1
|
Gan K, Zeng B, Chen H, Meng S, Ma D. Brain radiation necrosis treated with bevacizumab in a patient with advanced squamous cell lung carcinoma: A case report. Oncol Lett 2025; 29:98. [PMID: 39703530 PMCID: PMC11656793 DOI: 10.3892/ol.2024.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Brain radiation necrosis is a serious adverse effect of radiotherapy in patients with malignant brain metastases. There is currently no standard treatment for brain radiation necrosis; however, there are advantages to using bevacizumab. Nonetheless, due to the risk of severe bleeding when bevacizumab is used in patients with squamous cell lung carcinoma, relevant clinical studies are lacking; therefore, there is no clear conclusion on the use of bevacizumab to treat brain radiation necrosis in patients with squamous cell carcinoma of the lung with brain metastases. The present study described the case of a patient treated with bevacizumab after brain radiation injury with pathological manifestations diagnosed as squamous cell carcinoma of the lung. Through the evaluation of clinical symptoms and imaging data, the patient was diagnosed with cerebral radiation necrosis a few months after receiving local radiotherapy for intracranial metastatic lesions. After four cycles of treatment with bevacizumab (7.5 mg/kg once every 3 weeks, intravenous drip), the clinical and imaging manifestations of the patient were considerably improved with no significant adverse effects. The favorable efficacy and safety profiles of this patient suggest that bevacizumab holds potential as a future therapeutic option for managing radiation-induced brain necrosis in patients with squamous cell lung cancer.
Collapse
Affiliation(s)
- Kelun Gan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Beilei Zeng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hong Chen
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shan Meng
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Daiyuan Ma
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
2
|
Cayuela N, Izquierdo C, Vaquero L, Càmara E, Bruna J, Simó M. Mapping glioma's impact on cognition: Insights from macrostructure, microstructure, and beyond. Neurooncol Adv 2025; 7:vdaf003. [PMID: 39911704 PMCID: PMC11795312 DOI: 10.1093/noajnl/vdaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Background Cognitive impairment (CI) significantly impacts the quality of life of glioma patients. The main contributing risk factors include tumor characteristics, treatment-related factors, and their complex interplay. This review explores the role of advanced structural neuroimaging techniques in understanding CI in glioma patients. Methods A literature search was conducted in PubMed, PsycINFO, and ISI Web of Knowledge using specific keywords. We included studies with advanced magnetic resonance imaging techniques and objective neuropsychological exams. Results At diagnosis, during the pre-surgery phase, associations between glioma characteristics and cognitive outcomes have been described. Specifically, patients with isocitrate dehydrogenase (IDH)-wild-type gliomas exhibit more adverse cognitive outcomes, accompanied by disruptions in gray (GM) and white matter (WM) networks when compared to IDH-mutant. In addition, pre- and post-surgery imaging analyses highlight the importance of preserving specific WM tracts, such as the inferior longitudinal and arcuate fasciculus, in mitigating verbal memory and language processing decline. Furthermore, examining gliomas in perisylvian regions emphasizes deleterious effects on various cognitive domains. Additionally, it has been suggested that neuroplastic reorganization could serve as a compensatory mechanism against CI. Lastly, a limited number of studies suggest long-term CI linked to GM atrophy and leukoencephalopathy induced by radiotherapy ± chemotherapy in glioma survivors, highlighting the need for improving treatment approaches, particularly for patients with extended survival expectations. Conclusion This review underscores the need for nuanced understanding and an individual approach in the management of glioma patients. Neuroplastic insights offer clinicians valuable guidance in surgical decision-making and personalized therapeutic approaches thus improving patient outcomes in neuro-oncology.
Collapse
Affiliation(s)
- Nuria Cayuela
- Neurology Department, Complex Hospitalari Moisès Broggi, Barcelona, Spain
| | - Cristina Izquierdo
- Department of Neuroscience, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lucía Vaquero
- Music and Audio Research Lab (MARL), New York University, New York, USA
- Center for Language Music and Emotion (CLaME) – Max Plank Institute of Empirical Aesthetics, New York University, New York, USA
- Research Group in Digital Culture and Social Movements (Cibersomosaguas), and Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Complutense University of Madrid, Madrid, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Group, IDIBELL, Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO l’Hospitalet, IDIBELL (Oncobell Program), Barcelona, Spain
| | - Marta Simó
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO l’Hospitalet, IDIBELL (Oncobell Program), Barcelona, Spain
- Cognition and Brain Plasticity Group, IDIBELL, Barcelona, Spain
| |
Collapse
|
3
|
Lai S, Luo S, Lin S, Huang X, Wang X, Xu X, Weng X. Is Bevacizumab a Cost-Effective Regimen for Treating Cerebral Radiation Necrosis in the United States? Pract Radiat Oncol 2025; 15:e10-e20. [PMID: 39216726 DOI: 10.1016/j.prro.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bevacizumab has been demonstrated to have superior efficacy in the treatment of cerebral radiation necrosis (CRN), but its high cost may exacerbate the disease burden. This study aimed to assess the cost-effectiveness of bevacizumab in comparison to corticosteroids for treating CRN from the US payers' perspective. METHODS Decision tree models were constructed to simulate the process of bevacizumab and corticosteroids in CRN short-term and long-term therapy. Critical clinical data were derived from the NCT01621880 trial. Costs and utility values were obtained from the US official websites and published literature. The main outcomes were total costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). One-way and probabilistic sensitivity analyses were performed to assess the robustness of the models. RESULTS In the short-term and long-term models, bevacizumab added 0.11 (0.46 vs 0.35) and 0.16 (0.54 vs 0.38) QALYs compared with corticosteroids therapy, with corresponding incremental costs of $12,351 and $23,253, respectively. The resultant ICERs were $112,987/QALY and $150,245/QALY for short-term and long-term treatment, respectively. The one-way sensitivity analysis indicated that utility value of nonrecurrence status, body weight, and bevacizumab price per cycle were the most influential factors for ICER of both models. At the willingness-to-pay threshold of $150,000/QALY in the United States, the probabilities of bevacizumab being cost-effective for CRN short and long-term treatment were 63.9% and 49%, respectively. CONCLUSIONS Compared with corticosteroids, bevacizumab is an economical alternative for CRN short-term treatment from the US payers' perspective, whereas long-term therapy draws an opposite conclusion.
Collapse
Affiliation(s)
- Shufei Lai
- School of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Shaohong Luo
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Shen Lin
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiaoting Huang
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiangzhen Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiongwei Xu
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiuhua Weng
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China.
| |
Collapse
|
4
|
Wang Y, Bao X, Zhang Y, Wu Q. The current research status of the mechanisms and treatment of radioactive brain injury. Am J Cancer Res 2024; 14:5598-5613. [PMID: 39803653 PMCID: PMC11711531 DOI: 10.62347/beau4974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process. This article provides a comprehensive review of the various pathogenic mechanisms and therapeutic strategies associated with radioactive brain injury, offering insights that may guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Xiaoqing Bao
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Yu Zhang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Qibing Wu
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| |
Collapse
|
5
|
Epstein JE, Pople CB, Meng Y, Lipsman N. An update on the role of focused ultrasound in neuro-oncology. Curr Opin Neurol 2024; 37:682-692. [PMID: 39498847 DOI: 10.1097/wco.0000000000001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW Brain tumor treatment presents challenges for patients and clinicians, with prognosis for many of the most common brain tumors being poor. Focused ultrasound (FUS) can be deployed in several ways to circumvent these challenges, including the need to penetrate the blood-brain barrier and spare healthy brain tissue. This article reviews current FUS applications within neuro-oncology, emphasizing ongoing or recently completed clinical trials. RECENT FINDINGS Most clinical interest in FUS for neuro-oncology remains focused on exploring BBB disruption to enhance the delivery of standard-of-care therapeutics. More recently, the application of FUS for radiosensitization, liquid biopsy, and sonodynamic therapy is garnering increased clinical attention to assist in tumor ablation, early detection, and phenotypic diagnosis. Preclinical studies show encouraging data for the immunomodulatory effects of FUS, but these findings have yet to be tested clinically. SUMMARY FUS is a burgeoning area of neuro-oncology research. Data from several forthcoming large clinical trials should help clarify its role in neuro-oncology care.
Collapse
Affiliation(s)
- Jordan E Epstein
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
6
|
Luo S, Lai S, Wu Y, Hong J, Lin D, Lin S, Huang X, Xu X, Weng X. Cost-effectiveness analysis of bevacizumab for cerebral radiation necrosis treatment based on real-world utility value in China. Strahlenther Onkol 2024; 200:805-814. [PMID: 38829437 DOI: 10.1007/s00066-024-02242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Bevacizumab shows superior efficacy in cerebral radiation necrosis (CRN) therapy, but its economic burden remains heavy due to the high drug price. This study aims to evaluate the cost-effectiveness of bevacizumab for CRN treatment from the Chinese payers' perspective. METHODS A decision tree model was developed to compare the costs and health outcomes of bevacizumab and corticosteroids for CRN therapy. Efficacy and safety data were derived from the NCT01621880 trial, which compared the effectiveness and safety of bevacizumab monotherapy with corticosteroids for CRN in nasopharyngeal cancer patients, and demonstrated that bevacizumab invoked a significantly higher response than corticosteroids (65.5% vs. 31.5%, P < 0.001) with no significant differences in adverse events between two groups. The utility value of the "non-recurrence" status was derived from real-world data. Costs and other utility values were collected from an authoritative Chinese network database and published literature. The primary outcomes were total costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). The uncertainty of the model was evaluated via one-way and probabilistic sensitivity analyses. RESULTS Bevacizumab treatment added 0.12 (0.48 vs. 0.36) QALYs compared to corticosteroid therapy, along with incremental costs of $ 2010 ($ 4260 vs. $ 2160). The resultant ICER was $ 16,866/QALY, which was lower than the willingness-to-pay threshold of $ 38,223/QALY in China. The price of bevacizumab, body weight, and the utility value of recurrence status were the key influential parameters for ICER. Probabilistic sensitivity analysis revealed that the probability of bevacizumab being cost-effectiveness was 84.9%. CONCLUSION Compared with corticosteroids, bevacizumab is an economical option for CRN treatment in China.
Collapse
Affiliation(s)
- Shaohong Luo
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Shufei Lai
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yajing Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
| | - Dong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Shen Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiaoting Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiongwei Xu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiuhua Weng
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China.
| |
Collapse
|
7
|
Lan J, Ren Y, Liu Y, Chen L, Liu J. A bibliometric analysis of radiation-induced brain injury: a research of the literature from 1998 to 2023. Discov Oncol 2024; 15:364. [PMID: 39172266 PMCID: PMC11341524 DOI: 10.1007/s12672-024-01223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is a debilitating sequela after cranial radiotherapy. Research on the topic of RIBI has gradually entered the public eye, with more innovations and applications of evidence-based research and biological mechanism research in the field of that. This was the first bibliometric analysis on RIBI, assessing brain injury related to radiation articles that were published during 1998-2023, to provide an emerging theoretical basis for the future development of RIBI. METHODS Literature were obtained from the Web of Science Core Collection (WOSCC) from its inception to December 31, 2023. The column of publications, author details, affiliated institutions and countries, publication year, and keywords were also recorded. RESULTS A total of 2543 journal articles were selected. The annual publications on RIBI fluctuated within a certain range. Journal of Neuro-oncology was the most published journal and Radiation Oncology was the most impactful one. LIMOLI CL was the most prolific author with 37 articles and shared the highest h-index with BARNETT GH. The top one country and institutions were the USA and the University of California System, respectively. Clusters analysis of co-keywords demonstrated that the temporal research trends in this field primarily focused on imaging examination and therapy for RIBI. CONCLUSION This study collects, visualizes, and analyzes the literature within the field of RIBI over the last 25 years to map the development process, research frontiers and hotspots, and cutting-edge directions in clinical practice and mechanisms related to RIBI.
