1
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Dietary Protein Modulates the Efficacy of Taurine Supplementation on Adaptive Islet Function and Morphology in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:267-278. [DOI: 10.1007/978-3-030-93337-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Understanding the Long-Lasting Effects of Fetal Nutrient Restriction versus Exposure to an Obesogenic Diet on Islet-Cell Mass and Function. Metabolites 2021; 11:metabo11080514. [PMID: 34436455 PMCID: PMC8401811 DOI: 10.3390/metabo11080514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Early life represents a window of phenotypic plasticity. Thus, exposure of the developing fetus to a compromised nutritional environment can have long term consequences for their health. Indeed, undernutrition or maternal intake of an obesogenic diet during pregnancy leads to a heightened risk of type 2 diabetes (T2D) and obesity in her offspring in adult life. Given that abnormalities in beta-cell function are crucial in delineating the risk of T2D, studies have investigated the impact of these exposures on islet morphology and beta-cell function in the offspring in a bid to understand why they are more at risk of T2D. Interestingly, despite the contrasting maternal metabolic phenotype and, therefore, intrauterine environment associated with undernutrition versus high-fat feeding, there are a number of similarities in the genes/biological pathways that are disrupted in offspring islets leading to changes in function. Looking to the future, it will be important to define the exact mechanisms involved in mediating changes in the gene expression landscape in islet cells to determine whether the road to T2D development is the same or different in those exposed to different ends of the nutritional spectrum.
Collapse
|
4
|
Sundblad V, Garcia-Tornadu IA, Ornstein AM, Martínez Allo VC, Lorenzo R, Gatto SG, Morales RM, Gambarte Tudela JA, Manselle Cocco MN, Croci DO, Becu-Villalobos D, Rabinovich GA. Galectin-1 impacts on glucose homeostasis by modulating pancreatic insulin release. Glycobiology 2021; 31:908-915. [PMID: 33978732 DOI: 10.1093/glycob/cwab040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/10/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is an expanding global health problem, involving defective insulin secretion by pancreatic β-cells and peripheral insulin resistance, leading to impaired glucose regulation. Galectin-1, an endogenous lectin with affinity for N-acetyllactosamine (LacNAc)-containing glycans, has emerged as a regulator of inflammatory and metabolic disorders. However, the role of galectin-1 in glucose homeostasis and pancreatic β-cell function, independently of hypercaloric diets, has not been explored. Here, we identified a phenotype compatible with T2DM, involving alterations in glucose metabolism and pancreatic insulin release, in female but not male mice lacking galectin-1 (Lgals1-/-). Compared with age-matched controls, Lgals1-/female mice exhibited higher body weight and increased food intake ad libitum as well as after fasting and acute re-feeding. Although fasted serum insulin levels and insulin sensitivity were similar in both genotypes, Lgals1-/- female mice presented altered glucose tolerance and higher basal glucose levels depending on the fasting period. Insulin response to glucose overload was impaired, while pancreatic insulin content was enhanced in the absence of galectin-1. Accordingly, recombinant galectin-1 enhanced glucose-stimulated insulin release in vitro. Our study identifies a role for galectin-1 in regulating glucose metabolism through modulation of pancreatic insulin secretion, highlighting novel opportunities to control T2DM.
Collapse
Affiliation(s)
- Victoria Sundblad
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Isabel A Garcia-Tornadu
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Ana M Ornstein
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Verónica C Martínez Allo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Rodrigo Lorenzo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
- Instituto de Ciencias Polares, Recursos Naturales y Ambientes, Universidad Nacional de Tierra del Fuego (ICPA-UNTDF-CONICET), V9410 Ushuaia, Argentina
| | - Sabrina G Gatto
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Rosa M Morales
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Julián A Gambarte Tudela
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Montana N Manselle Cocco
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Diego O Croci
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
| |
Collapse
|
5
|
Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci 2020; 77:4861-4898. [PMID: 32494846 PMCID: PMC7658077 DOI: 10.1007/s00018-020-03566-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The results of different human epidemiological datasets provided the impetus to introduce the now commonly accepted theory coined as 'developmental programming', whereby the presence of a stressor during gestation predisposes the growing fetus to develop diseases, such as metabolic dysfunction in later postnatal life. However, in a clinical setting, human lifespan and inaccessibility to tissue for analysis are major limitations to study the molecular mechanisms governing developmental programming. Subsequently, studies using animal models have proved indispensable to the identification of key molecular pathways and epigenetic mechanisms that are dysregulated in metabolic organs of the fetus and adult programmed due to an adverse gestational environment. Rodents such as mice and rats are the most used experimental animals in the study of developmental programming. This review summarises the molecular pathways and epigenetic mechanisms influencing alterations in metabolic tissues of rodent offspring exposed to in utero stress and subsequently programmed for metabolic dysfunction. By comparing molecular mechanisms in a variety of rodent models of in utero stress, we hope to summarise common themes and pathways governing later metabolic dysfunction in the offspring whilst identifying reasons for incongruencies between models so to inform future work. With the continued use and refinement of such models of developmental programming, the scientific community may gain the knowledge required for the targeted treatment of metabolic diseases that have intrauterine origins.
Collapse
Affiliation(s)
- Efthimia R Christoforou
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK.
