2023; 146:195-208. [PMID: 35833836 PMCID: PMC10060702 DOI: 10.1093/brain/awac258] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 06/22/2022] [Indexed: 01/11/2023] Open
Abstract
Besides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls. Plasma extracellular vesicles enriched for neuronal origin were immunocaptured by targeting the L1 cell adhesion molecule, then biomarkers were quantified using immunoassays. α-Synuclein was lower in Parkinson's disease compared to control individuals (P = 0.004) and in cognitively impaired Parkinson's disease individuals compared to Parkinson's disease with normal cognition (P < 0.001) and control (P < 0.001) individuals. Amyloid-β42 did not differ between groups. Phosphorylated tau (T181) was higher in Parkinson's disease than control individuals (P = 0.003) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and controls (P < 0.001). Total tau was not different between groups. Tyrosine-phosphorylated insulin receptor substrate-1 was lower in Parkinson's disease compared to control individuals (P = 0.03) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and controls (P = 0.01), and also decreased with increasing motor symptom severity (P = 0.005); serine312-phosphorylated insulin receptor substrate-1 was not different between groups. Mechanistic target of rapamycin was not different between groups, whereas phosphorylated mechanistic target of rapamycin trended lower in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.05). The ratio of α-synuclein to phosphorylated tau181 was lower in Parkinson's disease compared to controls (P = 0.001), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and decreased with increasing motor symptom severity (P < 0.001). The ratio of insulin receptor substrate-1 phosphorylated serine312 to insulin receptor substrate-1 phosphorylated tyrosine was higher in Parkinson's disease compared to control individuals (P = 0.01), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and increased with increasing motor symptom severity (P = 0.003). α-Synuclein, phosphorylated tau181 and insulin receptor substrate-1 phosphorylated tyrosine contributed in diagnostic classification between groups. These findings suggest that both α-synuclein and tau pathologies and impaired insulin signalling underlie Parkinson's disease with cognitive impairment. Plasma neuronal extracellular vesicles biomarkers may inform cognitive prognosis in Parkinson's disease.
Collapse
Affiliation(s)
- Joseph Blommer
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Maja Mustapic
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Erden Eren
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Pamela J Yao
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Michael P Vreones
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Krishna A Pucha
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch 8041, New Zealand
| | - Reza Shoorangiz
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - Wassilios G Meissner
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- University of Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
- Service de Neurologie—Maladies Neurodégénératives, CHU Bordeaux, F-33000 Bordeaux, France
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Dimitrios Kapogiannis
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Fu Y, Gu M, Wang R, Xu J, Sun S, Zhang H, Huang D, Zhang Z, Peng F, Lin P. Abnormal functional connectivity of the frontostriatal circuits in type 2 diabetes mellitus. Front Aging Neurosci 2023; 14:1055172. [PMID: 36688158 PMCID: PMC9846649 DOI: 10.3389/fnagi.2022.1055172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with an increased incidence of cognitive and emotional disorders. Previous studies have indicated that the frontostriatal circuits play a significant role in brain disorders. However, few studies have investigated functional connectivity (FC) abnormalities in the frontostriatal circuits in T2DM. Objective We aimed to investigate the abnormal functional connectivity (FC) of the frontostriatal circuits in patients with T2DM and to explore the relationship between abnormal FC and diabetes-related variables. Methods Twenty-seven patients with T2DM were selected as the patient group, and 27 healthy peoples were selected as the healthy controls (HCs). The two groups were matched for age and sex. In addition, all subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological evaluation. Seed-based FC analyses were performed by placing six bilateral pairs of seeds within a priori defined subdivisions of the striatum. The functional connection strength of subdivisions of the striatum was compared between the two groups and correlated with each clinical variable. Results Patients with T2DM showed abnormalities in the FC of the frontostriatal circuits. Our findings show significantly reduced FC between the right caudate nucleus and left precentral gyrus (LPCG) in the patients with T2DM compared to the HCs. The FC between the prefrontal cortex (left inferior frontal gyrus, left frontal pole, right frontal pole, and right middle frontal gyrus) and the right caudate nucleus has a significant positive correlation with fasting blood glucose (FBG). Conclusion The results showed abnormal FC of the frontostriatal circuits in T2DM patients, which might provide a new direction to investigate the neuropathological mechanisms of T2DM.
Collapse
Affiliation(s)
- Yingxia Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Meiling Gu
- Department of Psychology, Nanjing Normal University, Nanjing, China
| | - Rui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Juan Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shenglu Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Huifeng Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Dejian Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zongjun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fei Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: Fei Peng, ; Pan Lin,
| | - Pan Lin
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Hunan, China,*Correspondence: Fei Peng, ; Pan Lin,
| |
Collapse
|
16
|
Pezzoli G, Cereda E, Amami P, Colosimo S, Barichella M, Sacilotto G, Zecchinelli A, Zini M, Ferri V, Bolliri C, Calandrella D, Bonelli MG, Cereda V, Reali E, Caronni S, Cassani E, Canesi M, del Sorbo F, Soliveri P, Zecca L, Klersy C, Cilia R, Isaias IU. Onset and mortality of Parkinson's disease in relation to type II diabetes. J Neurol 2023; 270:1564-1572. [PMID: 36436068 PMCID: PMC9971073 DOI: 10.1007/s00415-022-11496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES There is growing evidence that Parkinson's disease and diabetes are partially related diseases; however, the association between the two, and the impact of specific treatments, are still unclear. We evaluated the effect of T2D and antidiabetic treatment on age at PD onset and on all-cause mortality. RESEARCH DESIGN AND METHODS The standardized rate of T2D was calculated for PD patients using the direct method and compared with subjects with essential tremor (ET) and the general Italian population. Age at onset and survival were also compared between patients without T2D (PD-noT2D), patients who developed T2D before PD onset (PD-preT2D) and patients who developed T2D after PD onset (PD-postT2D). RESULTS We designed a retrospective and prospective study. The T2D standardized ratio of PD (N = 8380) and ET (N = 1032) patients was 3.8% and 6.1%, respectively, while in the Italian general population, the overall prevalence was 5.3%. In PD-preT2D patients, on antidiabetic treatment, the onset of PD was associated with a + 6.2 year delay (p < 0.001) while no difference was observed in PD-postT2D. Occurrence of T2D before PD onset negatively affected prognosis (adjusted hazard ratio = 1.64 [95% CI 1.33-2.02]; p < 0.001), while no effect on survival was found in PD-postT2D subjects (hazard ratio = 0.86, [95% CI 0.53-1.39]; p = 0.54). CONCLUSIONS T2D, treated with any antidiabetic therapy before PD, is associated with a delay in its onset. Duration of diabetes increases mortality in PD-preT2D, but not in PD-postT2D. These findings prompt further studies on antidiabetic drugs as a potential disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Gianni Pezzoli
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy ,grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100, Pavia, Italy.