Collapse
Affiliation(s)
- Jinxin Lan
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuyang Liu
- Department of Neurosurgery, The 920th Hospital of Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jialin Liu
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
8
|
Zoto Mustafayev T, Turna M, Bolukbasi Y, Tezcanli E, Guney Y, Dincbas FO, Atasoy BM, Ugurluer G, Caglar HB, Atalar B, Ozyar E. Clinical and radiological effects of Bevacizumab for the treatment of radionecrosis after stereotactic brain radiotherapy. BMC Cancer 2024; 24:918. [PMID: 39080602 PMCID: PMC11290153 DOI: 10.1186/s12885-024-12643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE The purpose of this multicenter retrospective study was to analyze the clinical and radiological effects of bevacizumab (BV) on radionecrosis (RN) that developed after stereotactic radiotherapy (SRT) for brain metastasis. METHODS Forty patients with SRT related symptomatic brain RN treated in 10 radiation oncology centers were analyzed. The clinical response to BV treatment was categorized as follows: complete (no additional treatment required), partial (requiring either steroids or repeat BV), and unresponsive (requiring surgery). The radiological features of brain RN were analyzed in 10 patients whose serial MRI scans were available after corticosteroid and BV treatments. RESULTS BV was used as a first line treatment in 11 (27.5%) and as a second line treatment in 29 (72.5%) of patients. The neurological symptoms regressed in 77.5% of patients after treatment with BV (45% complete response, 32.5% partial response). The median edema volume increased from 75.9 cc (range: 5.9-125.8 cc) at RN to 113.65 cc (range: 1.5-382.1 cc) after use of corticosteroids, representing a rate of 39.8% increase (p = 0.074). However, after BV treatment the median volume of edema decreased to 19.5 cc (range: 0-163.3 cc) which represents a difference of 62.2% (p = 0.041) from RN. CONCLUSION The use of BV caused clinical response rate of 77.5% and a good radiological response in corticosteroid unresponsive patients. The role of BV should be further investigated in prospective studies.
Collapse
Affiliation(s)
| | - Menekse Turna
- Department of Radiation Oncology, Anadolu Medical Center affiliated with Johns Hopkins Medicine, Kocaeli, Turkey
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Evrim Tezcanli
- Department of Radiation Oncology, Acibadem Altunizade Hospital, Istanbul, Turkey
| | - Yildiz Guney
- Department of Radiation Oncology, Memorial Ankara Hospital, Ankara, Turkey
| | - Fazilet Oner Dincbas
- Cerrahpasa Medical School, Department of Radiation Oncology, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Radiation Oncology, Memorial Bahcelievler Hospital, Istanbul, Turkey
| | - Beste Melek Atasoy
- Department of Radiation Oncology, Marmara University School of Medicine, Istanbul, Turkey
| | - Gamze Ugurluer
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey
| | - Hale Basak Caglar
- Department of Radiation Oncology, Anadolu Medical Center affiliated with Johns Hopkins Medicine, Kocaeli, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, Acibadem MAA University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
9
|
Wang Y, Tian J, Liu D, Li T, Mao Y, Zhu C. Microglia in radiation-induced brain injury: Cellular and molecular mechanisms and therapeutic potential. CNS Neurosci Ther 2024; 30:e14794. [PMID: 38867379 PMCID: PMC11168970 DOI: 10.1111/cns.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Jiayu Tian
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Dandan Liu
- Department of Electrocardiogram, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Tao Li
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Yanna Mao
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of PediatricsInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityKangfuqian Street 7Zhengzhou450052None SelectedChina
- Center for Brain Repair and Rehabilitation, Department of Clinical NeuroscienceInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgMedicinaregtan 11Göteborg40530Sweden
| |
Collapse
|
10
|
Atahan C, Ugurluer G, Kumbasar B, Ozyar E, Atalar B. Myonecrosis as a rare side effect of stereotactic body radiotherapy for bone metastases: Report of two cases and a comprehensive literature review. Cancer Radiother 2024; 28:275-279. [PMID: 38890033 DOI: 10.1016/j.canrad.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 06/20/2024]
Abstract
Stereotactic body radiotherapy is a highly effective form of radiation therapy for palliation of bone metastases, but it can also lead to rare but severe side effects, such as myonecrosis. According to the literature, the incidence of myonecrosis after stereotactic body radiotherapy is low and mostly dose dependent. It is crucial to consider the potential impact of immunotherapy and other systemic therapies in the assessment. The course of radiation myonecrosis can vary, and corticosteroids or vascular endothelial growth factor inhibitors may potentially play a role in its treatment. Herein, we report two patients presenting with myonecrosis after stereotactic body radiotherapy for bone metastasis.
Collapse
Affiliation(s)
- C Atahan
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - G Ugurluer
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - B Kumbasar
- Department of Radiology, Acibadem Maslak Hospital, Istanbul, Turkey
| | - E Ozyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - B Atalar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
11
|
Lee C, Yoon SY, Hwang JH, Park SH, Kwon M, Yoon C, Lee K, Hahm MH, Park KS. Border Zone Maybe Correlated with Radiation Necrosis After Radiosurgery in Metastatic Brain Tumor. World Neurosurg 2024; 186:e374-e381. [PMID: 38561029 DOI: 10.1016/j.wneu.2024.03.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Radiation necrosis (RN) after stereotactic radiosurgery (SRS) in brain metastases has been extensively evaluated, and RN is correlated with various risk factors. However, no study comprehensively analyzed the correlation between RN and the border zones of the brain that are vulnerable to ischemia. We hypothesized that patients with tumors in the border zone are at high risk of RN. Hence, the current study aimed to assess the correlation between border zone lesions and RN, with consideration of other predetermined factors. METHODS This retrospective study included 117 patients with 290 lesions who underwent Gamma Knife SRS. Radiological and clinical analyses were performed to identify factors possibly correlated with RN. Notably, the lesion location was classified into 2 groups (border zone and nonborder zone) based on the blood supply. RESULTS In total, 22 (18.8%) patients with 22 (7.5%) lesions developed RN. Univariate analysis revealed a significant correlation between RN and external border zone lesions, second course of SRS administered at the same site of the previous SRS, prescribed dose, and tumor volume. Multivariate analysis showed that border zone lesions, second course of SRS at the same site of the previous SRS, and tumor volume were significantly correlated with RN. CONCLUSIONS Patients with tumors in the border zone are at high risk of RN. The potential risks of RN can be attributed hypothetically to hypoperfusion. Hence, the association between RN and border zone lesions seems reasonable.
Collapse
Affiliation(s)
- Chaejin Lee
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Youl Yoon
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong-Hyun Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Minjae Kwon
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chaemin Yoon
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyungyoung Lee
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Myong Hun Hahm
- Department of Neuroradiology, Daegyeong Healthcare and Imaging Center, Daegu, Korea
| | - Ki-Su Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
12
|
Flies CM, Friedrich M, Lohmann P, van Garderen KA, Smits M, Tonn JC, Weller M, Galldiks N, Snijders TJ. Treatment-associated imaging changes in newly diagnosed MGMT promoter-methylated glioblastoma undergoing chemoradiation with or without cilengitide. Neuro Oncol 2024; 26:902-910. [PMID: 38219019 PMCID: PMC11066942 DOI: 10.1093/neuonc/noad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Radiological progression may originate from progressive disease (PD) or pseudoprogression/treatment-associated changes. We assessed radiological progression in O6-methylguanine-DNA methyltransferase (MGMT) promoter-methylated glioblastoma treated with standard-of-care chemoradiotherapy with or without the integrin inhibitor cilengitide according to the modified response assessment in neuro-oncology (RANO) criteria of 2017. METHODS Patients with ≥ 3 follow-up MRIs were included. Preliminary PD was defined as a ≥ 25% increase of the sum of products of perpendicular diameters (SPD) of a new or increasing lesion compared to baseline. PD required a second ≥25% increase of the SPD. Treatment-associated changes require stable or regressing disease after preliminary PD. RESULTS Of the 424 evaluable patients, 221 patients (52%) were randomized into the cilengitide and 203 patients (48%) into the control arm. After chemoradiation with or without cilengitide, preliminary PD occurred in 274 patients (65%) during available follow-up, and 88 of these patients (32%) had treatment-associated changes, whereas 67 patients (25%) had PD. The remaining 119 patients (43%) had no further follow-up after preliminary PD. Treatment-associated changes were more common in the cilengitide arm than in the standard-of-care arm (24% vs. 17%; relative risk, 1.3; 95% CI, 1.004-1.795; P = .047). Treatment-associated changes occurred mainly during the first 6 months after RT (54% after 3 months vs. 13% after 6 months). CONCLUSIONS With the modified RANO criteria, the rate of treatment-associated changes was low compared to previous studies in MGMT promoter-methylated glioblastoma. This rate was higher after cilengitide compared to standard-of-care treatment. Confirmatory scans, as recommended in the modified RANO criteria, were not always available reflecting current clinical practice.
Collapse
Affiliation(s)
- Christina Maria Flies
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michel Friedrich
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Karin Alida van Garderen
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Tom Jan Snijders
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Gecici NN, Gurses ME, Kaye B, Jimenez NLF, Berke C, Gökalp E, Lu VM, Ivan ME, Komotar RJ, Shah AH. Comparative analysis of bevacizumab and LITT for treating radiation necrosis in previously radiated CNS neoplasms: a systematic review and meta-analysis. J Neurooncol 2024; 168:1-11. [PMID: 38619777 PMCID: PMC11093788 DOI: 10.1007/s11060-024-04650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE Radiation necrosis (RN) is a local inflammatory reaction that arises in response to radiation injury and may cause significant morbidity. This study aims to evaluate and compare the efficacy of bevacizumab and laser interstitial thermal therapy (LITT) in treating RN in patients with previously radiated central nervous system (CNS) neoplasms. METHODS PubMed, Cochrane, Scopus, and EMBASE databases were screened. Studies of patients with radiation necrosis from primary or secondary brain tumors were included. Indirect meta-analysis with random-effect modeling was performed to compare clinical and radiological outcomes. RESULTS Twenty-four studies were included with 210 patients in the bevacizumab group and 337 patients in the LITT group. Bevacizumab demonstrated symptomatic improvement/stability in 87.7% of cases, radiological improvement/stability in 86.2%, and steroid wean-off in 45%. LITT exhibited symptomatic improvement/stability in 71.2%, radiological improvement/stability in 64.7%, and steroid wean-off in 62.4%. Comparative analysis revealed statistically significant differences favoring bevacizumab in symptomatic improvement/stability (p = 0.02), while no significant differences were observed in radiological improvement/stability (p = 0.27) or steroid wean-off (p = 0.90). The rates of adverse reactions were 11.2% for bevacizumab and 14.9% for LITT (p = 0.66), with the majority being grade 2 or lower (72.2% for bevacizumab and 62.5% for LITT). CONCLUSION Both bevacizumab and LITT exhibited favorable clinical and radiological outcomes in managing RN. Bevacizumab was found to be associated with better symptomatic control compared to LITT. Patient-, diagnosis- and lesion-related factors should be considered when choosing the ideal treatment modality for RN to enhance overall patient outcomes.