| |
Collapse
|
6
|
Louwagie EJ, Larsen TD, Wachal AL, Gandy TCT, Eclov JA, Rideout TC, Kern KA, Cain JT, Anderson RH, Mdaki KS, Baack ML. Age and Sex Influence Mitochondria and Cardiac Health in Offspring Exposed to Maternal Glucolipotoxicity. iScience 2020; 23:101746. [PMID: 33225249 PMCID: PMC7666357 DOI: 10.1016/j.isci.2020.101746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Infants of diabetic mothers are at risk of cardiomyopathy at birth and myocardial infarction in adulthood, but prevention is hindered because mechanisms remain unknown. We previously showed that maternal glucolipotoxicity increases the risk of cardiomyopathy and mortality in newborn rats through fuel-mediated mitochondrial dysfunction. Here we demonstrate ongoing cardiometabolic consequences by cross-fostering and following echocardiography, cardiomyocyte bioenergetics, mitochondria-mediated turnover, and cell death following metabolic stress in aged adults. Like humans, cardiac function improves by weaning with no apparent differences in early adulthood but declines again in aged diabetes-exposed offspring. This is preceded by impaired oxidative phosphorylation, exaggerated age-related increase in mitochondrial number, and higher oxygen consumption. Prenatally exposed male cardiomyocytes have more mitolysosomes indicating high baseline turnover; when exposed to metabolic stress, mitophagy cannot increase and cardiomyocytes have faster mitochondrial membrane potential loss and mitochondria-mediated cell death. Details highlight age- and sex-specific roles of mitochondria in developmentally programmed adult heart disease. Fetal exposures disrupt mitochondria, bioenergetics, & cardiac function at birth First, bioenergetics & function improve until greater reliance on OXPHOS with age At 6MO, poor respiration incites biogenesis & mitophagy, and then functional decline Fetal exposures cause faster mitochondria-mediated cell death in aged adult hearts
Collapse
Affiliation(s)
- Eli J Louwagie
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tricia D Larsen
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Angela L Wachal
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler C T Gandy
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Julie A Eclov
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Katherine A Kern
- Department of Exercise and Nutrition Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Jacob T Cain
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruthellen H Anderson
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kennedy S Mdaki
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Michelle L Baack
- University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.,Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD 57104, USA.,Boekelheide Neonatal Intensive Care Unit, Sanford Children's Hospital, Sioux Falls, SD 57117, USA
| |
Collapse
|
7
|
Seong HY, Cho HM, Kim M, Kim I. Maternal High-Fructose Intake Induces Multigenerational Activation of the Renin-Angiotensin-Aldosterone System. Hypertension 2019; 74:518-525. [PMID: 31327271 DOI: 10.1161/hypertensionaha.119.12941] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although maternal high-fructose intake induces cardiometabolic syndrome in adult offspring, whether it induces hypertension in successive multiple generations has not yet been studied. We hypothesized that maternal high-fructose intake induces multigenerational activation of the renin-angiotensin-aldosterone system. Pregnant mice were offered 20% fructose in drinking water, of which subsequent first to fourth generation offspring were raised without being offered fructose. Blood pressure was measured via the tail-cuff method, mRNA expression was determined using the quantitative polymerase chain reaction, and fibrosis was evaluated using trichrome staining. Maternal high-fructose intake statistically significantly increased blood pressure in the first and second, but not the third and fourth, generation offspring as compared to the control group, with maximal increases in serum renin, angiotensin II, and aldosterone in the third generation offspring. It increased the mRNA expression of renin-angiotensin-aldosterone system genes as well as the expression of renin in the kidneys in the first to third generation offspring, with the exception of the vasodilatory Mas1 gene, the mRNA expression of which was the lowest in the second generation offspring. Moreover, it maximally increased fibrosis and the mRNA expression of inflammatory cytokines in the second generation offspring and increased the mRNA expression of oxidative factors in the first to third generation offspring, but maximally decreased the mRNA expression of antioxidant-encoding Sod1 in the second generation offspring. Maternal high-fructose intake induces multigenerational activation of renin-angiotensin-aldosterone system, and the results of this study implicate that it epigenetically induces cardiometabolic syndrome in multiple generations of offspring.
Collapse
Affiliation(s)
- Ho Yeong Seong
- From the Department of Pharmacology (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Min Cho
- From the Department of Pharmacology (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Life Science, College of Natural Science (H.Y.S.)
| | - Mina Kim
- From the Department of Pharmacology (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - InKyeom Kim
- From the Department of Pharmacology (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute (H.Y.S., H.M.C., M.K., I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence program, Department of Biomedical Science (I.K.), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Vriens A, Plusquin M, Baeyens W, Bruckers L, Den Hond E, Loots I, Nelen V, Schoeters G, Janssen BG, Nawrot TS. Cord blood leptin and insulin levels in association with mitochondrial DNA content. J Transl Med 2018; 16:224. [PMID: 30103773 PMCID: PMC6090601 DOI: 10.1186/s12967-018-1599-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background The developmental origins of health and disease theory states that a disturbance in the early life environment can contribute to disease risk in later life. Leptin and insulin are anorectic hormones involved in energy homeostasis and are crucial for foetal growth. Disturbances in the levels of these hormones contribute to obesity and diabetes. In adults, altered mitochondrial function is an important hallmark of metabolic disorders, including obesity and diabetes. However, the mitochondrial effects of early life metabolic variation are unexplored. We investigated whether there is an association between metabolic hormones and mitochondrial DNA (mtDNA) content in early life. Methods The study included 236 newborns from the FLEHS III birth cohort, Flanders (Belgium). Relative mtDNA content of cord blood leukocytes was determined using quantitative PCR. Cord blood levels of leptin and insulin were determined using immunoassays. We studied the association between these metabolic hormones and mtDNA content using multiple linear regression models, while accounting for covariates and potential confounders. Results Leptin and insulin levels were positively associated with cord blood mtDNA content. mtDNA content was respectively 4.49% (95% CI 1.15–7.93; p = 0.008) and 1.60% (95% CI 0.31–2.91; p = 0.02) higher for a interquartile range increase of respectively cord blood leptin and insulin levels. In a sensitivity analysis, we observed that insulin and leptin were independently associated to mtDNA content and that insulin was stronger associated to mtDNA content in boys than in girls. Conclusion Neonatal metabolic hormones were associated with cord blood mtDNA content, which suggests that in early life the variation of mtDNA content might accommodate or reflect changes in the metabolic status. Electronic supplementary material The online version of this article (10.1186/s12967-018-1599-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annette Vriens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | | | - Ilse Loots
- Faculty of Social Sciences and IMDO-Institute, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium. .,School of Public Health, Occupational and Environmental Medicine, Leuven University, Leuven, Belgium.
| |
Collapse
|
9
|
Gannon M, Kulkarni RN, Tse HM, Mauvais-Jarvis F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol Metab 2018; 15:82-91. [PMID: 29891438 PMCID: PMC6066785 DOI: 10.1016/j.molmet.2018.05.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/30/2022] Open
Abstract
Background The sex of an individual affects glucose homeostasis and the pathophysiology, incidence, and prevalence of diabetes as well as the response to therapy. Scope of the review This review focuses on clinical and experimental sex differences in islet cell biology and dysfunction during development and in adulthood in human and animal models. We discuss sex differences in β-cell and α-cell function, heterogeneity, and dysfunction. We cover sex differences in communication between gonads and islets and islet-cell immune interactions. Finally, we discuss sex differences in β-cell programming by nutrition and other environmental factors during pregnancy. Major conclusions Important sex differences exist in islet cell function and susceptibility to failure. These differences represent sex-related biological factors that can be harnessed for gender-based prevention of and therapy for diabetes.
Collapse
Affiliation(s)
- Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, USA; Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | - Hubert M Tse
- Department of Microbiology, Birmingham, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center School of Medicine, New Orleans, USA; Southeast Louisiana Veterans Healthcare System Medical Center, New Orleans, LA, USA.
| |
Collapse
|
10
|
Mizuno G, Munetsuna E, Yamada H, Ando Y, Yamazaki M, Murase Y, Kondo K, Ishikawa H, Teradaira R, Suzuki K, Ohashi K. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring. Endocr Res 2017; 42:71-77. [PMID: 27260693 DOI: 10.1080/07435800.2016.1182186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.
