1
|
Wang M, Fang M, Zang W. Effects of folic acid supplementation on cognitive function and inflammation in elderly patients with mild cognitive impairment: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr 2024; 126:105540. [PMID: 38964091 DOI: 10.1016/j.archger.2024.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
OBJECT The aim was to assess the effect of folic acid supplementation on cognitive function and inflammatory cytokines in elderly patients with mild cognitive impairment. METHODS From its inception until February 2024, four databases including Web of Science were searched. Two researchers independently screened the literature, assessed the quality, extracted data, and conducted a meta-analysis using RevMan. RESULTS The systematic review included seven studies (with a total of 1102 participants, mean age 65-80 years), seven of which were appropriate for meta-analysis. Although a small number of studies found relatively large heterogeneity, the majority of studies showed significant benefit from folic acid supplementation, including the FSIQ (823 individuals, standardized mean difference [SMD] = 8.36, 95 % confidence interval [CI] = 0.79 - 1.08), Arithmetic (823 individuals, SMD = 0.17, 95 % CI = -0.03-0.31), Information, SMD = 1.73, 95 % CI 0.41-3.05), Digit Span (823 individuals, SMD = 0.17, 95 % CI = -0.03 - 0.31), Block Design (823 individuals, SMD = 0.26, 95 % CI 0.03-0.49), Picture Completion (823 individuals, SMD = 0.27, 95 % CI = -0.15 - 0.69) and Picture Arrangement (823 individuals, SMD = -0.12, 95 % CI = -0.26 - 0.01). Finally, folic acid supplementation had a significant effect on the reduction of most inflammatory cytokines, blood biomarkers of Alzheimer's disease, and Hcy. CONCLUSIONS Folic acid supplementation seems to have a positive impact on cognitive function in older adults with mild cognitive impairment, but further evidence of its effectiveness in improving inflammatory cytokines is needed from high-quality studies.
Collapse
Affiliation(s)
- Mingchen Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Mingqing Fang
- Xiangya Hospital, Central South University, Changsha, China
| | - Wanli Zang
- Postgraduate School, University of Harbin Sport, Harbin, China.
| |
Collapse
|
2
|
Tyagi SC. Lactobacillus Eats Amyloid Plaque and Post-Biotically Attenuates Senescence Due to Repeat Expansion Disorder and Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1225. [PMID: 39456478 PMCID: PMC11506100 DOI: 10.3390/antiox13101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Patients with Alzheimer's disease and related dementia (ADRD) are faced with a formidable challenge of focal amyloid deposits and cerebral amyloid angiopathy (CAA). The treatment of amyloid deposits in ADRD by targeting only oxidative stress, inflammation and hyperlipidemia has not yielded significant positive clinical outcomes. The chronic high-fat diet (HFD), or gut dysbiosis, is one of the major contributors of ADRD in part by disrupted transport, epigenetic DNMT1 and the folate 1-carbon metabolism (FOCM) cycle, i.e., rhythmic methylation/de-methylation on DNA, an active part of epigenetic memory during genes turning off and on by the gene writer (DNMT1) and eraser (TET2/FTO) and the transsulfuration pathway by mitochondrial 3-mercaptopyruvate sulfur transferase (3MST)-producing H2S. The repeat CAG expansion and m6A disorder causes senescence and AD. We aim to target the paradigm-shift pathway of the gut-brain microbiome axis that selectively inhibits amyloid deposits and increases mitochondrial transsulfuration and H2S. We have observed an increase in DNMT1 and decreased FTO levels in the cortex of the brain of AD mice. Interestingly, we also observed that probiotic lactobacillus-producing post-biotic folate and lactone/ketone effectively prevented FOCM-associated gut dysbiosis and amyloid deposits. The s-adenosine-methionine (SAM) transporter (SLC25A) was increased by hyperhomocysteinemia (HHcy). Thus, we hypothesize that chronic gut dysbiosis induces SLC25A, the gene writer, and HHcy, and decreases the gene eraser, leading to a decrease in SLC7A and mitochondrial transsulfuration H2S production and bioenergetics. Lactobacillus engulfs lipids/cholesterol and a tri-directional post-biotic, folic acid (an antioxidant and inhibitor of beta amyloid deposits; reduces Hcy levels), and the lactate ketone body (fuel for mitochondria) producer increases SLC7A and H2S (an antioxidant, potent vasodilator and neurotransmitter gas) production and inhibits amyloid deposits. Therefore, it is important to discuss whether lactobacillus downregulates SLC25A and DNMT1 and upregulates TET2/FTO, inhibiting β-amyloid deposits by lowering homocysteine. It is also important to discuss whether lactobacillus upregulates SLC7A and inhibits β-amyloid deposits by increasing the mitochondrial transsulfuration of H2S production.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Bai D, Fan J, Li M, Dong C, Gao Y, Fu M, Liu Q, Liu H. Cognitive Function After Stopping Folic Acid and DHA Intervention: An Extended Follow-Up Results from the Randomized, Double Blind, Placebo-Controlled Trial in Older Adults with Mild Cognitive Impairment. J Alzheimers Dis Rep 2024; 8:1285-1295. [PMID: 39434820 PMCID: PMC11491953 DOI: 10.3233/adr-240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Background Our previously randomized controlled trial (RCT) showed daily oral folic acid (FA), docosahexaenoic acid (DHA) and their combined treatment for 6 months could significantly improve cognitive function in mild cognitive impairment (MCI) individuals. Objective This study aimed to evaluate whether this benefit seen in the treatment group would sustain after stopping intervention when patients returned to a real-world. Methods RCT (ChiCTR-IOR-16008351) was conducted in Tianjin, China. 160 MCI elders aged ≥60 years were randomly divided into four groups: FA + DHA, FA, DHA, and control. 138 MCI elders who completed the 6-month interventional trial underwent another 6-month follow-up without receiving nutritional therapy. Cognitive performance was measured at 6 and 12 months. Blood amyloid-β peptide (Aβ) and homocysteine (Hcy) related biomarkers were measured at baseline and 6 months. Results In comparison to the end of nutritional therapy, all intervention groups had considerably lower full-scale IQ, arithmetic, and image completion scores during the follow-up period, while the combined intervention and DHA groups had significantly lower picture arrangement scores. Furthermore, after 6-month treatment with FA and FA + DHA, plasma Aβ40, Aβ42, and Hcy levels were significantly decreased. However, these biomarker levels at the start of follow-up were positively correlated with the degree of cognitive function change during follow-up period. Conclusions FA and DHA supplementation enhance cognitive performance in MCI elderly following a six-month intervention by reducing Hcy or Aβ levels. However, their effects on improving cognitive decline are likely to diminish when the intervention is discontinued.
Collapse
Affiliation(s)
- Dong Bai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition, Tianjin First Central Hospital, Tianjin, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Mengyue Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Yiming Gao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Hujiayuan Community Health Service Center of Binhai New Area, Tianjin, China
| | - Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Qianfeng Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| |
Collapse
|
4
|
Kolesnikova TO, Demin KA, Costa FV, de Abreu MS, Kalueff AV. Zebrafish models for studying cognitive enhancers. Neurosci Biobehav Rev 2024; 164:105797. [PMID: 38971515 DOI: 10.1016/j.neubiorev.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.
Collapse
Affiliation(s)
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; West Caspian University, Baku, Azerbaijan.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Suzhou Key Laboratory on Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
5
|
Sun S, Lu W, Zhang C, Wang G, Hou Y, Zhou J, Wang Y. Folic acid and S-adenosylmethionine reverse Homocysteine-induced Alzheimer's disease-like pathological changes in rat hippocampus by modulating PS1 and PP2A methylation levels. Brain Res 2024; 1841:149095. [PMID: 38917878 DOI: 10.1016/j.brainres.2024.149095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Abnormally elevated homocysteine (Hcy) is recognized as a biomarker and risk factor for Alzheimer's disease (AD). However, the underlying mechanisms by which Hcy affects AD are still unclear. OBJECTIVES This study aimed to elucidate the effects and mechanisms by which Hcy affects AD-like pathological changes in the hippocampus through in vivo and in vitro experiments, and to investigate whether folic acid (FA) and S-adenosylmethionine (SAM) supplementation could improve neurodegenerative injuries. METHODS In vitro experiments hippocampal neurons of rat were treated with Hcy, FA or SAM for 24 h; while the hyperhomocysteinemia (HHcy) in Wistar rats was established by intraperitoneal injection of Hcy, and FA was added to feed. The expression of β-amyloid (Aβ), phosphorylated tau protein, presenilin 1 (PS1) at the protein level and the activity of protein phosphatase 2A (PP2A) were detected, the immunopositive cells for Aβ and phosphorylated tau protein in the rat hippocampus were also evaluated by immunohistochemical staining. RESULTS FA and SAM significantly repressed Hcy-induced AD-like pathological changes in the hippocampus, including the increased tau protein phosphorylation at Ser214, Ser396 and the expression of Aβ42. In addition, Hcy-induced PS1 expression increased at the protein level and PP2A activity decreased, while FA and SAM were able to retard that. CONCLUSIONS The increase in PS1 expression and decrease in PP2A activity may be the mechanisms underlying the Hcy-induced AD-like pathology. FA and SAM significantly repressed the Hcy-induced neurodegenerative injury by modulating PS1 and PP2A methylation levels.