| | - Paolo Amami
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy ,grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Santo Colosimo
- grid.4708.b0000 0004 1757 2822University of Milan, Specialization School in Nutrition Science, Milan, Italy ,Clinical Nutrition Unit, ASST-Pini-CTO, Milan, Italy
| | | | - Giorgio Sacilotto
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy
| | - Anna Zecchinelli
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy
| | - Michela Zini
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy
| | - Valentina Ferri
- grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy ,Clinical Nutrition Unit, ASST-Pini-CTO, Milan, Italy
| | - Carlotta Bolliri
- grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy ,Clinical Nutrition Unit, ASST-Pini-CTO, Milan, Italy
| | - Daniela Calandrella
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy ,grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Maria Grazia Bonelli
- grid.5326.20000 0001 1940 4177Programming and Grant Offices (UPGO), Italian National Research Council (CNR), Rome, Italy
| | - Viviana Cereda
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy ,grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Elisa Reali
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy ,grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Serena Caronni
- grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy ,Clinical Nutrition Unit, ASST-Pini-CTO, Milan, Italy
| | - Erica Cassani
- grid.479062.e0000 0004 6080 596XFondazione Grigioni per il Morbo di Parkinson, Milan, Italy ,Clinical Nutrition Unit, ASST-Pini-CTO, Milan, Italy ,grid.18887.3e0000000417581884Dietetic and Clinical Nutrition Unit, ASST-Fatebenefratelli-Sacco, University Hospital, Milan, Italy
| | - Margherita Canesi
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy ,Department of Parkinson’s Disease, Movement Disorders and Brain Injury Rehabilitation, “Moriggia-Pelascini” General Hospital, Como, Italy
| | | | - Paola Soliveri
- Parkinson Institute Milan, ASST-Pini-CTO, Via Bignami 1, Milan, Italy
| | - Luigi Zecca
- grid.5326.20000 0001 1940 4177Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan Italy
| | - Catherine Klersy
- grid.419425.f0000 0004 1760 3027Unit of Clinical Epidemiology and Biometry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberto Cilia
- grid.417894.70000 0001 0707 5492Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ioannis U. Isaias
- grid.8379.50000 0001 1958 8658Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
18
|
Luthra NS, Clow A, Corcos DM. The Interrelated Multifactorial Actions of Cortisol and Klotho: Potential Implications in the Pathogenesis of Parkinson's Disease. Brain Sci 2022; 12:1695. [PMID: 36552155 PMCID: PMC9775285 DOI: 10.3390/brainsci12121695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is complex, multilayered, and not fully understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurodegenerative condition. Symptoms of PD are heterogenous, including motor impairment as well as non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and stress are important risk factors for PD, leading us to explore pathways that may either accelerate or protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho protein, considered a general aging-suppressor, has a similarly wide range of actions but in the opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and divergent mechanisms that may go on to influence PD-related symptoms. Better understanding of these hormones in PD would facilitate the design of effective interventions that can simultaneously impact the multiple systems involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94127, USA
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London W1B 2HW, UK
| | - Daniel M. Corcos
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
19
|
Should patients with Parkinson’s disease only visit a neurologist’s office? - a narrative review of neuropsychiatric disorders among people with Parkinson’s disease. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Introduction: Parkinson’s disease is a neurodegenerative disease that is often accompanied by disorders such as depression, psychotic disorders, cognitive disorders, anxiety disorders, sleep disorders, impulse control disorders. The aim of the study was to review the literature and present the characteristics of neuropsychiatric disorders occurring in people suffering from Parkinson’s disease, with the specification of the above-mentioned disorders.
Material and method: The literature available on the PubMed platform from 1986 to 2022 was reviewed using the following keywords: Parkinson’s disease, depression, anxiety disorders, psychotic disorders, sleep disorders, cognitive disorders, impulse control disorders. Original studies, reviews, meta-analyzes and internet sources were analyzed.
Results: The above-mentioned neuropsychiatric disorders appear with different frequency among people suffering from Parkinson’s disease and occur at different times of its duration or even precede its onset for many years. The non-motor symptoms in the form of depressed mood, energy loss or changes in the rhythm of the day may result in a delay of appropriate therapy and thus in complications. Neuropathological changes in the course of Parkinson’s disease as well as dopaminergic drugs used in its therapy influence the development of neuropsychiatric disorders.
Conclusions: In order to avoid misdiagnosis, practitioners should use, e.g. scales intended for patients with Parkinson’s disease. To prevent the consequences of the aforementioned disease entities, methods of early diagnosis, determination of risk factors and standardization of the treatment process must be determined. Consistent care for patients with Parkinson’s disease is significant, not only in the neurological field, but also in the psychiatric one.
Collapse
|
20
|
Zhang L, Li C, Zhang Z, Zhang Z, Jin QQ, Li L, Hölscher C. DA5-CH and Semaglutide Protect against Neurodegeneration and Reduce α-Synuclein Levels in the 6-OHDA Parkinson's Disease Rat Model. PARKINSON'S DISEASE 2022; 2022:1428817. [PMID: 36419409 PMCID: PMC9678466 DOI: 10.1155/2022/1428817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 10/03/2023]
Abstract
Insulin desensitization has been observed in the brains of patients with Parkinson's disease (PD), which is a progressive neurodegenerative disorder for which there is no cure. Semaglutide is a novel long-actingglucagon-likepeptide-1 (GLP-1) receptor agonist that is on the market as a treatment for type 2 diabetes. It is in a phase II clinical trial in patients with PD. Two previous phase II trials in PD patients showed good effects with the older GLP-1 receptor agonists, exendin-4 and liraglutide. We have developed a dual GLP-1/GIP receptor agonist (DA5-CH) that can cross the blood-brain barrier (BBB) at a higher rate than semaglutide. We tested semaglutide and DA5-CH in the 6-OHDA-lesion rat model of PD. Treatment was semaglutide or DA5-CH (25 nmol/kg, i.p.) daily for 30 days postlesion. Both drugs reduced the apomorphine-induced rotational behavior and alleviated dopamine depletion and the inflammation response in the lesioned striatum as shown in reduced IL-1β and TNF-α levels, with DA5-CH being more effective. In addition, both drugs protected dopaminergic neurons and increased TH expression in the substantia nigra. Furthermore, the level of monomer and aggregated α-synuclein was reduced by the drugs, and insulin resistance as shown in reduced pIRS-1ser312 phosphorylation was also attenuated after drug treatment, with DA5-CH being more effective. Therefore, while semaglutide showed good effects in this PD model, DA5-CH was superior and may be a better therapeutic drug for neurodegenerative disorders such as PD than GLP-1 receptor agonists that do not easily cross the BBB.