Collapse
Affiliation(s)
- Neslihan Nisa Gecici
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Muhammet Enes Gurses
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US.
| | - Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, 33326, US
| | | | - Chandler Berke
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Elif Gökalp
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Victor M Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| |
Collapse
|
14
|
Han J, Lee SW, Han NY, Gwak HS. Excessively Delayed Radiation Changes After Proton Beam Therapy for Brain Tumors: Report of Two Cases. Brain Tumor Res Treat 2024; 12:141-147. [PMID: 38742264 PMCID: PMC11096628 DOI: 10.14791/btrt.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Delayed cerebral necrosis is a well-known complication of radiation therapy (RT). Because of its irreversible nature, it should be avoided if possible, but avoidance occurs at the expense of potentially compromised tumor control, despite the use of the modern advanced technique of conformal RT that minimizes radiation to normal brain tissue. Risk factors for radiation-induced cerebral necrosis include a higher dose per fraction, larger treatment volume, higher cumulative dose, and shorter time interval (for re-irradiation). The same principle can be applied to proton beam therapy (PBT) to avoid delayed cerebral necrosis. However, conversion of PBT radiation energy into conventional RT is still short of clinical support, compared to conventional RT. Herein, we describe two patients with excessively delayed cerebral necrosis after PBT, in whom follow-up MRI showed no RT-induced changes prior to 3 years after treatment. One patient developed radiation necrosis at 4 years after PBT to the resection cavity of an astroblastoma, and the other developed brainstem necrosis that became symptomatic 6 months after its first appearance on the 3-year follow-up brain MRI. We also discuss possible differences between radiation changes after PBT versus conventional RT.
Collapse
Affiliation(s)
- Jeongmin Han
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Wook Lee
- Department of Radiation Oncology, National Cancer Center, Goyang, Korea
| | - Na Young Han
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Korea.
| |
Collapse
|
15
|
Katlowitz KA, Beckham TH, Kudchadker RJ, Wefel J, Elamin YY, Weinberg JS. A Novel Multimodal Approach to Refractory Brain Metastases: A Case Report. Adv Radiat Oncol 2024; 9:101349. [PMID: 38405307 PMCID: PMC10885573 DOI: 10.1016/j.adro.2023.101349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 02/27/2024] Open
Affiliation(s)
- Kalman A. Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thomas H. Beckham
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajat J. Kudchadker
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasir Y. Elamin
- Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey S. Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Salans M, Ni L, Morin O, Ziemer B, Capaldi DPI, Raleigh DR, Vasudevan HN, Chew J, Nakamura J, Sneed PK, Boreta L, Villanueva-Meyer JE, Theodosopoulos P, Braunstein S. Adverse radiation effect versus tumor progression following stereotactic radiosurgery for brain metastases: Implications of radiologic uncertainty. J Neurooncol 2024; 166:535-546. [PMID: 38316705 PMCID: PMC10876820 DOI: 10.1007/s11060-024-04578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Adverse radiation effect (ARE) following stereotactic radiosurgery (SRS) for brain metastases is challenging to distinguish from tumor progression. This study characterizes the clinical implications of radiologic uncertainty (RU). METHODS Cases reviewed retrospectively at a single-institutional, multi-disciplinary SRS Tumor Board between 2015-2022 for RU following SRS were identified. Treatment history, diagnostic or therapeutic interventions performed upon RU resolution, and development of neurologic deficits surrounding intervention were obtained from the medical record. Differences in lesion volume and maximum diameter at RU onset versus resolution were compared with paired t-tests. Median time from RU onset to resolution was estimated using the Kaplan-Meier method. Univariate and multivariate associations between clinical characteristics and time to RU resolution were assessed with Cox proportional-hazards regression. RESULTS Among 128 lesions with RU, 23.5% had undergone ≥ 2 courses of radiation. Median maximum diameter (20 vs. 16 mm, p < 0.001) and volume (2.7 vs. 1.5 cc, p < 0.001) were larger upon RU resolution versus onset. RU resolution took > 6 and > 12 months in 25% and 7% of cases, respectively. Higher total EQD2 prior to RU onset (HR = 0.45, p = 0.03) and use of MR perfusion (HR = 0.56, p = 0.001) correlated with shorter time to resolution; larger volume (HR = 1.05, p = 0.006) portended longer time to resolution. Most lesions (57%) were diagnosed as ARE. Most patients (58%) underwent an intervention upon RU resolution; of these, 38% developed a neurologic deficit surrounding intervention. CONCLUSIONS RU resolution took > 6 months in > 25% of cases. RU may lead to suboptimal outcomes and symptom burden. Improved characterization of post-SRS RU is needed.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Lisa Ni
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Olivier Morin
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Benjamin Ziemer
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Dante P I Capaldi
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
- Department of Pathology, University of California San Francisco (DRR), San Francisco, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
| | - Jessica Chew
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Jean Nakamura
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Penny K Sneed
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Lauren Boreta
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Javier E Villanueva-Meyer
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco (JEVM), San Francisco, USA
| | - Philip Theodosopoulos
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA.
| |
Collapse
|
17
|
Gao M, Wang X, Wang X, Niu G, Liu X, Zhao S, Wang Y, Yu H, Huo S, Su H, Song Y, Wang X, Zhuang H, Yuan Z. Can low-dose intravenous bevacizumab be as effective as high-dose bevacizumab for cerebral radiation necrosis? Cancer Sci 2024; 115:589-599. [PMID: 38146096 PMCID: PMC10859604 DOI: 10.1111/cas.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
Although intravenous bevacizumab (IVBEV) is the most promising treatment for cerebral radiation necrosis (CRN), there is no conclusion on the optimal dosage. Our retrospective study aimed to compare the efficacy and safety of high-dose with low-dose IVBEV in treating CRN associated with radiotherapy for brain metastases (BMs). This paper describes 75 patients who were diagnosed with CRN secondary to radiotherapy for BMs, treated with low-dose or high-dose IVBEV and followed up for a minimum of 6 months. The clinical data collected for this study include changes in brain MRI, clinical symptoms, and corticosteroid usage before, during, and after IVBEV treatment. At the 3-month mark following administration of IVBEV, a comparison of two groups revealed that the median percentage decreases in CRN volume on T2-weighted fluid-attenuated inversion recovery and T1-weighted gadolinium contrast-enhanced image (T1CE), as well as the signal ratio reduction on T1CE, were 65.8% versus 64.8% (p = 0.860), 41.2% versus 51.9% (p = 0.396), and 37.4% versus 35.1% (p = 0.271), respectively. Similarly, at 6 months post-IVBEV, the median percentage reductions of the aforementioned parameters were 59.5% versus 62.0% (p = 0.757), 39.1% versus 31.3% (p = 0.851), and 35.4% versus 28.2% (p = 0.083), respectively. Notably, the incidence of grade ≥3 adverse events was higher in the high-dose group (n = 4, 9.8%) than in the low-dose group (n = 0). Among patients with CRN secondary to radiotherapy for BMs, the administration of high-dose IVBEV did not demonstrate superiority over low-dose IVBEV. Moreover, the use of high-dose IVBEV was associated with a higher incidence of grade ≥3 adverse events compared with low-dose IVBEV.
Collapse
Affiliation(s)
- Miaomiao Gao
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xin Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaofeng Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Gengmin Niu
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaoye Liu
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Shuzhou Zhao
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yue Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Huiwen Yu
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Siyuan Huo
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Hui Su
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongchun Song
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaoguang Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Hong‐Qing Zhuang
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| | - Zhi‐Yong Yuan
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
18
|
Suárez-Piñera M, Rodriguez-Bel L, Alemany M, Pons-Escoda A, Pudis M, Coello A, Reynes G, Vidal N, Cortes-Romera M, Macia M. Visual and semi-quantitative analysis of 6-[ 18F]FDOPA PET/CT in patients with brain tumors and suspected tumor recurrence versus radionecrosis. Rev Esp Med Nucl Imagen Mol 2024; 43:6-13. [PMID: 37813239 DOI: 10.1016/j.remnie.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Amino acid PET is a tool recommended by the main neuroimaging societies in the differential diagnosis between radionecrosis (RNC) and umour recurrence (TR) in brain tumours, but its use in our country is still limited. The aim of this work is to present our experience with 6-[18F]FDOPA PET/CT (FDOPA) in brain tumours (primary and M1), comparing these results with other published results. MATERIAL AND METHODS Retrospective study of 62 patients with suspected tumour recurrence (TR): 42 brain metastases (M1) and 20 primary, who underwent FDOPA. Images were analysed visually and semi-quantitatively, obtaining SUVmax and SUVmaxlesion/SUVmaxstriatum (L/S) and SUVmaxlesion/SUVmaxcortex (L/C) ratios. The diagnostic validity of PET was analysed and the best performing cut-off points were calculated. PET results were compared with clinical-radiological follow-up and/or histopathology. RESULTS TR was identified in 49% of M1 and 76% of brain primaries. The best performing FDOPA interpretation was visual and semi-quantitative, with a sensitivity and specificity in primaries of 94% and 80% and in M1s of 96% and 72% respectively. The cut-off points with the best diagnostic performance were L/C1.44 in M1 and L/C1.55 in primaries. There are discrepant results with other published results. CONCLUSION FDOPA PET/CT is a useful tool in the differential diagnosis between recurrence and RNC in brain tumours. It is needed a standardization to contribute to homogenise FDOPA results a inter-centre level.
Collapse
Affiliation(s)
- M Suárez-Piñera
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - L Rodriguez-Bel
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Alemany
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Neurología, Hospital Universitari de Bellvitge-ICO L'Hospitalet (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - A Pons-Escoda
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Radiología, Sección de Neuroradiología, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Pudis
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - A Coello
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Neurocirugía, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - G Reynes
- Servicio de Física Médica, Hospital Universitari de Bellvitge-ICO L'Hospitalet (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - N Vidal
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Unidad de Neurooncología, Servicio de Anatomía Patológica, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Cortes-Romera
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Macia
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Oncología Radioterápica, Institut Català d'Oncologia (ICO) L'Hospitalet (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
19
|
Bhave VM, Bi WL. Comparing Surgery with Stereotactic Radiation Alone for Newly Diagnosed Brain Metastases. World Neurosurg 2024; 181:184-185. [PMID: 37838534 DOI: 10.1016/j.wneu.2023.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Christenson C, Wu C, Hormuth DA, Huang S, Bao A, Brenner A, Yankeelov TE. Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes. BRAIN MULTIPHYSICS 2023; 5:100084. [PMID: 38187909 PMCID: PMC10768931 DOI: 10.1016/j.brain.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Rhenium-186 (186Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models. Methods We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters. Results Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively. Conclusion We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment. Statement of Significance This manuscript explores the application of computational models to predict response to radionuclide therapy in glioblastoma. There are few, to our knowledge, examples of mathematical models used in clinical radionuclide therapy. We have tested a family of models to determine the applicability of different radiation coupling terms for response to the localized radiation delivery. We show that with patient-specific parameter estimation, we can make accurate predictions of future glioblastoma response to the treatment. As a comparison, we have shown that population trends in response can be used to forecast growth from the moment the treatment has been delivered.In addition to the high simulation and prediction accuracy our modeling methods have achieved, the evaluation of a family of models has given insight into the response dynamics of radionuclide therapy. These dynamics, while different than we had initially hypothesized, should encourage future imaging studies involving high dosage radiation treatments, with specific emphasis on the local immune and vascular response.
