1
|
Deng Z, Wawro N, Freuer D, Peters A, Heier M, Meisinger C, Breuninger TA, Linseisen J. Differential association of dietary scores with the risk of type 2 diabetes by metabotype. Eur J Nutr 2024; 63:2137-2148. [PMID: 38714546 PMCID: PMC11377363 DOI: 10.1007/s00394-024-03411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024]
Abstract
PURPOSE We aimed to examine the association between dietary patterns and type 2 diabetes mellitus (T2DM) while considering the potential effect modification by metabolic phenotypes (metabotypes). Additionally, we aimed to explore the association between dietary scores and prediabetes. METHODS A total of 1460 participants (11.8% with T2DM) from the cross-sectional population-based KORA FF4 study were included. Participants, classified into three metabotype subgroups, had both their FSAm-NPS dietary index (underpinning the Nutri-Score) and ultra-processed foods (UPF) intake (using NOVA classification) calculated. Glucose tolerance status was assessed via oral glucose tolerance tests (OGTT) in non-diabetic participants and was classified according to the American Diabetes Association criteria. Logistic regression models were used for both the overall and metabotype-stratified analyses of dietary scores' association with T2DM, and multinomial probit models for their association with prediabetes. RESULTS Participants who had a diet with a higher FSAm-NPS dietary index (i.e., a lower diet quality) or a greater percentage of UPF consumption showed a positive association with T2DM. Stratified analyses demonstrated a strengthened association between UPF consumption and T2DM specifically in the metabolically most unfavorable metabotype (Odds Ratio, OR 1.92; 95% Confidence Interval, CI 1.35, 2.73). A diet with a higher FSAm-NPS dietary index was also positively associated with prediabetes (OR 1.19; 95% CI 1.04, 1.35). CONCLUSION Our study suggests different associations between poorer diet quality and T2DM across individuals exhibiting diverse metabotypes, pointing to the option for stratified dietary interventions in diabetes prevention.
Collapse
Affiliation(s)
- Zhongyi Deng
- Institute for Medical Information Processing, Biometry, and Epidemiology - IBE, Ludwig- Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians University of Munich, Pettenkoferstr. 9A, 80336, Munich, Germany
- Chair of Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Nina Wawro
- Chair of Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Institute of Epidemiology, Helmholtz Munich (GmbH) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Dennis Freuer
- Chair of Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Annette Peters
- Institute for Medical Information Processing, Biometry, and Epidemiology - IBE, Ludwig- Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- Institute of Epidemiology, Helmholtz Munich (GmbH) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Munich (GmbH) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- KORA Study Centre, University Hospital Augsburg, Beim Glaspalast 1, 86153, Augsburg, Germany
| | - Christine Meisinger
- Chair of Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Taylor A Breuninger
- Chair of Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Jakob Linseisen
- Institute for Medical Information Processing, Biometry, and Epidemiology - IBE, Ludwig- Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Pettenkofer School of Public Health, Ludwig-Maximilians University of Munich, Pettenkoferstr. 9A, 80336, Munich, Germany.
- Chair of Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| |
Collapse
|
2
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
3
|
Abrignani V, Salvo A, Pacinella G, Tuttolomondo A. The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review. Int J Mol Sci 2024; 25:4942. [PMID: 38732161 PMCID: PMC11084172 DOI: 10.3390/ijms25094942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet (MD), rich in minimally processed plant foods and in monounsaturated fats but low in saturated fats, meat, and dairy products, represents one of the most studied diets for cardiovascular health. It has been shown, from both observational and randomized controlled trials, that MD reduces body weight, improves cardiovascular disease surrogates such as waist-to-hip ratios, lipids, and inflammation markers, and even prevents the development of fatal and nonfatal cardiovascular disease, diabetes, obesity, and other diseases. However, it is unclear whether it offers cardiovascular benefits from its individual components or as a whole. Furthermore, limitations in the methodology of studies and meta-analyses have raised some concerns over its potential cardiovascular benefits. MD is also associated with characteristic changes in the intestinal microbiota, mediated through its constituents. These include increased growth of species producing short-chain fatty acids, such as Clostridium leptum and Eubacterium rectale, increased growth of Bifidobacteria, Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia species. Such changes are known to be favorably associated with inflammation, oxidative status, and overall metabolic health. This review will focus on the effects of MD on cardiovascular health through its action on gut microbiota.
Collapse
Affiliation(s)
- Vincenzo Abrignani
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Andrea Salvo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Lekka P, Fragopoulou E, Terpou A, Dasenaki M. Exploring Human Metabolome after Wine Intake-A Review. Molecules 2023; 28:7616. [PMID: 38005338 PMCID: PMC10673339 DOI: 10.3390/molecules28227616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Wine has a rich history dating back to 2200 BC, originally recognized for its medicinal properties. Today, with the aid of advanced technologies like metabolomics and sophisticated analytical techniques, we have gained remarkable insights into the molecular-level changes induced by wine consumption in the human organism. This review embarks on a comprehensive exploration of the alterations in human metabolome associated with wine consumption. A great number of 51 studies from the last 25 years were reviewed; these studies systematically investigated shifts in metabolic profiles within blood, urine, and feces samples, encompassing both short-term and long-term studies of the consumption of wine and wine derivatives. Significant metabolic alterations were observed in a wide variety of metabolites belonging to different compound classes, such as phenolic compounds, lipids, organic acids, and amino acids, among others. Within these classes, both endogenous metabolites as well as diet-related metabolites that exhibited up-regulation or down-regulation following wine consumption were included. The up-regulation of short-chain fatty acids and the down-regulation of sphingomyelins after wine intake, as well as the up-regulation of gut microbial fermentation metabolites like vanillic and syringic acid are some of the most important findings reported in the reviewed literature. Our results confirm the intact passage of certain wine compounds, such as tartaric acid and other wine acids, to the human organism. In an era where the health effects of wine consumption are of growing interest, this review offers a holistic perspective on the metabolic underpinnings of this centuries-old tradition.
Collapse
Affiliation(s)
- Pelagia Lekka
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Elizabeth Fragopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece;
| | - Antonia Terpou
- Department of Agricultural Development, Agrofood and Management of Natural Resources, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, 34400 Psachna, Greece;
| | - Marilena Dasenaki
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| |
Collapse
|
5
|
Chan AS, Wu S, Vernon ST, Tang O, Figtree GA, Liu T, Yang JY, Patrick E. Overcoming cohort heterogeneity for the prediction of subclinical cardiovascular disease risk. iScience 2023; 26:106633. [PMID: 37192969 PMCID: PMC10182278 DOI: 10.1016/j.isci.2023.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/18/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality with an estimated half a billion people affected in 2019. However, detecting signals between specific pathophysiology and coronary plaque phenotypes using complex multi-omic discovery datasets remains challenging due to the diversity of individuals and their risk factors. Given the complex cohort heterogeneity present in those with coronary artery disease (CAD), we illustrate several different methods, both knowledge-guided and data-driven approaches, for identifying subcohorts of individuals with subclinical CAD and distinct metabolomic signatures. We then demonstrate that utilizing these subcohorts can improve the prediction of subclinical CAD and can facilitate the discovery of novel biomarkers of subclinical disease. Analyses acknowledging cohort heterogeneity through identifying and utilizing these subcohorts may be able to advance our understanding of CVD and provide more effective preventative treatments to reduce the burden of this disease in individuals and in society as a whole.
Collapse
Affiliation(s)
- Adam S. Chan
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - Songhua Wu
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Stephen T. Vernon
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Owen Tang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Tongliang Liu
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
- Westmead Medical Institute, Sydney, NSW, Australia
| |
Collapse
|
6
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Li K, Burton-Pimentel KJ, Brouwer-Brolsma EM, Blaser C, Badertscher R, Pimentel G, Portmann R, Feskens EJM, Vergères G. Identifying Plasma and Urinary Biomarkers of Fermented Food Intake and Their Associations with Cardiometabolic Health in a Dutch Observational Cohort. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4426-4439. [PMID: 36853956 PMCID: PMC10021015 DOI: 10.1021/acs.jafc.2c05669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Identification of food intake biomarkers (FIBs) for fermented foods could help improve their dietary assessment and clarify their associations with cardiometabolic health. We aimed to identify novel FIBs for fermented foods in the plasma and urine metabolomes of 246 free-living Dutch adults using nontargeted LC-MS and GC-MS. Furthermore, associations between identified metabolites and several cardiometabolic risk factors were explored. In total, 37 metabolites were identified corresponding to the intakes of coffee, wine, and beer (none were identified for cocoa, bread, cheese, or yoghurt intake). While some of these metabolites appeared to originate from raw food (e.g., niacin and trigonelline for coffee), others overlapped different fermented foods (e.g., 4-hydroxybenzeneacetic acid for both wine and beer). In addition, several fermentation-dependent metabolites were identified (erythritol and citramalate). Associations between these identified metabolites with cardiometabolic parameters were weak and inconclusive. Further evaluation is warranted to confirm their relationships with cardiometabolic disease risk.