Collapse
Affiliation(s)
- Genki Mizuno
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Eiji Munetsuna
- b Department of Biochemistry , Fujita Health University School of Medicine , Toyoake , Japan
| | - Hiroya Yamada
- c Department of Hygiene , Fujita Health University School of Medicine , Toyoake , Japan
| | - Yoshitaka Ando
- d Department of Joint Research Laboratory of Clinical Medicine , Fujita Health University School of Medicine , Toyoake , Japan
| | - Mirai Yamazaki
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Yuri Murase
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Kanako Kondo
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Hiroaki Ishikawa
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Ryoji Teradaira
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Koji Suzuki
- e Department of Public Health , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Koji Ohashi
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| |
Collapse
|
11
|
Csép K, Szigeti E, Vitai M, Korányi L. THE PPARGC1A - GLY482SER POLYMORPHISM (RS8192678) AND THE METABOLIC SYNDROME IN A CENTRAL ROMANIAN POPULATION. ACTA ENDOCRINOLOGICA-BUCHAREST 2017; 13:161-167. [PMID: 31149168 DOI: 10.4183/aeb.2017.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background The peroxisome proliferator-activated receptor-γ co-activator 1-α (PPARGC1A), a key transcription factor involved in the control of metabolism and energy homeostasis, is an important biological and positional candidate of the metabolic syndrome. Association studies of its polymorphisms, however, yielded inconsistent sometimes conflicting results, pointing to important ethnic differences, which call for replication in various populations. Objective In order to study its most common - potentially functional - polymorphism Gly482Ser (rs8192678), we carried out a case-control study in a central Romanian population. Material and methods Two hundred and ninety six patients affected by the metabolic syndrome diagnosed according to the International Diabetes Federation proposed criteria and 166 middle-aged control subjects have been investigated. Genotyping was done by PCR-RFLP, using the restriction enzyme MspI. Results While the G(Gly)/A(Ser) allele frequencies (66.89/33.11 vs. 71.68/28.31 %) and GG/GA/AA genotype distribution (45.27-43.24-11.48 vs. 54.21-34.93-10.84 %) differed in the metabolic syndrome and control group, the risk of developing the metabolic syndrome did not reach the limit of statistical significance (OR=1.43; p=0.06, CI 95%: 0.97-2.09). Metabolic parameters in the two study groups did not show significant differences according to the genotype (p>0.05). Conclusion rs8192678 could be a functional polymorphism contributing to the development of the metabolic syndrome, but probably its effect is minor, and might depend on gene-gene and gene-environment interactions. Clarification of very small effects would require larger sample sizes.
Collapse
Affiliation(s)
- K Csép
- University of Medicine and Pharmacy, Department of Genetics, Tg. Mureş, Romania
| | - E Szigeti
- University of Medicine and Pharmacy, Department of Genetics, Tg. Mureş, Romania
| | - M Vitai
- Drug Research Center, Balatonfüred, Hungary
| | - L Korányi
- Drug Research Center, Balatonfüred, Hungary
| |
Collapse
|
12
|
Ramírez-López MT, Arco R, Decara J, Vázquez M, Rivera P, Blanco RN, Alén F, Gómez de Heras R, Suárez J, Rodríguez de Fonseca F. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators. Front Behav Neurosci 2016; 10:241. [PMID: 28082878 PMCID: PMC5187359 DOI: 10.3389/fnbeh.2016.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.
Collapse
Affiliation(s)
- María T Ramírez-López
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Hospital Universitario de GetafeMadrid, Spain
| | - Rocío Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Rosario Noemi Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain; Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de MálagaMálaga, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| |
Collapse
|
13
|
Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice. Sci Rep 2016; 6:33464. [PMID: 27633083 PMCID: PMC5025848 DOI: 10.1038/srep33464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 08/30/2016] [Indexed: 12/28/2022] Open
Abstract
Pancreatic beta cell (β) dysfunction is an outcome of malnutrition. We assessed the role of the amplifying pathway (AMP PATH) in β cells in malnourished obese mice. C57Bl-6 mice were fed a control (C) or a low-protein diet (R). The groups were then fed a high-fat diet (CH and RH). AMP PATH contribution to insulin secretion was assessed upon incubating islets with diazoxide and KCl. CH and RH displayed increased glucose intolerance, insulin resistance and glucose-stimulated insulin secretion. Only RH showed a higher contribution of the AMP PATH. The mitochondrial membrane potential of RH was decreased, and ATP flux was unaltered. In RH islets, glutamate dehydrogenase (GDH) protein content and activity increased, and the AMP PATH contribution was reestablished when GDH was blunted. Thus, protein malnutrition induces mitochondrial dysfunction in β cells, leading to an increased contribution of the AMP PATH to insulin secretion through the enhancement of GDH content and activity.
Collapse
|
14
|
Saad AF, Dickerson J, Kechichian TB, Yin H, Gamble P, Salazar A, Patrikeev I, Motamedi M, Saade GR, Costantine MM. High-fructose diet in pregnancy leads to fetal programming of hypertension, insulin resistance, and obesity in adult offspring. Am J Obstet Gynecol 2016; 215:378.e1-6. [PMID: 27060421 DOI: 10.1016/j.ajog.2016.03.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Consumption of fructose-rich diets in the United States is on the rise and thought to be associated with obesity and cardiometabolic diseases. OBJECTIVE We sought to determine the effects of antenatal exposure to high-fructose diet on offspring's development of metabolic syndrome-like phenotype and other cardiovascular disease risk factors later in life. STUDY DESIGN Pregnant C57BL/6J dams were randomly allocated to fructose solution (10% wt/vol, n = 10) or water (n = 10) as the only drinking fluid from day 1 of pregnancy until delivery. After weaning, pups were started on regular chow, and evaluated at 1 year of life. We measured percent visceral adipose tissue and liver fat infiltrates using computed tomography, and blood pressure using CODA nonivasive monitor. Intraperitoneal glucose tolerance testing with corresponding insulin concentrations were obtained. Serum concentrations of glucose, insulin, triglycerides, total cholesterol, leptin, and adiponectin were measured in duplicate using standardized assays. Fasting homeostatic model assessment was also calculated to assess insulin resistance. P values <.05 were considered statistically significant. RESULTS Maternal weight, pup number, and average weight at birth were similar between the 2 groups. Male and female fructose group offspring had higher peak glucose and area under the intraperitoneal glucose tolerance testing curve compared with control, and higher mean arterial pressure compared to control. Female fructose group offspring were heavier and had higher percent visceral adipose tissue, liver fat infiltrates, homeostatic model assessment of insulin resistance scores, insulin area under the intraperitoneal glucose tolerance testing curve, and serum concentrations of leptin, and lower concentrations of adiponectin compared to female control offspring. No significant differences in these parameters were noted in male offspring. Serum concentrations of triglycerides or total cholesterol were not different between the 2 groups for either gender. CONCLUSION Maternal intake of high fructose leads to fetal programming of adult obesity, hypertension, and metabolic dysfunction, all risk factors for cardiovascular disease. This fetal programming is more pronounced in female offspring. Limiting intake of high fructose-enriched diets in pregnancy may have significant impact on long-term health.
