1
|
Bratchenko IA, Bratchenko LA. Comment on "Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning". LIGHT, SCIENCE & APPLICATIONS 2025; 14:53. [PMID: 39828723 PMCID: PMC11743784 DOI: 10.1038/s41377-024-01663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/10/2024] [Accepted: 10/22/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Ivan A Bratchenko
- Laser and Biotechnical Systems Department, Samara National Research University, Moskovskoe shosse 34, Samara, 443086, Russia.
| | - Lyudmila A Bratchenko
- Laser and Biotechnical Systems Department, Samara National Research University, Moskovskoe shosse 34, Samara, 443086, Russia
| |
Collapse
|
2
|
Moorthy DN, Dhinasekaran D, Rebecca PNB, Rajendran AR. Optical Biosensors for Detection of Cancer Biomarkers: Current and Future Perspectives. JOURNAL OF BIOPHOTONICS 2024; 17:e202400243. [PMID: 39442779 DOI: 10.1002/jbio.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.
Collapse
Affiliation(s)
| | | | - P N Blessy Rebecca
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Balapure A, Dubey SK, Javed A, Chattopadhyay S, Goel S. A review: early detection of oral cancer biomarkers using microfluidic colorimetric point-of-care devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6098-6118. [PMID: 39206589 DOI: 10.1039/d4ay01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancers. OSCC constitutes 90% of the head and neck malignancies. The delayed identification of oral cancer is the primary cause of ineffective medical treatment. To address this issue, low-cost, reliable point-of-care devices that can be utilized for large-scale screening, even in low-resource settings, including rural areas and primary healthcare centers, are of great interest. Herein, a comprehensive analysis of numerous salivary biomarkers that exhibit significant variations in concentration between individuals with oral cancer and those without is given. Furthermore, the article explores several point-of-care devices that exhibit potential in the realm of oral cancer detection. The biomarkers are discussed with a focus on their structural characteristics and role in oral cancer progression. The devices based on colorimetry and microfluidics are discussed in detail, considering their compliance with the 'REASSURED' criteria given by the World Health Organization (WHO) and suitability for mass screening in low-resource settings. Finally, the discourse revolves around the fundamental aspects pertaining to the advancement of multiplex, cost-effective point-of-care devices designed for widespread screening purposes.
Collapse
Affiliation(s)
- Aniket Balapure
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| | - Satish Kumar Dubey
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| | - Arshad Javed
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| |
Collapse
|
4
|
Salinas RA, Martínez Tolibia SE, Zayas-Bazán PG, Rodil SE, Mathew MT, Navarrete A, Santana G, Dutt A. Synergistic Assembly of 1DZnO and Anti-CYFRA 21-1: A Physicochemical Approach to Optical Biosensing. BME FRONTIERS 2024; 5:0064. [PMID: 39297176 PMCID: PMC11408934 DOI: 10.34133/bmef.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Objective: We conducted a comprehensive physicochemical analysis of one-dimensional ZnO nanowires (1DZnO), incorporating anti-CYFRA 21-1 immobilization to promote fast optical biomarker detection up to 10 ng ml-1. Impact Statement: This study highlights the effectiveness of proof-of-concept 1DZnO nanoplatforms for rapid cancer biomarker detection by examining the nanoscale integration of 1DZnO with these bioreceptors to deliver reliable photoluminescent output signals. Introduction: The urgent need for swift and accurate prognoses in healthcare settings drives the rise of sensitive biosensing nanoplatforms for cancer detection, which has benefited from biomarker identification. CYFRA 21-1 is a reliable target for the early prediction of cancer formation that can be perceptible in blood, saliva, and serum. However, 1DZnO nanostructures have been barely applied for CYFRA 21-1 detection. Methods: We assessed the nanoscale interaction between 1DZnO and anti-CYFRA 21-1 antibodies to develop rapid CYFRA 21-1 detection in two distinct matrices: PhosphateBuffered Saline (PBS) buffer and artificial saliva. The chemical modifications were tracked utilizing Fourier transform infrared spectroscopy, while transmission electron microscopy and energy dispersive spectroscopy confirmed antigen-antibody interplay over nanostructures. Results: Our results show high antibody immobilization efficiencies, affirming the effectiveness of 1DZnO nanoplatforms for rapid CYFRA 21-1 testing within a 5-min detection window in both PBS and artificial saliva. Photoluminescence measurements also revealed distinct optical responses across biomarker concentrations ranging from 10 to 1,000 ng ml-1. Conclusion: Discernible PL signal responses obtained after 5 min affirm the potential of 1DZnO nanoplatforms for further advancement in optical biomarker detection for application in early cancer prognosis.