Collapse
Affiliation(s)
- Katherine
J. Li
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Elske M. Brouwer-Brolsma
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Carola Blaser
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | | | - Reto Portmann
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Edith J. M. Feskens
- Division
of Human Nutrition and Health, Department of Agrotechnology and Food
Science, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Guy Vergères
- Agroscope, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| |
Collapse
|
8
|
Beyoğlu D, Schwalm S, Semmo N, Huwiler A, Idle JR. Hepatitis C Virus Infection Upregulates Plasma Phosphosphingolipids and Endocannabinoids and Downregulates Lysophosphoinositols. Int J Mol Sci 2023; 24:ijms24021407. [PMID: 36674922 PMCID: PMC9864155 DOI: 10.3390/ijms24021407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
A mass spectrometry-based lipidomic investigation of 30 patients with chronic hepatitis C virus (HCV) infection and 30 age- and sex-matched healthy blood donor controls was undertaken. The clustering and complete separation of these two groups was found by both unsupervised and supervised multivariate data analyses. Three patients who had spontaneously cleared the virus and three who were successfully treated with direct-acting antiviral drugs remained within the HCV-positive metabotype, suggesting that the metabolic effects of HCV may be longer-lived. We identified 21 metabolites that were upregulated in plasma and 34 that were downregulated (p < 1 × 10-16 to 0.0002). Eleven members of the endocannabinoidome were elevated, including anandamide and eight fatty acid amides (FAAs). These likely activated the cannabinoid receptor GPR55, which is a pivotal host factor for HCV replication. FAAH1, which catabolizes FAAs, reduced mRNA expression. Four phosphosphingolipids, d16:1, d18:1, d19:1 sphingosine 1-phosphate, and d18:0 sphinganine 1-phosphate, were increased, together with the mRNA expression for their synthetic enzyme SPHK1. Among the most profoundly downregulated plasma lipids were several lysophosphatidylinositols (LPIs) from 3- to 3000-fold. LPIs are required for the synthesis of phosphatidylinositol 4-phosphate (PI4P) pools that are required for HCV replication, and LPIs can also activate the GPR55 receptor. Our plasma lipidomic findings shed new light on the pathobiology of HCV infection and show that a subset of bioactive lipids that may contribute to liver pathology is altered by HCV infection.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Hepatology Research Group, Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, D-60590 Frankfurt am Main, Germany
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
| | - Nasser Semmo
- Hepatology Research Group, Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Andrea Huwiler
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
- Correspondence: (A.H.); (J.R.I.)
| | - Jeffrey R. Idle
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Hepatology Research Group, Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
- Correspondence: (A.H.); (J.R.I.)
| |
Collapse
|
9
|
Kirk D, Kok E, Tufano M, Tekinerdogan B, Feskens EJM, Camps G. Machine Learning in Nutrition Research. Adv Nutr 2022; 13:2573-2589. [PMID: 36166846 PMCID: PMC9776646 DOI: 10.1093/advances/nmac103] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023] Open
Abstract
Data currently generated in the field of nutrition are becoming increasingly complex and high-dimensional, bringing with them new methods of data analysis. The characteristics of machine learning (ML) make it suitable for such analysis and thus lend itself as an alternative tool to deal with data of this nature. ML has already been applied in important problem areas in nutrition, such as obesity, metabolic health, and malnutrition. Despite this, experts in nutrition are often without an understanding of ML, which limits its application and therefore potential to solve currently open questions. The current article aims to bridge this knowledge gap by supplying nutrition researchers with a resource to facilitate the use of ML in their research. ML is first explained and distinguished from existing solutions, with key examples of applications in the nutrition literature provided. Two case studies of domains in which ML is particularly applicable, precision nutrition and metabolomics, are then presented. Finally, a framework is outlined to guide interested researchers in integrating ML into their work. By acting as a resource to which researchers can refer, we hope to support the integration of ML in the field of nutrition to facilitate modern research.
Collapse
Affiliation(s)
- Daniel Kirk
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Esther Kok
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Michele Tufano
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Bedir Tekinerdogan
- Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Guido Camps
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands.,OnePlanet Research Center, Wageningen, The Netherlands
| |
Collapse
|
10
|
Dahal C, Wawro N, Meisinger C, Brandl B, Skurk T, Volkert D, Hauner H, Linseisen J. Evaluation of the metabotype concept after intervention with oral glucose tolerance test and dietary fiber-enriched food: An enable study. Nutr Metab Cardiovasc Dis 2022; 32:2399-2409. [PMID: 35850752 DOI: 10.1016/j.numecd.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Evidence suggests that people react differently to the same diet due to inter-individual differences. However, few studies have investigated variation in response to dietary interventions based on individuals' baseline metabolic characteristics. This study aims to examine the differential reaction of metabotype subgroups to an OGTT and a dietary fiber intervention. METHODS AND RESULTS We assigned 356 healthy participants of an OGTT sub-study and a 12-week dietary fiber intervention sub-study within the enable cluster to three metabotype subgroups previously identified in the KORA F4 study population. To explore the association between plasma glucose level and metabotype subgroups, we used linear mixed models adjusted for age, sex, and physical activity. Individuals in different metabotype subgroups showed differential responses to OGTT. Compared to the healthy metabotype (metabotype 1), participants in intermediate metabotype (metabotype 2) and unfavorable metabotype (metabotype 3) had significantly higher plasma glucose concentrations at 120 min after glucose bolus (β = 7.881, p = 0.005; β = 32.79, p < 0.001, respectively). Additionally, the linear regression model showed that the Area under the curve (AUC) of plasma glucose concentrations was significantly different across the metabotype subgroups. The associations between metabotype subgroups and metabolic parameters among fiber intervention participants remained insignificant in the multivariate-adjusted linear model. However, the metabotype 3 had the highest mean reduction in insulin, cholesterol parameters (TC, LDLc, and non-HDLc), and systolic and diastolic blood pressure at the end of the intervention period. CONCLUSION This study supports the use of the metabotype concept to identify metabolically similar subgroups and to develop targeted dietary interventions at the metabotype subgroup level for the primary prevention of diet-related diseases.
Collapse
Affiliation(s)
- Chetana Dahal
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - Nina Wawro
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - Beate Brandl
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Thomas Skurk
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992 Munich, Germany
| | - Jakob Linseisen
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 München, Germany.
| |
Collapse
|
11
|
Optimized Metabotype Definition Based on a Limited Number of Standard Clinical Parameters in the Population-Based KORA Study. Life (Basel) 2022; 12:life12101460. [PMID: 36294895 PMCID: PMC9604647 DOI: 10.3390/life12101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of metabotyping is to categorize individuals into metabolically similar groups. Earlier studies that explored metabotyping used numerous parameters, which made it less transferable to apply. Therefore, this study aimed to identify metabotypes based on a set of standard laboratory parameters that are regularly determined in clinical practice. K-means cluster analysis was used to group 3001 adults from the KORA F4 cohort into three clusters. We identified the clustering parameters through variable importance methods, without including any specific disease endpoint. Several unique combinations of selected parameters were used to create different metabotype models. Metabotype models were then described and evaluated, based on various metabolic parameters and on the incidence of cardiometabolic diseases. As a result, two optimal models were identified: a model composed of five parameters, which were fasting glucose, HDLc, non-HDLc, uric acid, and BMI (the metabolic disease model) for clustering; and a model that included four parameters, which were fasting glucose, HDLc, non-HDLc, and triglycerides (the cardiovascular disease model). These identified metabotypes are based on a few common parameters that are measured in everyday clinical practice. These metabotypes are cost-effective, and can be easily applied on a large scale in order to identify specific risk groups that can benefit most from measures to prevent cardiometabolic diseases, such as dietary recommendations and lifestyle interventions.
Collapse
|
12
|
Gu W, Wang H, Su M, Wang Y, Xu F, Hu Q, Cai X, Song J, Tong H, Qian Y, Zhao H, Chen J. Investigation of Tannins Transformation in Sanguisorbae Radix Over Carbonizing by Stir-Frying. Front Mol Biosci 2022; 9:762224. [PMID: 35309515 PMCID: PMC8924296 DOI: 10.3389/fmolb.2022.762224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Carbonizing by stir-frying (CSF) is the most common technology in botanical folk medicines to enhance the convergence, hemostasis, and antidiarrheal effects. Sanguisorbae Radix (SR), a well-known herbal medicine in China, has extensive therapeutic functions, while charred SR is known as an additional product obtained from SR after CSF. In this study, mass spectrometry was used to investigate the effect of charring on tannins transformation of SR. The findings showed that the content level of tannins in SR decreased significantly after carbonizing process, while their three categories, gallotannins, ellagitannins, and procyanidins, had downward trends in general. Moreover, CSF also induced the polyphenol in SR to release relevant monomers from its origins. Significant amount of hydrolyzable tannins were detected by mass spectrometry, including gallotannins and ellagitannins, suggesting that hydrolysis during CSF yielded gallic and ellagic acid and their derivatives, in addition to sugar moieties. Subsequently, gallic and ellagic acid can further polymerize to form sanguisorbic acid dilactone. The amount of proanthocyanidins, the oligomers of catechin, including procyanidin, procyanidin C2, procyanidin B3, and 3-O-galloylprocyanidin B3, decreased to form catechin and its derivatives, which may further degrade to protocatechualdehyde. Quantitative analysis illustrated that the amount of gallic, pyrogallic, and ellagic acid and methyl gallate, the essential effectors in SR, significantly increased after CSF, with increased ratios of 1.36, 4.28, 10.33, and 4.79, respectively. In contrast, the contents of cathechin and epigallocatechin dropped remarkably with increased ratios of 0.04 and 0.02. Tannins exhibit moderate absorption, while their relevant monomers have a higher bioavailability. Therefore, CSF is proved here to be an effective technique to the release of active monomers from the original polyphenol precursor. This study explored the mechanism by which tannins are transformed upon CSF of SR.