Collapse
Affiliation(s)
- Shoudan Sun
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Wei Lu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Chunhong Zhang
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Guanyu Wang
- Institute of Environmental and Operational Medicine, Tianjin 30050, China
| | - Yue Hou
- Institute of Environmental and Operational Medicine, Tianjin 30050, China
| | - Jian Zhou
- School of Public Health, Weifang Medical College, Weifang 261053, China.
| | - Yonghui Wang
- Institute of Environmental and Operational Medicine, Tianjin 30050, China.
| |
Collapse
|
6
|
Lee CY, Chan L, Hu CJ, Hong CT, Chen JH. Role of vitamin B12 and folic acid in treatment of Alzheimer's disease: a meta-analysis of randomized control trials. Aging (Albany NY) 2024; 16:7856-7869. [PMID: 38700503 PMCID: PMC11132008 DOI: 10.18632/aging.205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Vitamin B12 and folic acid could reduce blood homocysteine levels, which was thought to slow down the progression of Alzheimer's disease (AD), but previous studies regarding the effect of vitamin B12 and folic acid in treatment of AD have not reached conclusive results. We searched PubMed and Embase until January 12, 2023. Only randomized control trials involving participants clearly diagnosed with AD and who received vitamin B12 and folic acid were enrolled. Five studies that met the criteria were selected for inclusion in the meta-analysis. Changes in cognitive function were measured based on either the Mini-Mental State Examination (MMSE) or the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Changes in daily life function and the level of blood homocysteine were also investigated. After a 6-month treatment, administration of vitamin B12 and folic acid improved the MMSE scores more than placebo did (SMD = 0.21, 95% CI = 0.01 to 0.32, p = 0.04) but did not significantly affect ADAS-Cog scores (SMD = 0.06, 95% CI = -0.22 to 0.33, p = 0.68) or measures of daily life function. Blood homocysteine levels were significantly decreased after vitamin B12 and folic acid treatment. Participants with AD who received 6 months of vitamin B12 and folic acid supplementation had better MMSE scores but had no difference in ADAS-Cog scores. Daily life function did not improve after treatment.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Zhang G, Ren Q, Lin Y, Zhou D, Huang L, Li W, Chang H, Huang G, Li Z, Yan J. Parental folic acid deficiency delays neurobehavioral development in rat offspring by inhibiting the differentiation of neural stem cells into neurons. J Nutr Biochem 2023; 122:109455. [PMID: 37788724 DOI: 10.1016/j.jnutbio.2023.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Maternal folate status during pregnancy is associated with the neurodevelopment of offspring; however, study results on the association between paternal folate status and offspring neurodevelopment are inconsistent. This study aimed to explore whether parental folic acid deficiency affects the neurobehavioral development of offspring by affecting the differentiation of neural stem cells (NSCs) into neurons. In the present study, the offspring were divided into four groups: parental folic acid deficient group (D-D), maternal folic acid deficient and paternal folic acid normal group (D-N), maternal folic acid normal and paternal folic acid deficient group (N-D), and parental folic acid normal group (N-N). For in vivo study, neurobehavioral indexes, and neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) expression in the brain hippocampus and cerebral cortex of offspring were measured at different time points. For in vitro study, NSCs were cultured from the hippocampus and striatum, and neuronal and astrocytic differentiation were measured. The results demonstrated that parental folic acid deficiency decreased the brain folate level in offspring, delayed early sensory-motor reflex development, impaired spatial learning and memory ability in adolescence and adulthood, decreased differentiation of NSCs into neurons and increased differentiation of NSCs into astrocytes in vivo and in vitro. These impacts on the neurodevelopment of offspring were most pronounced in D-D group, followed by D-N group and N-D group. In conclusion, parental folic acid deficiency inhibits the neurobehavioral development of offspring, possibly by inhibiting the differentiation of NSCs into neurons.
Collapse
Affiliation(s)
- Guoquan Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qinghan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ying Lin
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Children's Hospital, Tianjin, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Hong Chang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Song YP, Lv JW, Zhang ZC, Qian QH, Fan YJ, Chen DZ, Zhang H, Xu FX, Zhang C, Huang Y, Wang H, Wei W, Xu DX. Effects of Gestational Arsenic Exposures on Placental and Fetal Development in Mice: The Role of Cyr61 m6A. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97004. [PMID: 37682722 PMCID: PMC10489955 DOI: 10.1289/ehp12207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Several epidemiological investigations demonstrated that maternal arsenic (As) exposure elevated risk of fetal growth restriction (FGR), but the mechanism remains unclear. OBJECTIVES This study aimed to investigate the effects of gestational As exposure on placental and fetal development and its underlying mechanism. METHODS Dams were exposed to 0.15, 1.5, and 15 mg / L NaAsO 2 throughout pregnancy via drinking water. Sizes of fetuses and placentas, placental histopathology, and glycogen content were measured. Placental RNA sequencing was conducted. Human trophoblasts were exposed to NaAsO 2 (2 μ M ) to establish an in vitro model of As exposure. The mRNA stability and protein level of genes identified through RNA sequencing were measured. N 6 -Methyladenosine (m 6 A ) modification was detected by methylated RNA immunoprecipitation-quantitative real-time polymerase chain reason (qPCR). The binding ability of insulin-like growth factor 2 binding protein 2 to the gene of interest was detected by RNA-binding protein immunoprecipitation-qPCR. Intracellular S-adenosylmethionine (SAM) and methyltransferase activity were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and colorimetry, respectively. In vitro As + 3 methyltransferase (As3MT) knockdown or SAM supplementation and in vivo folic acid (FA) supplementation were used to evaluate the protective effect. A case-control study verified the findings. RESULTS Sizes of fetuses (exposed to 1.5 and 15 mg / L NaAsO 2 ) and placentas (exposed to 15 mg / L NaAsO 2 ) were lower in As-exposed mice. More glycogen + trophoblasts accumulated and the expression of markers of interstitial invasion was lower in the 15 mg / L NaAsO 2 -exposed mouse group in comparison with control. Placental RNA sequencing identified cysteine-rich angiogenic inducer 61 (Cyr61) as a candidate gene of interest. Mechanistically, mice and cells exposed to As had lower protein expression of CYR61, and this was attributed to a lower incidence of Cyr61 m 6 A . Furthermore, cells exposed to As had lower methyltransferase activity, suggesting that this could be the mechanism by which Cyr61 m 6 A was affected. Depletion of intracellular SAM, a cofactor for m 6 A methyltransferase catalytic domain, partially contributed to As-induced methyltransferase activity reduction. Either As3MT knockdown or SAM supplementation attenuated As-induced Cyr61 m 6 A down-regulation. In mice, FA supplementation rescued As-induced defective trophoblastic invasion and FGR. In humans, a negative correlation between maternal urinary As and plasma CYR61 was observed in infants who were small for gestational age. DISCUSSION Using in vitro and in vivo models, we found that intracellular SAM depletion-mediated Cyr61 m 6 A down-regulation partially contributed to As-induced defective trophoblastic invasion and FGR. https://doi.org/10.1289/EHP12207.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Qing-Hua Qian
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
- Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Dao-Zhen Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Fan J, Ma Z, Zheng Y, Zhang M, Huang L, Liu H. Folate Deficiency Increased Microglial Amyloid-β Phagocytosis via the RAGE Receptor in Chronic Unpredictable Mild-Stress Rat and BV2 Cells. Nutrients 2023; 15:3501. [PMID: 37630692 PMCID: PMC10457913 DOI: 10.3390/nu15163501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is often considered one of the prevalent neuropsychiatric symptoms of Alzheimer's disease (AD). β-amyloid (Aβ) metabolism disorders and impaired microglia phagocytosis are potential pathological mechanisms between depression and AD. Folate deficiency (FD) is a risk factor for depression and AD. In this study, we used a chronic unpredictable mild stress (CUMS) rat model and a model of Aβ phagocytosis by BV2 cells to explore the potential mechanisms by which FD affects depression and AD. The results revealed that FD exacerbated depressive behavior and activated microglia in CUMS rats, leading to an increase in intracellular Aβ and phagocytosis-related receptors for advanced glycation end products (RAGE). Then, in vitro results showed that the expression of the RAGE receptor and M2 phenotype marker (CD206) were upregulated by FD treatment in BV2 cells, leading to an increase in Aβ phagocytosis. However, there was no significant difference in the expression of toll-like receptor 4 (TLR4) and clathrin heavy chain (CHC). Furthermore, when using the RAGE-specific inhibitor FPS-ZM1, there was no significant difference in Aβ uptake between folate-normal (FN) and FD BV2 cell groups. In conclusion, these findings suggest FD may promote microglia phagocytosis Aβ via regulating the expression of RAGE or microglia phenotype under Aβ treatment.