Collapse
Affiliation(s)
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - David A. Hormuth
- Livestrong Cancer Institutes, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shiliang Huang
- Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Ande Bao
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Brenner
- Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas E. Yankeelov
- Departments of Biomedical Engineering, USA
- Departments of Diagnostic Medicine, USA
- Departments of Oncology, USA
- Livestrong Cancer Institutes, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Hsu EJ, Yan Y, Timmerman RD, Wardak Z, Dan TD, Patel TR, Vo DT, Stojadinovic S. Modeling gamma knife radiosurgical toxicity for multiple brain metastases. Radiother Oncol 2023; 188:109874. [PMID: 37640162 DOI: 10.1016/j.radonc.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND PURPOSE Radiation oncology protocols for single fraction radiosurgery recommend setting dosing criteria based on assumed risk of radionecrosis, which can be predicted by the 12 Gy normal brain volume (V12). In this study, we show that tumor surface area (SA) and a simple power-law model using only preplan variables can estimate and minimize radiosurgical toxicity. MATERIALS AND METHODS A 245-patient cohort with 1217 brain metastases treated with single or distributed Gamma Knife sessions was reviewed retrospectively. Univariate and multivariable linear regression models and power-law models determined which modeling parameters best predicted V12. The V12 power-law model, represented by a product of normalized Rx dose Rxn, and tumor longest axial dimension LAD (V12 ∼ Rxn1.5*LAD2), was independently validated using a secondary 63-patient cohort with 302 brain metastases. RESULTS Surface area was the best univariate linear predictor of V12 (adjR2 = 0.770), followed by longest axial dimension (adjR2 = 0.755) and volume (adjR2 = 0.745). The power-law model accounted for 90% variance in V12 for 1217 metastatic lesions (adjR2 = 0.906) and 245 patients (adjR2 = 0.896). The average difference ΔV12 between predicted and measured V12s was (0.28 ± 0.55) cm3 per lesion and (1.0 ± 1.2) cm3 per patient. The power-law predictive capability was validated using a secondary 63-patient dataset (adjR2 = 0.867) with 302 brain metastases (adjR2 = 0.825). CONCLUSION Surface area was the most accurate univariate predictor of V12 for metastatic lesions. We developed a preplan model for brain metastases that can help better estimate radionecrosis risk, determine prescription doses given a target V12, and provide safe dose escalation strategies without the use of any planning software.
Collapse
Affiliation(s)
- Eric J Hsu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yulong Yan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert D Timmerman
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zabi Wardak
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tu D Dan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Toral R Patel
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dat T Vo
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
22
|
Otluoglu GD, Yılmaz B, Ekinci G, Bayri Y, Bozkurt SU, Dağçınar A. Pentoxifylline and Vitamin E Can Restrict Radiation Necrosis via Vascular Pathways, Experimental Study in an Animal Model. World Neurosurg 2023; 179:e530-e538. [PMID: 37689362 DOI: 10.1016/j.wneu.2023.08.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Radiation necrosis (RN) is a long-term side effect of Gamma Knife stereotactic radiosurgery that may require surgical intervention. Pentoxifylline and vitamin E have previously been shown to be effective in the treatment of RN in the published literature, but there are no data on the prophylactic use of these molecules or, more importantly, whether prophylaxis is required. METHODS The iatrogenic RN model included 50 Sprague-Dawley rats of both sexes. There were 7 treatment subgroups established. Gamma-Plan 8.32 was used to plan after magnetic resonance scans were performed in a specially designed frame. The injection doses used in the treatment groups were vitamin E (30 mg/kg/day in a single dose) and pentoxifylline (50 mg/kg/day in 2 doses). Control magnetic resonance scans were performed at the end of a 16-week treatment, and the subjects were decapitated for pathological evaluations. RESULTS The intensity of hypoxia - inducible factor 1α immunoreactivity is statistically significantly lower in the therapeutic vitamin E, prophylactic pentoxifylline and vitamin E, and therapeutic pentoxifylline and vitamin E groups than in the other groups. Similarly, the intensity of vascular endothelial growth factor immunoreactivity was reduced in the therapeutic vitamin E and prophylactic pentoxifylline and vitamin E treatment modality groups. When compared with other groups, the therapeutic pentoxifylline group had significantly fewer vascular endothelial growth factor-immunoreactive cells in the perinecrotic area, with an accompanying decreased contrast enhancement pattern. CONCLUSIONS Both vitamin E and pentoxifylline are effective for the treatment and/or restriction of RN, either alone or in combination. The use of these molecules as a preventive measure did not outperform the therapeutic treatment.
Collapse
Affiliation(s)
| | - Baran Yılmaz
- Department of Neurosurgery, Bahçeşehir University School of Medicine, Istanbul, Turkey
| | - Gazanfer Ekinci
- Department of Radiology, Yeditepe University School Of Medicine, Istanbul, Turkey
| | - Yaşar Bayri
- Department of Neurosurgery, Acibadem Healthcare, Istanbul, Turkey
| | - Süheyla Uyar Bozkurt
- Department of Pathology, Marmara University School of Medicine, Istanbul, Turkey
| | - Adnan Dağçınar
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
23
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Angom RS, Nakka NMR, Bhattacharya S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci 2023; 13:1536. [PMID: 38002496 PMCID: PMC10669378 DOI: 10.3390/brainsci13111536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary malignant brain tumor characterized by a high grade of malignancy and an extremely unfavorable prognosis. The current efficacy of established treatments for GBM is insufficient, necessitating the prompt development of novel therapeutic approaches. The progress made in the fundamental scientific understanding of GBM is swiftly translated into more advanced stages of therapeutic studies. Despite extensive efforts to identify new therapeutic approaches, GBM exhibits a high mortality rate. The current efficacy of treatments for GBM patients is insufficient due to factors such as tumor heterogeneity, the blood-brain barrier, glioma stem cells, drug efflux pumps, and DNA damage repair mechanisms. Considering this, pharmacological cocktail therapy has demonstrated a growing efficacy in addressing these challenges. Towards this, various forms of immunotherapy, including the immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have emerged as potential strategies for enhancing the prognosis of GBM. Current investigations are focused on exploring combination therapies to mitigate undesirable side effects and enhance immune responses against tumors. Furthermore, clinical trials are underway to evaluate the efficacy of several strategies to circumvent the blood-brain barrier (BBB) to achieve targeted delivery in patients suffering from recurrent GBM. In this review, we have described the biological and molecular targets for GBM therapy, pharmacologic therapy status, prominent resistance mechanisms, and new treatment approaches. We also discuss these promising therapeutic approaches to assess prospective innovative therapeutic agents and evaluated the present state of preclinical and clinical studies in GBM treatment. Overall, this review attempts to provide comprehensive information on the current status of GBM therapy.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Naga Malleswara Rao Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| |
Collapse
|
25
|
Ganesh S, Jasper A, Backianathan S, Moorthy RK, Balakrishnan R, Sebastian P, Moses V, Godson HF, Keshava SN, Rajshekhar V. Correlation Between Post-Radiosurgery Perinidal Hyperintensity and AVM Obliteration Following LINAC-Based Stereotactic Radiosurgery. World Neurosurg 2023; 178:e189-e201. [PMID: 37454908 DOI: 10.1016/j.wneu.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE We studied the correlation between new-onset perinidal hyperintensity (PH) on T2-weighted magnetic resonance imaging and obliteration of intracranial arteriovenous malformation (AVM) after stereotactic radiosurgery (SRS). METHODS A retrospective study of 148 patients with an intracranial AVM who underwent SRS between September 2005 and June 2018 and had ≥1 radiological follow-up (early magnetic resonance imaging) 12-18 months after SRS was performed to analyze the correlation between PH (graded from 0 to 2) and AVM obliteration. RESULTS Of the 148 patients, 95 were male. The mean patient age was 27.7 ± 12.4 years. Of the 148 AVMs, 105 (70.9%) were obliterated at a median follow-up of 27 months (interquartile range, 14-48 months). The cumulative 3-, 5-, 10-year obliteration rate was 51.8%, 70.8%, and 91.8%, respectively. New-onset PH was observed in 58 AVMs (39.2%; 50 obliterated and 8 not obliterated). No association was found between the pretreatment variables or dose delivered and the development of PH. Grade 2 PH was associated with the risk of symptoms developing compared with grade 1 PH (37.5% vs. 4%; P = 0.002). Symptomatic PH was more likely to develop in patients with a larger AVM (P = 0.05). On multivariate analysis, the presence of a single draining vein (odds ratio [OR], 2.9; 95% confidence interval [CI], 1.3-6.8), a lower median AVM volume (OR, 0.97; 95% CI, 0.6-0.89), a mean marginal radiation dose (OR, 1.29; 95% CI, 1.02-1.64), and the presence of PH (OR, 3.16; 95% CI, 1.29-7.71) were independent predictors of AVM obliteration. CONCLUSIONS The incidence of PH after SRS for AVM was 39.2%. PH was an independent predictor of AVM obliteration after SRS. Grade 2 PH and a larger AVM volume were associated with symptomatic PH.
Collapse
Affiliation(s)
- Swaminathan Ganesh
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Anitha Jasper
- Department of Radiodiagnosis, Christian Medical College, Vellore, India
| | | | - Ranjith K Moorthy
- Department of Neurological Sciences, Christian Medical College, Vellore, India.
| | | | - Patricia Sebastian
- Department of Radiation Oncology, Christian Medical College, Vellore, India
| | - Vinu Moses
- Department of Radiodiagnosis, Christian Medical College, Vellore, India
| | | | | | - Vedantam Rajshekhar
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| |
Collapse
|
26
|
Lee SH, Choi JW, Kong DS, Seol HJ, Nam DH, Lee JI. Effect of Bevacizumab Treatment in Cerebral Radiation Necrosis : Investigation of Response Predictors in a Single-Center Experience. J Korean Neurosurg Soc 2023; 66:562-572. [PMID: 36642947 PMCID: PMC10483166 DOI: 10.3340/jkns.2022.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Bevacizumab is a feasible option for treating cerebral radiation necrosis (RN). We investigated the clinical outcome of RN after treatment with bevacizumab and factors related to the initial response and the sustained effect. METHODS Clinical data of 45 patients treated for symptomatic RN between September 2019 and February 2021 were retrospectively collected. Bevacizumab (7.5 mg/kg) was administered at 3-week intervals with a maximum four-cycle schedule. Changes in the lesions magnetic resonance image (MRI) scans were examined for the response evaluation. The subgroup analysis was performed based on the initial response and the long-term maintenance of the effect. RESULTS Of the 45 patients, 36 patients (80.0%) showed an initial response, and eight patients (17.8%) showed delayed worsening of the corresponding lesion. The non-responders showed a significantly higher incidence of diffusion restriction on MRI than the responders (100.0% vs. 25.0%, p<0.001). The delayed worsening group showed a significantly higher proportion of glioma pathology than the maintenance group (87.5% vs. 28.6%, p=0.005). Cumulative survival rates with sustained effect were significantly higher in the groups with non-glioma pathology (p=0.019) and the absence of diffusion restriction (p<0.001). Pathology of glioma and diffusion restriction in MRI were the independent risk factors for non-response or delayed worsening after initial response. CONCLUSION The initial response of RN to bevacizumab was favorable, with improvement in four-fifths of the patients. However, a certain proportion of patients showed non-responsiveness or delayed exacerbations. Bevacizumab may be more effective in treating RN in patients with non-glioma pathology and without diffusion restriction in the MRI.