Collapse
Affiliation(s)
- Rafael A Salinas
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México
| | - Shirlley E Martínez Tolibia
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México
| | - Patricia G Zayas-Bazán
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México
| | - Sandra E Rodil
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México
| | - Mathew T Mathew
- Department of Biomedical Science, UIC College of Medicine, Rockford, IL 61107, USA
| | - Andrés Navarrete
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria C.P. 04510, Coyoacán, Mexico City, México
| | - Guillermo Santana
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México
| | - Ateet Dutt
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México
| |
Collapse
|
5
|
Pierfelice TV, D’Amico E, Cinquini C, Iezzi G, D’Arcangelo C, D’Ercole S, Petrini M. The Diagnostic Potential of Non-Invasive Tools for Oral Cancer and Precancer: A Systematic Review. Diagnostics (Basel) 2024; 14:2033. [PMID: 39335712 PMCID: PMC11431589 DOI: 10.3390/diagnostics14182033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES This systematic review aimed to analyse the published evidence for the use of non-invasive methods for the early detection of oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). METHODS The literature was systematically searched through several databases: PubMed, Cochrane Library, and Web of Science. Additional exploration was performed through cross-checks on the bibliographies of selected reviews. The inclusion criteria involved studies assessing the application of non-invasive tests on humans in the screening, diagnosis, or surveillance of OSCC or OPMDs and reporting sensitivity (SE) and specificity (SP). The Newcastle-Ottawa scale (NOS) was applied to assess the quality of the studies included. RESULTS The search strategy resulted in 8012 preliminary records. After a duplicate check, 116 titles remained. After abstract analysis, 70 papers remained. After full text analysis, only 54 of the 70 papers fit the inclusion criteria (28 were original articles and 26 were reviews). Those 26 reviews were used to manually search for further original articles. From this last search, 33 original articles were found. Thus, a total of 61 original studies were included and investigated. Findings from this systematic review indicate useful information, such as a description of the mechanisms, ease of use, limitations, and SE and SP values, to drive the choice of the optimal minimally invasive method to be utilized as an adjunctive tool to examine the suspicious lesions. CONCLUSIONS Each of the analysed tools can be improved or implemented, considering their high SE and low SP. Despite advancements, incisional biopsy continues to be the gold standard for the definitive diagnosis of oral cancer and precancerous lesions. Further research and development are essential to improving the sensitivity, specificity, and reliability of non-invasive tools for widespread clinical application.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Chiara Cinquini
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56100 Pisa, Italy;
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Camillo D’Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| |
Collapse
|
6
|
Antonelli R, Setti G, Treister NS, Pertinhez TA, Ferrari E, Gallo M, Bologna-Molina R, Vescovi P, Meleti M. Salivary metabolomics in oral cancer: A systematic review. ORAL ONCOLOGY REPORTS 2024; 11:100657. [DOI: 10.1016/j.oor.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
|
7
|
Ichimaru H, Kikuchi S. Near-Infrared Fluorescent Silica Nanoparticles Based on Gold-Silver Alloy Nanoclusters for Clinical Diagnosis. Chem Pharm Bull (Tokyo) 2024; 72:121-126. [PMID: 38296514 DOI: 10.1248/cpb.c23-00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In clinical diagnosis, fluorescent particles are applied to detect analytes in biofluids, such as blood and saliva. However, current fluorescence detection methods have not been optimized to account for the overlapping autofluorescence peaks of biological substances. Gold and silver nanoclusters are known to the novel fluorescent materials and their emission wavelengths depend on cluster size. In this study, we developed fluorescent silica nanoparticles using gold-silver alloy nanoclusters and chitosan (CS) (NH2-SiO2@Au@CS@AuAg) by the layer-by-layer method. Under UV-light irradiation at 365 nm, the emission wavelength of NH2-SiO2@Au@CS@AuAg reached 750 nm in the near-IR region. Scanning electron microscopy images revealed that the shape of NH2-SiO2@Au@CS@AuAg was uniform and spherical. The fluorescence spectrum of horse blood obtained in the presence of NH2-SiO2@Au@CS@AuAg contained a specific fluorescence peak attributed to NH2-SiO2@Au@CS@AuAg, which was distinguishable from the autofluorescence peaks. These results showed that NH2-SiO2@Au@CS@AuAg has advantageous fluorescence properties for clinical diagnostic applications.