Collapse
Affiliation(s)
- Wei Gu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, China
| | - Hao Wang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Man Su
- Lianyungang Food and Drug Inspection and Testing Center, Lianyungang, China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglian Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuyi Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyun Song
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huangjin Tong
- Department of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuerong Qian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongyu Zhao, ; Jun Chen,
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongyu Zhao, ; Jun Chen,
| |
Collapse
|
13
|
Santos-Buelga C, González-Manzano S, González-Paramás AM. Wine, Polyphenols, and Mediterranean Diets. What Else Is There to Say? Molecules 2021; 26:5537. [PMID: 34577008 PMCID: PMC8468969 DOI: 10.3390/molecules26185537] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
A considerable amount of literature has been published claiming the cardiovascular benefits of moderate (red) wine drinking, which has been considered a distinguishing trait of the Mediterranean diet. Indeed, red wine contains relevant amounts of polyphenols, for which evidence of their biological activity and positive health effects are abundant; however, it is also well-known that alcohol, even at a low level of intake, may have severe consequences for health. Among others, it is directly related to a number of non-communicable diseases, like liver cirrhosis or diverse types of cancer. The IARC classifies alcohol as a Group 1 carcinogen, causally associated with the development of cancers of the upper digestive tract and liver, and, with sufficient evidence, can be positively associated with colorectum and female breast cancer. In these circumstances, it is tricky, if not irresponsible, to spread any message on the benefits of moderate wine drinking, about which no actual consensus exists. It should be further considered that other hallmarks of the Mediterranean diet are the richness in virgin olive oil, fruits, grains, and vegetables, which are also good sources of polyphenols and other phytochemicals, and lack the risks of wine. All of these aspects are reviewed in this article.
Collapse
Affiliation(s)
- Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, E-37007 Salamanca, Spain; (S.G.-M.); (A.M.G.-P.)
| | | | | |
Collapse
|
14
|
Diaba-Nuhoho P, Cour M, Hadebe N, Marais D, Lecour S, Blackhurst D. Chronic and moderate consumption of reduced-alcohol wine confers cardiac benefits in a rat model of pulmonary arterial hypertension. BMC Res Notes 2021; 14:324. [PMID: 34425891 PMCID: PMC8381534 DOI: 10.1186/s13104-021-05738-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES In pulmonary arterial hypertension (PAH), right ventricular (RV) dysfunction develops via mechanisms involving oxidative stress. Moderate and chronic red wine (RW) consumption reduces oxidative stress and confers cardioprotection but its effect on PAH is unknown. We evaluated whether moderate and chronic consumption of reduced-alcohol RW (RARW) confers cardioprotection in a monocrotaline (MCT)-induced PAH rat model. RESULTS Rats were randomly grouped: control; MCT; RARW; MCT + RARW. Wine was diluted to mimic moderate intake for humans, and consumed from 7 days before, until 28 days after MCT-injection. Echocardiography measured pulmonary artery acceleration time (PAAT) and RV thickness. Conjugated dienes (CD), and thiobarbituric acid reactive substances (TBARS) concentrations were assessed. MCT induced RV thickness and decreased PAAT compared to controls [1.22 ± 0.09 mm vs 0.46 ± 0.02 mm and 14 ± 1 vs 23 ± 2 m/s, respectively (p < 0.001)]. Chronic RARW consumption limited MCT-induced RV hypertrophy and increased PAAT. CD and TBARS increased in MCT-treated animals compared to controls (672 ± 43 nmol/L vs 453 ± 35 nmol/L; p < 0.01 and 13 ± 2 µmol/L vs 4 ± 0.3 µmol/L; p < 0.01). RARW reduced MCT-induced CD (472 ± 27 nmol/L vs 672 ± 43 nmol/L; p < 0.01). CONCLUSION Chronic and moderate intake of RARW ameliorates MCT-induced PAH in rats, which may be partly attributable to reduction of lipid peroxidation.
Collapse
Affiliation(s)
- Patrick Diaba-Nuhoho
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Martin Cour
- Cardioprotection Group, Hatter Cardiovascular Institute and Lionel Opie Preclinical Imaging Core Facility, University of Cape Town, Cape Town, South Africa
| | - Nkanyiso Hadebe
- Cardioprotection Group, Hatter Cardiovascular Institute and Lionel Opie Preclinical Imaging Core Facility, University of Cape Town, Cape Town, South Africa
- Department of Anaesthesia, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - David Marais
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Cardiovascular Institute and Lionel Opie Preclinical Imaging Core Facility, University of Cape Town, Cape Town, South Africa
| | - Dee Blackhurst
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Belda I, Cueva C, Tamargo A, Ravarani CN, Acedo A, Bartolomé B, Moreno-Arribas MV. A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health. Food Funct 2021; 12:4152-4164. [PMID: 33977942 DOI: 10.1039/d0fo02938f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human gut is a highly diverse microbial ecosystem. Although showing a well-defined core of dominant taxa, an interindividual variability exists in microbiome arrangement patterns, and the presence and proportion of specific species, determining individual metabolic features-metabotypes-which govern the health effects of dietary interventions (i.e. polyphenol consumption). Starting with a 19-volunteer human intervention study, divided into low, medium, and high wine-polyphenol-metabolizers, we detected interindividual discrepancies on the effect of wine consumption in gut bacterial alpha-diversity, but a significant homogenization of beta-diversity among moderate wine consumers, independently of their metabotype. In addition, the abundance of key health-related taxa such as Akkermansia sp. increased after moderate wine intake in the group of high polyphenol-metabolizers. Regarding the metabolic activity, significant (p < 0.05) positive correlations in the production of SCFAs were observed after wine intake. Finally, we were able to correlate the microbiome and the metabolome of the three metabotypes, and to identify some metabolites-biomarker species, highlighting the genera Phascolarctobacterium, Pelotomaculum and Prevotella, as positively correlated with polyphenol concentration, and Prevotella, Zymophilus and Eubacterium as positively correlated with SCFAs concentration in faeces. Our results contribute to the evidence of the need of including the microbiome variable in personalized nutrition programs, as different metabotyes respond differently to dietary interventions.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040-Madrid, Spain and Biome Makers Inc, 95605-West Sacramento, CA, USA
| | - Carolina Cueva
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049-Madrid, Spain.
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049-Madrid, Spain.
| | | | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049-Madrid, Spain.
| | | |
Collapse
|
16
|
Sallam IE, Abdelwareth A, Attia H, Aziz RK, Homsi MN, von Bergen M, Farag MA. Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications. Microorganisms 2021; 9:965. [PMID: 33947064 PMCID: PMC8145700 DOI: 10.3390/microorganisms9050965] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Tannins represent a heterogeneous group of high-molecular-weight polyphenols that are ubiquitous among plant families, especially in cereals, as well as in many fruits and vegetables. Hydrolysable and condensed tannins, in addition to phlorotannins from marine algae, are the main classes of these bioactive compounds. Despite their low bioavailability, tannins have many beneficial pharmacological effects, such as anti-inflammatory, antioxidant, antidiabetic, anticancer, and cardioprotective effects. Microbiota-mediated hydrolysis of tannins produces highly bioaccessible metabolites, which have been extensively studied and account for most of the health effects attributed to tannins. This review article summarises the effect of the human microbiota on the metabolism of different tannin groups and the expected health benefits that may be induced by such mutual interactions. Microbial metabolism of tannins yields highly bioaccessible microbial metabolites that account for most of the systemic effects of tannins. This article also uses explainable artificial intelligence to define the molecular signatures of gut-biotransformed tannin metabolites that are correlated with chemical and biological activity. An understanding of microbiota-tannin interactions, tannin metabolism-related phenotypes (metabotypes) and chemical tannin-metabolites motifs is of great importance for harnessing the biological effects of tannins for drug discovery and other health benefits.
Collapse
Affiliation(s)
- Ibrahim E. Sallam
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City 12566, Egypt;
| | - Amr Abdelwareth
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.A.); (R.K.A.)
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.A.); (R.K.A.)
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo 11617, Egypt
| | - Masun Nabhan Homsi
- Helmholtz-Centre for Environmental Research-UFZ GmbH, Department of Molecular Systems Biology, 04318 Leipzig, Germany;
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research-UFZ GmbH, Department of Molecular Systems Biology, 04318 Leipzig, Germany;
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
17
|
Li KJ, Brouwer-Brolsma EM, Burton-Pimentel KJ, Vergères G, Feskens EJM. A systematic review to identify biomarkers of intake for fermented food products. GENES AND NUTRITION 2021; 16:5. [PMID: 33882831 PMCID: PMC8058972 DOI: 10.1186/s12263-021-00686-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Background Fermented foods are ubiquitous in human diets and often lauded for their sensory, nutritious, and health-promoting qualities. However, precise associations between the intake of fermented foods and health have not been well-established. This is in part due to the limitations of current dietary assessment tools that rely on subjective reporting, making them prone to memory-related errors and reporting bias. The identification of food intake biomarkers (FIBs) bypasses this challenge by providing an objective measure of intake. Despite numerous studies reporting on FIBs for various types of fermented foods and drinks, unique biomarkers associated with the fermentation process (“fermentation-dependent” biomarkers) have not been well documented. We therefore conducted a comprehensive, systematic review of the literature to identify biomarkers of fermented foods commonly consumed in diets across the world. Results After title, abstract, and full-text screening, extraction of data from 301 articles resulted in an extensive list of compounds that were detected in human biofluids following the consumption of various fermented foods, with the majority of articles focusing on coffee (69), wine (69 articles), cocoa (62), beer (34), and bread (29). The identified compounds from all included papers were consolidated and sorted into FIBs proposed for a specific food, for a food group, or for the fermentation process. Alongside food-specific markers (e.g., trigonelline for coffee), and food-group markers (e.g., pentadecanoic acid for dairy intake), several fermentation-dependent markers were revealed. These comprised compounds related to the fermentation process of a particular food, such as mannitol (wine), 2-ethylmalate (beer), methionine (sourdough bread, cheese), theabrownins (tea), and gallic acid (tea, wine), while others were indicative of more general fermentation processes (e.g., ethanol from alcoholic fermentation, 3-phenyllactic acid from lactic fermentation). Conclusions Fermented foods comprise a heterogeneous group of foods. While many of the candidate FIBs identified were found to be non-specific, greater specificity may be observed when considering a combination of compounds identified for individual fermented foods, food groups, and from fermentation processes. Future studies that focus on how fermentation impacts the composition and nutritional quality of food substrates could help to identify novel biomarkers of fermented food intake. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00686-4.