Collapse
Affiliation(s)
- Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yunqin Zheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| |
Collapse
|
10
|
Bekdash RA. Methyl Donors, Epigenetic Alterations, and Brain Health: Understanding the Connection. Int J Mol Sci 2023; 24:ijms24032346. [PMID: 36768667 PMCID: PMC9917111 DOI: 10.3390/ijms24032346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Methyl donors such as choline, betaine, folic acid, methionine, and vitamins B6 and B12 are critical players in the one-carbon metabolism and have neuroprotective functions. The one-carbon metabolism comprises a series of interconnected chemical pathways that are important for normal cellular functions. Among these pathways are those of the methionine and folate cycles, which contribute to the formation of S-adenosylmethionine (SAM). SAM is the universal methyl donor of methylation reactions such as histone and DNA methylation, two epigenetic mechanisms that regulate gene expression and play roles in human health and disease. Epigenetic mechanisms have been considered a bridge between the effects of environmental factors, such as nutrition, and phenotype. Studies in human and animal models have indicated the importance of the optimal levels of methyl donors on brain health and behavior across the lifespan. Imbalances in the levels of these micronutrients during critical periods of brain development have been linked to epigenetic alterations in the expression of genes that regulate normal brain function. We present studies that support the link between imbalances in the levels of methyl donors, epigenetic alterations, and stress-related disorders. Appropriate levels of these micronutrients should then be monitored at all stages of development for a healthier brain.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
11
|
Effects of Combining Biofactors on Bioenergetic Parameters, Aβ Levels and Survival in Alzheimer Model Organisms. Int J Mol Sci 2022; 23:ijms23158670. [PMID: 35955803 PMCID: PMC9368976 DOI: 10.3390/ijms23158670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Increased amyloid beta (Aβ) levels and mitochondrial dysfunction (MD) in the human brain characterize Alzheimer disease (AD). Folic acid, magnesium and vitamin B6 are essential micro-nutrients that may provide neuroprotection. Bioenergetic parameters and amyloid precursor protein (APP) processing products were investigated in vitro in human neuroblastoma SH-SY5Y-APP695 cells, expressing neuronal APP, and in vivo, in the invertebrate Caenorhabditis elegans (CL2006 & GMC101) expressing muscular APP. Model organisms were incubated with either folic acid and magnesium-orotate (ID63) or folic acid, magnesium-orotate and vitamin B6 (ID64) in different concentrations. ID63 and ID64 reduced Aβ, soluble alpha APP (sAPPα), and lactate levels in SH-SY5Y-APP695 cells. The latter might be explained by enhanced expression of lactate dehydrogenase (LDHA). Micronutrient combinations had no effects on mitochondrial parameters in SH-SY5Y-APP695 cells. ID64 showed a significant life-prolonging effect in C. elegans CL2006. Incubation of GMC101 with ID63 significantly lowered Aβ aggregation. Both combinations significantly reduced paralysis and thus improved the phenotype in GMC101. Thus, the combinations of the tested biofactors are effective in pre-clinical models of AD by interfering with Aβ related pathways and glycolysis.
Collapse
|
12
|
Network Pharmacology and Molecular Docking-Based Strategy to Investigate the Multitarget Mechanisms of Shenqi Yizhi Granule on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8032036. [PMID: 35535155 PMCID: PMC9078761 DOI: 10.1155/2022/8032036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/13/2022] [Indexed: 01/28/2023]
Abstract
Background Traditional Chinese herbal medicine draws more attention to explore an effective therapeutic strategy for Alzheimer's disease (AD). Shenqi Yizhi granule (SQYG), a Chinese herbal recipe, has been applied to ameliorate cognitive impairment in mild-to-moderate AD patients. However, the overall molecular mechanism of SQYG in treating AD has not been clarified. Objective This study aimed to investigate the molecular mechanism of SQYG on AD using an integration strategy of network pharmacology and molecular docking. Methods The active compounds of SQYG and common targets between SQYG and AD were screened from databases. The herb-compound network, compound-target network, and protein-protein interaction network were constructed. The enrichment analysis of common targets and molecular docking were performed. Results 816 compounds and 307 common targets between SQYG and AD were screened. KEGG analysis revealed that common targets were mainly enriched in lipid metabolism, metal ion metabolism, IL-17 signaling pathway, GABA receptor signaling, and neuroactive ligand-receptor interaction. Molecular docking analysis showed high binding affinity between ginsenoside Rg1 and Aβ 1-42, tanshinone IIA and BACE1, baicalin, and AchE. Conclusions The therapeutic mechanisms of SQYG on AD were associated with regulating lipid metabolism, metal ion metabolism, IL-17 signaling pathway, and GABA receptor signaling. Ginsenoside Rg1, tanshinone IIA, baicalin, astragaloside IV, and folic acid may play an important role in AD treatment.
Collapse
|
13
|
Zhang ZH, Cao XC, Peng JY, Huang SL, Chen C, Jia SZ, Ni JZ, Song GL. Reversal of Lipid Metabolism Dysregulation by Selenium and Folic Acid Co-Supplementation to Mitigate Pathology in Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050829. [PMID: 35624693 PMCID: PMC9138008 DOI: 10.3390/antiox11050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Aberrant lipid metabolism is reported to be closely related to the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease (AD). Selenium (Se) and folate are two ideal and safe nutritional supplements, whose biological effects include regulating redox and homocysteine (Hcy) homeostasis in vivo. Here, to achieve effective multitarget therapy for AD, we combined Se and folic acid in a co-supplementation regimen (Se-FA) to study the therapeutic potential and exact mechanism in two transgenic mouse models of AD (APP/Tau/PSEN and APP/PS1). In addition to a reduction in Aβ generation and tau hyperphosphorylation, a restoration of synaptic plasticity and cognitive ability was observed in AD mice upon Se-FA administration. Importantly, by using untargeted metabolomics, we found that these improvements were dependent on the modulation of brain lipid metabolism, which may be associated with an antioxidant effect and the promotion of Hcy metabolism. Thus, from mechanism to effects, this study systematically investigated Se-FA as an intervention for AD, providing important mechanistic insights to inform its potential use in clinical trials.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xian-Chun Cao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Jia-Ying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Shao-Ling Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-0755-26535432
| |
Collapse
|
14
|
Pi T, Lang G, Liu B, Shi J. Protective Effects of Dendrobium nobile Lindl. Alkaloids on Alzheimer's Disease-like Symptoms Induced by High-methionine Diet. Curr Neuropharmacol 2022; 20:983-997. [PMID: 34370639 PMCID: PMC9881098 DOI: 10.2174/1570159x19666210809101945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND High methionine-diet (HMD) causes Alzheimer's disease (AD)-like symptoms. Previous studies have shown that Dendrobium nobile Lindle. alkaloids (DNLA) have potential benefits for AD Object: The objective of this study has been to explore whether DNLA can improve AD-like symptoms induced by HMD. METHODS Mice were fed with 2% HMD diet for 11 weeks; the DNLA20 control group (20 mg/kg), DNLA10 group (10 mg/kg), and DNLA20 group (20 mg/kg) were administered DNLA for 3 months. Morris water maze test was used to detect learning and memory ability. Neuron damage was evaluated by HE and Nissl staining. Levels of homocysteine (Hcy), beta-amyloid 1-42 (Aβ1-42), S-adenosine methionine (SAM) and S-adenosine homocysteine (SAH) were detected by ELISA. Immunofluorescence and western blotting (WB) were used to determine the expression of proteins. CPG island methylation levels were accessed by Methylation-specific PCR (MSP) and MethylTarget methylation detection. RESULTS Morris water maze test revealed that DNLA improved learning and memory dysfunction. HE, Nissl, and immunofluorescence staining showed that DNLA alleviated neuron damage and reduced the 5-methylcytosine (5-mC), Aβ1-40) and Aβ1-42) levels. DNLA also decreased the levels of Hcy and Aβ1-42) in the serum, along with decreasing SAM/SAH level in the liver tissue. WB results showed that DNLA down-regulated the expression of amyloid-precursor protein (APP), presenilin-1 (PS1), beta-secretase-1 (BACE1), DNA methyltransferase1 (DNMT1), Aβ1-40) and Aβ1-42) proteins. DNLA also up-regulated the proteins expression of insulin-degrading enzyme (IDE), neprilysin (NEP), DNMT3a and DNMT3b. Meanwhile, DNLA increased CPG island methylation levels of APP and BACE1 genes. CONCLUSION DNLA alleviated AD-like symptoms induced by HMD via the DNA methylation pathway.