Collapse
Affiliation(s)
- Lingyu Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chun Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zijuan Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Qian-Qian Jin
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Second Hospital Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Bloomingdale P, Karelina T, Ramakrishnan V, Bakshi S, Véronneau‐Veilleux F, Moye M, Sekiguchi K, Meno‐Tetang G, Mohan A, Maithreye R, Thomas VA, Gibbons F, Cabal A, Bouteiller J, Geerts H. Hallmarks of neurodegenerative disease: A systems pharmacology perspective. CPT Pharmacometrics Syst Pharmacol 2022; 11:1399-1429. [PMID: 35894182 PMCID: PMC9662204 DOI: 10.1002/psp4.12852] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Age-related central neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are a rising public health concern and have been plagued by repeated drug development failures. The complex nature and poor mechanistic understanding of the etiology of neurodegenerative diseases has hindered the discovery and development of effective disease-modifying therapeutics. Quantitative systems pharmacology models of neurodegeneration diseases may be useful tools to enhance the understanding of pharmacological intervention strategies and to reduce drug attrition rates. Due to the similarities in pathophysiological mechanisms across neurodegenerative diseases, especially at the cellular and molecular levels, we envision the possibility of structural components that are conserved across models of neurodegenerative diseases. Conserved structural submodels can be viewed as building blocks that are pieced together alongside unique disease components to construct quantitative systems pharmacology (QSP) models of neurodegenerative diseases. Model parameterization would likely be different between the different types of neurodegenerative diseases as well as individual patients. Formulating our mechanistic understanding of neurodegenerative pathophysiology as a mathematical model could aid in the identification and prioritization of drug targets and combinatorial treatment strategies, evaluate the role of patient characteristics on disease progression and therapeutic response, and serve as a central repository of knowledge. Here, we provide a background on neurodegenerative diseases, highlight hallmarks of neurodegeneration, and summarize previous QSP models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Bloomingdale
- Quantitative Pharmacology and PharmacometricsMerck & Co., Inc.BostonMassachusettsUSA
| | | | | | - Suruchi Bakshi
- Certara QSPOssThe Netherlands,Certara QSPPrincetonNew JerseyUSA
| | | | - Matthew Moye
- Quantitative Pharmacology and PharmacometricsMerck & Co., Inc.BostonMassachusettsUSA
| | - Kazutaka Sekiguchi
- Shionogi & Co., Ltd.OsakaJapan,SUNY Downstate Medical CenterNew YorkNew YorkUSA
| | | | | | | | | | - Frank Gibbons
- Clinical Pharmacology and PharmacometricsBiogenCambridgeMassachusettsUSA
| | | | - Jean‐Marie Bouteiller
- Center for Neural EngineeringDepartment of Biomedical Engineering at the Viterbi School of EngineeringLos AngelesCaliforniaUSA,Institute for Technology and Medical Systems Innovation, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
22
|
Siposova K, Petrenko VI, Garcarova I, Sedlakova D, Almásy L, Kyzyma OA, Kriechbaum M, Musatov A. The intriguing dose-dependent effect of selected amphiphilic compounds on insulin amyloid aggregation: Focus on a cholesterol-based detergent, Chobimalt. Front Mol Biosci 2022; 9:955282. [PMID: 36060240 PMCID: PMC9437268 DOI: 10.3389/fmolb.2022.955282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
The amyloidogenic self-assembly of many peptides and proteins largely depends on external conditions. Among amyloid-prone proteins, insulin attracts attention because of its physiological and therapeutic importance. In the present work, the amyloid aggregation of insulin is studied in the presence of cholesterol-based detergent, Chobimalt. The strategy to elucidate the Chobimalt-induced effect on insulin fibrillogenesis is based on performing the concentration- and time-dependent analysis using a combination of different experimental techniques, such as ThT fluorescence assay, CD, AFM, SANS, and SAXS. While at the lowest Chobimalt concentration (0.1 µM; insulin to Chobimalt molar ratio of 1:0.004) the formation of insulin fibrils was not affected, the gradual increase of Chobimalt concentration (up to 100 µM; molar ratio of 1:4) led to a significant increase in ThT fluorescence, and the maximal ThT fluorescence was 3-4-fold higher than the control insulin fibril's ThT fluorescence intensity. Kinetic studies confirm the dose-dependent experimental results. Depending on the concentration of Chobimalt, either (i) no effect is observed, or (ii) significantly, ∼10-times prolonged lag-phases accompanied by the substantial, ∼ 3-fold higher relative ThT fluorescence intensities at the steady-state phase are recorded. In addition, at certain concentrations of Chobimalt, changes in the elongation-phase are noticed. An increase in the Chobimalt concentrations also triggers the formation of insulin fibrils with sharply altered morphological appearance. The fibrils appear to be more flexible and wavy-like with a tendency to form circles. SANS and SAXS data also revealed the morphology changes of amyloid fibrils in the presence of Chobimalt. Amyloid aggregation requires the formation of unfolded intermediates, which subsequently generate amyloidogenic nuclei. We hypothesize that the different morphology of the formed insulin fibrils is the result of the gradual binding of Chobimalt to different binding sites on unfolded insulin. A similar explanation and the existence of such binding sites with different binding energies was shown previously for the nonionic detergent. Thus, the data also emphasize the importance of a protein partially-unfolded state which undergoes the process of fibrils formation; i.e., certain experimental conditions or the presence of additives may dramatically change not only kinetics but also the morphology of fibrillar aggregates.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Viktor I. Petrenko
- BCMaterials—Basque Center for Materials, Applications and Nanostructures, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ivana Garcarova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Dagmar Sedlakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - László Almásy
- Neutron Spectroscopy Department, Centre for Energy Research, Budapest, Hungary
| | - Olena A. Kyzyma
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| |
Collapse
|
23
|
Parkinson's Disease and Sugar Intake-Reasons for and Consequences of a Still Unclear Craving. Nutrients 2022; 14:nu14153240. [PMID: 35956417 PMCID: PMC9370710 DOI: 10.3390/nu14153240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Lately, studies have shown that patients with Parkinson’s disease (PD) report a strong craving for sweets and consume significantly more fast-acting carbohydrates than healthy controls. Consuming food with a high-sugar content is assumed to lead to an increase in insulin concentration, which could positively influence dopamine concentration in the brain and unconsciously be used by patients as kind of “self-medication” to compensate for a lack of dopamine in PD. On the other hand, high-sugar intake could also lead to insulin resistance and diabetes, which is discussed as a causative factor for progressive neurodegeneration in PD. In this critical appraisal, we discuss the role of sugar intake and insulin on dopamine metabolism in patients with PD and how this could influence the potential neurodegeneration mediated by insulin resistance.