Collapse
Affiliation(s)
- Katherine J Li
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands. .,Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland.
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| | - Kathryn J Burton-Pimentel
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Guy Vergères
- Food Microbial Systems Research Division, Federal Department of Economic Affairs, Education and Research (EAER), Federal Office for Agriculture (FOAG), Agroscope, Bern, Switzerland
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Abstract
Wineinformatics is a new data science research area that focuses on large amounts of wine-related data. Most of the current Wineinformatics researches are focused on supervised learning to predict the wine quality, price, region and weather. In this research, unsupervised learning using K-means clustering with optimal K search and filtration process is studied on a Bordeaux-region specific dataset to form clusters and find representative wines in each cluster. 14,349 wines representing the 21st century Bordeaux dataset are clustered into 43 and 13 clusters with detailed analysis on the number of wines, dominant wine characteristics, average wine grades, and representative wines in each cluster. Similar research results are also generated and presented on 435 elite wines (wines that scored 95 points and above on a 100 points scale). The information generated from this research can be beneficial to wine vendors to make a selection given the limited number of wines they can realistically offer, to connoisseurs to study wines in a target region/vintage/price with a representative short list, and to wine consumers to get recommendations. Many possible researches can adopt the same process to analyze and find representative wines in different wine making regions/countries, vintages, or pivot points. This paper opens up a new door for Wineinformatics in unsupervised learning researches.
Collapse
|
19
|
Luque de Castro M, Quiles-Zafra R. Lipidomics: An omics discipline with a key role in nutrition. Talanta 2020; 219:121197. [DOI: 10.1016/j.talanta.2020.121197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
|
20
|
Moreno-Arribas MV, Bartolomé B, Peñalvo JL, Pérez-Matute P, Motilva MJ. Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer's Disease. Nutrients 2020; 12:E3082. [PMID: 33050383 PMCID: PMC7600228 DOI: 10.3390/nu12103082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual's oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.
Collapse
Affiliation(s)
- M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - José L. Peñalvo
- Institute of Tropical Medicine, Unit Noncommunicable Diseases, Natl Str 155, B-2000 Antwerp, Belgium;
| | | | - Maria José Motilva
- Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, Autovía del Camino de Santiago LO-20 Exit 13, 26007 Logroño, Spain;
| |
Collapse
|
21
|
Wang W, Han Z, Guo D, Xiang Y. UHPLC-QTOFMS-based metabolomic analysis of serum and urine in rats treated with musalais containing varying ethyl carbamate content. Anal Bioanal Chem 2020; 412:7627-7637. [PMID: 32897411 DOI: 10.1007/s00216-020-02900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
The aim of this work is to investigate the effect of the ethyl carbamate (EC) content in musalais on the metabolism of rats. Electron beam irradiation was performed to decrease the content of EC in musalais, and Sprague Dawley rats were subjected to intragastric administration of musalais with varying EC content (high, medium, and low groups). Control rats were fed normally without any treatment. Serum and urine samples were analyzed using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Principal component analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were performed to detect changes in the metabolite profile in the serum and urine in order to identify the differential metabolites and metabolic pathways. The results demonstrated clear differences in the serum and urine metabolic patterns between control and treatment groups. Ions in treatment groups with variable importance in the projection of >1 (selected from the OPLS-DA loading plots) and Ps < 0.05 (Student t test) compared to control group were identified as candidate metabolites. Analysis of the metabolic pathways relevant to the identified differential metabolites revealed that high EC content in musalais (10 mg/kg) mainly affected rats through valine, leucine, and isoleucine biosynthesis and nicotinate and nicotinamide metabolism, which were associated with energy metabolism. In addition, this work suggests that EC can induce oxidative stress via inhibition of glycine content.
Collapse
Affiliation(s)
- Weihua Wang
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - ZhanJiang Han
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China.
| | - Dongqi Guo
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - Yanju Xiang
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| |
Collapse
|
22
|
Moorthy M, Chaiyakunapruk N, Jacob SA, Palanisamy UD. Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: A systematic review of randomised controlled trials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Sanchez-Rodriguez E, Egea-Zorrilla A, Plaza-Díaz J, Aragón-Vela J, Muñoz-Quezada S, Tercedor-Sánchez L, Abadia-Molina F. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients 2020; 12:605. [PMID: 32110880 PMCID: PMC7146472 DOI: 10.3390/nu12030605] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
The importance of gut microbiota in health and disease is being highlighted by numerous research groups worldwide. Atherosclerosis, the leading cause of heart disease and stroke, is responsible for about 50% of all cardiovascular deaths. Recently, gut dysbiosis has been identified as a remarkable factor to be considered in the pathogenesis of cardiovascular diseases (CVDs). In this review, we briefly discuss how external factors such as dietary and physical activity habits influence host-microbiota and atherogenesis, the potential mechanisms of the influence of gut microbiota in host blood pressure and the alterations in the prevalence of those bacterial genera affecting vascular tone and the development of hypertension. We will also be examining the microbiota as a therapeutic target in the prevention of CVDs and the beneficial mechanisms of probiotic administration related to cardiovascular risks. All these new insights might lead to novel analysis and CVD therapeutics based on the microbiota.
Collapse
Affiliation(s)
- Estefania Sanchez-Rodriguez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alejandro Egea-Zorrilla
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Nutrition, Exercise and Sports (NEXS), Section of Integrative Physiology, University of Copenhagen, Nørre Allé 51, DK-2200 Copenhagen, Denmark;
| | - Sergio Muñoz-Quezada
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile;
- National Agency for Medicines (ANAMED), Public Health Institute, Santiago 7780050, Chile
| | | | - Francisco Abadia-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
Riedl A, Hillesheim E, Wawro N, Meisinger C, Peters A, Roden M, Kronenberg F, Herder C, Rathmann W, Völzke H, Reincke M, Koenig W, Wallaschofski H, Daniel H, Hauner H, Brennan L, Linseisen J. Evaluation of the Metabotype Concept Identified in an Irish Population in the German KORA Cohort Study. Mol Nutr Food Res 2020; 64:e1900918. [PMID: 32048458 DOI: 10.1002/mnfr.201900918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
SCOPE Previous work identified three metabolically homogeneous subgroups of individuals ("metabotypes") using k-means cluster analysis based on fasting serum levels of triacylglycerol, total cholesterol, HDL cholesterol, and glucose. The aim is to reproduce these findings and describe metabotype groups by dietary habits and by incident disease occurrence. METHODS AND RESULTS 1744 participants from the KORA F4 study and 2221 participants from the KORA FF4 study are assigned to the three metabotype clusters previously identified by minimizing the Euclidean distances. In both KORA studies, the assignment of participants results in three metabolically distinct clusters, with cluster 3 representing the group of participants with the most unfavorable metabolic characteristics. Individuals of cluster 3 are further characterized by the highest incident disease occurrence during follow-up; they also reveal the most unfavorable diet with significantly lowest intakes of vegetables, dairy products, and fibers, and highest intakes of total, red, and processed meat. CONCLUSION The three metabotypes originally identified in an Irish population are successfully reproduced. In addition to this validation approach, the observed differences in disease incidence across metabotypes represent an important new finding that strongly supports the metabotyping approach as a tool for risk stratification.
Collapse
Affiliation(s)
- Anna Riedl
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany
| | - Elaine Hillesheim
- Institute of Food and Health, UCD School of Agriculture and Food Science, UCD, Stillorgan Rd, Belfield, Dublin, 4, Ireland
| | - Nina Wawro
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstr. 41, 6020, Innsbruck, Austria
| | - Christian Herder
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Henry Völzke
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8a & 9, 80336, Munich, Germany.,Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475, Greifswald, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8a & 9, 80336, Munich, Germany.,Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081, Ulm, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17489, Greifswald, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising-Weihenstephan, Germany
| | - Hans Hauner
- Else Kröner-Fresenius Centre for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising-Weihenstephan, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany.,Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany
| | - Lorraine Brennan
- Institute of Food and Health, UCD School of Agriculture and Food Science, UCD, Stillorgan Rd, Belfield, Dublin, 4, Ireland
| | - Jakob Linseisen
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany
| |
Collapse
|
25
|
Abstract
AbstractPersonalised nutrition is at its simplest form the delivery of dietary advice at an individual level. Incorporating response to different diets has resulted in the concept of precision nutrition. Harnessing the metabolic phenotype to identify subgroups of individuals that respond differentially to dietary interventions is becoming a reality. More specifically, the classification of individuals in subgroups according to their metabolic profile is defined as metabotyping and this approach has been employed to successfully identify differential response to dietary interventions. Furthermore, the approach has been expanded to develop a framework for the delivery of targeted nutrition. The present review examines the application of the metabotype approach in nutrition research with a focus on developing personalised nutrition. Application of metabotyping in longitudinal studies demonstrates that metabotypes can be associated with cardiometabolic risk factors and diet-related diseases while application in interventions can identify metabotypes with differential responses. In general, there is strong evidence that metabolic phenotyping is a promising strategy to identify groups at risk and to potentially improve health promotion at a population level. Future work should verify if targeted nutrition can change behaviours and have an impact on health outcomes.