Collapse
Affiliation(s)
- Tingting Pi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Bo Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China,Address correspondence to this author at the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China; Tel: +86 851 2864 3666; E-mail:
| |
Collapse
|
15
|
Huang L, Zhao J, Chen Y, Ma F, Huang G, Li W. Baseline folic acid status affects the effectiveness of folic acid supplements in cognitively relevant outcomes in older adults: a systematic review. Aging Ment Health 2022; 26:457-463. [PMID: 33463361 DOI: 10.1080/13607863.2021.1875194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Folic acid was investigated for decreased concentrations of the same type of cysteine (Hcy), which is considered a risk factor for Alzheimer's disease. However, the conclusions are inconsistent, while supplementing elders with different folic acid states. METHOD The PubMed, Science Network and EMBASE databases were searched for randomized controlled trials published over the past decade; The 11/485 study was included on the basis of pre-defined criteria. Cognitive-related results, including cognitive function and brain atrophy, were measured using cognitive scales and magnetic resonance imaging. RESULTS Significant cognitive benefits were reported in individuals with incomplete folic acid (n s 4); However, individuals with sufficient folic acid (n s 2) do not benefit from supplements, evaluated by the cognitive scale. On the other hand, a significant positive association was established in the participants of plasma Hcy, but the folic acid state was sufficient (n s 2). One study reported that folic acid supplements did not provide any benefit, but folic acid status data were missing. In addition, folic acid supplementation also improves brain atrophy (n s 2). CONCLUSION Baseline folic acid status may be a potential factor affecting the results of cognitive function folic acid supplementation in older adults. Older people with insufficient folic acid will benefit from folic acid supplementation.
Collapse
Affiliation(s)
- Ling Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China
| | - Yongjie Chen
- Department of Epidemiology and Biostatists, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Fei Ma
- Department of Epidemiology and Biostatists, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| |
Collapse
|
16
|
Zhao T, Wu D, Du J, Liu G, Ji G, Wang Z, Peng F, Man L, Zhou W, Hao A. Folic Acid Attenuates Glial Activation in Neonatal Mice and Improves Adult Mood Disorders Through Epigenetic Regulation. Front Pharmacol 2022; 13:818423. [PMID: 35197855 PMCID: PMC8859176 DOI: 10.3389/fphar.2022.818423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
Growing evidence indicates that postnatal immune activation (PIA) can adversely increase the lifetime risk for several neuropsychiatric disorders, including anxiety and depression, which involve the activation of glial cells and early neural developmental events. Several glia-targeted agents are required to protect neonates. Folic acid (FA), a clinical medication used during pregnancy, has been reported to have neuroprotective properties. However, the effects and mechanisms of FA in PIA-induced neonatal encephalitis and mood disorders remain unclear. Here, we investigated the roles of FA in a mouse model of PIA, and found that FA treatment improved depressive- and anxiety-like behaviors in adults, accompanied by a decrease in the number of activated microglia and astrocytes, as well as a reduction in the inflammatory response in the cortex and hippocampus of neonatal mice. Furthermore, we offer new evidence describing the functional differences in FA between microglia and astrocytes. Our data show that epigenetic regulation plays an essential role in FA-treated glial cells following PIA stimulation. In astrocytes, FA promoted the expression of IL-10 by decreasing the level of EZH2-mediated H3K27me3 at its promoter, whereas FA promoted the expression of IL-13 by reducing the promoter binding of H3K9me3 mediated by KDM4A in microglia. Importantly, FA specifically regulated the expression level of BDNF in astrocytes through H3K27me3. Overall, our data supported that FA may be an effective treatment for reducing mood disorders induced by PIA, and we also demonstrated significant functional differences in FA between the two cell types following PIA stimulation.
Collapse
Affiliation(s)
- Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guowei Liu
- Department of Neurosurgery, Cheeloo College of Medicine, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lajie Man
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Wenjuan Zhou, ; Aijun Hao,
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Wenjuan Zhou, ; Aijun Hao,
| |
Collapse
|
17
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
18
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|
19
|
Xu S, Zhang X, Liu C, Liu Q, Chai H, Luo Y, Li S. Role of Mitochondria in Neurodegenerative Diseases: From an Epigenetic Perspective. Front Cell Dev Biol 2021; 9:688789. [PMID: 34513831 PMCID: PMC8429841 DOI: 10.3389/fcell.2021.688789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria, the centers of energy metabolism, have been shown to participate in epigenetic regulation of neurodegenerative diseases. Epigenetic modification of nuclear genes encoding mitochondrial proteins has an impact on mitochondria homeostasis, including mitochondrial biogenesis, and quality, which plays role in the pathogenesis of neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. On the other hand, intermediate metabolites regulated by mitochondria such as acetyl-CoA and NAD+, in turn, may regulate nuclear epigenome as the substrate for acetylation and a cofactor of deacetylation, respectively. Thus, mitochondria are involved in epigenetic regulation through bidirectional communication between mitochondria and nuclear, which may provide a new strategy for neurodegenerative diseases treatment. In addition, emerging evidence has suggested that the abnormal modification of mitochondria DNA contributes to disease development through mitochondria dysfunction. In this review, we provide an overview of how mitochondria are involved in epigenetic regulation and discuss the mechanisms of mitochondria in regulation of neurodegenerative diseases from epigenetic perspective.
Collapse
Affiliation(s)
- Sutong Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Schieffler DA, Matta SE. Evidence to Support the Use of S-Adenosylmethionine for Treatment of Post-Concussive Sequelae in the Military. Mil Med 2021; 187:e1182-e1192. [PMID: 33900393 DOI: 10.1093/milmed/usab130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Since the year 2000, over 413,000 service members have sustained traumatic brain injury (TBI) and may present with post-concussive sequelae including headaches, fatigue, irritability, cognitive problems, depression, insomnia, and chronic pain. Although the focus of the article is on military TBI, the usefulness of S-adenosylmethionine (SAMe) would extend to both civilian and military populations. This narrative review examines the preclinical and clinical literature of SAMe's metabolism and alterations seen in disease states such as depressive disorders, pain disorders, fatigue, cognition, dementia, use in pregnancy and peripartum, children, adolescents, and adults, to the elderly with and without dementia, stroke, and neurodegeneration, in order to highlight its potential benefit in post-concussive sequelae after TBI. MATERIALS AND METHODS A MEDLINE/PubMed and Cochrane Database search was conducted between May 3, 2018 and July 30, 2019 by combining search terms for SAMe with terms for relevant disease states including depression, brain injury, dementia, Alzheimer's disease, Parkinson's disease, cognition, fatigue, and pain. This search retrieved a total of 676 references. 439 were excluded for being over a 10-year publication date, except where clinically relevant. After additional removal of repeated articles, the number of articles were totaled 197. An additional 59 articles were excluded: 10 not in English, 4 duplicates, 4 not original investigations, and 41 outside the scope of this article. The remaining 138 articles were used in this review and included 25 clinical studies, 46 preclinical studies, 63 reviews, and 4 case reports. RESULTS This narrative review examined the preclinical and clinical literature of SAMe's metabolism and alterations seen in MDD, pain disorders, fatigue, cognition and memory, dementia, and other disorders to highlight the potential benefit of SAMe in post-concussive sequelae in mTBI. The literature showed potential for improvement, safety, and tolerability in these symptom clusters commonly seen in military mild TBI (mTBI). CONCLUSION There is evidence of a potential benefit of SAMe as an intervention to help with symptoms across the range of post-concussive sequelae and syndromes commonly seen in military mTBI. Since the discovery of SAMe in 1952, this pleiotropic molecule has shown the significance of its involvement in several metabolic cascades in such disparate systems as epigenetics, bioenergetics, DNA methylation, neurotransmitter systems, and potential usefulness in military TBI. Significant limitations include disparate presentations seen in patients with mild TBI, those with post-concussive syndrome, as well as those with comorbid depression and posttraumatic stress disorder. Also, over-the-counter medications are not regulated and SAMe products may vary widely in price and quality. Given the potential for mania in patients with bipolar disorder, evaluation and recommendations should be made by a physician able to evaluate the underlying bipolar diathesis. Furthermore, this narrative review serves as the rationale for future open-label and double-blind placebo-controlled trials in military mTBI and SAMe.
Collapse
Affiliation(s)
| | - Sofia E Matta
- Naval Hospital Camp Pendleton, Oceanside, CA 92055, USA
| |
Collapse
|
21
|
He C, Huang ZS, Yu CC, Wang HH, Zhou H, Kong LH. Epigenetic Regulation of Amyloid-beta Metabolism in Alzheimer's Disease. Curr Med Sci 2021; 40:1022-1030. [PMID: 33428129 DOI: 10.1007/s11596-020-2283-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
Senile plaques (SPs) are one of the pathological features of Alzheimer's disease (AD) and they are formed by the overproduction and aggregation of amyloid-beta (Aβ) peptides derived from the abnormal cleavage of amyloid precursor protein (APP). Thus, understanding the regulatory mechanisms during Aβ metabolism is of great importance to elucidate AD pathogenesis. Recent studies have shown that epigenetic modulation-including DNA methylation, non-coding RNA alterations, and histone modifications-is of great significance in regulating Aβ metabolism. In this article, we review the aberrant epigenetic regulation of Aβ metabolism.