Collapse
|
15
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
16
|
Chang GQ, Karatayev O, Lukatskaya O, Leibowitz SF. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons. Peptides 2016; 79:16-26. [PMID: 27002387 PMCID: PMC4872302 DOI: 10.1016/j.peptides.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023]
Abstract
Gestational exposure to a fat-rich diet, while elevating maternal circulating fatty acids, increases in the offspring's hypothalamus and amygdala the proliferation and density of neurons that express neuropeptides known to stimulate consummatory behavior. To understand the relationship between these phenomena, this study examined in the brain of postnatal offspring (day 15) the effect of prenatal fat exposure on the transcription factor, peroxisome proliferator-activated receptor (PPAR) β/δ, which is sensitive to fatty acids, and the relationship of PPAR β/δ to the orexigenic neuropeptides, orexin, melanin-concentrating hormone, and enkephalin. Prenatal exposure to a fat-rich diet compared to low-fat chow increased the density of cells immunoreactive for PPAR β/δ in the hypothalamic paraventricular nucleus (PVN), perifornical lateral hypothalamus (PFLH), and central nucleus of the amygdala (CeA), but not the hypothalamic arcuate nucleus or basolateral amygdaloid nucleus. It also increased co-labeling of PPAR β/δ with the cell proliferation marker, BrdU, or neuronal marker, NeuN, and the triple labeling of PPAR β/δ with BrdU plus NeuN, indicating an increase in proliferation and density of new PPAR β/δ neurons. Prenatal fat exposure stimulated the double-labeling of PPAR β/δ with orexin or melanin-concentrating hormone in the PFLH and enkephalin in the PVN and CeA and also triple-labeling of PPAR β/δ with BrdU and these neuropeptides, indicating that dietary fat increases the genesis of PPAR β/δ neurons that produce these peptides. These findings demonstrate a close anatomical relationship between PPAR β/δ and the increased proliferation and density of peptide-expressing neurons in the hypothalamus and amygdala of fat-exposed offspring.
Collapse
Affiliation(s)
- G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - O Lukatskaya
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Alzamendi A, Zubiría G, Moreno G, Portales A, Spinedi E, Giovambattista A. High Risk of Metabolic and Adipose Tissue Dysfunctions in Adult Male Progeny, Due to Prenatal and Adulthood Malnutrition Induced by Fructose Rich Diet. Nutrients 2016; 8:178. [PMID: 27011203 PMCID: PMC4808904 DOI: 10.3390/nu8030178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this work was to determine the effect of a fructose rich diet (FRD) consumed by the pregnant mother on the endocrine-metabolic and in vivo and in vitro adipose tissue (AT) functions of the male offspring in adulthood. At 60 days of age, rats born to FRD-fed mothers (F) showed impaired glucose tolerance after glucose overload and high circulating levels of leptin (LEP). Despite the diminished mass of retroperitoneal AT, this tissue was characterized by enhanced LEP gene expression, and hypertrophic adipocytes secreting in vitro larger amounts of LEP. Analyses of stromal vascular fraction composition by flow cytometry revealed a reduced number of adipocyte precursor cells. Additionally, 60 day-old control (C) and F male rats were subjected to control diet (CC and FC animals) or FRD (CF and FF rats) for three weeks. FF animals were heavier and consumed more calories. Their metabolic-endocrine parameters were aggravated; they developed severe hyperglycemia, hypertriglyceridemia, hyperleptinemia and augmented AT mass with hypertrophic adipocytes. Our study highlights that manipulation of maternal diet induced an offspring phenotype mainly imprinted with a severely unhealthy adipogenic process with undesirable endocrine-metabolic consequences, putting them at high risk for developing a diabetic state.
Collapse
Affiliation(s)
- Ana Alzamendi
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| | - Guillermina Zubiría
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| | - Griselda Moreno
- IIFP (CONICET La Plata) School of Exact Sciences, National University of La Plata (UNLP), La Plata1900, Argentina.
| | - Andrea Portales
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| | - Eduardo Spinedi
- CENEXA (CONICET La Plata-UNLP, a PAHO/WHO (Collaborating Centre for Diabetes)), School of Medicine, National University of La Plata (UNLP), La Plata1900, Argentina.
| | - Andrés Giovambattista
- IMBICE (CICPBA-CONICET La Plata-National University of La Plata (UNLP)), La Plata 1900, Argentina.
| |
Collapse
|
18
|
de Souza AP, Pedroso AP, Watanabe RLH, Dornellas APS, Boldarine VT, Laure HJ, do Nascimento CMO, Oyama LM, Rosa JC, Ribeiro EB. Gender-specific effects of intrauterine growth restriction on the adipose tissue of adult rats: a proteomic approach. Proteome Sci 2015; 13:32. [PMID: 26633942 PMCID: PMC4667418 DOI: 10.1186/s12953-015-0088-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) may program metabolic alterations affecting physiological functions and lead to diseases in later life. The adipose tissue is an important organ influencing energy homeostasis. The present study was aimed at exploring the consequences of IUGR on the retroperitoneal adipose tissue of adult male and female rats, using a proteomic approach. METHODS AND RESULTS Pregnant Wistar rats were fed with balanced chow, either ad libitum (control group) or restricted to 50 % of control intake (restricted group) during the whole gestation. The offspring were weaned to ad libitum chow and studied at 4 months of age. Retroperitoneal fat was analyzed by two-dimensional gel electrophoresis followed by mass spectrometry. Both male and female restricted groups had low body weight at birth and at weaning but normal body weight at adulthood. The restricted males had normal fat pads weight and serum glucose levels, with a trend to hyperinsulinemia. The restricted females had increased fat pads weight with normal glucose and insulin levels. The restricted males showed up-regulated levels of proteasome subunit α type 3, branched-chain-amino-acid aminotransferase, elongation 1- alpha 1, fatty acid synthase levels, cytosolic malate dehydrogenase and ATP synthase subunit alpha. These alterations point to increased proteolysis and lipogenesis rates and favoring of ATP generation. The restricted females showed down-regulated levels of L-lactate dehydrogenase perilipin-1, mitochondrial branched-chain alpha-keto acid dehydrogenase E1, and transketolase. These findings suggest impairment of glycemic control, stimulation of lipolysis and inhibition of proteolysis, pentose phosphate pathway and lipogenesis rates. In both genders, several proteins involved in oxidative stress and inflammation were affected, in a pattern compatible with impairment of these responses. CONCLUSIONS The proteomic analysis of adipose tissue showed that, although IUGR affected pathways of substrate and energy metabolism in both males and females, important gender differences were evident. While IUGR males displayed alterations pointing to a predisposition to later development of obesity, the alterations observed in IUGR females pointed to a metabolic status of established obesity, in agreement with their increased fat pads mass.