Collapse
|
24
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
25
|
Yang X, Feng P, Ji R, Ren Y, Wei W, Hölscher C. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opin Ther Targets 2022; 26:445-460. [PMID: 35584372 DOI: 10.1080/14728222.2022.2079492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing exendin-4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs. AREAS COVERED The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action. EXPERT OPINION Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China
| | - Rong Ji
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China.,Academy of Chinese Medical Science, Henan University of Traditional Chinese Medicine, No. 233 Zhongyuan Road, Zhengzhou, China
| |
Collapse
|
26
|
Convergent Molecular Pathways in Type 2 Diabetes Mellitus and Parkinson’s Disease: Insights into Mechanisms and Pathological Consequences. Mol Neurobiol 2022; 59:4466-4487. [DOI: 10.1007/s12035-022-02867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
|
27
|
Sustained chemogenetic activation of locus coeruleus norepinephrine neurons promotes dopaminergic neuron survival in synucleinopathy. PLoS One 2022; 17:e0263074. [PMID: 35316276 PMCID: PMC8939823 DOI: 10.1371/journal.pone.0263074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Dopaminergic neuron degeneration in the midbrain plays a pivotal role in motor symptoms associated with Parkinson's disease. However, non-motor symptoms of Parkinson's disease and post-mortem histopathology confirm dysfunction in other brain areas, including the locus coeruleus and its associated neurotransmitter norepinephrine. Here, we investigate the role of central norepinephrine-producing neurons in Parkinson's disease by chronically stimulating catecholaminergic neurons in the locus coeruleus using chemogenetic manipulation. We show that norepinephrine neurons send complex axonal projections to the dopaminergic neurons in the substantia nigra, confirming physical communication between these regions. Furthermore, we demonstrate that increased activity of norepinephrine neurons is protective against dopaminergic neuronal depletion in human α-syn A53T missense mutation over-expressing mice and prevents motor dysfunction in these mice. Remarkably, elevated norepinephrine neurons action fails to alleviate α-synuclein aggregation and microgliosis in the substantia nigra suggesting the presence of an alternate neuroprotective mechanism. The beneficial effects of high norepinephrine neuron activity might be attributed to the action of norepinephrine on dopaminergic neurons, as recombinant norepinephrine treatment increased primary dopaminergic neuron cultures survival and neurite sprouting. Collectively, our results suggest a neuroprotective mechanism where noradrenergic neurons activity preserves the integrity of dopaminergic neurons, which prevents synucleinopathy-dependent loss of these cells.
Collapse
|
28
|
Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, Li JY, Li W. Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegener 2022; 11:14. [PMID: 35255986 PMCID: PMC8900445 DOI: 10.1186/s40035-022-00288-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Growing evidence suggests an association between Parkinson’s disease (PD) and diabetes mellitus (DM). At the cellular level, long-term elevated levels of glucose have been shown to lead to nigrostriatal degeneration in PD models. However, the underlying mechanism is still unclear. Previously, we have elucidated the potential of type 2 diabetes mellitus (T2DM) in facilitating PD progression, involving aggregation of both alpha-synuclein (α-syn) and islet amyloid polypeptide in the pancreatic and brain tissues. However, due to the complicated effect of insulin resistance on PD onset, the actual mechanism of hyperglycemia-induced dopaminergic degeneration remains unknown.
Methods
We employed the type 1 diabetes mellitus (T1DM) model induced by streptozotocin (STZ) injection in a transgenic mouse line (BAC-α-syn-GFP) overexpressing human α-syn, to investigate the direct effect of elevated blood glucose on nigrostriatal degeneration.
Results
STZ treatment induced more severe pathological alterations in the pancreatic islets and T1DM symptoms in α-syn-overexpressing mice than in wild-type mice, at one month and three months after STZ injections. Behavioral tests evaluating motor performance confirmed the nigrostriatal degeneration. Furthermore, there was a marked decrease in dopaminergic profiles and an increase of α-syn accumulation and Serine 129 (S129) phosphorylation in STZ-treated α-syn mice compared with the vehicle-treated mice. In addition, more severe neuroinflammation was observed in the brains of the STZ-treated α-syn mice.
Conclusion
Our results solidify the potential link between DM and PD, providing insights into how hyperglycemia induces nigrostriatal degeneration and contributes to pathogenic mechanisms in PD.
Collapse
|
29
|
De Iuliis A, Montinaro E, Fatati G, Plebani M, Colosimo C. Diabetes mellitus and Parkinson's disease: dangerous liaisons between insulin and dopamine. Neural Regen Res 2022; 17:523-533. [PMID: 34380882 PMCID: PMC8504381 DOI: 10.4103/1673-5374.320965] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between diabetes mellitus and Parkinson's disease has been described in several epidemiological studies over the 1960s to date. Molecular studies have shown the possible functional link between insulin and dopamine, as there is strong evidence demonstrating the action of dopamine in pancreatic islets, as well as the insulin effects on feeding and cognition through central nervous system mechanism, largely independent of glucose utilization. Therapies used for the treatment of type 2 diabetes mellitus appear to be promising candidates for symptomatic and/or disease-modifying action in neurodegenerative diseases including Parkinson's disease, while an old dopamine agonist, bromocriptine, has been repositioned for the type 2 diabetes mellitus treatment. This review will aim at reappraising the different studies that have highlighted the dangerous liaisons between diabetes mellitus and Parkinson's disease.
Collapse
Affiliation(s)
| | - Ennio Montinaro
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | | | - Mario Plebani
- Department of Medicine-DiMED, University of Padova, Italy
- Department of Medicine-DiMED, University of Padova, Padova, Italy; Department of Laboratory Medicine-Hospital of Padova, Padova, Italy
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
30
|
Troshneva A, Ametov A. Parkinson’s disease and type 2 diabetes mellitus: interrelation of pathogenetic mechanisms and general therapeutic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-18. [DOI: 10.17116/jnevro202212211212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Chen Y, Wu W, Ni X, Farag MA, Capanoglu E, Zhao C. Regulatory mechanisms of the green alga Ulva lactuca oligosaccharide via the metabolomics and gut microbiome in diabetic mice. Curr Res Food Sci 2022; 5:1127-1139. [PMID: 35865803 PMCID: PMC9294526 DOI: 10.1016/j.crfs.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) has emerged as one of the most acute public health diseases of the present time, which increases with the population ageing. This study aimed to evaluate the hypoglycaemic activity of Ulva lactuca oligosaccharide (ULO) under ageing-related diabetes conditions in an animal model. The results demonstrated that ULO can promote hypoglycaemia and delay senescence as mediated via GLP-1/GLP-1R pathway to mobilize the intercommunication between the brain and gut. In addition, twenty-six different metabolites and eight different bacteria were screened in the brain and the gut, respectively. A network relationship displayed that all-trans-retinoic acid has positive relationships with Bifidobacterium and Streptococcus, suggesting that plays a potential key role in maintaining the hypoglycaemic and anti-ageing activities of ULO. Based on these findings, ULO might be an efficient therapy for restoring blood glucose metabolism and delaying brain senescence in elderly T2D patients. U. lactuca oligosaccharide (ULO) acts as a GLP-1/GLP-1R agonist to control circulating glucose. ULO significantly reduces the expression of brain aging factor p16Ink4a. All-trans-Retinoic acid and Streptococcus are the key mediators of hypoglycemia.