Collapse
Affiliation(s)
- Shin Heon Lee
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Veikutis V, Brazdziunas M, Keleras E, Basevicius A, Grib A, Skaudickas D, Lukosevicius S. Diagnostic Approaches to Adult-Type Diffuse Glial Tumors: Comparative Literature and Clinical Practice Study. Curr Oncol 2023; 30:7818-7835. [PMID: 37754483 PMCID: PMC10528153 DOI: 10.3390/curroncol30090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Gliomas are the most frequent intrinsic central nervous system tumors. The new 2021 WHO Classification of Central Nervous System Tumors brought significant changes into the classification of gliomas, that underline the role of molecular diagnostics, with the adult-type diffuse glial tumors now identified primarily by their biomarkers rather than histology. The status of the isocitrate dehydrogenase (IDH) 1 or 2 describes tumors at their molecular level and together with the presence or absence of 1p/19q codeletion are the most important biomarkers used for the classification of adult-type diffuse glial tumors. In recent years terminology has also changed. IDH-mutant, as previously known, is diagnostically used as astrocytoma and IDH-wildtype is used as glioblastoma. A comprehensive understanding of these tumors not only gives patients a more proper treatment and better prognosis but also highlights new difficulties. MR imaging is of the utmost importance for diagnosing and supervising the response to treatment. By monitoring the tumor on followup exams better results can be achieved. Correlations are seen between tumor diagnostic and clinical manifestation and surgical administration, followup care, oncologic treatment, and outcomes. Minimal resection site use of functional imaging (fMRI) and diffusion tensor imaging (DTI) have become indispensable tools in invasive treatment. Perfusion imaging provides insightful information about the vascularity of the tumor, spectroscopy shows metabolic activity, and nuclear medicine imaging displays tumor metabolism. To accommodate better treatment the differentiation of pseudoprogression, pseudoresponse, or radiation necrosis is needed. In this report, we present a literature review of diagnostics of gliomas, the differences in their imaging features, and our radiology's departments accumulated experience concerning gliomas.
Collapse
Affiliation(s)
- Vincentas Veikutis
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Mindaugas Brazdziunas
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
- Faculty of Medicine, Kaunas University of Applied Sciences, LT44162 Kaunas, Lithuania
| | - Evaldas Keleras
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Algidas Basevicius
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Andrei Grib
- Department of Internal Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD2004 Chisinau, Moldova;
| | - Darijus Skaudickas
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Saulius Lukosevicius
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| |
Collapse
|
28
|
Bhattacharya K, Nigam K, Choudhari AKJ, Shetty NS, Gala K, Chandra D, Kulkarni S. Imaging of central nervous system emergencies in oncology. Emerg Radiol 2023; 30:499-512. [PMID: 37160605 DOI: 10.1007/s10140-023-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Central nervous system (CNS) may be predisposed to devastating complications in cancer patients which may add to morbidity and mortality in this group. Majority of the complications are vascular in nature due to the altered coagulation profile and pro-inflammatory state in these patients. However, there are a host of other conditions which may affect the clinical course of these patients including metabolic and toxic encephalopathies, infections, and paraneoplastic syndromes. Moreover, multimodality management of these patients, which is often used in majority of the cancers, exposes them to treatment related complications. This pictorial review aims to enlighten the reader regarding the various complications affecting the CNS as seen at our tertiary cancer care institute. We aim to highlight the emergent nature of these complications and the need to identify them quickly and accurately on imaging which helps to institute early appropriate management and prevents further morbidity and mortality.
Collapse
Affiliation(s)
- Kajari Bhattacharya
- Department of Radiology, Tata Memorial Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| | - Kunal Nigam
- Department of Radiology, Tata Memorial Centre, Mumbai, India
| | - Amit Kumar J Choudhari
- Department of Radiology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Nitin Sudhakar Shetty
- Department of Radiology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Kunal Gala
- Department of Radiology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Daksh Chandra
- Department of Radiology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Suyash Kulkarni
- Department of Radiology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
29
|
Calderon B, Vazquez L, Belkacemi M, Pourel N. Stereotactic radiotherapy for brain metastases: predictive factors of radionecrosis. Eur J Med Res 2023; 28:233. [PMID: 37443046 DOI: 10.1186/s40001-023-01178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
PURPOSE Stereotactic radiotherapy (SRT) is a highly effective approach and represents the current standard of treatment for patients with limited number of brain metastasis (BM). SRT is generally well tolerated but can sometimes lead to radionecrosis (RN). The aim of this study was to identify predictive factors of radionecrosis related to SRT for brain metastasis. METHODS This retrospective observational cohort study included patients who underwent SRT in the Institut Sainte Catherine between January 1st, 2017 and December 31st, 2020 for the treatment of brain metastasis from any cancer. Individual data and particularly signs of radionecrosis (clinical, imaging, anatomopathological) were collected from electronic medical records. Radionecrosis was defined as the occurrence on MRI of contrast-enhancing necrotic lesions, surrounded by edema, occurring at least 6 months after SRT and localized within fields of irradiation. RESULTS 123 patients were included; median age was 66 years. 17 patients (11.8%) developed radionecrosis after a median follow up of 418.5 days [63;1498]. Predictive factors of radionecrosis in multivariate analysis were age under 66 years with a sensitivity of 77% and a specificity of 56%. No other factor as the presence of comorbidities, the number of irradiated metastases, the PTV volume or the volume of irradiated healthy brain were predictive of radionecrosis. CONCLUSION Age at treatment initiation and tumor location seems to be correlated with radionecrosis in patients with brain metastasis treated with SRT. These elements could be useful to adapted radiation therapy.
Collapse
Affiliation(s)
- Benoît Calderon
- Institut Sainte Catherine, 250 Chemin Des Baigne-Pieds, 84000, Avignon, France
| | - Léa Vazquez
- Institut Sainte Catherine, 250 Chemin Des Baigne-Pieds, 84000, Avignon, France.
| | | | - Nicolas Pourel
- Institut Sainte Catherine, 250 Chemin Des Baigne-Pieds, 84000, Avignon, France
| |
Collapse
|
30
|
Liu X, Wang Y, Li J, Wu B, Wang S, Guo Q, Liu Y. To study the protective effect of Huangqi Baihe Granules on Radiation brain injury based on network pharmacology and experiment. JOURNAL OF ETHNOPHARMACOLOGY 2023:116610. [PMID: 37150423 DOI: 10.1016/j.jep.2023.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi baihe Granules (HQBHG), which is a key Chinese medical prescription, has a remarkable efficacy in oxidative stress and inflammation. Nevertheless, the therapeutic effect on Radiation brain injury (RBI) has rarely been studied. AIM OF THE STUDY The study aimed to verify the effect of HQBHG against RBI and explore its potential mechanism. METHODS The potential targets and mechanisms of HQBHG against RBI were predicted by network pharmacology and verified by established rat model of RBI Firstly, the therapeutic effect of HQBHG in RBI was confirmed by water maze test, HE staining and Enzyme-linked immunosorbent assay (ELISA). Secondly, the potential critical anti-RBI pathway of HQBHG was further explored by water maze, HE staining, immunofluorescence assays, ELISA and western blot. RESULTS A total of 43 HQBHG anti-RBI targets were obtained. Gene Ontology (Go) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations showed that the treatment of HQBHG in RBI might be mainly related to oxidative stress, inflammation and PI3K/AKT pathway. Experimental studies have indicated that HQBHG can improve spatial learning and memory ability, alleviate pathological damage of brain tissue in RBI of rats. HQBHG also can down-regulate the levels of IL-1β, TNF-α, ROS and MDA, meanwhile, GSH was significantly up-regulated. In addition, the HQBHG can increase the protein expression phosphorylations PI3K (p-PI3K), phosphorylations AKT(p-AKT) and Nrf2 in the brain tissue of RBI. CONCLUSION HQBHG may alleviated RBI by regulated oxidative stress and inflammatory response through PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Bingbing Wu
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Siyu Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Qingyang Guo
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
31
|
Sahu A, Mathew R, Ashtekar R, Dasgupta A, Puranik A, Mahajan A, Janu A, Choudhari A, Desai S, Patnam NG, Chatterjee A, Patil V, Menon N, Jain Y, Rangarajan V, Dev I, Epari S, Sahay A, Shetty P, Goda J, Moiyadi A, Gupta T. The complementary role of MRI and FET PET in high-grade gliomas to differentiate recurrence from radionecrosis. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1040998. [PMID: 39355021 PMCID: PMC11440952 DOI: 10.3389/fnume.2023.1040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 10/03/2024]
Abstract
Introduction Conventional magnetic resonance imaging (MRI) has limitations in differentiating tumor recurrence (TR) from radionecrosis (RN) in high-grade gliomas (HGG), which can present with morphologically similar appearances. Multiparametric advanced MR sequences and Positron Emission Tomography (PET) with amino acid tracers can aid in diagnosing tumor metabolism. The role of both modalities on an individual basis and combined performances were investigated in the current study. Materials and Methods Patients with HGG with MRI and PET within three weeks were included in the retrospective analysis. The multiparametric MRI included T1-contrast, T2-weighted sequences, perfusion, diffusion, and spectroscopy. MRI was interpreted by a neuroradiologist without using information from PET imaging. 18F-Fluoroethyl-Tyrosine (FET) uptake was calculated from the areas of maximum enhancement/suspicion, which was assessed by a nuclear medicine physician (having access to MRI to determine tumor-to-white matter ratio over a specific region). A definitive diagnosis of TR or RN was made based on the combination of multidisciplinary joint clinic decisions, histopathological examination, and clinic-radiological follow-up as applicable. Results 62 patients were included in the study between July 2018 and August 2021. The histology during initial diagnosis was glioblastoma, oligodendroglioma, and astrocytoma in 43, 7, and 6 patients, respectively, while in 6, no definitive histological characterization was available. The median time from radiation (RT) was 23 months. 46 and 16 patients had TR and RN recurrence, respectively. Sensitivity, specificity, and accuracy using MRI were 98, 77, and 94%, respectively. Using PET imaging with T/W cut-off of 2.65, sensitivity, specificity, and accuracy were 79, 84, and 80%, respectively. The best results were obtained using both imaging combined with sensitivity, specificity, and accuracy of 98, 100, and 98%, respectively. Conclusion Combined imaging with MRI and FET-PET offers multiparametric assessment of glioma recurrence that is correlative and complimentary, with higher accuracy and clinical value.
Collapse
Affiliation(s)
- Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ronny Mathew
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Renuka Ashtekar
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ameya Puranik
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Pembroke Place, Liverpool, United Kingdom
| | - Amit Janu
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Amitkumar Choudhari
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Subhash Desai
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Nandakumar G. Patnam
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Yash Jain
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Indraja Dev
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Jayant Goda
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
32
|
Pan D, Shen Q, Li Y, Rong X, Li H, Xu Y, He B, Zuo X, Deng Z, Tang Y. Prognostic Value of Nutritional Assessments on Overall Survival in Head and Neck Cancer Survivors with Radiation-Induced Brain Necrosis. Nutrients 2023; 15:nu15081973. [PMID: 37111191 PMCID: PMC10141744 DOI: 10.3390/nu15081973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Malnutrition is related to worsened prognosis, but the association between nutritional risk status and overall survival in radiation-induced brain necrosis (RN) has never been studied. We included consecutive patients who had received radiotherapy for head and neck cancer (HNC) and subsequently developed RN from 8 January 2005 through to 19 January 2020. The primary outcome was overall survival. We utilized three commonly-used nutritional assessments: the Geriatric Nutritional Risk Index (GNRI), Prognostic Nutritional Index (PNI), and the COntrolling NUTritional Status (CONUT) measure, to quantify the baseline nutritional risk. A total of 398 eligible patients were included. During a median follow-up of 2.3 years, 42 (10.6%) patients died of any cause. Malnutrition at admission was associated with an increased risk of future death, as assessed by the GNRI (per 1-point decreased, HR 1.05, 95%CI 1.02-1.09, p = 0.001), the PNI (per 1-point decreased, HR 1.07, 95%CI 1.03-1.12, p = 0.002), and the CONUT (per 1-point increased, HR 1.22, 95%CI 1.08-1.37, p = 0.001). There were no nonlinear correlations between all three indices and post-RN survival. Among HNC survivors with RN, the assessment of nutritional risk by composite indices upon admission could help identify patients who might be at high risk of future death and deliver better nutritional management.