Collapse
Affiliation(s)
- Adriana Pereira de Souza
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Amanda Paula Pedroso
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Regina Lúcia Harumi Watanabe
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Ana Paula Segantine Dornellas
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Valter Tadeu Boldarine
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Helen Julie Laure
- Centro de Química de Proteínas - Hemocentro, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Claudia Maria Oller do Nascimento
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - José Cesar Rosa
- Centro de Química de Proteínas - Hemocentro, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliane Beraldi Ribeiro
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| |
Collapse
|
19
|
Ohashi K, Ando Y, Munetsuna E, Yamada H, Yamazaki M, Nagura A, Taromaru N, Ishikawa H, Suzuki K, Teradaira R. Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and 17β-HSD in rat offspring. Nutr Res 2015; 35:259-64. [DOI: 10.1016/j.nutres.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
|
20
|
Nielsen JH, Haase TN, Jaksch C, Nalla A, Søstrup B, Nalla AA, Larsen L, Rasmussen M, Dalgaard LT, Gaarn LW, Thams P, Kofod H, Billestrup N. Impact of fetal and neonatal environment on beta cell function and development of diabetes. Acta Obstet Gynecol Scand 2014; 93:1109-22. [DOI: 10.1111/aogs.12504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Jens H. Nielsen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Tobias N. Haase
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Caroline Jaksch
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Amarnadh Nalla
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Birgitte Søstrup
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Anjana A. Nalla
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Louise Larsen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Morten Rasmussen
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Copenhagen Denmark
| | - Louise T. Dalgaard
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Science; Roskilde University; Roskilde Denmark
| | - Louise W. Gaarn
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
- Novo Nordisk; Måløv Denmark
| | - Peter Thams
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Center for Fetal Programming; Copenhagen Denmark
| | - Hans Kofod
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
21
|
Dumortier O, Hinault C, Gautier N, Patouraux S, Casamento V, Van Obberghen E. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 2014; 63:3416-27. [PMID: 24834976 DOI: 10.2337/db13-1431] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The intrauterine environment of the fetus is a preeminent actor in long-term health. Indeed, mounting evidence shows that maternal malnutrition increases the risk of type 2 diabetes (T2D) in progeny. Although the consequences of a disturbed prenatal environment on the development of the pancreas are known, the underlying mechanisms are poorly defined. In rats, restriction of protein during gestation alters the development of the endocrine pancreas and favors the occurrence of T2D later in life. Here we evaluate the potential role of perturbed microRNA (miRNA) expression in the decreased β-cell mass and insulin secretion characterizing progeny of pregnant dams fed a low-protein (LP) diet. miRNA profiling shows increased expression of several miRNAs, including miR-375, in the pancreas of fetuses of mothers fed an LP diet. The expression of miR-375 remains augmented in neoformed islets derived from fetuses and in islets from adult (3-month-old) progeny of mothers fed an LP diet. miR-375 regulates the proliferation and insulin secretion of dissociated islet cells, contributing to the reduced β-cell mass and function of progeny of mothers fed an LP diet. Remarkably, miR-375 normalization in LP-derived islet cells restores β-cell proliferation and insulin secretion. Our findings suggest the existence of a developmental memory in islets that registers intrauterine protein restriction. Hence, pancreatic failure after in utero malnutrition could result from transgenerational transmission of miRNA misexpression in β-cells.
Collapse
Affiliation(s)
- Olivier Dumortier
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France
| | - Charlotte Hinault
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France Clinical Chemistry Laboratory, University Hospital, Nice, France
| | - Nadine Gautier
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France
| | | | - Virginie Casamento
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France
| | - Emmanuel Van Obberghen
- INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN), Aging and Diabetes Team, Nice, France CNRS, UMR7284, IRCAN, Nice, France University of Nice Sophia Antipolis, Nice, France Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
22
|
Short- and long-term effects of a maternal low-energy diet ad libitum during gestation and/or lactation on physiological parameters of mothers and male offspring. Eur J Nutr 2014; 54:793-802. [DOI: 10.1007/s00394-014-0758-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/04/2014] [Indexed: 11/25/2022]
|
23
|
Nascimento L, Freitas CM, Silva-Filho R, Leite ACR, Silva AB, da Silva AI, Ferreira DS, Pedroza AA, Maia MBS, Fernandes MP, Lagranha C. The effect of maternal low-protein diet on the heart of adult offspring: role of mitochondria and oxidative stress. Appl Physiol Nutr Metab 2014; 39:880-7. [DOI: 10.1139/apnm-2013-0452] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein restriction during perinatal and early postnatal development is associated with a greater incidence of disease in the adult, such arterial hypertension. The aim in the present study was to investigate the effect of maternal low-protein diet on mitochondrial oxidative phosphorylation capacity, mitochondrial reactive oxygen species (ROS) formation, antioxidant levels (enzymatic and nonenzymatic), and oxidative stress levels on the heart of the adult offspring. Pregnant Wistar rats received either 17% casein (normal protein, NP) or 8% casein (low protein, LP) throughout pregnancy and lactation. After weaning male progeny of these NP or LP fed rats, females were maintained on commercial chow (Labina-Purina). At 100 days post-birth, the male rats were sacrificed and heart tissue was harvested and stored at −80 °C. Our results show that restricting protein consumption in pregnant females induced decreased mitochondrial oxidative phosphorylation capacity (51% reduction in ADP-stimulated oxygen consumption and 49.5% reduction in respiratory control ratio) in their progeny when compared with NP group. In addition, maternal low-protein diet induced a significant decrease in enzymatic antioxidant capacity (37.8% decrease in superoxide dismutase activity; 42% decrease in catalase activity; 44.8% decrease in glutathione-S-transferase activity; 47.9% decrease in glutathione reductase; 25.7% decrease in glucose-6 phosphate dehydrogenase) and glutathione level (34.8% decrease) when compared with control. From these findings, we hypothesize that an increased production of ROS and decrease in antioxidant activity levels induced by protein restriction during development could potentiate the progression of metabolic and cardiac diseases in adulthood.
Collapse
Affiliation(s)
- Luciana Nascimento
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Cristiane M. Freitas
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Reginaldo Silva-Filho
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Ana Catarina R. Leite
- Department of Physiology and Pharmacology, CCB-Federal University of Pernambuco, Recife, PE, Brazil
| | - Alessandra B. Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Aline Isabel da Silva
- Ph.D. student in Nutrition Program, Federal University of Pernambuco, Recife, PE, Brazil
| | - Diorginis Soares Ferreira
- Ph.D. student in Neuropsychiatry and Behavioral Sciences Program, Federal University of Pernambuco, Recife, PE, Brazil
| | - Anderson Apolonio Pedroza
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | | | - Mariana P. Fernandes
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Claudia Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| |
Collapse
|
24
|
Agnoux AM, Antignac JP, Simard G, Poupeau G, Darmaun D, Parnet P, Alexandre-Gouabau MC. Time window-dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring. Am J Physiol Regul Integr Comp Physiol 2014; 307:R184-97. [DOI: 10.1152/ajpregu.00015.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and experimental evidence suggests that a suboptimal environment during perinatal life programs offspring susceptibility to the development of metabolic syndrome and Type 2 diabetes. We hypothesized that the lasting impact of perinatal protein deprivation on mitochondrial fuel oxidation and insulin sensitivity would depend on the time window of exposure. To improve our understanding of underlying mechanisms, an integrative approach was used, combining the assessment of insulin sensitivity and untargeted mass spectrometry-based metabolomics in the offspring. A hyperinsulinemic-euglycemic clamp was performed in adult male rats born from dams fed a low-protein diet during gestation and/or lactation, and subsequently exposed to a Western diet (WD) for 10 wk. Metabolomics was combined with targeted acylcarnitine profiling and analysis of liver gene expression to identify markers of adaptation to WD that influence the phenotype outcome evaluated by body composition analysis. At adulthood, offspring of protein-restricted dams had impaired insulin secretion when fed a standard diet. Moreover, rats who demonstrated catch-up growth at weaning displayed higher gluconeogenesis and branched-chain amino acid catabolism, and lower fatty acid β-oxidation compared with control rats. Postweaning exposure of intrauterine growth restriction-born rats to a WD exacerbated incomplete fatty acid β-oxidation and excess fat deposition. Control offspring nursed by protein-restricted mothers showed peculiar low-fat accretion through adulthood and preserved insulin sensitivity even after WD-exposure. Altogether, our findings suggest a testable hypothesis about how maternal diet might influence metabolic outcomes (insulin sensitivity) in the next generation such as mitochondrial overload and/or substrate oxidation inflexibility dependent on the time window of perinatal dietary manipulation.