Collapse
|
32
|
Vijiaratnam N, Foltynie T. Disease modifying therapies III: Novel targets. Neuropharmacology 2021; 201:108839. [PMID: 34656651 DOI: 10.1016/j.neuropharm.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Despite significant research advances, treatment of Parkinson's disease (PD) remains confined to symptomatic therapies. Approaches aiming to halt or reverse disease progression remain an important but unmet goal. A growing understanding of disease pathogenesis and the identification of novel pathways contributing to initiation of neurodegeneration and subsequent progression has highlighted a range of potential novel targets for intervention that may influence the rate of progression of the disease process. Exploiting techniques to stratify patients according to these targets alongside using them as biomarkers to measure target engagement will likely improve patient selection and preliminary outcome measurements in clinical trials. In this review, we summarize a number of PD-related mechanisms that have recently gained interest such as neuroinflammation, lysosomal dysfunction and insulin resistance, while also exploring the potential for targeting peripheral interfaces such as the gastrointestinal tract and its ecosystem to achieve disease modification. We explore the rationale for these approaches based on preclinical studies, while also highlighting the status of relevant clinical trials as well as the promising role biomarkers may play in current and future studies.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
33
|
Fang X, Li FJ, Hong DJ. Potential Role of Akkermansia muciniphila in Parkinson's Disease and Other Neurological/Autoimmune Diseases. Curr Med Sci 2021; 41:1172-1177. [PMID: 34893951 DOI: 10.1007/s11596-021-2464-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/22/2021] [Indexed: 10/19/2022]
Abstract
The composition of the gut microbiota, including Akkermansia muciniphila (A. muciniphila), is altered in many neurological diseases and may be involved in the pathophysiological processes of Parkinson's disease (PD). A. muciniphila, a mucin-degrading bacterium, is a potential next-generation microbe that has anti-inflammatory properties and is responsible for keeping the body healthy. As the role of A. muciniphila in PD has become increasingly apparent, we discuss the potential link between A. muciniphila and various neurological diseases (including PD) in the current review.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fang-Jun Li
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Dao-Jun Hong
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
34
|
Luna R, Talanki Manjunatha R, Bollu B, Jhaveri S, Avanthika C, Reddy N, Saha T, Gandhi F. A Comprehensive Review of Neuronal Changes in Diabetics. Cureus 2021; 13:e19142. [PMID: 34868777 PMCID: PMC8628358 DOI: 10.7759/cureus.19142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
There has been an exponential rise in diabetes mellitus (DM) cases on a global scale. Diabetes affects almost every system of the body, and the nervous system is no exception. Although the brain is dependent on glucose, providing it with the energy required for optimal functionality, glucose also plays a key role in the regulation of oxidative stress, cell death, among others, which furthermore contribute to the pathophysiology of neurological disorders. The variety of biochemical processes engaged in this process is only matched by the multitude of clinical consequences resulting from it. The wide-ranging effects on the central and peripheral nervous system include, but are not limited to axonopathies, neurodegenerative diseases, neurovascular diseases, and general cognitive impairment. All language search was conducted on MEDLINE, COCHRANE, EMBASE, and GOOGLE SCHOLAR till September 2021. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "CNS," "Diabetic Neuropathy," and "Insulin." We explored the literature on diabetic neuropathy, covering its epidemiology, pathophysiology with the respective molecular pathways, clinical consequences with a special focus on the central nervous system and finally, measures to prevent and treat neuronal changes. Diabetes is slowly becoming an epidemic, rapidly increasing the clinical burden on account of its wide-ranging complications. This review focuses on the neuronal changes occurring in diabetes such as the impact of hyperglycemia on brain function and structure, its association with various neurological disorders, and a few diabetes-induced peripheral neuropathic changes. It is an attempt to summarize the relevant literature about neuronal consequences of DM as treatment options available today are mostly focused on achieving better glycemic control; further research on novel treatment options to prevent or delay the progression of neuronal changes is still needed.
Collapse
Affiliation(s)
- Rudy Luna
- Neurofisiología, Instituto Nacional de Neurologia y Neurocirugia, CDMX, MEX
| | | | | | | | - Chaithanya Avanthika
- Medicine and Surgery; Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Nikhil Reddy
- Internal Medicine, Kamineni Academy of Medical Science and Research Centre, Hyderabad, IND
| | - Tias Saha
- Internal Medicine, Diabetic Association Medical College, Faridpur, BGD
| | - Fenil Gandhi
- Medicine, Shree Krishna Hospital, Anand, IND
- Research Project Associate, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
35
|
Komici K, Femminella GD, Bencivenga L, Rengo G, Pagano G. Diabetes Mellitus and Parkinson's Disease: A Systematic Review and Meta-Analyses. JOURNAL OF PARKINSONS DISEASE 2021; 11:1585-1596. [PMID: 34486987 DOI: 10.3233/jpd-212725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND A link between diabetes mellitus (DM) and Parkinson's disease (PD) have been proposed but evidence are sparse and inconsistent. OBJECTIVE Perform a systematic review of all evidence that link DM and PD characterising the prevalence of DM in PD patients, the risk of developing PD in DM patients and the influence of DM on PD severity and progression. METHODS MEDLINE, Scopus, and Cochrane Library from inception to June 30, 2021 were searched. Studies reporting prevalence, incidence, severity and disease progression of DM and PD were included. Prevalence of DM in PD and incidence of PD in DM patients, and characteristics of PD. RESULTS A total of 21 studies (n = 11,396) included data on DM prevalence in PD patients, 12 studies (n = 17,797,221) included data on incidence of PD in DM patients, and 10 studies (n = 2,482) included data on DM impact on PD severity and disease progression. The prevalence of DM in PD patients was 10.02 %, (95%C.I. 7.88 -12.16), DM patients showed a higher risk of developing PD (OR: 1.34 95%CI 1.26-1.43 p < 0.0001) compared to non-DM, and PD patients with DM showed a greater severity of motor symptoms, with higher Hoehn and Yahr stage (SMD: 0.36 95%CI 0.12-0.60; p < 0.001) and higher UPDRS (SMD 0.60 95%CI 0.28-0.92; p < 0.001) compared with PD patients without DM. CONCLUSION Although the prevalence of DM in PD patients is similar to the general population, patients with DM have a higher risk of developing PD, and the presence of DM is associated with greater PD severity and faster progression, which suggests that DM may be a facilitating factor of neurodegeneration.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit (ICS Maugeri SpA SB), Scientific Institute of Telese Terme, Telese Terme (BN), Italy
| | - Gennaro Pagano
- King's College London, London, UK.,Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
36
|
Lv M, Xue G, Cheng H, Meng P, Lian X, Hölscher C, Li D. The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01. Brain Behav 2021; 11:e2231. [PMID: 34125470 PMCID: PMC8413783 DOI: 10.1002/brb3.2231] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The GLP-1 receptor agonist exendin-4 has recently shown good effects in a phase II clinical trial in Parkinson's disease (PD) patients. Here, a comparison of the new GLP-1/GIP dual receptor agonist DA5-CH and NLY01, a 40 kDa pegylated form of exendin-4, on motor impairments and reducing inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD mouse model is provided. The drug groups received either DA5-CH or NLY01 (25 nmol/kg) i.p. after daily MPTP intraperitoneal injection. Both drugs showed improvements in motor activity, open field experiments, rotarod tests, and gait analysis, but DA5-CH was more potent. Tyrosine hydroxylase expression in dopaminergic neurons was much reduced by MPTP and improved by DA5-CH, while NLY01 showed weak effects. When analyzing levels of α-synuclein (α-Syn), DA5-CH reduced levels effectively while NLY01 had no effect. When measuring the levels of the inflammation markers Toll-like receptor 4 (TLR4), specific markers of microglia activation (Iba-1), the marker of astrocyte activation glial fibrillary acidic protein (GFAP), nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), and transforming growth factor β1 (TGF-β1), DA5-CH was very effective in reducing the chronic inflammation response, while NLY01 did not show significant effects. Levels of key growth factors such as Glial cell-derived neurotrophic factor (GDNF) and Brain-derived neurotrophic factor (BDNF) were much reduced by MPTP, and DA5-CH was able to normalize levels in the brain, while NLY01 showed little effect. The levels of pro-inflammatory cytokines (IL-6 and IL-Iβ) were much reduced by DA5-CH, too, while NLY01 showed no effect. In a separate experiment, we tested the ability of the two drugs to cross the blood-brain barrier. After injecting fluorescin-labelled peptides peripherally, the fluorescence in brain tissue was measured. It was found that the pegylated NLY01 peptide did not cross the BBB in meaningful quantities while exendin-4 and the dual agonist DA5-CH did. The results show that DA5-CH shows promise as a therapeutic drug for PD.