Collapse
Affiliation(s)
- Chuan He
- Hubei University of Chinese Medicine, Wuhan, 430060, China
| | | | - Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China.,The 4th Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Hai-Hua Wang
- Hospital of Traditional Chinese Medicine of Fengrun District, Tangshan, 064000, China
| | - Hua Zhou
- Hubei University of Chinese Medicine, Wuhan, 430060, China.
| | - Li-Hong Kong
- Hubei University of Chinese Medicine, Wuhan, 430060, China.
| |
Collapse
|
22
|
Bai D, Fan J, Li M, Dong C, Gao Y, Fu M, Huang G, Liu H. Effects of Folic Acid Combined with DHA Supplementation on Cognitive Function and Amyloid-β-Related Biomarkers in Older Adults with Mild Cognitive Impairment by a Randomized, Double Blind, Placebo-Controlled Trial. J Alzheimers Dis 2021; 81:155-167. [PMID: 33749643 DOI: 10.3233/jad-200997] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The neuroprotective benefits of combined folic acid and docosahexaenoic acid (DHA) on cognitive function in mild cognitive impairment (MCI) patients are suggested but unconfirmed. OBJECTIVE To explore the effects of 6-month folic acid + DHA on cognitive function in patients with MCI. METHODS Our randomized controlled trial (trial number ChiCTR-IOR-16008351) was conducted in Tianjin, China. We divided 160 MCI patients aged > 60 years into four regimen groups randomly: folic acid (0.8 mg/day) + DHA (800 mg/day), folic acid (0.8 mg/day), DHA (800 mg/day), and placebo, for 6 months. Cognitive function and blood amyloid-β peptide (Aβ) biomarker levels were measured at baseline and 6 months. Cognitive function was also measured at 12 months. RESULTS A total of 138 patients completed this trial. Folic acid improved the full-scale intelligence quotient (FSIQ), arithmetic, and picture complement scores; DHA improved the FSIQ, information, arithmetic, and digit span scores; folic acid + DHA improved the arithmetic (difference 1.67, 95% CI 1.02 to 2.31) and digital span (1.33, 0.24 to 2.43) scores compared to placebo. At 12 months, all scores declined in the intervention groups. Folic acid and folic acid + DHA increased blood folate (folic acid + DHA: 7.70, 3.81 to 11.59) and S-adenosylmethionine (23.93, 1.86 to 46.00) levels and reduced homocysteine levels (-6.51, -10.57 to -2.45) compared to placebo. DHA lower the Aβ40 levels (-40.57, -79.79 to -1.35) compared to placebo (p < 0.05), and folic acid + DHA reduced the Aβ42 (-95.59, -150.76 to -40.43) and Aβ40 levels (-45.75, -84.67 to -6.84) more than DHA (p < 0.05). CONCLUSION Folic acid and DHA improve cognitive function and reduce blood Aβ production in MCI patients. Combination therapy may be more beneficial in reducing blood Aβ-related biomarkers.
Collapse
Affiliation(s)
- Dong Bai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition, Tianjin First Central Hospital, Tianjin, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Mengyue Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Yiming Gao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Hujiayuan Community Health Service Center of Binhai New Area, Tianjin, China
| | - Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| |
Collapse
|
23
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
24
|
Abstract
Background: Alzheimer's disease is known as one of the fastest growing lethal diseases worldwide where we have limited and undesired ways for regulating its pathological progress. Now-a-days, nutritional compounds have been using to treat several brain disorders and one of them; vitamins were strongly reported to combat cognition and memory deterioration in neurodegenerative diseases including Alzheimer's disease. Objective: Here, the author tried to find the precise physiological roles, status, and worth of vitamins in the brain and how exactly these nutrients modulate progression of Alzheimer's disease. Results & Discussion: After a comprehensive and systematic literature review, the author reports that vitamins have various targets in Alzheimer's disease pathogenesis by which they act to avert the neuronal dysfunction in the disease. Several Alzheimer's disease-associated neurological deficits have reported regulating by vitamin intake but the beneficial effects identified mostly in combinatorial and long-term studies. Conclusion: In this way, the author suggests that it might be better to test vitamins with other components over single vitamin approach for a compatible and synergistic effect as well as using a combination of vitamin with other compounds can target multiple pathways. This strategy may help in deteriorating memory dysfunction and cognition impairment in Alzheimer's disease pathophysiology.Abbreviations: APOE: apolipoprotein E; APP: amyloid precursor protein; ATP: adenosine triphosphate; Aβ- β-amyloid; cGMP: cyclic guanine monophosphate; CNS: central nervous system; DNA: deoxyribonucleic acid; IU: international units; RA: retinoic acid; RAR: retinoic acid receptor; RNA: ribonucleic acid; ROS: reactive oxygen species; tHcy: total homocysteine; α: alpha; β: beta; γ: gama; ε: epsilon; g: gram; µ: micron; mg: milligram; ⬆: increased,⬇: decreased.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, India.,Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
25
|
Monti N, Cavallaro RA, Stoccoro A, Nicolia V, Scarpa S, Kovacs GG, Fiorenza MT, Lucarelli M, Aronica E, Ferrer I, Coppedè F, Troen AM, Fuso A. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics 2020; 15:781-799. [PMID: 32019393 PMCID: PMC7518704 DOI: 10.1080/15592294.2020.1722917] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
The Presenilin1 (PSEN1) gene encodes the catalytic peptide of the γ-secretase complex, a key enzyme that cleaves the amyloid-β protein precursor (AβPP), to generate the amyloid-β (Aβ) peptides, involved in Alzheimer's Disease (AD). Other substrates of the γ-secretase, such as E-cadherin and Notch1, are involved in neurodevelopment and haematopoiesis. Gene-specific DNA methylation influences PSEN1 expression in AD animal models. Here we evaluated canonical and non-canonical cytosine methylation patterns of the PSEN1 5'-flanking during brain development and AD progression, in DNA extracted from the frontal cortex of AD transgenic mice (TgCRND8) and post-mortem human brain. Mapping CpG and non-CpG methylation revealed different methylation profiles in mice and humans. PSEN1 expression only correlated with DNA methylation in adult female mice. However, in post-mortem human brain, lower methylation, both at CpG and non-CpG sites, correlated closely with higher PSEN1 expression during brain development and in disease progression. PSEN1 methylation in blood DNA was significantly lower in AD patients than in controls. The present study is the first to demonstrate a temporal correlation between dynamic changes in PSEN1 CpG and non-CpG methylation patterns and mRNA expression during neurodevelopment and AD neurodegeneration. These observations were made possible by the use of an improved bisulphite methylation assay employing primers that are not biased towards non-CpG methylation. Our findings deepen the understanding of γ-secretase regulation and support the hypothesis that epigenetic changes can promote the pathophysiology of AD. Moreover, they suggest that PSEN1 DNA methylation in peripheral blood may provide a biomarker for AD.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vincenzina Nicolia
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - Sigfrido Scarpa
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Isidre Ferrer
- Neuropathology, Service of Pathology, Bellvitge University Hospital, Barcelona, Spain
- CIBERNED, Hospitalet De Llobregat, University of Barcelona, Barcelona, Spain
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Aron M. Troen
- Nutrition and Brain Health Laboratory, the Institute of Biochemistry Food and Nutrition Science, the Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Alam I, Ali F, Zeb F, Almajwal A, Fatima S, Wu X. Relationship of nutrigenomics and aging: Involvement of DNA methylation. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
27
|
Li W, Li Z, Zhou D, Zhang X, Yan J, Huang G. Maternal folic acid deficiency stimulates neural cell apoptosis via miR-34a associated with Bcl-2 in the rat foetal brain. Int J Dev Neurosci 2018; 72:6-12. [PMID: 30447272 DOI: 10.1016/j.ijdevneu.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/21/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Embryonic development is a critical period wherein brain neurons are generated and organized. Maternal dietary folate, a cofactor in one-carbon metabolism, modulates neurogenesis and apoptosis in foetal brain neurons. We hypothesized that aberrant neuronal apoptosis may affect the development of the central nervous system during maternal folic acid deficiency, with evident effects because maternal folic acid deficiency modulates the microRNA-34a associated with Bcl-2 pathway during embryonic development. Four-week-old female Sprague-Dawley rats were divided randomly into two groups (10 rats per group): a folate-deficient diet group and a folate-normal diet group. The diets were administered to the rats 60 d before mating, which was continued for the pregnant dams until parturition. Maternal folic acid deficiency increased neuronal apoptosis in the hippocampus and the cortex in the offspring. Furthermore, maternal folic acid deficiency increased the ratio of cleaved caspase-3/caspase-3, followed by an increase in caspase-3 activity. Moreover, maternal folic acid deficiency downregulated Bcl-2 and upregulated Bax, and this effect associate with maternal folic acid deficient increases expression of microRNA-34a. Together, the present results indicate that maternal folic acid deficiency stimulates neuronal apoptosis via microRNA-34a associated with Bcl-2 signalling in rat offspring.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Yan
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
28
|
Li W, Li Z, Li S, Wang X, Wilson JX, Huang G. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring. Nutrients 2018; 10:nu10030292. [PMID: 29494536 PMCID: PMC5872710 DOI: 10.3390/nu10030292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/21/2023] Open
Abstract
Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Shou Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214-8028, USA.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
29
|
Morris MC, Wang Y, Barnes LL, Bennett DA, Dawson-Hughes B, Booth SL. Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology 2017; 90:e214-e222. [PMID: 29263222 DOI: 10.1212/wnl.0000000000004815] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/29/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To increase understanding of the biological mechanisms underlying the association, we investigated the individual relations to cognitive decline of the primary nutrients and bioactives in green leafy vegetables, including vitamin K (phylloquinone), lutein, β-carotene, nitrate, folate, kaempferol, and α-tocopherol. METHODS This was a prospective study of 960 participants of the Memory and Aging Project, ages 58-99 years, who completed a food frequency questionnaire and had ≥2 cognitive assessments over a mean 4.7 years. RESULTS In a linear mixed model adjusted for age, sex, education, participation in cognitive activities, physical activities, smoking, and seafood and alcohol consumption, consumption of green leafy vegetables was associated with slower cognitive decline; the decline rate for those in the highest quintile of intake (median 1.3 servings/d) was slower by β = 0.05 standardized units (p = 0.0001) or the equivalent of being 11 years younger in age. Higher intakes of each of the nutrients and bioactives except β-carotene were individually associated with slower cognitive decline. In the adjusted models, the rates for the highest vs the lowest quintiles of intake were β = 0.02, p = 0.002 for phylloquinone; β = 0.04, p = 0.002 for lutein; β = 0.05, p < 0.001 for folate; β = 0.03, p = 0.02 for α-tocopherol; β = 0.04, p = 0.002 for nitrate; β = 0.04, p = 0.003 for kaempferol; and β = 0.02, p = 0.08 for β-carotene. CONCLUSIONS Consumption of approximately 1 serving per day of green leafy vegetables and foods rich in phylloquinone, lutein, nitrate, folate, α-tocopherol, and kaempferol may help to slow cognitive decline with aging.