Collapse
Affiliation(s)
- Aurore Martin Agnoux
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Jean-Philippe Antignac
- L'Université Nantes Angers Le Mans (LUNAM) université, Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, Unité Sous Contrat (USC) INRA, Nantes, France
| | - Gilles Simard
- LUNAM Université, Angers, France
- Institut National de la Santé et de la Recherche Médicale U1063, Angers, France; and
- Université d'Angers, Centre Hospitalier Universitaire (CHU) Angers, Department of Biochemistry, Angers, France
| | - Guillaume Poupeau
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Dominique Darmaun
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Patricia Parnet
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Marie-Cécile Alexandre-Gouabau
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| |
Collapse
|
25
|
Kasbi-Chadli F, Boquien CY, Simard G, Ulmann L, Mimouni V, Leray V, Meynier A, Ferchaud-Roucher V, Champ M, Nguyen P, Ouguerram K. Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning. J Nutr Biochem 2014; 25:726-33. [DOI: 10.1016/j.jnutbio.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 01/13/2014] [Accepted: 03/02/2014] [Indexed: 01/09/2023]
|
26
|
Mukai Y, Ozaki H, Serita Y, Sato S. Maternal fructose intake during pregnancy modulates hepatic and hypothalamic AMP-activated protein kinase signalling in a sex-specific manner in offspring. Clin Exp Pharmacol Physiol 2014; 41:331-7. [DOI: 10.1111/1440-1681.12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Yuuka Mukai
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Haruka Ozaki
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Yuko Serita
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Shin Sato
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| |
Collapse
|
27
|
Jellyman JK, Valenzuela OA, Allen VL, Holdstock NB, Fowden AL. Sex‐associated differences in pancreatic β cell function in healthy preweaning pony foals. Equine Vet J 2014; 46:722-8. [DOI: 10.1111/evj.12230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/04/2014] [Indexed: 01/06/2023]
Affiliation(s)
- J. K. Jellyman
- Department of Physiology Development and Neuroscience University of Cambridge UK
| | - O. A. Valenzuela
- Department of Physiology Development and Neuroscience University of Cambridge UK
| | - V. L. Allen
- Department of Physiology Development and Neuroscience University of Cambridge UK
| | | | - A. L. Fowden
- Department of Physiology Development and Neuroscience University of Cambridge UK
| |
Collapse
|
28
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. High- and low-protein gestation diets do not provoke common transcriptional responses representing universal target-pathways in muscle and liver of porcine progeny. Acta Physiol (Oxf) 2014; 210:202-14. [PMID: 24188291 DOI: 10.1111/apha.12192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 10/30/2013] [Indexed: 12/27/2022]
Abstract
AIM Maternal diets introduce transcriptional changes in the offspring, highlighting the concept of genetic and physiological plasticity. Our previous analyses investigated stage-dependent transcriptional responses to either maternal high or low protein/carbohydrate ratios in either muscle or liver. Foetal programming is proposed to be mediated by a small number of gatekeeper processes, such as cytoskeleton remodelling and cell-cycle regulation. Here, we conducted an overall analysis of a three-dimensional data set aiming to elucidate, whether there are universally targeted pathways of adaptive transcriptional response to different protein/carbohydrate ratios. METHODS Microarray analyses were performed on liver and skeletal muscle tissue sampled at 94 days post-conception and 1, 28 and 188 days post-natum from offspring (n = 253) of German Landrace gilts that were fed isoenergetic diets containing low, high or adequate protein. RESULTS Cluster analyses revealed a hierarchical influence of tissue, ontogenetic stage and diet on transcript levels. Considering results cumulatively over stages, liver showed only marginal transcriptional differences between the dietary groups, whereas considerable differences appeared in muscle. Considering results cumulatively over tissues, nutrition-responsive transcriptions were observed along ontogenesis. Pathway analyses revealed transcript differences in genes related to tissue remodelling, cell-cycle regulation and mitochondrial function. CONCLUSION The factors tissue, stage and diet impact gene expression in a hierarchical order. Porcine liver appeared to be a tissue that was more resilient to nutritional modulation compared with skeletal muscle tissue. Differential modulation between tissues and dietary groups reveal that there are no universal target-pathways of adaptive transcriptional response to different protein diets.
Collapse
Affiliation(s)
- M. Oster
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - E. Murani
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - C. C. Metges
- Institute for Nutritional Physiology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - S. Ponsuksili
- Research Group Functional Genomics; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - K. Wimmers
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| |
Collapse
|
29
|
Adipose tissue macrophages (ATM) of obese patients are releasing increased levels of prolactin during an inflammatory challenge: a role for prolactin in diabesity? Biochim Biophys Acta Mol Basis Dis 2013; 1842:584-93. [PMID: 24361460 DOI: 10.1016/j.bbadis.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/02/2013] [Accepted: 12/11/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND Obesity, characterized by low grade inflammation, induces adipose tissue macrophage (ATM) infiltration in white adipose tissue (AT) in both humans and rodents, thus contributing to insulin resistance. Previous studies have shown altered prolactin secretion in obesity, however, studies linking ATM infiltration and prolactin (PRL) secretion to the pathogenesis of the metabolic syndrome, obesity and diabetes are lacking. METHODS/RESULTS In vivo, qPCR and Western blot analysis demonstrated that prolactin expression was increased in AT of obese rats and also in human AT from obese, obese pre-diabetic and obese diabetic compared to lean counterparts. Immunohistochemistry of obese rat and human AT sections demonstrated a specific expression of prolactin in macrophages. In vitro, we demonstrated that hyperglycemia and inflammation stimulated macrophages (human THP-1 cell line and sorted rat ATM) to express PRL, when challenged with different glucose concentrations with or without IL1β. In in vivo and in vitro experiments, we assessed the expression of Pit-1 (PRL-specific transcription factor) and found that its expression was parallel to PRL expression. CONCLUSIONS In this study, we show that rodent and human macrophages synthesize prolactin in response to inflammation and high glucose concentrations. GENERAL SIGNIFICANCE Our data shed new light on the potential role of macrophages in the physiopathology of diabesity via the PRL expression and on its expression mechanism and regulation.