Collapse
|
26
|
Serra-Majem L, Román-Viñas B, Sanchez-Villegas A, Guasch-Ferré M, Corella D, La Vecchia C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol Aspects Med 2019; 67:1-55. [PMID: 31254553 DOI: 10.1016/j.mam.2019.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Abstract
More than 50 years after the Seven Countries Study, a large number of epidemiological studies have explored the relationship between the Mediterranean diet (MD) and health, through observational, case-control, some longitudinal and a few experimental studies. The overall results show strong evidence suggesting a protective effect of the MD mainly on the risk of cardiovascular disease (CVD) and certain types of cancer. The beneficial effects have been attributed to the types of food consumed, total dietary pattern, components in the food, cooking techniques, eating behaviors and lifestyle behaviors, among others. The aim of this article is to review and summarize the knowledge derived from the literature focusing on the benefits of the MD on health, including those that have been extensively investigated (CVD, cancer) along with more recent issues such as mental health, immunity, quality of life, etc. The review begins with a brief description of the MD and its components. Then we present a review of studies evaluating metabolic biomarkers and genotypes in relation to the MD. Other sections are dedicated to observation and intervention studies for various pathologies. Finally, some insights into the relationship between the MD and sustainability are explored. In conclusion, the research undertaken on metabolomics approaches has identified potential markers for certain MD components and patterns, but more investigation is needed to obtain valid measures. Further evaluation of gene-MD interactions are also required to better understand the mechanisms by which the MD diet exerts its beneficial effects on health. Observation and intervention studies, particularly PREDIMED, have provided invaluable data on the benefits of the MD for a wide range of chronic diseases. However further research is needed to explore the effects of other lifestyle components associated with Mediterranean populations, its environmental impact, as well as the MD extrapolation to non-Mediterranean contexts.
Collapse
Affiliation(s)
- Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain.
| | - Blanca Román-Viñas
- Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain; School of Health and Sport Sciences (EUSES), Universitat de Girona, Salt, Spain; Department of Physical Activity and Sport Sciences, Blanquerna, Universitat Ramon Llull, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Almudena Sanchez-Villegas
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H.Chan School of Public Health, Boston, MA, USA; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dolores Corella
- Genetic and Molecular Epidemiology Unit. Department of Preventive Medicine. University of Valencia, Valencia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
27
|
Modifying effect of metabotype on diet-diabetes associations. Eur J Nutr 2019; 59:1357-1369. [PMID: 31089867 PMCID: PMC7230059 DOI: 10.1007/s00394-019-01988-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/05/2019] [Indexed: 12/18/2022]
Abstract
Purpose Inter-individual metabolic differences may be a reason for previously inconsistent results in diet–diabetes associations. We aimed to investigate associations between dietary intake and diabetes for metabolically homogeneous subgroups (‘metabotypes’) in a large cross-sectional study. Methods We used data of 1517 adults aged 38–87 years from the German population-based KORA FF4 study (2013/2014). Dietary intake was estimated based on the combination of a food frequency questionnaire and multiple 24-h food lists. Glucose tolerance status was classified based on an oral glucose tolerance test in participants without a previous diabetes diagnosis using American Diabetes Association criteria. Logistic regression was applied to examine the associations between dietary intake and diabetes for two distinct metabotypes, which were identified based on 16 biochemical and anthropometric parameters. Results A low intake of fruits and a high intake of total meat, processed meat and sugar-sweetened beverages (SSB) were significantly associated with diabetes in the total study population. Stratified by metabotype, associations with diabetes remained significant for intake of total meat (OR 1.67, 95% CI 1.04–2.67) and processed meat (OR 2.23, 95% CI 1.24–4.04) in the metabotypes with rather favorable metabolic characteristics, and for intake of fruits (OR 0.83, 95% CI 0.68–0.99) and SSB (OR:1.21, 95% CI 1.09–1.35) in the more unfavorable metabotype. However, only the association between SSB intake and diabetes differed significantly by metabotype (p value for interaction = 0.01). Conclusions Our findings suggest an influence of metabolic characteristics on diet–diabetes associations, which may help to explain inconsistent previous results. The causality of the observed associations needs to be confirmed in prospective and intervention studies. Electronic supplementary material The online version of this article (10.1007/s00394-019-01988-5) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Tebani A, Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019; 6:41. [PMID: 31024923 PMCID: PMC6465639 DOI: 10.3389/fnut.2019.00041] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Nutrition is an interdisciplinary science that studies the interactions of nutrients with the body in relation to maintenance of health and well-being. Nutrition is highly complex due to the underlying various internal and external factors that could model it. Thus, hacking this complexity requires more holistic and network-based strategies that could unveil these dynamic system interactions at both time and space scales. The ongoing omics era with its high-throughput molecular data generation is paving the way to embrace this complexity and is deeply reshaping the whole field of nutrition. Understanding the future paths of nutrition science is of importance from both translational and clinical perspectives. Basic nutrients which might include metabolites are important in nutrition science. Moreover, metabolites are key biological communication channels and represent an appealing functional readout at the interface of different major influential factors that define health and disease. Metabolomics is the technology that enables holistic and systematic analyses of metabolites in a biological system. Hence, given its intrinsic functionality, its tight connection to metabolism and its high clinical actionability potential, metabolomics is a very appealing technology for nutrition science. The ultimate goal is to deliver a tailored and clinically relevant nutritional recommendations and interventions to achieve precision nutrition. This work intends to present an update on the applications of metabolomics to personalize nutrition in translational and clinical settings. It also discusses the current conceptual shifts that are remodeling clinical nutrition practices in this Precision Medicine era. Finally, perspectives of clinical nutrition in the ever-growing, data-driven healthcare landscape are presented.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France.,Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| |
Collapse
|
29
|
González-Peña D, Brennan L. Recent Advances in the Application of Metabolomics for Nutrition and Health. Annu Rev Food Sci Technol 2019; 10:479-519. [DOI: 10.1146/annurev-food-032818-121715] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolomics is the study of small molecules called metabolites in biological samples. Application of metabolomics to nutrition research has expanded in recent years, with emerging literature supporting multiple applications. Key examples include applications of metabolomics in the identification and development of objective biomarkers of dietary intake, in developing personalized nutrition strategies, and in large-scale epidemiology studies to understand the link between diet and health. In this review, we provide an overview of the current applications and identify key challenges that need to be addressed for the further development of the field. Successful development of metabolomics for nutrition research has the potential to improve dietary assessment, help deliver personalized nutrition, and enhance our understanding of the link between diet and health.
Collapse
Affiliation(s)
- Diana González-Peña
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin 4, Ireland;,
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin 4, Ireland;,
| |
Collapse
|
30
|
Davies R. The metabolomic quest for a biomarker in chronic kidney disease. Clin Kidney J 2018; 11:694-703. [PMID: 30288265 PMCID: PMC6165760 DOI: 10.1093/ckj/sfy037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is a growing burden on people and on healthcare for which the diagnostics are niether disease-specific nor indicative of progression. Biomarkers are sought to enable clinicians to offer more appropriate patient-centred treatments, which could come to fruition by using a metabolomics approach. This mini-review highlights the current literature of metabolomics and CKD, and suggests additional factors that need to be considered in this quest for a biomarker, namely the diet and the gut microbiome, for more meaningful advances to be made.
Collapse
Affiliation(s)
- Robert Davies
- School of Biomedical and Healthcare Sciences, University of Plymouth School of Biological Sciences, Plymouth, UK
| |
Collapse
|
31
|
French and Mediterranean-style diets: Contradictions, misconceptions and scientific facts-A review. Food Res Int 2018; 116:840-858. [PMID: 30717015 DOI: 10.1016/j.foodres.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Abstract
The determination of appropriate dietary strategies for the prevention of chronic degenerative diseases, cancer, diabetes, and cardiovascular diseases remains a challenging and highly relevant issue worldwide. Epidemiological dietary interventions have been studied for decades with contrasting impacts on human health. Moreover, research scientists and physicians have long debated diets encouraging alcohol intake, such as the Mediterranean and French-style diets, with regard to their impact on human health. Understanding the effects of these diets may help to improve in the treatment and prevention of diseases. However, further studies are warranted to determine which individual food components, or combinations thereof, have a beneficial impact on different diseases, since a large number of different compounds may occur in a single food, and their fate in vivo is difficult to measure. Most explanations for the positive effects of Mediterranean-style diet, and of the French paradox, have focused largely on the beneficial properties of antioxidants, among other compounds/metabolites, in foods and red wine. Wine is a traditional alcoholic beverage that has been associated with both healthy and harmful effects. Not withstanding some doubts, there is reasonable unanimity among researchers as to the beneficial effects of moderate wine consumption on cardiovascular disease, diabetes, osteoporosis, and longevity, which have been ascribed to polyphenolic compounds present in wine. Despite this, conflicting findings regarding the impact of alcohol consumption on human health, and contradictory findings concerning the effects of non-alcoholic wine components such as resveratrol, have led to confusion among consumers. In addition to these contradictions and misconceptions, there is a paucity of human research studies confirming known positive effects of polyphenols in vivo. Furthermore, studies balancing both known and unknown prognostic factors have mostly been conducted in vitro or using animal models. Moreover, current studies have shifted focus from red wine to dairy products, such as cheese, to explain the French paradox. The aim of this review is to highlight the contradictions, misconceptions, and scientific facts about wines and diets, giving special focus to the Mediterranean and French diets in disease prevention and human health improvement. To answer the multiplicity of questions regarding the effects of diet and specific diet components on health, and to relieve consumer uncertainty and promote health, comprehensive cross-demographic studies using the latest technologies, which include foodomics and integrated omics approaches, are warranted.