Collapse
Affiliation(s)
- Dong Pan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Qingyu Shen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xuzheng Zuo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhenhong Deng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| |
Collapse
|
33
|
Leu J, Akerman M, Mendez C, Lischalk JW, Carpenter T, Ebling D, Haas JA, Witten M, Barbaro M, Duic P, Tessler L, Repka MC. Time interval from diagnosis to treatment of brain metastases with stereotactic radiosurgery is not associated with radionecrosis or local failure. Front Oncol 2023; 13:1132777. [PMID: 37091181 PMCID: PMC10113671 DOI: 10.3389/fonc.2023.1132777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionBrain metastases are the most common intracranial tumor diagnosed in adults. In patients treated with stereotactic radiosurgery, the incidence of post-treatment radionecrosis appears to be rising, which has been attributed to improved patient survival as well as novel systemic treatments. The impacts of concomitant immunotherapy and the interval between diagnosis and treatment on patient outcomes are unclear.MethodsThis single institution, retrospective study consisted of patients who received single or multi-fraction stereotactic radiosurgery for intact brain metastases. Exclusion criteria included neurosurgical resection prior to treatment and treatment of non-malignant histologies or primary central nervous system malignancies. A univariate screen was implemented to determine which factors were associated with radionecrosis. The chi-square test or Fisher’s exact test was used to compare the two groups for categorical variables, and the two-sample t-test or Mann-Whitney test was used for continuous data. Those factors that appeared to be associated with radionecrosis on univariate analyses were included in a multivariable model. Univariable and multivariable Cox proportional hazards models were used to assess potential predictors of time to local failure and time to regional failure.ResultsA total of 107 evaluable patients with a total of 256 individual brain metastases were identified. The majority of metastases were non-small cell lung cancer (58.98%), followed by breast cancer (16.02%). Multivariable analyses demonstrated increased risk of radionecrosis with increasing MRI maximum axial dimension (OR 1.10, p=0.0123) and a history of previous whole brain radiation therapy (OR 3.48, p=0.0243). Receipt of stereotactic radiosurgery with concurrent immunotherapy was associated with a decreased risk of local failure (HR 0.31, p=0.0159). Time interval between diagnostic MRI and first treatment, time interval between CT simulation and first treatment, and concurrent immunotherapy had no impact on incidence of radionecrosis or regional failure.DiscussionAn optimal time interval between diagnosis and treatment for intact brain metastases that minimizes radionecrosis and maximizes local and regional control could not be identified. Concurrent immunotherapy does not appear to increase the risk of radionecrosis and may improve local control. These data further support the safety and synergistic efficacy of stereotactic radiosurgery with concurrent immunotherapy.
Collapse
Affiliation(s)
- Justin Leu
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Meredith Akerman
- Division of Health Services Research, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Christopher Mendez
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Todd Carpenter
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - David Ebling
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan A. Haas
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Matthew Witten
- Department of Medical Physics, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Marissa Barbaro
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Paul Duic
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Lee Tessler
- Department of Neurosurgery, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Michael C. Repka
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Michael C. Repka,
| |
Collapse
|
34
|
Efficacy of CDK 4/6 Inhibitors and Radiotherapy in Breast Cancer Patients with Brain Metastases. J Clin Med 2023; 12:jcm12052044. [PMID: 36902831 PMCID: PMC10004463 DOI: 10.3390/jcm12052044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy are the standard of care for HR-positive/HER2-negative advanced breast cancer patients. However, their role in the treatment of brain metastases is currently unclear. We retrospectively evaluate the results of patients (pts) with advanced breast cancer treated at our institution with CDK4/6i and radiotherapy to the brain. The primary endpoint was progression-free survival (PFS). Secondary endpoints were local control (LC) and severe toxicity. Among 371 pts treated with CDK4/6i, 24 pts (6.5%) received radiotherapy to the brain before (11 pts), during (6 pts), or after (7 pts) CDK4/6i treatment. Sixteen pts received ribociclib, six received palbociclib, and two received abemaciclib. Six- and twelve-month PFS was 76.5% (95% CI: 60.3-96.9) and 49.7% (95% CI: 31.7-77.9), respectively, whereas six- and twelve-month LC was 80.2% (95% CI: 58.7-100) and 68.8% (95% CI: 44.5-100), respectively. With a median follow-up of 9.5 months, no unexpected toxicity was observed. We conclude that treatment with both CDK4/6i and brain radiotherapy is feasible and should not increase the toxicity compared to brain radiotherapy or CDK4/6i alone. However, the small number of individuals treated concurrently limits the conclusions about the combination of both modalities, and the results from ongoing prospective clinical trials are eagerly awaited to understand both the toxicity profile and the clinical response fully.
Collapse
|
35
|
Atypical Imaging Findings in Anti-GQ1b Brainstem Encephalitis. Can J Neurol Sci 2023; 50:292-293. [PMID: 35581189 DOI: 10.1017/cjn.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Berger A, Lee MD, Lotan E, Block KT, Fatterpekar G, Kondziolka D. Distinguishing Brain Metastasis Progression From Radiation Effects After Stereotactic Radiosurgery Using Longitudinal GRASP Dynamic Contrast-Enhanced MRI. Neurosurgery 2023; 92:497-506. [PMID: 36700674 DOI: 10.1227/neu.0000000000002228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Differentiating brain metastasis progression from radiation effects or radiation necrosis (RN) remains challenging. Golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced MRI provides high spatial and temporal resolution to analyze tissue enhancement, which may differ between tumor progression (TP) and RN. OBJECTIVE To investigate the utility of longitudinal GRASP MRI in distinguishing TP from RN after gamma knife stereotactic radiosurgery (SRS). METHODS We retrospectively evaluated 48 patients with brain metastasis managed with SRS at our institution from 2013 to 2020 who had GRASP MRI before and at least once after SRS. TP (n = 16) was pathologically confirmed. RN (n = 16) was diagnosed on either resected tissue without evidence of tumor or on lesion resolution on follow-up. As a reference, we included a separate group of patients with non-small-cell lung cancer that showed favorable response with tumor control and without RN on subsequent imaging (n = 16). Mean contrast washin and washout slopes normalized to the superior sagittal sinus were compared between groups. Receiver operating characteristic analysis was performed to determine diagnostic performance. RESULTS After SRS, progression showed a significantly steeper washin slope than RN on all 3 follow-up scans (scan 1: 0.29 ± 0.16 vs 0.18 ± 0.08, P = .021; scan 2: 0.35 ± 0.19 vs 0.18 ± 0.09, P = .004; scan 3: 0.32 ± 0.12 vs 0.17 ± 0.07, P = .002). No significant differences were found in the post-SRS washout slope. Post-SRS washin slope differentiated progression and RN with an area under the curve (AUC) of 0.74, a sensitivity of 75%, and a specificity of 69% on scan 1; an AUC of 0.85, a sensitivity of 92%, and a specificity of 69% on scan 2; and an AUC of 0.87, a sensitivity of 63%, and a specificity of 100% on scan 3. CONCLUSION Longitudinal GRASP MRI may help to differentiate metastasis progression from RN.
Collapse
Affiliation(s)
- Assaf Berger
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Matthew D Lee
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Eyal Lotan
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Kai Tobias Block
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Girish Fatterpekar
- Department of Radiology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| |
Collapse
|
37
|
Lee DH, Park JE, Kim N, Park SY, Kim YH, Cho YH, Kim JH, Kim HS. Tumor Habitat Analysis Using Longitudinal Physiological MRI to Predict Tumor Recurrence After Stereotactic Radiosurgery for Brain Metastasis. Korean J Radiol 2023; 24:235-246. [PMID: 36788768 PMCID: PMC9971843 DOI: 10.3348/kjr.2022.0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 12/11/2022] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE It is difficult to predict the treatment response of tissue after stereotactic radiosurgery (SRS) because radiation necrosis (RN) and tumor recurrence can coexist. Our study aimed to predict tumor recurrence, including the recurrence site, after SRS of brain metastasis by performing a longitudinal tumor habitat analysis. MATERIALS AND METHODS Two consecutive multiparametric MRI examinations were performed for 83 adults (mean age, 59.0 years; range, 27-82 years; 44 male and 39 female) with 103 SRS-treated brain metastases. Tumor habitats based on contrast-enhanced T1- and T2-weighted images (structural habitats) and those based on the apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) images (physiological habitats) were defined using k-means voxel-wise clustering. The reference standard was based on the pathology or Response Assessment in Neuro-Oncologycriteria for brain metastases (RANO-BM). The association between parameters of single-time or longitudinal tumor habitat and the time to recurrence and the site of recurrence were evaluated using the Cox proportional hazards regression analysis and Dice similarity coefficient, respectively. RESULTS The mean interval between the two MRI examinations was 99 days. The longitudinal analysis showed that an increase in the hypovascular cellular habitat (low ADC and low CBV) was associated with the risk of recurrence (hazard ratio [HR], 2.68; 95% confidence interval [CI], 1.46-4.91; P = 0.001). During the single-time analysis, a solid low-enhancing habitat (low T2 and low contrast-enhanced T1 signal) was associated with the risk of recurrence (HR, 1.54; 95% CI, 1.01-2.35; P = 0.045). A hypovascular cellular habitat was indicative of the future recurrence site (Dice similarity coefficient = 0.423). CONCLUSION After SRS of brain metastases, an increased hypovascular cellular habitat observed using a longitudinal MRI analysis was associated with the risk of recurrence (i.e., treatment resistance) and was indicative of recurrence site. A tumor habitat analysis may help guide future treatments for patients with brain metastases.
Collapse
Affiliation(s)
- Da Hyun Lee
- Department of Radiology, Ajou University School of Medicine, Suwon, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | | | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young Hyun Cho
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
38
|
Hesse F, Wright AJ, Somai V, Bulat F, Kreis F, Brindle KM. Imaging Glioblastoma Response to Radiotherapy Using 2H Magnetic Resonance Spectroscopy Measurements of Fumarate Metabolism. Cancer Res 2022; 82:3622-3633. [PMID: 35972377 PMCID: PMC9530651 DOI: 10.1158/0008-5472.can-22-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Early detection of tumor cell death in glioblastoma following treatment with chemoradiation has the potential to distinguish between true disease progression and pseudoprogression. Tumor cell death can be detected noninvasively in vivo by imaging the production of [2,3-2H2]malate from [2,3-2H2]fumarate using 2H magnetic resonance (MR) spectroscopic imaging. We show here that 2H MR spectroscopy and spectroscopic imaging measurements of [2,3-2H2]fumarate metabolism can detect tumor cell death in orthotopically implanted glioblastoma models within 48 hours following the completion of chemoradiation. Following the injection of [2,3-2H2]fumarate into tumor-bearing mice, production of [2,3-2H2]malate was measured in a human cell line-derived model and in radiosensitive and radioresistant patient-derived models of glioblastoma that were treated with temozolomide followed by targeted fractionated irradiation. The increase in the [2,3-2H2]malate/[2,3-2H2]fumarate signal ratio posttreatment, which correlated with histologic assessment of cell death, was a more sensitive indicator of treatment response than diffusion-weighted and contrast agent-enhanced 1H MRI measurements, which have been used clinically to detect responses of glioblastoma to chemoradiation. Overall, early detection of glioblastoma cell death using 2H MRI of malate production from fumarate could help improve the clinical evaluation of response to chemoradiation. SIGNIFICANCE 2H magnetic resonance imaging of labeled fumarate metabolism can detect early evidence of tumor cell death following chemoradiation, meeting a clinical need to reliably detect treatment response in glioblastoma.