Collapse
|
30
|
Duque-Guimarães DE, Ozanne SE. Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 2013; 24:525-35. [PMID: 23791137 DOI: 10.1016/j.tem.2013.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
Strong evidence indicates that adverse prenatal and early postnatal environments have a significant long-term influence on risk factors that result in insulin resistance, type 2 diabetes (T2D), and cardiovascular disease later in life. Here we discuss current knowledge of how maternal and neonatal nutrition influence early growth and the long-term risk of developing insulin resistance in different organs and at the whole-body level. Accumulating evidence supports a role for epigenetic mechanisms underlying this nutritional programming, consisting of heritable changes that regulate gene expression which in turn shapes the phenotype across generations. Deciphering these molecular mechanisms in key tissues and discovering key biological markers may provide valuable insight towards the development of effective intervention strategies.
Collapse
Affiliation(s)
- Daniella E Duque-Guimarães
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Disease Unit, Institute of Metabolic Sciences, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
31
|
Yu HL, Miao HT, Gao LF, Li L, Xi YD, Nie SP, Xiao R. Adaptive responses by mouse fetus to a maternal HLE diet by downregulating SREBP1: a microarray- and bio-analytic-based study. J Lipid Res 2013; 54:3269-80. [PMID: 23981283 DOI: 10.1194/jlr.m037416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maternal diet has long been recognized as a significant factor affecting offspring development and health, but the target genes affected by a maternal high-lipid diet are currently unknown. In this study, the gene expression profile of neonatal mouse liver was analyzed using gene chips to identify genes with significant up- or downregulated expression levels due to maternal high-fat diet during gestation. Real-time PCR and Western blotting were used to measure key genes selected using microarray. Serum lipid, glucose, and insulin levels in adult offspring from dams fed with chow or a high-lipid diet were measured using commercial kits. Results indicate that the expression of genes involved in cholesterol and fatty acid synthesis were significantly inhibited, while the expression of genes involved in glycolysis were significantly decreased by maternal high-lipid diet during gestation. SREBP1 might be the key gene regulating genes involved in fatty acid, glucose, and cholesterol metabolism in response to a maternal high-fat diet.
Collapse
Affiliation(s)
- Huan-Ling Yu
- School of Public Health and Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Mukai Y, Kumazawa M, Sato S. Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein-1c in rats. Endocrine 2013; 44:79-86. [PMID: 23065593 DOI: 10.1007/s12020-012-9815-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/05/2012] [Indexed: 12/27/2022]
Abstract
Excess fructose consumption is associated with the development of type 2 diabetes and obesity. However, the impact of fructose intake on maternal and fetal lipid metabolism during pregnancy is not known. The aim of this study was to examine whether maternal fructose intake during pregnancy would affect fetal and maternal hepatic lipid metabolism. Pregnant Wistar rats were randomly divided into untreated control and fructose-treated groups; the fructose-treated group received fructose via drinking water throughout pregnancy. On gestational day 20, glucose and insulin concentration in the maternal plasma were measured. The mRNA expression of sterol regulatory element-binding protein (SREBP)-1c and its target genes in the liver of dams and fetuses were analyzed by real-time PCR. Significantly higher maternal plasma glucose levels, indicating hyperglycemia, was observed in the fructose-treated group than in the control group. Furthermore, the fructose-treated group showed significantly higher expression levels of both maternal and fetal SREBP-1c mRNA and protein and significantly elevated expression of fatty acid synthase; the group also showed reduced acyl-CoA oxidase levels in the maternal liver. Thus, our results suggest that maternal fructose intake during pregnancy causes maternal hyperglycemia and up-regulates hepatic SREBP-1c expression in both fetuses and dams. This may lead to defects in carbohydrate and lipid metabolism in the adult offspring.
Collapse
Affiliation(s)
- Yuuka Mukai
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Mase 58-1 Hamadate, Aomori, 030-8505, Japan.
| | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The association between nutrition during pregnancy and the development of metabolic disease in the offspring has been well evidenced in humans and animals. Whilst evidence has accumulated to support various theories linking maternal diet to long-term health, the precise mechanisms of action remain poorly understood. This review summarizes recent advances within the field, focusing on the use of animal models to investigate common phenotypic outcomes. RECENT FINDINGS Continued characterization of postnatal phenotypes has highlighted the importance of postnatal diet in unmasking programming effects of prenatal diet. Whilst common phenotypes are observed across models, differences in associated regulatory processes exist dependent upon the dietary exposure used and sex of the offspring. The use of unbiased techniques at developmental stages has identified gene pathways sensitive to maternal diet, potentially explaining the induction of a common phenotype by different nutritional interventions. Evidence has also grown to support the role of epigenetic modification, with an increasing range of targets identified as being sensitive. SUMMARY A challenge remains in identifying the direct functional and long-term consequences of changes in gene expression or epigenetic status during development, and to translate these back to human populations.
Collapse
Affiliation(s)
- Sarah McMullen
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | | |
Collapse
|
34
|
Jiang X, Ma H, Wang Y, Liu Y. Early life factors and type 2 diabetes mellitus. J Diabetes Res 2013; 2013:485082. [PMID: 24455747 PMCID: PMC3876901 DOI: 10.1155/2013/485082] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease, and its aetiology involves a complex interplay between genetic, epigenetic, and environmental factors. In recent years, evidences from both human and animal experiments have correlated early life factors with programming diabetes risk in adult life. Fetal and neonatal period is crucial for organ development. Many maternal factors during pregnancy may increase the risk of diabetes of offsprings in later life, which include malnutrition, healthy (hyperglycemia and obesity), behavior (smoking, drinking, and junk food diet), hormone administration, and even stress. In neonates, catch-up growth, lactation, glucocorticoids administration, and stress have all been found to increase the risk of insulin resistance or T2DM. Unfavorable environments (socioeconomic situation and famine) or obesity also has long-term negative effects on children by causing increased susceptibility to T2DM in adults. We also address the potential mechanisms that may underlie the developmental programming of T2DM. Therefore, it might be possible to prevent or delay the risk for T2DM by improving pre- and/or postnatal factors.
Collapse
Affiliation(s)
- Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, Hebei 050017, China
| | - Yan Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
- Orthopaedic Biomechanical Laboratory of Hebei Province, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
- *Yan Liu:
| |
Collapse
|
35
|
Fetal programming of the neuroendocrine-immune system and metabolic disease. J Pregnancy 2012; 2012:792934. [PMID: 22970372 PMCID: PMC3431117 DOI: 10.1155/2012/792934] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 07/22/2012] [Indexed: 12/23/2022] Open
Abstract
Adverse uterine environments experienced during fetal development can alter the projected growth pattern of various organs and systems of the body, leaving the offspring at an increased risk of metabolic disease. The thrifty phenotype hypothesis has been demonstrated as an alteration to the growth trajectory to improve the survival and reproductive fitness of the individual. However, when the intrauterine environment does not match the extrauterine environment problems can arise. With the increase in metabolic diseases in both Westernized and developing countries, it is becoming apparent that there is an environmental disconnect with the extrauterine environment. Therefore, the focus of this paper will be to explore the effects of maternal malnutrition on the offspring's susceptibility to metabolic disorders such as obesity, cardiovascular disease, and diabetes with emphasis on programming of the neuroendocrine-immune system.