Collapse
Affiliation(s)
- Martha Clare Morris
- From the Departments of Internal Medicine (M.C.M., Y.W.), Preventive Medicine (Y.W.), Behavioral Sciences (L.L.B.), and Neurological Sciences (L.L.B., D.A.B.), and Rush Alzheimer Disease Center (L.L.B., D.A.B.), Rush University, Chicago, IL; and Tufts Human Nutrition Research Center on Aging (B.D.-H., S.L.B.), Tufts University, Boston, MA.
| | - Yamin Wang
- From the Departments of Internal Medicine (M.C.M., Y.W.), Preventive Medicine (Y.W.), Behavioral Sciences (L.L.B.), and Neurological Sciences (L.L.B., D.A.B.), and Rush Alzheimer Disease Center (L.L.B., D.A.B.), Rush University, Chicago, IL; and Tufts Human Nutrition Research Center on Aging (B.D.-H., S.L.B.), Tufts University, Boston, MA
| | - Lisa L Barnes
- From the Departments of Internal Medicine (M.C.M., Y.W.), Preventive Medicine (Y.W.), Behavioral Sciences (L.L.B.), and Neurological Sciences (L.L.B., D.A.B.), and Rush Alzheimer Disease Center (L.L.B., D.A.B.), Rush University, Chicago, IL; and Tufts Human Nutrition Research Center on Aging (B.D.-H., S.L.B.), Tufts University, Boston, MA
| | - David A Bennett
- From the Departments of Internal Medicine (M.C.M., Y.W.), Preventive Medicine (Y.W.), Behavioral Sciences (L.L.B.), and Neurological Sciences (L.L.B., D.A.B.), and Rush Alzheimer Disease Center (L.L.B., D.A.B.), Rush University, Chicago, IL; and Tufts Human Nutrition Research Center on Aging (B.D.-H., S.L.B.), Tufts University, Boston, MA
| | - Bess Dawson-Hughes
- From the Departments of Internal Medicine (M.C.M., Y.W.), Preventive Medicine (Y.W.), Behavioral Sciences (L.L.B.), and Neurological Sciences (L.L.B., D.A.B.), and Rush Alzheimer Disease Center (L.L.B., D.A.B.), Rush University, Chicago, IL; and Tufts Human Nutrition Research Center on Aging (B.D.-H., S.L.B.), Tufts University, Boston, MA
| | - Sarah L Booth
- From the Departments of Internal Medicine (M.C.M., Y.W.), Preventive Medicine (Y.W.), Behavioral Sciences (L.L.B.), and Neurological Sciences (L.L.B., D.A.B.), and Rush Alzheimer Disease Center (L.L.B., D.A.B.), Rush University, Chicago, IL; and Tufts Human Nutrition Research Center on Aging (B.D.-H., S.L.B.), Tufts University, Boston, MA
| |
Collapse
|
30
|
Ma F, Li Q, Zhou X, Zhao J, Song A, Li W, Liu H, Xu W, Huang G. Effects of folic acid supplementation on cognitive function and Aβ-related biomarkers in mild cognitive impairment: a randomized controlled trial. Eur J Nutr 2017; 58:345-356. [DOI: 10.1007/s00394-017-1598-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022]
|
31
|
Fenech M. Vitamins Associated with Brain Aging, Mild Cognitive Impairment, and Alzheimer Disease: Biomarkers, Epidemiological and Experimental Evidence, Plausible Mechanisms, and Knowledge Gaps. Adv Nutr 2017; 8:958-970. [PMID: 29141977 PMCID: PMC5682999 DOI: 10.3945/an.117.015610] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The key to preventing brain aging, mild cognitive impairment (MCI), and Alzheimer disease (AD) via vitamin intake is first to understand molecular mechanisms, then to deduce relevant biomarkers, and subsequently to test the level of evidence for the impact of vitamins in the relevant pathways and their modulation of dementia risk. This narrative review infers information on mechanisms from gene and metabolic defects associated with MCI and AD, and assesses the role of vitamins using recent results from animal and human studies. Current evidence suggests that all known vitamins and some "quasi-vitamins" are involved as cofactors or influence ≥1 of the 6 key sets of pathways or pathologies associated with MCI or AD, relating to 1) 1-carbon metabolism, 2) DNA damage and repair, 3) mitochondrial function and glucose metabolism, 4) lipid and phospholipid metabolism and myelination, 5) neurotransmitter synthesis and synaptogenesis, and 6) amyloidosis and Tau protein phosphorylation. The contemporary level of evidence for each of the vitamins varies considerably, but it is notable that B vitamins are involved as cofactors in all of the core pathways or pathologies and, together with vitamins C and E, are consistently associated with a protective role against dementia. Outcomes from recent studies indicate that the efficacy and safety of supplementation with vitamins to prevent MCI and the early stages of AD will most likely depend on 1) which pathways are defective, 2) which vitamins are deficient and could correct the relevant metabolic defects, and 3) the modulating impact of nutrient-nutrient and nutrient-genotype interaction. More focus on a precision nutrition approach is required to realize the full potential of vitamin therapy in preventing dementia and to avoid causing harm.
Collapse
Affiliation(s)
- Michael Fenech
- CSIRO Health and Biosecurity, Genome Health and Personalised Nutrition, Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Bhat MI, Kapila R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev 2017; 75:374-389. [PMID: 28444216 DOI: 10.1093/nutrit/nux001] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian gastrointestinal tract harbors trillions of commensal microorganisms, collectively known as the microbiota. The microbiota is a critical source of environmental stimuli and, thus, has a tremendous impact on the health of the host. The microbes within the microbiota regulate homeostasis within the gut, and any alteration in their composition can lead to disorders that include inflammatory bowel disease, allergy, autoimmune disease, diabetes, mental disorders, and cancer. Hence, restoration of the gut flora following changes or imbalance is imperative for the host. The low-molecular-weight compounds and nutrients such as short-chain fatty acids, polyamines, polyphenols, and vitamins produced by microbial metabolism of nondigestible food components in the gut actively participate in various epigenomic mechanisms that reprogram the genome by altering the transcriptional machinery of a cell in response to environmental stimuli. These epigenetic modifications are caused by a set of highly dynamic enzymes, notably histone acetylases, deacetylases, DNA methylases, and demethylases, that are influenced by microbial metabolites and other environmental cues. Recent studies have shown that host expression of histone acetylases and histone deacetylases is important for regulating communication between the intestinal microbiota and the host cells. Histone acetylases and deacetylases influence the molecular expression of genes that affect not only physiological functions but also behavioral shifts that occur via neuroepigenetic modifications of genes. The underlying molecular mechanisms, however, have yet to be fully elucidated and thus provide a new area of research. The present review provides insights into the current understanding of the microbiota and its association with mammalian epigenomics as well as the interaction of pathogens and probiotics with host epigenetic machinery.