Collapse
Affiliation(s)
- MiaoJun Lv
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - GuoFang Xue
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - HuiFeng Cheng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - PengFei Meng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Xia Lian
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - DongFang Li
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
37
|
Diabetes, insulin and new therapeutic strategies for Parkinson's disease: Focus on glucagon-like peptide-1 receptor agonists. Front Neuroendocrinol 2021; 62:100914. [PMID: 33845041 DOI: 10.1016/j.yfrne.2021.100914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease and diabetes mellitus are two chronic disorders associated with aging that are becoming increasingly prevalent worldwide. Parkinson is a multifactorial progressive condition with no available disease modifying treatments at the moment. Over the last few years there is growing interest in the relationship between diabetes (and impaired insulin signaling) and neurodegenerative diseases, as well as the possible benefit of antidiabetic treatments as neuroprotectors, even in non-diabetic patients. Insulin regulates essential functions in the brain such as neuronal survival, autophagy of toxic proteins, synaptic plasticity, neurogenesis, oxidative stress and neuroinflammation. We review the existing epidemiological, experimental and clinical evidence that supports the interplay between insulin and neurodegeneration in Parkinson's disease, as well as the role of antidiabetic treatments in this disease.
Collapse
|
38
|
Park SH, Nam GE, Han K, Huh Y, Kim W, Lee MK, Koh ES, Kim ES, Kim MK, Kwon HS, Kim SM, Cho KH, Park YG. Association of Dynamic Changes in Metabolic Syndrome Status with the Risk of Parkinson's Disease: A Nationwide Cohort Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1751-1759. [PMID: 34120914 DOI: 10.3233/jpd-212589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The longitudinal association between dynamic changes in the metabolic syndrome (MS) status and Parkinson's disease (PD) has been poorly studied. OBJECTIVE We examined whether dynamic changes in MS status are associated with altered risk for PD. METHODS This study was a nationwide retrospective cohort study. We enrolled 5,522,813 individuals aged≥40 years who had undergone health examinations under the National Health Insurance Service between 2009 and 2010 (two health examinations with a 2-year interval). Participants were followed up until the end of 2017. The participants were categorized into four groups according to MS status changes over 2 years: non-MS, improved MS, incident MS, and persistent MS groups. Multivariable Cox hazard regression was performed. RESULTS During the 7-year median follow-up, there were 20,524 cases of newly developed PD. Compared with non-MS group, improved, incident, and persistent MS groups for 2 years were significantly associated with higher risks of PD (model 3; hazard ratio: 1.12, 95%confidence interval: 1.06-1.19 [improved MS]; 1.15, 1.09-1.22 [incident MS]; and 1.25, 1.20-1.30 [persistent MS]). Individuals with incident and persistent abdominal obesity, low levels of high-density lipoprotein cholesterol, hypertriglyceridemia, and hyperglycemia had a significantly increased risks of PD compared with those without either condition over 2 years. CONCLUSION Persistent and incident MS and its components may be risk factors for incident PD. Ever exposure to MS may also be associated with PD risk. Appropriate intervention for preventing and improving MS may be crucial in decreasing the PD incidence.
Collapse
Affiliation(s)
- Sang Hyun Park
- Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Youn Huh
- Department of Family Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wonsock Kim
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Eun-Sil Koh
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Mee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon Mee Kim
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Cho
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Gyu Park
- Department of Medical Lifescience, College of Medicine, The catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
39
|
Gonzalez-Latapi P, Bayram E, Litvan I, Marras C. Cognitive Impairment in Parkinson's Disease: Epidemiology, Clinical Profile, Protective and Risk Factors. Behav Sci (Basel) 2021; 11:bs11050074. [PMID: 34068064 PMCID: PMC8152515 DOI: 10.3390/bs11050074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment is a common non-motor symptom in Parkinson's Disease (PD) and an important source of patient disability and caregiver burden. The timing, profile and rate of cognitive decline varies widely among individuals with PD and can range from normal cognition to mild cognitive impairment (PD-MCI) and dementia (PDD). Beta-amyloid and tau brain accumulation, oxidative stress and neuroinflammation are reported risk factors for cognitive impairment. Traumatic brain injury and pesticide and tobacco exposure have also been described. Genetic risk factors including genes such as COMT, APOE, MAPT and BDNF may also play a role. Less is known about protective factors, although the Mediterranean diet and exercise may fall in this category. Nonetheless, there is conflicting evidence for most of the factors that have been studied. The use of inconsistent criteria and lack of comprehensive assessment in many studies are important methodological issues. Timing of exposure also plays a crucial role, although identification of the correct time window has been historically difficult in PD. Our understanding of the mechanism behind these factors, as well as the interactions between gene and environment as determinants of disease phenotype and the identification of modifiable risk factors will be paramount, as this will allow for potential interventions even in established PD.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
- Correspondence:
| |
Collapse
|
40
|
Anirudhan A, Angulo-Bejarano PI, Paramasivam P, Manokaran K, Kamath SM, Murugesan R, Sharma A, Ahmed SSSJ. RPL6: A Key Molecule Regulating Zinc- and Magnesium-Bound Metalloproteins of Parkinson's Disease. Front Neurosci 2021; 15:631892. [PMID: 33790735 PMCID: PMC8006920 DOI: 10.3389/fnins.2021.631892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with no definite molecular markers for diagnosis. Metal exposure may alter cellular proteins that contribute to PD. Exploring the cross-talk between metal and its binding proteins in PD could reveal a new strategy for PD diagnosis. We performed a meta-analysis from different PD tissue microarray datasets to identify differentially expressed genes (DEGs) common to the blood and brain. Among common DEGs, we extracted 280 metalloprotein-encoding genes to construct protein networks describing the regulation of metalloproteins in the PD blood and brain. From the metalloprotein network, we identified three important functional hubs. Further analysis shows 60S ribosomal protein L6 (RPL6), a novel intermediary molecule connecting the three hubs of the metalloproteins network. Quantitative real-time PCR analysis showed that RPL6 was downregulated in PD peripheral blood mononuclear cell (PBMC) samples. Simultaneously, trace element analysis revealed altered serum zinc and magnesium concentrations in PD samples. The Pearson's correlation analysis shows that serum zinc and magnesium regulate the RPL6 gene expression in PBMC. Thus, metal-regulating RPL6 acts as an intermediary molecule connecting the three hubs that are functionally associated with PD. Overall our study explores the understanding of metal-mediated pathogenesis in PD, which provides a serum metal environment regulating the cellular gene expression that may light toward metal and gene expression-based biomarkers for PD diagnosis.