Collapse
|
36
|
Tuohetimulati G, Uchida T, Toyofuku Y, Abe H, Fujitani Y, Hirose T, Takeda S, Watada H. Effect of maternal high-fat diet on pancreatic beta cells of the offspring. Diabetol Int 2012. [DOI: 10.1007/s13340-012-0081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. Transcriptional response of skeletal muscle to a low-protein gestation diet in porcine offspring accumulates in growth- and cell cycle-regulating pathways. Physiol Genomics 2012; 44:811-8. [PMID: 22759919 DOI: 10.1152/physiolgenomics.00050.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inadequate maternal protein supply during gestation represents an environmental factor that affects physiological signaling pathways with long-term consequences for growth, function, and structure of various tissues. Hypothesizing that the offspring's transcriptome is persistently altered by maternal diets, we used a porcine model to monitor the longitudinal expression changes in muscle to identify pathways relevant to fetal initiation of postnatal growth and development. German Landrace gilts were fed isoenergetic gestational diets containing 6.5% (LP) or 12.1% protein. The longissimus dorsi samples were collected from offspring at 94 days postconception (dpc) and 1, 28, and 188 days postnatum (dpn) for expression profiling. At 94 dpc, 1 dpn, and 28 dpn relatively few transcripts (<130) showed an altered abundance between the dietary groups. In fact, at 94 dpc genes of G2/M checkpoint regulation and mitotic roles of Polo-like kinases showed lowered transcript abundance in LP. At 188 dpn 677 transcripts were altered including those related to oxidative phosphorylation, citrate cycle, fatty acid metabolism (higher abundance in LP) and cell cycle regulation (lower abundance in LP). Correspondingly, transcriptional alterations during pre and postnatal development differed considerably among dietary groups, particularly for genes related to cell cycle regulation (G1/S and G2/M checkpoint regulation; cyclines), growth factor signaling (GH, IGF1, mTOR, RAN, VEGF, INSR), lipid metabolism, energy metabolism, and nucleic acid metabolism. In skeletal muscle, fetal programming related to maternal LP diets disturbed gene expression in growth-related pathways into adulthood. Diet-dependent gene expression may hamper proper development, thereby affecting signaling pathways related to energy utilization.
Collapse
Affiliation(s)
- Michael Oster
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology-FBN, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Gregorio BM, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Maternal high-fat diet is associated with altered pancreatic remodelling in mice offspring. Eur J Nutr 2012; 52:759-69. [PMID: 22661265 DOI: 10.1007/s00394-012-0382-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate whether a maternal high-fat diet (HF) during pregnancy and/or suckling periods predisposes adult C57BL/6 mice offspring to morphological pancreatic modifications. METHODS Male pups were divided into 5 groups: SC (standard chow)-from dams fed SC during gestation and lactation, maintaining an SC diet from postweaning to adulthood; G-from dams fed HF diets during gestation; L-from dams fed HF diets during lactation; GL-from dams fed HF diets during gestation and lactation; and GL/HF-from dams fed HF diets during gestation and lactation, maintaining an HF diet from postweaning to adulthood. We analysed body mass (BM), plasma insulin, pancreas and adipose tissue structures. RESULTS During the entire experiment, the SC group had the lowest BM. However, GL/HF offspring were heavier than the other groups. This weight gain was also accompanied by adipocyte hypertrophy. At 3 months, G offspring showed an increased insulin levels and impairment in carbohydrates metabolism. Furthermore, pancreatic islets were hypertrophied in G, GL and GL/HF offspring in comparison with SC offspring. CONCLUSION HF diet administration during the gestation period is more harmful than during the lactation period, exerting deleterious effects on pancreatic morphology in addition to larger fat deposits in adult mice offspring.
Collapse
Affiliation(s)
- Bianca Martins Gregorio
- Laboratório de Morfometria, Metabolismo e Doença Cardiovascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
39
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. A gestational high protein diet affects the abundance of muscle transcripts related to cell cycle regulation throughout development in porcine progeny. PLoS One 2012; 7:e34519. [PMID: 22496824 PMCID: PMC3322122 DOI: 10.1371/journal.pone.0034519] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offspring's transcriptome is permanently altered depending on maternal diet. METHODOLOGY/PRINCIPAL FINDINGS To assess alterations of the offspring's transcriptome due to gestational protein supply, German Landrace sows were fed isoenergetic diets containing protein levels of either 30% (high protein--HP) or 12% (adequate protein--AP) throughout their pregnancy. Offspring muscle tissue (M. longissimus dorsi) was collected at 94 days post conception (dpc), and 1, 28, and 188 days post natum (dpn) for use with Affymetrix GeneChip Porcine Genome Arrays and subsequent statistical and Ingenuity pathway analyses. Numerous transcripts were found to have altered abundance at 94 dpc and 1 dpn; at 28 dpn no transcripts were altered, and at 188 dpn only a few transcripts showed a different abundance between diet groups. However, when assessing transcriptional changes across developmental time points, marked differences were obvious among the dietary groups. Depending on the gestational dietary exposure, short- and long-term effects were observed for mRNA expression of genes related to cell cycle regulation, energy metabolism, growth factor signaling pathways, and nucleic acid metabolism. In particular, the abundance of transcripts related to cell cycle remained divergent among the groups during development. CONCLUSION Expression analysis indicates that maternal protein supply induced programming of the offspring's genome; early postnatal compensation of the slight growth retardation obvious at birth in HP piglets resulted, as did a permanently different developmental alteration and responsiveness to the common environment of the transcriptome. The transcriptome modulations are interpreted as the molecular equivalent of developmental plasticity of the offspring that necessitates adaptation and maintenance of the organismal phenotype.
Collapse
Affiliation(s)
- Michael Oster
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C. Metges
- Research Unit Nutritional Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
40
|
Reusens B, Theys N, Remacle C. Alteration of mitochondrial function in adult rat offspring of malnourished dams. World J Diabetes 2011; 2:149-57. [PMID: 21954419 PMCID: PMC3180527 DOI: 10.4239/wjd.v2.i9.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 02/05/2023] Open
Abstract
Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life.
Collapse
Affiliation(s)
- Brigitte Reusens
- Brigitte Reusens, Nicolas Theys, Claude Remacle, Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
41
|
Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vigé A, Breton C, Reusens B, Remacle C, Vieau D, Ekström TJ, Jais JP, Junien C. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010; 5:e14398. [PMID: 21200436 PMCID: PMC3006175 DOI: 10.1371/journal.pone.0014398] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. METHODS AND FINDINGS We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. CONCLUSIONS A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions potentially involved in adaptation and/or evolution. These findings highlight the importance of studying both sexes in epidemiological protocols and dietary interventions.
Collapse
Affiliation(s)
- Catherine Gallou-Kabani
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Anne Gabory
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Jörg Tost
- Laboratoire d'Epigénétique, CEA - Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Mohsen Karimi
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Mayeur
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Jean Lesage
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Elsa Boudadi
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Marie-Sylvie Gross
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Julien Taurelle
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Alexandre Vigé
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Christophe Breton
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Didier Vieau
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Tomas J. Ekström
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudine Junien
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| |
Collapse
|