Collapse
Affiliation(s)
- Mohd Iqbal Bhat
- Mohd I. Bhat and R. Kapila are with Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajeev Kapila
- Mohd I. Bhat and R. Kapila are with Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
33
|
Robinson N, Grabowski P, Rehman I. Alzheimer's disease pathogenesis: Is there a role for folate? Mech Ageing Dev 2017; 174:86-94. [PMID: 29037490 DOI: 10.1016/j.mad.2017.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications, including changes in DNA methylation, have been implicated in a wide range of diseases including neurological diseases such as Alzheimer's. The role of dietary folate in providing methyl groups required for maintenance and modulation of DNA methylation makes it a nutrient of interest in Alzheimer's. Late onset Alzheimer's disease is the most common form of dementia and at present its aetiology is largely undetermined. From epidemiological studies, the interactions between folate, B-vitamins and homocysteine as well as the long latency period has led to difficulties in interpretation of the data, thus current evidence exploring the role of dietary folate in Alzheimer's is contradictory and unresolved. Therefore, examining the effects at a molecular level and exploring potential epigenetic mechanisms could increase our understanding of the disease and aetiology. The aim of this review is to examine the role that folate could play in Alzheimer's disease neuropathology and will focus on the effects of folate on DNA methylation which link to disease pathology, initiation and progression.
Collapse
Affiliation(s)
- Natassia Robinson
- Institute of Health & Society, University of Newcastle upon Tyne, United Kingdom.
| | - Peter Grabowski
- Human Nutrition Unit, Department of Oncology & Metabolism, University of Sheffield, United Kingdom
| | - Ishtiaq Rehman
- Academic Urology Unit, Department of Oncology and Metabolism, University of Sheffield, United Kingdom
| |
Collapse
|
34
|
Trenteseaux C, Gaston AT, Aguesse A, Poupeau G, de Coppet P, Andriantsitohaina R, Laschet J, Amarger V, Krempf M, Nobecourt-Dupuy E, Ouguerram K. Perinatal Hypercholesterolemia Exacerbates Atherosclerosis Lesions in Offspring by Altering Metabolism of Trimethylamine-N-Oxide and Bile Acids. Arterioscler Thromb Vasc Biol 2017; 37:2053-2063. [PMID: 28935756 DOI: 10.1161/atvbaha.117.309923] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Experimental studies suggest that maternal hypercholesterolemia may be relevant for the early onset of cardiovascular disease in offspring. We investigated the effect of perinatal hypercholesterolemia on the atherosclerosis development in the offspring of apolipoprotein E-deficient mice and the underlying mechanism. APPROACH AND RESULTS Atherosclerosis and related parameters were studied in adult male or female apolipoprotein E-deficient mice offspring from either normocholesterolemic or hypercholesterolemic mothers and normocholesterolemic fathers. Female born to hypercholesterolemic mothers had more aortic root lesions than female born to normocholesterolemic mothers. Lesions in whole aorta did not differ between groups. Higher trimethylamine-N-oxide levels and Fmo3 hepatic gene expression were higher in female born to hypercholesterolemic mothers offspring compared with female born to normocholesterolemic mothers and male. Trimethylamine-N-oxide levels were correlated with the size of atherosclerotic root lesions. Levels of hepatic cholesterol and gallbladder bile acid were greater in male born to hypercholesterolemic mothers compared with male born to normocholesterolemic mothers. At 18 weeks of age, female born to hypercholesterolemic mothers showed lower hepatic Scarb1 and Cyp7a1 but higher Nr1h4 gene expression compared with female born to normocholesterolemic mothers. Male born to hypercholesterolemic mothers showed an increase in Scarb1 and Ldlr gene expression compared with male born to normocholesterolemic mothers. At 25 weeks of age, female born to hypercholesterolemic mothers had lower Cyp7a1 gene expression compared with female born to normocholesterolemic mothers. DNA methylation of Fmo3, Scarb1, and Ldlr promoter regions was slightly modified and may explain the mRNA expression modulation. CONCLUSIONS Our findings suggest that maternal hypercholesterolemia may exacerbate the development of atherosclerosis in female offspring by affecting metabolism of trimethylamine-N-oxide and bile acids. These data could be explained by epigenetic alterations.
Collapse
Affiliation(s)
- Charlotte Trenteseaux
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Anh-Thu Gaston
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Audrey Aguesse
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Guillaume Poupeau
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Pierre de Coppet
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Ramaroson Andriantsitohaina
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Jamila Laschet
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Valérie Amarger
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Michel Krempf
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Estelle Nobecourt-Dupuy
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.)
| | - Khadija Ouguerram
- From the UMR 1280 Physiopathologie des Adaptations Nutritionnelles, INRA, Université de Nantes, France (C.T., G.P., P.d.C., V.A., M.K., E.N.-D., K.O.); Centre de Recherche en Nutrition Humaine Ouest, Nantes, France (C.T., A.A., M.K., K.O.); UMR1063 Stress Oxydant et Pathologies Métaboliques, INSERM, Université d'Angers, France (C.T., R.A.); and UMR 1148 Laboratoire de recherche Vasculaire Translationnelle, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université Paris, France (A.-t.G., J.L.).
| |
Collapse
|
35
|
Emmerson JT, Murray LK, Jadavji NM. Impact of dietary supplementation of one-carbon metabolism on neural recovery. Neural Regen Res 2017; 12:1075-1076. [PMID: 28852387 PMCID: PMC5558484 DOI: 10.4103/1673-5374.211183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Lauren K Murray
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Nafisa M Jadavji
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
36
|
Cui S, Li W, Lv X, Wang P, Gao Y, Huang G. Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro. Int J Mol Sci 2017; 18:ijms18050990. [PMID: 28475147 PMCID: PMC5454903 DOI: 10.3390/ijms18050990] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes.
Collapse
Affiliation(s)
- Shanshan Cui
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Pengyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
37
|
Wang X, Li W, Li S, Yan J, Wilson JX, Huang G. Maternal Folic Acid Supplementation During Pregnancy Improves Neurobehavioral Development in Rat Offspring. Mol Neurobiol 2017; 55:2676-2684. [PMID: 28421540 DOI: 10.1007/s12035-017-0534-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Maternal folate status during pregnancy may influence central nervous system (CNS) development in offspring. However, the recommended intakes of folic acid for women of childbearing age differ among countries and there is still no consensus about whether folic acid should be supplemented continuously throughout pregnancy. We hypothesized that folic acid supplementation may be more beneficial for offspring's neurobehavioral development if prolonged throughout pregnancy instead of being limited to the periconceptional period. In this study, three groups of the female rats were fed folate-normal, folate-deficient, or folate-supplemented diets throughout pregnancy. In another group, the female rats were fed folate-supplemented diet from mating for 10 consecutive days and then fed folate-normal diet for remainder days of pregnancy. The results showed that maternal folate deficiency increased plasma homocysteine (Hcy) concentration in dams, delayed early sensory-motor reflex development, impaired spatial learning and memory ability, and caused ultrastructural damages in the hippocampus of offspring. Maternal folic acid supplementation would be more effective on improving early sensory-motor reflex development and spatial learning and memory ability in offspring if prolonged throughout pregnancy instead of being limited to the periconceptional period. In conclusion, prolonged maternal folic acid supplementation throughout pregnancy would be more effective in neurobehavioral development of offspring in rats.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Shou Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jing Yan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
38
|
Troesch B, Weber P, Mohajeri MH. Potential Links between Impaired One-Carbon Metabolism Due to Polymorphisms, Inadequate B-Vitamin Status, and the Development of Alzheimer's Disease. Nutrients 2016; 8:E803. [PMID: 27973419 PMCID: PMC5188458 DOI: 10.3390/nu8120803] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia and no preventive or effective treatment has been established to date. The etiology of AD is poorly understood, but genetic and environmental factors seem to play a role in its onset and progression. In particular, factors affecting the one-carbon metabolism (OCM) are thought to be important and elevated homocysteine (Hcy) levels, indicating impaired OCM, have been associated with AD. We aimed at evaluating the role of polymorphisms of key OCM enzymes in the etiology of AD, particularly when intakes of relevant B-vitamins are inadequate. Our review indicates that a range of compensatory mechanisms exist to maintain a metabolic balance. However, these become overwhelmed if the activity of more than one enzyme is reduced due to genetic factors or insufficient folate, riboflavin, vitamin B6 and/or vitamin B12 levels. Consequences include increased Hcy levels and reduced capacity to synthetize, methylate and repair DNA, and/or modulated neurotransmission. This seems to favor the development of hallmarks of AD particularly when combined with increased oxidative stress e.g., in apolipoprotein E (ApoE) ε4 carriers. However, as these effects can be compensated at least partially by adequate intakes of B-vitamins, achieving optimal B-vitamin status for the general population should be a public health priority.