Collapse
|
32
|
Riedl A, Wawro N, Gieger C, Meisinger C, Peters A, Roden M, Kronenberg F, Herder C, Rathmann W, Völzke H, Reincke M, Koenig W, Wallaschofski H, Hauner H, Daniel H, Linseisen J. Identification of Comprehensive Metabotypes Associated with Cardiometabolic Diseases in the Population-Based KORA Study. Mol Nutr Food Res 2018; 62:e1800117. [PMID: 29939495 DOI: 10.1002/mnfr.201800117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/24/2018] [Indexed: 12/17/2022]
Abstract
SCOPE "Metabotyping" describes the grouping of metabolically similar individuals. We aimed to identify valid metabotypes in a large cohort for targeted dietary intervention, for example, for disease prevention. METHODS AND RESULTS We grouped 1729 adults aged 32-77 years of the German population-based KORA F4 study (2006-2008) using k-means cluster analysis based on 34 biochemical and anthropometric parameters. We identified three metabolically distinct clusters showing significantly different biochemical parameter concentrations. Cardiometabolic disease status was determined at baseline in the F4 study and at the 7 year follow-up termed FF4 (2013/2014) to compare disease prevalence and incidence between clusters. Cluster 3 showed the most unfavorable marker profile with the highest prevalence of cardiometabolic diseases. Also, disease incidence was higher in cluster 3 compared to clusters 2 and 1, respectively, for hypertension (41.2%/25.3%/18.2%), type 2 diabetes (28.3%/5.1%/2.0%), hyperuricemia/gout (10.8%/2.3%/0.7%), dyslipidemia (19.2%/18.3%/5.6%), all metabolic (54.5%/36.8%/19.7%), and all cardiovascular (6.3%/5.5%/2.3%) diseases together. CONCLUSION Cluster analysis based on an extensive set of biochemical and anthropometric parameters allows the identification of comprehensive metabotypes that were distinctly different in cardiometabolic disease occurrence. As a next step, targeted dietary strategies should be developed with the goal of preventing diseases, especially in cluster 3.
Collapse
Affiliation(s)
- Anna Riedl
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156, Augsburg, Germany
| | - Nina Wawro
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156, Augsburg, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Schöpfstr. 41, 6020, Innsbruck, Austria
| | - Christian Herder
- German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Henry Völzke
- German Center for Diabetes Research, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,DZHK - German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Pettenkoferstr. 8a & 9, 80336, Munich, Germany.,Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475, Greifswald, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Ziemssenstr. 1, 81377, Munich, Germany
| | - Wolfgang Koenig
- DZHK - German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Pettenkoferstr. 8a & 9, 80336, Munich, Germany.,Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany.,Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17489, Greifswald, Germany
| | - Hans Hauner
- Else Kröner-Fresenius Centre for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising-Weihenstephan, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany.,Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Uptown München Campus D, Georg-Brauchle-Ring 60/62, 80992, Munich, Germany.,Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising-Weihenstephan, Germany
| | - Hannelore Daniel
- Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising-Weihenstephan, Germany
| | - Jakob Linseisen
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156, Augsburg, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany
| |
Collapse
|
33
|
Esteban-Fernández A, Ibañez C, Simó C, Bartolomé B, Moreno-Arribas MV. An Ultrahigh-Performance Liquid Chromatography–Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome. J Proteome Res 2018; 17:1624-1635. [DOI: 10.1021/acs.jproteome.7b00904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adelaida Esteban-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Clara Ibañez
- IMDEA Alimentación, Carretera de Canto Blanco no. 8, 28049 Madrid, Spain
| | - Carolina Simó
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| | - M. Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9 Campus de Cantoblanco, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
34
|
Urpi-Sarda M, Almanza-Aguilera E, Llorach R, Vázquez-Fresno R, Estruch R, Corella D, Sorli JV, Carmona F, Sanchez-Pla A, Salas-Salvadó J, Andres-Lacueva C. Non-targeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants. DIABETES & METABOLISM 2018; 45:167-174. [PMID: 29555466 DOI: 10.1016/j.diabet.2018.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/24/2018] [Accepted: 02/13/2018] [Indexed: 01/20/2023]
Abstract
AIM To characterize the urinary metabolomic fingerprint and multi-metabolite signature associated with type 2 diabetes (T2D), and to classify the population into metabotypes related to T2D. METHODS A metabolomics analysis using the 1H-NMR-based, non-targeted metabolomic approach was conducted to determine the urinary metabolomic fingerprint of T2D compared with non-T2D participants in the PREDIMED trial. The discriminant metabolite fingerprint was subjected to logistic regression analysis and ROC analyses to establish and to assess the multi-metabolite signature of T2D prevalence, respectively. Metabotypes associated with T2D were identified using the k-means algorithm. RESULTS A total of 33 metabolites were significantly different (P<0.05) between T2D and non-T2D participants. The multi-metabolite signature of T2D comprised high levels of methylsuccinate, alanine, dimethylglycine and guanidoacetate, and reduced levels of glutamine, methylguanidine, 3-hydroxymandelate and hippurate, and had a 96.4% AUC, which was higher than the metabolites on their own and glucose. Amino-acid and carbohydrate metabolism were the main metabolic alterations in T2D, and various metabotypes were identified in the studied population. Among T2D participants, those with a metabotype of higher levels of phenylalanine, phenylacetylglutamine, p-cresol and acetoacetate had significantly higher levels of plasma glucose. CONCLUSION The multi-metabolite signature of T2D highlights the altered metabolic fingerprint associated mainly with amino-acid, carbohydrate and microbiota metabolism. Metabotypes identified in this patient population could be related to higher risk of long-term cardiovascular events and therefore require further studies. Metabolomics is a useful tool for elucidating the metabolic complexity and interindividual variation in T2D towards the development of stratified precision nutrition and medicine. Trial registration at www.controlled-trials.com: ISRCTN35739639.
Collapse
Affiliation(s)
- M Urpi-Sarda
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain.
| | - E Almanza-Aguilera
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - R Llorach
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - R Vázquez-Fresno
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Department of Computing Science and Biological Sciences, University of Alberta, Edmonton, Canada
| | - R Estruch
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - D Corella
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain
| | - J V Sorli
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain
| | - F Carmona
- Statistics Department, Biology Faculty, University of Barcelona, Barcelona, Spain
| | - A Sanchez-Pla
- Statistics Department, Biology Faculty, University of Barcelona, Barcelona, Spain
| | - J Salas-Salvadó
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Human Nutrition Unit, Biochemistry and Biotechnology Department. Hospital Universitari de Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - C Andres-Lacueva
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
35
|
de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Crit Rev Food Sci Nutr 2018; 59:1645-1659. [PMID: 29377718 DOI: 10.1080/10408398.2018.1425285] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several foods are rich sources of phenolic compounds (PC) and their beneficial effects on human health may be increased through the action of probiotics. Additionally, probiotics may use PC as substrates, increasing their survival and functionality. This review presents available studies on the effects of PC on probiotics, including their physiological functionalities, interactions and capability of surviving during exposure to gastrointestinal conditions and when incorporated into food matrices. Studies have shown that PC can improve the adhesion capacity and survival of probiotics during exposure to conditions that mimic the gastrointestinal tract. There is strong evidence that PC can modulate the composition of the gut microbiota in hosts, improving a variety of biochemical markers and risk factors for chronic diseases. Available literature also indicates that metabolites of PC formed by intestinal microorganisms, including probiotics, exert a variety of benefits on host health. These metabolites are typically more active than parental dietary PC. The presence of PC commonly enhances probiotic survival in different foods. Finally, further clinical studies need to be developed to confirm in vitro and experimental findings concerning the beneficial interactions among different PC and probiotics.
Collapse
Affiliation(s)
- Evandro Leite de Souza
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | | | - Aldeir Sabino Dos Santos
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - Nayara Moreira Lacerda Massa
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - José Luiz de Brito Alves
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| |
Collapse
|
36
|
Gao Q, Praticò G, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres-Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJM, Dragsted LO. A scheme for a flexible classification of dietary and health biomarkers. GENES & NUTRITION 2017; 12:34. [PMID: 29255495 PMCID: PMC5728065 DOI: 10.1186/s12263-017-0587-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 01/05/2023]
Abstract
Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their application. In order to better understand the potential of biomarkers and to communicate their use and application, it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in detail for the dietary and health area and is compared with previous biomarker classification for this field of research.