Collapse
Affiliation(s)
- Athira Anirudhan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | | | - Prabu Paramasivam
- Department of Neurology, School of Medicine, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, United States
| | - Kalaivani Manokaran
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - S Manjunath Kamath
- Department of Pharmacology, Saveetha Dental College (SDC), Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ram Murugesan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ashutosh Sharma
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro, Mexico
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
41
|
Markaki I, Ntetsika T, Sorjonen K, Svenningsson P. Euglycemia Indicates Favorable Motor Outcome in Parkinson's Disease. Mov Disord 2021; 36:1430-1434. [PMID: 33634916 DOI: 10.1002/mds.28545] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The interplay between glycemic control and Parkinson's disease (PD) has long been recognized but not fully understood. OBJECTIVES To investigate the association of glycated hemoglobin (HbA1c) levels with motor and cognitive symptom progression in a prospective PD cohort. METHODS Of 244 PD patients, 17 had low HbA1c (≤30 mmol/mol), 184 were euglycemic (HbA1c 31-41 mmol/mol), 18 had high HbA1c (HbA1 ≥42 mmol/mol), and 25 had diabetes mellitus (DM). Survival analysis was applied on time until Hoehn and Yahr stage ≥3 (motor outcome) and until mild cognitive impairment. RESULTS Low HbA1c (HR 2.7; 95% CI 1.3-6; P = 0.01) as well as high HbA1c (HR 3.6; 95% CI 1.5-8.9; P = 0.005) but not DM were independent predictors of unfavorable motor outcome. CONCLUSIONS Both high and low HbA1c levels may be associated with motor symptom progression in PD; however, further studies are needed to confirm these findings and increase understanding regarding causality. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Kimmo Sorjonen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Stockholm, Sweden.,Neurology Department, Karolinska University Hospital, Huddinge, Sweden
| | | |
Collapse
|
42
|
Repurposing GLP-1 Receptor Agonists for Parkinson's Disease: Current Evidence and Future Opportunities. Pharmaceut Med 2021; 35:11-19. [PMID: 33409802 DOI: 10.1007/s40290-020-00374-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
The global burden of chronic disorders such as Parkinson's disease (PD) has rapidly increased over recent decades. Despite an increasing understanding of PD pathophysiology, there are no effective therapies capable of stopping or slowing the progression of this neurological condition. It has been suggested that type 2 diabetes mellitus (T2DM) may be a risk factor for PD and comorbid T2DM may worsen PD symptoms, as well as accelerate neurodegeneration. In fact, the similar pathological mechanisms shared by PD and T2DM have inspired several studies on the therapeutic potential of T2DM drugs against PD, among which glucagon-like peptide-1 receptor (GLP-1R) agonists are promising candidates. Here, we highlight the mechanisms linking T2DM and PD, as well as the links between insulin resistance (IR) and PD patients' risk of developing cognitive deficits. We also briefly review the effects of GLP-1R agonists on PD and discuss how the successful use of these substances in preclinical models of PD has paved the way for PD clinical trials. We further discuss how recent evidence on the beneficial effects of dulaglutide on cognitive function of T2DM patients may have important implications for PD drug repurposing.
Collapse
|
43
|
Salameh TS, Rhea EM, Talbot K, Banks WA. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer's and Parkinson's disease therapeutics. Biochem Pharmacol 2020; 180:114187. [PMID: 32755557 PMCID: PMC7606641 DOI: 10.1016/j.bcp.2020.114187] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Among the more promising treatments proposed for Alzheimer's disease (AD) and Parkinson's disease (PD) are those reducing brain insulin resistance. The antidiabetics in the class of incretin receptor agonists (IRAs) reduce symptoms and brain pathology in animal models of AD and PD, as well as glucose utilization in AD cases and clinical symptoms in PD cases after their systemic administration. At least 9 different IRAs are showing promise as AD and PD therapeutics, but we still lack quantitative data on their relative ability to cross the blood-brain barrier (BBB) reaching the brain parenchyma. We consequently compared brain uptake pharmacokinetics of intravenous 125I-labeled IRAs in adult CD-1 mice over the course of 60 min. We tested single IRAs (exendin-4, liraglutide, lixisenatide, and semaglutide), which bind receptors for one incretin (glucagon-like peptide-1 [GLP-1]), and dual IRAs, which bind receptors for two incretins (GLP-1 and glucose-dependent insulinotropic polypeptide [GIP]), including unbranched, acylated, PEGylated, or C-terminally modified forms (Finan/Ma Peptides 17, 18, and 20 and Hölscher peptides DA3-CH and DA-JC4). The non-acylated and non-PEGylated IRAs (exendin-4, lixisenatide, Peptide 17, DA3-CH and DA-JC4) had significant rates of blood-to-brain influx (Ki), but the acylated IRAs (liraglutide, semaglutide, and Peptide 18) did not measurably cross the BBB. The brain influx of the non-acylated, non-PEGylated IRAs were not saturable up to 1 μg of these drugs and was most likely mediated by adsorptive transcytosis across brain endothelial cells, as observed for exendin-4. Of the non-acylated, non-PEGylated IRAs tested, exendin-4 and DA-JC4 were best able to cross the BBB based on their rate of brain influx, percentage reaching the brain that accumulated in brain parenchyma, and percentage of the systemic dose taken up per gram of brain tissue. Exendin-4 and DA-JC4 thus merit special attention as IRAs well-suited to enter the central nervous system (CNS), thus reaching areas pathologic in AD and PD.