Collapse
Affiliation(s)
- Barbara Troesch
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - Peter Weber
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| |
Collapse
|
39
|
Oikonomidi A, Lewczuk P, Kornhuber J, Smulders Y, Linnebank M, Semmler A, Popp J. Homocysteine metabolism is associated with cerebrospinal fluid levels of soluble amyloid precursor protein and amyloid beta. J Neurochem 2016; 139:324-332. [PMID: 27507672 DOI: 10.1111/jnc.13766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/15/2016] [Accepted: 07/29/2016] [Indexed: 01/05/2023]
Abstract
Disturbed homocysteine metabolism may contribute to amyloidogenesis by modulating the amyloid precursor protein (APP) production and processing. The objective of this study was to investigate the relationships between cerebral amyloid production and both blood and cerebrospinal fluid (CSF) markers of the homocysteine metabolism. We assessed CSF concentrations of soluble APPα, soluble APPβ, and amyloid β1-42 (Aβ1-42), as well as plasma levels of homocysteine (Hcys), total vitamin B12, and folate, and CSF concentrations of homocysteine (Hcys-CSF), 5-methyltetrahydrofolate (5-MTHF), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) in 59 subjects with normal cognition. Linear regression analyses were performed to assess associations between homocysteine metabolism parameters and amyloid production. The study was approved by the Ethical Committee of the University of Bonn. After controlling for age, gender, APOEe4 status, and albumin ratio (Qalb), higher Aβ1-42 CSF levels were associated with high Hcys and low vitamin B12 plasma levels as well as with high Hcys, high SAH, and low 5-MTHF CSF levels. Higher CSF concentrations of sAPPα and sAPPβ were associated with high SAH levels. The results suggest that disturbed homocysteine metabolism is related to increased CSF levels of sAPP forms and Aβ1-42, and may contribute to the accumulation of amyloid pathology in the brain. Disturbed homocysteine metabolism may contribute to amyloidogenesis by modulating the amyloid precursor protein (APP) production and processing. We found associations between CSF levels of soluble APP forms and Aβ1-42, and markers of the homocysteine metabolism in both plasma and CSF in adults with normal cognition. Disturbed homocysteine metabolism may represent a target for preventive and early disease-modifying interventions in Alzheimer's disease.
Collapse
Affiliation(s)
- Aikaterini Oikonomidi
- Department of Psychiatry, Division of Old Age Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University of Erlangen, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen, Erlangen, Germany
| | - Yvo Smulders
- Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands.,Institute for Cardiovascular Research ICaR-VU, VU University Medical Centre, Amsterdam, The Netherlands
| | - Michael Linnebank
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Semmler
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Julius Popp
- Department of Psychiatry, Division of Old Age Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland. .,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.
| |
Collapse
|
40
|
Rescue of Early bace-1 and Global DNA Demethylation by S-Adenosylmethionine Reduces Amyloid Pathology and Improves Cognition in an Alzheimer's Model. Sci Rep 2016; 6:34051. [PMID: 27681803 PMCID: PMC5041108 DOI: 10.1038/srep34051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
General DNA hypomethylation is associated with Alzheimer's disease (AD), but it is unclear when DNA hypomethylation starts or plays a role in AD pathology or whether DNA re-methylation would rescue early amyloid-related cognitive impairments. In an APP transgenic mouse model of AD-like amyloid pathology we found that early intraneuronal amyloid beta build-up is sufficient to unleash a global and beta-site amyloid precursor protein cleaving enzyme 1 (bace-1) DNA demethylation in AD-vulnerable brain regions. S-adenosylmethionine administration at these early stages abolished this hypomethylation, diminished the amyloid pathology and restored cognitive capabilities. To assess a possible human significance of findings, we examined the methylation at 12 CpGs sites in the bace-1 promoter, using genome-wide DNA methylation data from 740 postmortem human brains. Thus, we found significant associations of bace-1 promoter methylation with β-amyloid load among persons with AD dementia, and PHFtau tangle density. Our results support a plausible causal role for the earliest amyloid beta accumulation to provoke DNA hypomethylation, influencing AD pathological outcomes.
Collapse
|
41
|
Tian T, Bai D, Li W, Huang GW, Liu H. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice. Nutrients 2016; 8:E556. [PMID: 27618097 PMCID: PMC5037541 DOI: 10.3390/nu8090556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression.
Collapse
Affiliation(s)
- Tian Tian
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Dong Bai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Guo-Wei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
42
|
Grossi E, Stoccoro A, Tannorella P, Migliore L, Coppedè F. Artificial Neural Networks Link One-Carbon Metabolism to Gene-Promoter Methylation in Alzheimer's Disease. J Alzheimers Dis 2016; 53:1517-22. [PMID: 27392858 DOI: 10.3233/jad-160210] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is increasing interest in DNA methylation studies in Alzheimer's disease (AD), but little is still known concerning the relationship between gene-promoter methylation and circulating biomarkers of one-carbon metabolism in patients. OBJECTIVE To detect the connections among circulating folate, homocysteine (hcy) and vitamin B12 levels and promoter methylation levels of PSEN1, BACE1, DNMT1, DNMT3A, DNMT3B, and MTHFR genes in blood DNA. METHODS We applied a data mining system called Auto Contractive Map to an existing database of 100 AD and 100 control individuals. RESULTS Low vitamin B12 was linked to the AD condition, to low folates, and to high hcy. Low PSEN1 methylation was linked to low folate levels as well as to low promoter methylation of BACE1 and DNMTs genes. Low hcy was linked to controls, to high folates and vitamin B12, as well as to high methylation levels of most of the studied genes. CONCLUSIONS The present pilot study suggests that promoter methylation levels of the studied genes are linked to circulating levels of folates, hcy, and vitamin B12.
Collapse
Affiliation(s)
- Enzo Grossi
- Villa Santa Maria Institute, Tavernerio, Italy
- Semeion Research Center of Sciences of Communication, Rome, Italy
| | - Andrea Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Pisa, Italy
- Doctoral School in Genetics, Oncology, and Clinical Medicine, University of Siena, Siena, Italy
| | - Pierpaola Tannorella
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Sanchez-Mut JV, Gräff J. Epigenetic Alterations in Alzheimer's Disease. Front Behav Neurosci 2015; 9:347. [PMID: 26734709 PMCID: PMC4681781 DOI: 10.3389/fnbeh.2015.00347] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.
Collapse
Affiliation(s)
- Jose V Sanchez-Mut
- Neuroepigenetics Laboratory - UPGRAEFF, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Johannes Gräff
- Neuroepigenetics Laboratory - UPGRAEFF, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
44
|
Folic acid deficiency enhances abeta accumulation in APP/PS1 mice brain and decreases amyloid-associated miRNAs expression. J Nutr Biochem 2015; 26:1502-8. [DOI: 10.1016/j.jnutbio.2015.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
|
45
|
Li W, Liu H, Yu M, Zhang X, Zhang Y, Liu H, Wilson JX, Huang G. Folic Acid Alters Methylation Profile of JAK-STAT and Long-Term Depression Signaling Pathways in Alzheimer's Disease Models. Mol Neurobiol 2015; 53:6548-6556. [PMID: 26627706 DOI: 10.1007/s12035-015-9556-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 01/15/2023]
Abstract
Dementia has emerged as a major societal issue because of the worldwide aging population and the absence of any effective treatment. DNA methylation is an epigenetic mechanism that evidently plays a role in Alzheimer's disease (AD). Folate acts through one-carbon metabolism to support the methylation of multiple substrates including DNA. We aimed to test the hypothesis that folic acid supplementation alters DNA methylation profiles in AD models. Mouse Neuro-2a cells expressing human APP695 (N2a-APP cells) were incubated with folic acid (2.8-20 μmol/L). AD transgenic mice were fed either folate-deficient or control diets and gavaged daily with water or folic acid (600 μg/kg). Gene methylation profiles were determined by methylated DNA immunoprecipitation-DNA microarray (MeDIP-chip). Differentially methylated regions (DMRs) were determined by Quantitative Differentially Methylated Regions analysis, and differentially methylated genes (DMGs) carrying at least three DMRs were selected for pathway analysis. Folic acid up-regulated DNA methylation levels in N2a-APP cells and AD transgenic mouse brains. Functional network analysis of folic acid-induced DMGs in these AD models revealed subnetworks composed of 24 focus genes in the janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway and 12 focus genes in the long-term depression (LTD) signaling pathway. In conclusion, these results revealed a role for folic acid in the JAK-STAT and LTD signaling pathways which may be relevant to AD pathogenesis. This novel finding may stimulate reinvestigation of folic acid supplementation as a prophylactic or therapeutic treatment for AD.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Min Yu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yan Zhang
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hongbo Liu
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|