Collapse
Affiliation(s)
- Qian Gao
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Augustin Scalbert
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), Lyon, France
| | - Guy Vergères
- Agroscope, Federal Office of Agriculture, Berne, Switzerland
| | | | - Claudine Manach
- INRA, Human Nutrition Unit, Université Clermont Auvergne, INRA, F63000 Clermont-Ferrand, France
| | - Lorraine Brennan
- UCD Institute of Food & Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Lydia A. Afman
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Hans Verhagen
- European Food Safety Authority (EFSA), Parma, Italy
- University of Ulster, Coleraine, Northern Ireland UK
| | - Edith J. M. Feskens
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
|
38
|
Metabotyping for the development of tailored dietary advice solutions in a European population: the Food4Me study. Br J Nutr 2017; 118:561-569. [PMID: 29056103 DOI: 10.1017/s0007114517002069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Traditionally, personalised nutrition was delivered at an individual level. However, the concept of delivering tailored dietary advice at a group level through the identification of metabotypes or groups of metabolically similar individuals has emerged. Although this approach to personalised nutrition looks promising, further work is needed to examine this concept across a wider population group. Therefore, the objectives of this study are to: (1) identify metabotypes in a European population and (2) develop targeted dietary advice solutions for these metabotypes. Using data from the Food4Me study (n 1607), k-means cluster analysis revealed the presence of three metabolically distinct clusters based on twenty-seven metabolic markers including cholesterol, individual fatty acids and carotenoids. Cluster 2 was identified as a metabolically healthy metabotype as these individuals had the highest Omega-3 Index (6·56 (sd 1·29) %), carotenoids (2·15 (sd 0·71) µm) and lowest total saturated fat levels. On the basis of its fatty acid profile, cluster 1 was characterised as a metabolically unhealthy cluster. Targeted dietary advice solutions were developed per cluster using a decision tree approach. Testing of the approach was performed by comparison with the personalised dietary advice, delivered by nutritionists to Food4Me study participants (n 180). Excellent agreement was observed between the targeted and individualised approaches with an average match of 82 % at the level of delivery of the same dietary message. Future work should ascertain whether this proposed method could be utilised in a healthcare setting, for the rapid and efficient delivery of tailored dietary advice solutions.
Collapse
|
39
|
Guasch-Ferré M, Bhupathiraju SN, Hu FB. Use of Metabolomics in Improving Assessment of Dietary Intake. Clin Chem 2017; 64:82-98. [PMID: 29038146 DOI: 10.1373/clinchem.2017.272344] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Nutritional metabolomics is rapidly evolving to integrate nutrition with complex metabolomics data to discover new biomarkers of nutritional exposure and status. CONTENT The purpose of this review is to provide a broad overview of the measurement techniques, study designs, and statistical approaches used in nutrition metabolomics, as well as to describe the current knowledge from epidemiologic studies identifying metabolite profiles associated with the intake of individual nutrients, foods, and dietary patterns. SUMMARY A wide range of technologies, databases, and computational tools are available to integrate nutritional metabolomics with dietary and phenotypic information. Biomarkers identified with the use of high-throughput metabolomics techniques include amino acids, acylcarnitines, carbohydrates, bile acids, purine and pyrimidine metabolites, and lipid classes. The most extensively studied food groups include fruits, vegetables, meat, fish, bread, whole grain cereals, nuts, wine, coffee, tea, cocoa, and chocolate. We identified 16 studies that evaluated metabolite signatures associated with dietary patterns. Dietary patterns examined included vegetarian and lactovegetarian diets, omnivorous diet, Western dietary patterns, prudent dietary patterns, Nordic diet, and Mediterranean diet. Although many metabolite biomarkers of individual foods and dietary patterns have been identified, those biomarkers may not be sensitive or specific to dietary intakes. Some biomarkers represent short-term intakes rather than long-term dietary habits. Nonetheless, nutritional metabolomics holds promise for the development of a robust and unbiased strategy for measuring diet. Still, this technology is intended to be complementary, rather than a replacement, to traditional well-validated dietary assessment methods such as food frequency questionnaires that can measure usual diet, the most relevant exposure in nutritional epidemiologic studies.
Collapse
Affiliation(s)
- Marta Guasch-Ferré
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA
| | - Shilpa N Bhupathiraju
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA; .,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| |
Collapse
|
40
|
Effects of Polyphenol Intake on Metabolic Syndrome: Current Evidences from Human Trials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5812401. [PMID: 28894509 PMCID: PMC5574312 DOI: 10.1155/2017/5812401] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors which severely increases the risk of type II diabetes and cardiovascular disease. Several epidemiological studies have observed a negative association between polyphenol intake and MetS rates. Nevertheless, there are relatively small numbers of interventional studies evidencing this association. This review is focused on human interventional trials with polyphenols as polyphenol-rich foods and dietary patterns rich in polyphenols in patients with MetS. Current evidence suggests that polyphenol intake has the potential to alleviate MetS components by decreasing body weight, blood pressure, and blood glucose and by improving lipid metabolism. Therefore, high intake of polyphenol-rich foods such as nuts, fruits, vegetables, seasoning with aromatic plants, spices, and virgin olive oil may be the cornerstone of a healthy diet preventing the development and progression of MetS, although there is no polyphenol or polyphenol-rich food able to influence all MetS features. However, inconsistent results have been found in different trials, and more long-term randomized trials are warranted to develop public health strategies to decrease MetS rates.
Collapse
|
41
|
Münger LH, Trimigno A, Picone G, Freiburghaus C, Pimentel G, Burton KJ, Pralong FP, Vionnet N, Capozzi F, Badertscher R, Vergères G. Identification of Urinary Food Intake Biomarkers for Milk, Cheese, and Soy-Based Drink by Untargeted GC-MS and NMR in Healthy Humans. J Proteome Res 2017; 16:3321-3335. [PMID: 28753012 DOI: 10.1021/acs.jproteome.7b00319] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The measurement of food intake biomarkers (FIBs) in biofluids represents an objective tool for dietary assessment. FIBs of milk and cheese still need more investigation due to the absence of candidate markers. Thus, an acute intervention study has been performed to sensitively and specifically identify candidate FIBs. Eleven healthy male and female volunteers participated in the randomized, controlled crossover study that tested a single intake of milk and cheese as test products, and soy-based drink as a control. Urine samples were collected at baseline and up to 24 h at distinct time intervals (0-1, 1-2, 2-4, 4-6, 6-12, and 12-24 h) and were analyzed using an untargeted multiplatform approach (GC-MS and 1H NMR). Lactose, galactose, and galactonate were identified exclusively after milk intake while for other metabolites (allantoin, hippurate, galactitol, and galactono-1,5-lactone) a significant increase has been observed. Urinary 3-phenyllactic acid was the only compound specifically reflecting cheese intake although alanine, proline, and pyroglutamic acid were found at significantly higher levels after cheese consumption. In addition, several novel candidate markers for soy drink were identified, such as pinitol and trigonelline. Together, these candidate FIBs of dairy intake could serve as a basis for future validation studies under free-living conditions.
Collapse
Affiliation(s)
- Linda H Münger
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope , Berne, Switzerland
| | - Alessia Trimigno
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna , Cesena, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna , Cesena, Italy
| | - Carola Freiburghaus
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope , Berne, Switzerland
| | - Grégory Pimentel
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope , Berne, Switzerland.,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital , 1011 Lausanne, Switzerland
| | - Kathryn J Burton
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital , 1011 Lausanne, Switzerland
| | - François P Pralong
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital , 1011 Lausanne, Switzerland
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital , 1011 Lausanne, Switzerland
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna , Cesena, Italy
| | - René Badertscher
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope , Berne, Switzerland
| | - Guy Vergères
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope , Berne, Switzerland
| |
Collapse
|
42
|
Borisova B, Villalonga ML, Arévalo-Villena M, Boujakhrout A, Sánchez A, Parrado C, Pingarrón JM, Briones-Pérez A, Villalonga R. Disposable electrochemical immunosensor for Brettanomyces bruxellensis based on nanogold-reduced graphene oxide hybrid nanomaterial. Anal Bioanal Chem 2017; 409:5667-5674. [PMID: 28730306 DOI: 10.1007/s00216-017-0505-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Abstract
The assembly of a novel disposable amperometric immunosensor for the detection of the red wine spoilage yeast Brettanomyces bruxellensis is reported. The nanostructured sensing interface was prepared by first coating carbon screen printed electrodes with a gold nanoparticles-reduced graphene oxide hybrid nanomaterial, which was then modified with 3-mercaptopropionic acid to further immobilize specific antibodies for B. bruxellensis via a carbodiimide-coupling reaction. The functionalized electrode allowed the amperometric detection of B. bruxellensis in buffered solutions and red wine samples in the range of 10-106 CFU/mL and 102-106 CFU/mL, with low detection limits of 8 CFU/mL and 56 CFU/mL, respectively. The electrochemical immunosensor also exhibited high reproducibility, selectivity, and storage stability. Graphical abstract A novel disposable electrochemical immunosensor for the detection of the red wine spoilage yeast B. bruxellensis.
Collapse
|
43
|
Abstract
AbstractMetabolic diversity leads to differences in nutrient requirements and responses to diet and medication between individuals. Using the concept of metabotyping – that is, grouping metabolically similar individuals – tailored and more efficient recommendations may be achieved. The aim of this study was to review the current literature on metabotyping and to explore its potential for better targeted dietary intervention in subjects with and without metabolic diseases. A comprehensive literature search was performed in PubMed, Google and Google Scholar to find relevant articles on metabotyping in humans including healthy individuals, population-based samples and patients with chronic metabolic diseases. A total of thirty-four research articles on human studies were identified, which established more homogeneous subgroups of individuals using statistical methods for analysing metabolic data. Differences between studies were found with respect to the samples/populations studied, the clustering variables used, the statistical methods applied and the metabotypes defined. According to the number and type of the selected clustering variables, the definitions of metabotypes differed substantially; they ranged between general fasting metabotypes, more specific fasting parameter subgroups like plasma lipoprotein or fatty acid clusters and response groups to defined meal challenges or dietary interventions. This demonstrates that the term ‘metabotype’ has a subjective usage, calling for a formalised definition. In conclusion, this literature review shows that metabotyping can help identify subgroups of individuals responding differently to defined nutritional interventions. Targeted recommendations may be given at such metabotype group levels. Future studies should develop and validate definitions of generally valid metabotypes by exploiting the increasingly available metabolomics data sets.