Collapse
Affiliation(s)
- Therese S Salameh
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Konrad Talbot
- Loma Linda University School of Medicine, Departments of Neurosurgery, Basic Sciences, and Pathology and Human Anatomy, Loma Linda, CA 92354, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA.
| |
Collapse
|
44
|
Sánchez-Gómez A, Alcarraz-Vizán G, Fernández M, Fernández-Santiago R, Ezquerra M, Cámara A, Serrano M, Novials A, Muñoz E, Valldeoriola F, Compta Y, Martí MJ. Peripheral insulin and amylin levels in Parkinson's disease. Parkinsonism Relat Disord 2020; 79:91-96. [DOI: 10.1016/j.parkreldis.2020.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
|
45
|
Shaughness M, Acs D, Brabazon F, Hockenbury N, Byrnes KR. Role of Insulin in Neurotrauma and Neurodegeneration: A Review. Front Neurosci 2020; 14:547175. [PMID: 33100956 PMCID: PMC7546823 DOI: 10.3389/fnins.2020.547175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin is a hormone typically associated with pancreatic release and blood sugar regulation. The brain was long thought to be “insulin-independent,” but research has shown that insulin receptors (IR) are expressed on neurons, microglia and astrocytes, among other cells. The effects of insulin on cells within the central nervous system are varied, and can include both metabolic and non-metabolic functions. Emerging data suggests that insulin can improve neuronal survival or recovery after trauma or during neurodegenerative diseases. Further, data suggests a strong anti-inflammatory component of insulin, which may also play a role in both neurotrauma and neurodegeneration. As a result, administration of exogenous insulin, either via systemic or intranasal routes, is an increasing area of focus in research in neurotrauma and neurodegenerative disorders. This review will explore the literature to date on the role of insulin in neurotrauma and neurodegeneration, with a focus on traumatic brain injury (TBI), spinal cord injury (SCI), Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Michael Shaughness
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Nicole Hockenbury
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
46
|
Ghadimi M, Foroughi F, Hashemipour S, Rashidi Nooshabadi M, Ahmadi MH, Ahadi Nezhad B, Khadem Haghighian H. Randomized double-blind clinical trial examining the Ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytother Res 2020; 35:1023-1032. [PMID: 32909365 DOI: 10.1002/ptr.6867] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/30/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Oxidative stress can worsen glycemic status. Considering the antioxidant properties of Ellagic acid (EA), this study was designed to evaluate the effect of EA on glycemic indices, lipid profile, oxidative stress, and inflammation status in type 2 diabetic patients. Overall, 44 patients were recruited and were randomly allocated consumed 180 mg of EA per day (n = 22) or placebo (n = 22) for 8 weeks. The blood sugar (BS), insulin, insulin resistance (IR), hemoglobin A1c (HbA1 c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), total antioxidant capacity (TAC), malondialdehyde (MDA), the activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), C-reactive protein (CRP), TNF-α and interleukin 6 (IL-6) were measured at the beginning and end of the study. At the end of the study, the mean of BS, insulin, IR, HbA1 c, TC, TG, LDL, MDA, CRP, TNF-α, and IL-6 were significantly decreased in the intervention group (p < .05). Also, the mean of TAC (+0.8 ± 0.01) and activity of GPx (+10.26 ± 0.22) and SOD enzymes (+459.6 ± 9.76) significantly increased in the intervention group (p < .05). EA supplementation can be helpful as a diet supplement in patients with type 2 diabetes through improvement in chronic adverse effects.
Collapse
Affiliation(s)
- Mahnaz Ghadimi
- Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sima Hashemipour
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammad Hossein Ahmadi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bahman Ahadi Nezhad
- Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Khadem Haghighian
- Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran.,Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
47
|
Pérez‐Taboada I, Alberquilla S, Martín ED, Anand R, Vietti‐Michelina S, Tebeka NN, Cantley J, Cragg SJ, Moratalla R, Vallejo M. Diabetes Causes Dysfunctional Dopamine Neurotransmission Favoring Nigrostriatal Degeneration in Mice. Mov Disord 2020; 35:1636-1648. [PMID: 32666590 PMCID: PMC7818508 DOI: 10.1002/mds.28124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown. OBJECTIVES We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration. METHODS We used streptozotocin-treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast-scan cyclic voltammetry. 6-Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests. RESULTS Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin-2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6-hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra. CONCLUSIONS Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Iara Pérez‐Taboada
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMMadridSpain
| | - Samuel Alberquilla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Eduardo D. Martín
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Rishi Anand
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | | | - Nchimunya N. Tebeka
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Division of Systems MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| | - James Cantley
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Division of Systems MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| | - Stephanie J. Cragg
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUnited Kingdom
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMMadridSpain
| |
Collapse
|
48
|
Markaki I, Winther K, Catrina SB, Svenningsson P. Repurposing GLP1 agonists for neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:91-112. [PMID: 32854860 DOI: 10.1016/bs.irn.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a large unmet medical need to find disease modifying therapies against neurodegenerative diseases. This review summarizes data indicating that insulin resistance occurs in neurodegeneration and strategies to normalize insulin sensitivity in neurons may provide neuroprotective actions. In particular, recent preclinical and clinical studies in Parkinson's disease and Alzheimer's disease have indicated that glucagon-like peptide 1 (GLP1) agonism and dipeptidyl peptidase-4 inhibition may exert neuroprotection. Mechanistic insights from these studies and future directions for drug development against neurodegeneration based on GLP1 agonism are discussed.
Collapse
Affiliation(s)
- Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden.
| | - Kristian Winther
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
49
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
50
|
Li W, Zhao Q, Wang J, Wang Y, Wen T. Dcf1 deletion presents alterations in gut microbiota of mice similar to Parkinson's disease. Biochem Biophys Res Commun 2020; 529:1137-1144. [PMID: 32819577 DOI: 10.1016/j.bbrc.2020.06.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 11/17/2022]
Abstract
The gut-brain communication is increasingly being recognized as a profound effector on Parkinson's disease (PD). Gut microbiota changes have become the focus of attention. However, the mechanism leading to changes in the gut microbiota is not clear. In the present study, we found that knockout of Dcf1 (Dcf1-/-) caused changes in the gut microbiota in mice. Results indicated that the increased Proteobacteria (phylum-level) and decreased Prevotellaceae (family-level) in the microbiota composition of Dcf1-/- (KO) mice, which is consistent with the situation of PD patients. On species-level, Prevotellaceae_UCG-001 and Helicobacter_ganmani were significantly different between KO and WT mice, suggesting glycolipid metabolism disorders and inflammatory lesions in KO mice. In the behavior of Y-maze and Open field test, KO mice showed typical PD symptoms such as memory deficits, slowness of movement and anxiety. Further Nissl staining of brain tissue sections confirmed that the deletion of Dcf1 caused damage to amygdala neurons. These results provide a new mechanism for understanding gut microbiota changes, and provide a new basis for PD treatment from a new perspective of Gut-brain axis.
Collapse
Affiliation(s)
- Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qinpin Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yajiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|