Collapse
Affiliation(s)
- Friederike Hesse
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alan J. Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Vencel Somai
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, School of Clinical Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Flaviu Bulat
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Felix Kreis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Pan D, Rong X, Chen D, Jiang J, Ng WT, Mai H, Li Y, Li H, Cai J, Cheng J, Xu Y, Chua MLK, Simone CB, Lattanzi S, Tang Y. Mortality of early treatment for radiation-induced brain necrosis in head and neck cancer survivors: A multicentre, retrospective, registry-based cohort study. EClinicalMedicine 2022; 52:101618. [PMID: 36034411 PMCID: PMC9399256 DOI: 10.1016/j.eclinm.2022.101618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The evidence of early treatment for radiation-induced brain necrosis (RN) in head and neck cancer survivors remains insufficient. This study aimed to determine whether early anti-RN treatment was associated with lower mortality. METHODS In this cohort study, we utilized data from the Study in Radiotherapy-related Nervous System Complications (NCT03908502) and Hong Kong Cancer Registry. We included consecutive patients who had received radiotherapy (RT) for head and neck cancers and had subsequently developed RN between Jan 8, 2005 and Jan 19, 2020. Patients who had tumor progression before the diagnosis of RN, underwent surgical brain necrosis lesions resection before corticosteroids and/or bevacizumab treatment, had intracranial metastases before the diagnosis of RN, lacked follow-up data, or had a follow-up period of less than three months were excluded. Individual-level data were extracted from electronic medical records of the above-mentioned registries. The primary outcome was all-cause death. The vital status of each patient was confirmed through a standardized telephone interview. We compared patients who received early treatment (initiating bevacizumab or corticosteroids treatment within three months after RN diagnosis) with patients who did not (following a "watch-and-wait" policy). FINDINGS Of 641 eligible patients, 451 patients (70·4%) received early treatment after RN diagnosis and 190 patients (29·6%) did not. Overall, 112 patients (17·5%) died, of whom 73 (16·2%) in the early treatment group and 39 (20·5%) in the watch-and-wait group, during a median follow-up of 3·87 years. The early treatment group showed a lower risk of all-cause death compared with the watch-and-wait group after adjusting for age, sex, absence or presence of neurological symptoms at baseline, RN lesion features on brain magnetic resonance imaging, history of stroke, prior tumor-related characteristics (TNM stage, RT dose and techniques, and chemotherapy), and the time interval from RT to RN (HR 0·48, 95%CI 0·30 to 0·77; p = 0·0027), and extensive sensitivity analyses yielded similar results. There was no significant difference in the effect of early treatment on post-RN survival among subgroups stratified by presence or absence of neurological symptoms at diagnosis (p for interaction=0·41). INTERPRETATION Among head and neck cancer survivors with RN, initiating treatment early after RN diagnosis is associated with a lower risk of all-cause mortality as compared with following the watch-and-wait policy, irrespective of whether patients exhibit symptoms or not. Further prospective randomised studies would be needed to validate our findings since the observational study design might lead to some potential confounding. In the absence of data from randomised trials, our study will have an important implication for clinicians regarding the optimal timing of treatment for RN, and provides the foundation and supporting data for future trials on this topic. FUNDING National Natural Science Foundation of China (81925031, 81820108026, 81872549, 81801229, 82003389), the Science and Technology Program of Guangzhou (202007030001), Young Teacher Training Program of Sun Yat-sen University (20ykpy106), Key-Area Research and Development Program of Guangdong Province (2018B030340001), the National Medical Research Council Singapore Clinician Scientist Award (NMRC/CSA-INV/0027/2018, CSAINV20nov-0021), the Duke-NUS Oncology Academic Program Goh Foundation Proton Research Programme, NCCS Cancer Fund, the Kua Hong Pak Head and Neck Cancer Research Programme, and the National Research Foundation Clinical Research Programme Grant (NRF-CRP17-2017-05).
Collapse
Affiliation(s)
- Dong Pan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongping Chen
- The 5th Ward of Radiotherapy Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Tong Ng
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology and Medical Sciences, National Cancer Centre Singapore, Singapore
- Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Centre and Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Italy
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, China
- Corresponding author at: Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Rd., Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
40
|
Spotted Temporal Lobe Necrosis following Concurrent Chemoradiation Therapy Using Image-Guided Radiotherapy for Nasopharyngeal Carcinoma. Case Rep Otolaryngol 2022; 2022:5877106. [PMID: 36204045 PMCID: PMC9532156 DOI: 10.1155/2022/5877106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background. To explore spotted temporal lobe necrosis (TLN) and changes in brain magnetic resonance imaging (MRI) after image-guided radiotherapy (IGRT) in a patient with nasopharyngeal carcinoma (NPC). Case presentation: a 57-year-old male was diagnosed with stage III NPC, cT1N2M0, in 2017. He underwent concurrent chemoradiation therapy (CCRT) with cisplatin (30 mg/m2) and 5- fluorouracil (5-FU, 500 mg/m2) plus IGRT with 70 Gy in 35 fractions for 7 weeks. The following MRI showed a complete response in the NPC. However, the patient suffered from fainting periodically when standing up approximately 3 years after CCRT. Neck sonography showed mild atherosclerosis (< 15%) of bilateral carotid bifurcations and bilateral small-diameter vertebral arteries, with reduced flow volume. The following MRI showed a 9 mm × 7 mm enhancing lesion in the right temporal lobe without locoregional recurrence, and TLN was diagnosed. The lesion was near the watershed area between the anterior temporal and temporo-occipital arteries. The volume of the necrotic lesion was 0.51 c.c., and the mean dose and Dmax of the lesion were 64.4 Gy and 73.7 Gy, respectively. Additionally, the mean dose, V45, D1 c.c. (dose to 1 ml of the temporal lobe volume), D0.5 c.c. and Dmax of the right and left temporal lobes were 11.1 Gy and 11.4 Gy, 8.5 c.c. and 6.7 c.c., 70.1 Gy and 67.1 Gy, 72.0 Gy and 68.8 Gy, and 74.2 Gy and 72.1 Gy, respectively. Conclusion. Spotted TLN in patients with NPC treated by IGRT may be difficult to diagnose due to a lack of clinical symptoms and radiological signs. Endothelial damage may occur in carotid and vertebral arteries within the irradiated area, affecting the small branches supplying the temporal lobe and inducing spotted TLN. Future research on the relationship between vessels and RT or CCRT and the development of TLN is warranted.
Collapse
|
41
|
Muacevic A, Adler JR, Newkirk M, Narayanasamy G, Lewis G, Xia F. An Analysis of Risk Factors for Radiation Necrosis Following Cranial Radiation. Cureus 2022; 14:e29268. [PMID: 36133504 PMCID: PMC9482441 DOI: 10.7759/cureus.29268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Radiation necrosis in the brain is a frequent complication of brain radiation therapy (RT) and is characterized by various neurological symptoms including cognitive dysfunction, headaches, weakness, apraxia, aphasia, and numbness. These symptoms may be progressive and treatment-resistant. Currently, risk factors for radiation necrosis are not well characterized. The goal of this study is to identify risk factors for cerebral radiation necrosis in order to improve clinicians' ability to appropriately weigh the risks and benefits of brain RT. Methods A retrospective chart review was performed on patients who were diagnosed with brain tumors and received RT (3D conformal therapy, volumetric modulated arc therapy, stereotactic radiosurgery, or stereotactic radiotherapy) at the University of Arkansas for Medical Sciences from July 1, 2017, to July 1, 2019. Data regarding demographics, characteristics of cancer, chemotherapy status and class, comorbidities, and additional medications of patients were collected via EPIC. Total RT dose, fraction size, volume of brain receiving 12 Gy (V12), and retreatment of locally recurrent tumors were recorded from Eclipse. The diagnosis of radiation necrosis was based on MRI reports that were examined for a time period of 24 months following the completion of radiation treatment and confirmed, when possible, by biopsy. Cases that did not have an MRI available at least two months after the completion of RT were excluded. Statistical association analyses were used to identify candidate risk factors to radiation necrosis. These candidate risk factors were further used to assess their associations to demographics and other characteristics of cancer and treatments. Finally, adjusted and unadjusted logistic regression models were used to predict radiation necrosis using a single risk factor or multiple risk factors. ROC curves were used to evaluate the performance of prediction or discrimination of the logistic regression models. Results A total of 139 patients were studied. The mean ± standard deviation (SD) for age was 60.4 ± 13.6 years, female:male ratio was 71:68, and White:African American:other race ratio was 112:24:3. A total of 43 (30.9%) patients were diagnosed with radiation necrosis. Radiation adjuvant to surgery, concurrent systemic therapy status, total dose, and V12 were found to be significantly associated with radiation necrosis and considered candidate risk factors of radiation necrosis in the study. Predictive models showed adjusted odds ratios ([aORs] 95% confidence intervals or CIs) of 3.70 (1.01-13.56) and 8.19 (1.78-37.78) with radiation adjuvant to surgery and concurrent systemic therapy, respectively. For every one unit (log-transformed) increase of total dose and V12, the aORs (95% CI's) were 27.35 (3.74-200.16) and 1.63 (1.15-2.32), respectively. Conclusion Our study suggested a positive correlation of concurrent systemic therapy status and post-surgical adjuvant RT with the incidence of radiation necrosis. It further demonstrated that greater total RT dose and V12 were related to the risk of developing radiation necrosis following brain RT. Given the findings of this study, the aforementioned factors should be considered when weighing the risk of radiation necrosis with the benefits of treatment.
Collapse
|
42
|
DEGRO practical guideline for central nervous system radiation necrosis part 1: classification and a multistep approach for diagnosis. Strahlenther Onkol 2022; 198:873-883. [PMID: 36038669 PMCID: PMC9515024 DOI: 10.1007/s00066-022-01994-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE The Working Group for Neuro-Oncology of the German Society for Radiation Oncology in cooperation with members of the Neuro-Oncology Working Group of the German Cancer Society aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). METHODS Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN including bevacizumab in clinical routine. CONCLUSION Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neuro-oncologist. A multistep approach as an opportunity to review as many characteristics as possible to improve diagnostic confidence is recommended. Additional information about radiotherapy (RT) techniques is crucial for the diagnosis of RN. Misdiagnosis of untreated and progressive RN can lead to severe neurological deficits. In this practice guideline, we propose a detailed nomenclature of treatment-related changes and a multistep approach for their diagnosis.
Collapse
|
43
|
Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 2022; 14:cancers14153771. [PMID: 35954435 PMCID: PMC9367286 DOI: 10.3390/cancers14153771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Glioma is the most common primary malignant tumor of the adult central nervous system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up, it remains challenging to distinguish treatment-related changes from tumor progression in treated patients with gliomas due to both share clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions). The early effective identification of tumor progression and treatment-related changes is of great significance for the prognosis and treatment of gliomas. We believe that advanced neuroimaging techniques can provide additional information for distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance imaging technology and artificial intelligence in tumor progression and treatment-related changes. Finally, it provides new ideas and insights for clinical diagnosis. Abstract As the most common neuro-epithelial tumors of the central nervous system in adults, gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as both share similar clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive and feasible technical means for identifying of TP and TRCs at an early stage, which have recently become research hotspots. This paper reviews the current research on using the abovementioned advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the pathological changes of the two entities to establish a theoretical basis for imaging identification. Then, it elaborates on the application of different imaging techniques and AI in identifying the two entities. Finally, the current challenges and future prospects of these techniques and methods are discussed.