Collapse
|
44
|
Almanza-Aguilera E, Urpi-Sarda M, Llorach R, Vázquez-Fresno R, Garcia-Aloy M, Carmona F, Sanchez A, Madrid-Gambin F, Estruch R, Corella D, Andres-Lacueva C. Microbial metabolites are associated with a high adherence to a Mediterranean dietary pattern using a 1H-NMR-based untargeted metabolomics approach. J Nutr Biochem 2017; 48:36-43. [PMID: 28692847 DOI: 10.1016/j.jnutbio.2017.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022]
Abstract
The study of biomarkers of dietary patterns including the Mediterranean diet (MedDiet) is scarce and could improve the assessment of these patterns. Moreover, it could provide a better understanding of health benefits of dietary patterns in nutritional epidemiology. We aimed to determine a robust and accurate biomarker associated with a high adherence to a MedDiet pattern that included dietary assessment and its biological effect. In this cross-sectional study, we included 56 and 63 individuals with high (H-MDA) and low (L-MDA) MedDiet adherence categories, respectively, all from the Prevención con Dieta Mediterránea trial. A 1H-NMR-based untargeted metabolomics approach was applied to urine samples. Multivariate statistical analyses were conducted to determine the metabolite differences between groups. A stepwise logistic regression and receiver operating characteristic curves were used to build and evaluate the prediction model for H-MDA. Thirty-four metabolites were identified as discriminant between H-MDA and L-MDA. The fingerprint associated with H-MDA included higher excretion of proline betaine and phenylacetylglutamine, among others, and decreased amounts of metabolites related to glucose metabolism. Three microbial metabolites - phenylacetylglutamine, p-cresol and 4-hydroxyphenylacetate - were included in the prediction model of H-MDA (95% specificity, 95% sensitivity and 97% area under the curve). The model composed of microbial metabolites was the biomarker that defined high adherence to a Mediterranean dietary pattern. The overall metabolite profiling identified reflects the metabolic modulation produced by H-MDA. The proposed biomarker may be a better tool for assessing and aiding nutritional epidemiology in future associations between H-MDA and the prevention or amelioration of chronic diseases.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain.
| | - Rafael Llorach
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain
| | - Rosa Vázquez-Fresno
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain
| | - Francesc Carmona
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Alex Sanchez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain; Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Francisco Madrid-Gambin
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28028, Spain; Department of Internal Medicine, Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28028, Spain; Department of Preventive Medicine, University of Valencia, Valencia 46010, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona 08028, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28028, Spain.
| |
Collapse
|
45
|
The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 2017; 139:82-93. [PMID: 28483461 DOI: 10.1016/j.bcp.2017.04.033] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
(Poly)phenols (PPs) constitute a large family of phytochemicals with high chemical diversity that are known to be active principles of plant-derived nutraceuticals and herbal medicinal products. Their pharmacological activity, however, is difficult to demonstrate due to their mild physiological effects, and to the large inter-individual variability observed. Many PPs have little bioavailability and reach the colon almost unaltered. There they encounter the gut microbes resulting in a two-way interaction in which PPs modulate the gut microbiota composition, and the intestinal microbes catabolize the ingested PPs to release metabolites that are often more active and better absorbed than the native phenolic compounds. The type and quantity of the PP metabolites produced in humans depend on the gut microbiota composition and function, and different metabotypes have been identified. However, not all the metabolites have the same biological activity, and therefore the final health effects of dietary PPs depend on the gut microbiota composition. Stratification in clinical trials according to individuals' metabotypes is necessary to fully understand the health effects of PPs. In this review, we present and discuss the most significant and updated knowledge regarding the reciprocal interrelation of the gut microbiota with dietary PPs as a key factor that modulates the health effects of these compounds. The review will focus in those PPs that are known to be metabolized by gut microbiota resulting in bioactive metabolites.
Collapse
|
46
|
Williamson G, Clifford MN. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem Pharmacol 2017; 139:24-39. [PMID: 28322745 DOI: 10.1016/j.bcp.2017.03.012] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
(Poly)phenols are a large group of compounds, found in food, beverages, dietary supplements and herbal medicines. Owing to interest in their biological activities, absorption and metabolism of the most abundant compounds in humans are well understood. Both the chemical structure of the phenolic moiety and any attached chemical groups define whether the polyphenol is absorbed in the small intestine, or reaches the colon and is subject to extensive catabolism by colonic microbiota. Untransformed substrates may be absorbed, appearing in plasma primarily as methylated, sulfated and glucuronidated derivatives, with in some cases the unchanged substrate. Many of the catabolites are well absorbed from the colon and appear in the plasma either similarly conjugated, or as glycine conjugates, or in some cases unchanged. Although many (poly)phenol catabolites have been identified in human plasma and/or urine, the exact pathways from substrate to final microbial catabolite, and the species of bacteria and enzymes involved, are still scarcely reported. While it is clear that the composition of the human gut microbiota can be modulated in vivo by supplementation with some (poly)phenol-rich commodities, such modulation is definitely not an inevitable consequence of supplementation; it depends on the treatment, length of time and on the individual metabotype, and it is not clear whether the modulation is sustained when supplementation ceases. Some catabolites have been recorded in plasma of volunteers at concentrations similar to those shown to be effective in in vitro studies suggesting that some benefit may be achieved in vivo by diets yielding such catabolites.
Collapse
Affiliation(s)
- Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
47
|
Cueva C, Gil-Sánchez I, Ayuda-Durán B, González-Manzano S, González-Paramás AM, Santos-Buelga C, Bartolomé B, Moreno-Arribas MV. An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules 2017; 22:E99. [PMID: 28067835 PMCID: PMC6155716 DOI: 10.3390/molecules22010099] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, polyphenols, and flavonoids in particular, have attracted the interest of researchers, as they have been associated with the health-promoting effects derived from diets rich in vegetables and fruits, including moderate wine consumption. Recent scientific evidence suggests that wine polyphenols exert their effects through interactions with the gut microbiota, as they seem to modulate microbiota and, at the same time, are metabolized by intestinal bacteria into specific bioavailable metabolites. Microbial metabolites are better absorbed than their precursors and may be responsible for positive health activities in the digestive system (local effects) and, after being absorbed, in tissues and organs (systemic effects). Differences in gut microbiota composition and functionality among individuals can affect polyphenol activity and, therefore, their health effects. The aim of this review is to integrate the understanding of the metabolism and mechanisms of action of wine polyphenols at both local and systemic levels, underlining their impact on the gut microbiome and the inter-individual variability associated with polyphenols' metabolism and further physiological effects. The advent of promising dietary approaches linked to wine polyphenols beyond the gut microbiota community and metabolism are also discussed.
Collapse
Affiliation(s)
- Carolina Cueva
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Irene Gil-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Ana María González-Paramás
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
48
|
Lacroix S, Cantin J, Nigam A. Contemporary issues regarding nutrition in cardiovascular rehabilitation. Ann Phys Rehabil Med 2016; 60:36-42. [PMID: 27641779 DOI: 10.1016/j.rehab.2016.07.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022]
Abstract
In this article, we discuss certain contemporary and controversial topics in cardiovascular (CV) nutrition including recent data regarding the health benefits of the Mediterranean diet, the role of saturated fatty acids, red meat and the microbiome in CV disease and the current role of personalized CV nutrition. Findings from the PREDIMED study now demonstrate the health benefits of the Mediterranean diet even in the absence of heart disease. The study highlighted that even small, sustained and easily implementable changes to diet can provide significant health benefits even in Mediterranean regions. Likewise, observational data in secondary prevention show that increased adherence to the Mediterranean diet is associated with good long-term clinical outcomes among subjects with stable coronary heart disease. The role of saturated fats in the development of CV disease remains controversial, although data suggest that these fats are associated with modestly increased risk of CV events. In contrast, the obesity epidemic currently driving the CV risk worldwide is in large part due to excess consumption of refined carbohydrates. Furthermore, a growing body of evidence suggests that the intestinal microbiome is highly sensitive to lifestyle choices and may play a pivotal role in modulating CV disease development. For example, recent evidence linking processed and unprocessed meats to increased CV risk pointed to the gut microbial metabolite trimethylamine N-oxide as a potential culprit. Finally, given the high interindividual variability in response to interventions including diet, personalized nutrition has potential to play a major role in tailoring diets based on genetic make-up to maximize health benefits. This approach is still in its infancy but is highly promising.
Collapse
Affiliation(s)
- Sébastien Lacroix
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068 Rovereto, Italy; Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montreal, Quebec, Canada H1T 1C8; Research Centre, Montreal Heart Institute, Canada; Department of Nutrition, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3T 1A8
| | - Jennifer Cantin
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montreal, Quebec, Canada H1T 1C8; Research Centre, Montreal Heart Institute, Canada; Department of Nutrition, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3T 1A8
| | - Anil Nigam
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montreal, Quebec, Canada H1T 1C8; Research Centre, Montreal Heart Institute, Canada; Department of Nutrition, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3T 1A8; Department of Medicine, Université de Montréal, Montréal, Québec, Canada H3T 1J4; PERFORM Centre, Concordia University, Montreal, Quebec, Canada H4B 1R6.
| |
Collapse
|