Collapse
Affiliation(s)
- Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Hui Jing
- Department of MRI, The Six Hospital, Shanxi Medical University, Taiyuan 030008, China;
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Bin Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
44
|
Flies CM, van Leuken KH, Ten Voorde M, Verhoeff JJC, De Vos FYF, Seute T, Robe PA, Witkamp TD, Hendrikse J, Dankbaar JW, Snijders TJ. Conventional MRI Criteria to Differentiate Progressive Disease From Treatment-Induced Effects in High-Grade (WHO Grade 3-4) Gliomas. Neurology 2022; 99:e77-e88. [PMID: 35437259 PMCID: PMC9259090 DOI: 10.1212/wnl.0000000000200359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Posttreatment radiologic deterioration of an irradiated high-grade (WHO grade 3-4) glioma (HGG) may be the result of true progressive disease or treatment-induced effects (TIE). Differentiation between these entities is of great importance but remains a diagnostic challenge. This study assesses the diagnostic value of conventional MRI characteristics to differentiate progressive disease from TIE in HGGs. METHODS In this single-center, retrospective, consecutive cohort study, we included adults with a HGG who were treated with (chemo-)radiotherapy and subsequently developed a new or increasing contrast-enhancing lesion on conventional follow-up MRI. TIE and progressive disease were defined radiologically as stable/decreased for ≥6 weeks or Response Assessment in Neuro-Oncology progression and histologically as TIE without viable tumor or progressive disease. Two neuroradiologists assessed 21 preselected MRI characteristics of the progressive lesions. The statistical analysis included logistic regression to develop a full multivariable model, a diagnostic model with model reduction, and a Cohen kappa interrater reliability (IRR) coefficient. RESULTS A total of 210 patients (median age 61 years, interquartile range 54-68, 189 male) with 284 lesions were included, of whom 141 (50%) had progressive disease. Median time to progressive disease was 2 (0.7-6.1) and to TIE 0.9 (0.7-3.5) months after radiotherapy. After multivariable modeling and model reduction, the following determinants prevailed: radiation dose (odds ratio [OR] 0.68, 95% CI 0.49-0.93), longer time to progression (TTP; OR 3.56, 95% CI 1.84-6.88), marginal enhancement (OR 2.04, 95% CI 1.09-3.83), soap bubble enhancement (OR 2.63, 95% CI 1.39-4.98), and isointense apparent diffusion coefficient (ADC) signal (OR 2.11, 95% CI 1.05-4.24). ORs >1 indicate higher odds of progressive disease. The Hosmer & Lemeshow test showed good calibration (p = 0.947) and the area under the receiver operating characteristic curve was 0.722 (95% CI 0.66-0.78). In the glioblastoma subgroup, TTP, marginal enhancement, and ADC signal were significant. IRR analysis between neuroradiologists revealed moderate to near perfect agreement for the predictive items but poor agreement for others. DISCUSSION Several characteristics from conventional MRI are significant predictors for the discrimination between progressive disease and TIE. However, IRR was variable. Conventional MRI characteristics from this study should be incorporated into a multimodal diagnostic model with advanced imaging techniques. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in patients with irradiated HGGs, radiation dose, longer TTP, marginal enhancement, soap bubble enhancement, and isointense ADC signal distinguish progressive disease from TIE.
Collapse
Affiliation(s)
- Christina M Flies
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Karlijn H van Leuken
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Marlies Ten Voorde
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Joost J C Verhoeff
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Filip Y F De Vos
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Tatjana Seute
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Pierre A Robe
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Theodoor D Witkamp
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Jeroen Hendrikse
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Jan Willem Dankbaar
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.)
| | - Tom J Snijders
- From the Department of Neurology & Neurosurgery, UMC Utrecht Brain Center (C.M.F., K.H.v.L., M.t.V., T.S., P.A.R., T.J.S.), and Departments of Radiation Oncology (J.J.C.V.), Medical Oncology (F.Y.F.D.V.), and Radiology (T.D.W., J.H., J.W.D.), University Medical Center Utrecht; Stichting Beroepsopleiding Huisarts (K.H.v.L.), the Netherlands; and Mission of the Netherlands Reformed Congregations in Guinea (Conakry) (M.t.V.).
| |
Collapse
|
45
|
Fomchenko EI, Leelatian N, Darbinyan A, Huttner AJ, Chiang VL. Histological changes associated with laser interstitial thermal therapy for radiation necrosis: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE21373. [PMID: 35855352 PMCID: PMC9257400 DOI: 10.3171/case21373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Patients with lung cancer and melanoma remain the two largest groups to develop brain metastases. Immunotherapy has been approved for treatment of stage IV disease in both groups. Many of these patients are additionally treated with stereotactic radiosurgery for their brain metastases during ongoing immunotherapy. Use of immunotherapy has been reported to increase the rates of radiation necrosis (RN) after radiosurgery, causing neurological compromise due to growth of the enhancing lesion as well as worsening of associated cerebral edema. OBSERVATIONS Laser interstitial thermal therapy (LITT) is a surgical approach that has been shown effective in the management of RN, especially given its efficacy in early reduction of perilesional edema. However, little remains known about the pathology of the post-LITT lesions and how LITT works in this condition. Here, we present two patients who needed surgical decompression after LITT for RN. Clinical, histopathological, and imaging features of both patients are presented. LESSONS Criteria for selecting the best patients with RN for LITT therapy remains unclear. Given two similarly sized lesions and not too dissimilar clinical histories but with differing outcomes, further investigation is clearly needed to identify predictors of response to LITT in the setting of SRS and immunotherapy-induced RN.
Collapse
|
46
|
Liu R, Luo H, Zhang Q, Sun S, Liu Z, Wang X, Geng Y, Zhao X. Bevacizumab is an effective treatment for symptomatic cerebral necrosis after carbon ion therapy for recurrent intracranial malignant tumours: A case report. Mol Clin Oncol 2022; 17:114. [PMID: 35747599 PMCID: PMC9204208 DOI: 10.3892/mco.2022.2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Carbon ion therapy (CIT) is a form of particle therapy, which not only spares normal tissues but may also improve local control of recurrent intracranial tumours. Cerebral radiation necrosis (RN) is one of the most serious adverse reactions of recurrent brain tumours following reirradiation, which may lead to neurological decline or even death. Bevacizumab is an anti-vascular endothelial growth factor antibody, which has been used to treat symptomatic RN. However, studies on bevacizumab for the treatment of CIT-induced RN are sparse. The present study described two cases that were successfully treated with bevacizumab for symptomatic RN following CIT for recurrent intracranial malignant tumours. The two recurrent intracranial malignant tumours, a chondrosarcoma in the right cavernous sinus and an anaplastic meningioma in the right frontal lobe, were enrolled in a clinical trial of CIT. Both cases were treated intravenously with bevacizumab when deterioration that appeared to be symptomatic brain RN was observed. Just before CIT, enhanced magnetic resonance imaging (MRI) was performed in each case to confirm tumour recurrence. Both cases exhibited a deterioration in symptoms, as well as on MRI, at 12-month intervals following CIT. The first case underwent positron emission tomography/computed tomography to confirm no increase in fluorodeoxyglucose uptake in lesion areas. Both cases were diagnosed as having symptomatic brain RN and began intravenous administration of four cycles of 5 mg/kg bevacizumab biweekly. The patients responded well, with rapid and marked improvements on MRI, and in clinical symptoms. No tumour progression was observed 24 months after CIT. In conclusion, bevacizumab was revealed to exert marked effects on symptomatic brain RN following CIT. Notably, cycles of bevacizumab should be administered specifically based on the aim of treating brain necrosis, and long-term or prophylactic applications are not recommended.
Collapse
Affiliation(s)
- Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xueshan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
47
|
Lerner EC, Edwards RM, Wilkinson DS, Fecci PE. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv Drug Deliv Rev 2022; 185:114311. [PMID: 35489652 PMCID: PMC10589123 DOI: 10.1016/j.addr.2022.114311] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Collapse
Affiliation(s)
- Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Ryan M Edwards
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
48
|
Maiter A, Butteriss D, English P, Lewis J, Hassani A, Bhatnagar P. Assessing the diagnostic accuracy and interobserver agreement of MRI perfusion in differentiating disease progression and pseudoprogression following treatment for glioblastoma in a tertiary UK centre. Clin Radiol 2022; 77:e568-e575. [DOI: 10.1016/j.crad.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
|
49
|
Hu YS, Yang HC, Lin CJ, Lee CC, Guo WY, Luo CB, Liu KD, Chung WY, Wu HM. Imaging Markers Associated With Radiation-Induced Changes in Brain Arteriovenous Malformations After Radiosurgery. Neurosurgery 2022; 90:464-474. [PMID: 35080514 DOI: 10.1227/neu.0000000000001864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Radiation-induced changes (RICs) in brain tissue, seen as increased perinidal T2-weighted hyperintensity on MRI, are commonly observed in patients with brain arteriovenous malformations (BAVMs) within 2 years after Gamma Knife (Elekta) radiosurgery (GKRS). OBJECTIVE To explore the imaging markers associated with RICs in patients with BAVMs. METHODS We retrospectively included 106 treatment-naïve patients with BAVMs who received GKRS alone between 2011 and 2018 and had ≥24 months of clinical and MRI follow-up. Pre-GKRS angiography and MRIs were analyzed for morphological characteristics and quantitative digital subtraction angiography parameters. RIC severity was categorized as mild (grade I), moderate (grade II), or severe (grade III). Firth logistic regression analysis was conducted to determine the associations between the parameters and RICs. RESULTS Among the 106 patients, 83 (78.3%) developed RICs, with 16 categorized as grade I, 62 as grade II, and 5 as grade III. RICs were symptomatic in 19 patients (17.9%). In multivariable models, BAVMs with a volume of >5 cm3 (odds ratio [OR]: 4.322, P = .024) and neoangiogenesis on angiography before treatment (OR: 3.846, P = .029), and thrombus within nidus or drainage vein on follow-up MRI (OR: 3.679, P = .001) were independently associated with grade II or III RICs. Symptomatic RICs were more likely to develop in basal ganglia or brainstem. CONCLUSION Large BAVMs and neoangiogenesis were associated with moderate to severe RICs in treatment-naïve patients with BAVMs. Our findings may assist with the complication risk assessment for these patients.
Collapse
Affiliation(s)
- Yong-Sin Hu
- Department of Radiology, Taoyuan Branch, Taipei Veterans General Hospital, Taoyuan, Taiwan
- Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, New Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Huai-Che Yang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Jung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Bao Luo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kang-Du Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yuh Chung
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Suarez-Meade P, Marenco-Hillembrand L, Sherman WJ. Neuro-oncologic Emergencies. Curr Oncol Rep 2022; 24:975-984. [PMID: 35353348 DOI: 10.1007/s11912-022-01259-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Patients with brain and spine tumors are at high risk of presenting cancer-related complications at disease presentation or during active treatment and are usually related to the type and location of the lesion. Here, we discuss presentation and management of the most common emergencies affecting patients with central nervous system neoplastic lesions. RECENT FINDINGS Tumor-related emergencies encompass complications in patients with central nervous system neoplasms, as well as neurologic complications in patients with systemic malignancies. Brain tumor patients are at high risk of developing multiple complications such as intracranial hypertension, brain herniation, intracranial bleeding, spinal cord compression, and others. Neuro-oncologic emergencies require immediate attention and multi-disciplinary care. These emergent situations usually need rapid decision-making and management on an inpatient basis.
Collapse
Affiliation(s)
| | | | - Wendy J Sherman
- Department of Neurology and Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|