Collapse
|
8
|
Greenfield E, Alves MDS, Rodrigues F, Nogueira JO, da Silva L, de Jesus HP, Cavalcanti DR, Carvalho BFDC, Almeida JD, Mendes MA, Oliveira Alves MG. Preliminary Findings on the Salivary Metabolome of Hookah and Cigarette Smokers. ACS OMEGA 2023; 8:36845-36855. [PMID: 37841134 PMCID: PMC10569005 DOI: 10.1021/acsomega.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
The aim of the study was to evaluate the salivary metabolomic profile of patients who habitually smoke hookah and cigarettes. The groups consisted of 33 regular and exclusive hookah smokers, 26 regular and exclusive cigarette smokers, and 30 nonsmokers. Unstimulated whole saliva was collected for the measurement of salivary metabolites by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The MetaboAnalyst software was used for statistical analysis and evaluation of biomarkers. 11 smoking salivary biomarkers were identified using the area under receiving-operator curver criterion and threshold of 0.9. Xylitol and octadecanol were higher in cigarette smokers compared to controls; arabitol and maltose were higher in controls compared to cigarette smokers; octadecanol and tyramine were higher in hookah smokers compared to controls; phenylalanine was higher in controls compared to hookah smokers; and fructose, isocitric acid, glucuronic acid, tryptamine, maltose, tyramine, and 3-hydroxyisolvaleric acid were higher in hookah smokers compared to cigarettes smokers. Conclusions: The evaluation of the salivary metabolome of hookah smokers, showing separation between the groups, especially between the control versus hookah groups and cigarette versus hookah groups, and it seems to demonstrate that the use of hookah tobacco is more damaging to health.
Collapse
Affiliation(s)
- Ellen Greenfield
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
| | - Mariana de Sá Alves
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Fernanda Rodrigues
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
| | | | | | | | | | - Bruna Fernandes do Carmo Carvalho
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Janete Dias Almeida
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Maria Anita Mendes
- Dempster
MS Lab, Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Mônica Ghislaine Oliveira Alves
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| |
Collapse
|
9
|
Fonseca AU, Felix JP, Pinheiro H, Vieira GS, Mourão ÝC, Monteiro JCG, Soares F. An Intelligent System to Improve Diagnostic Support for Oral Squamous Cell Carcinoma. Healthcare (Basel) 2023; 11:2675. [PMID: 37830712 PMCID: PMC10572543 DOI: 10.3390/healthcare11192675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most-prevalent cancer types worldwide, and it poses a serious threat to public health due to its high mortality and morbidity rates. OSCC typically has a poor prognosis, significantly reducing the chances of patient survival. Therefore, early detection is crucial to achieving a favorable prognosis by providing prompt treatment and increasing the chances of remission. Salivary biomarkers have been established in numerous studies to be a trustworthy and non-invasive alternative for early cancer detection. In this sense, we propose an intelligent system that utilizes feed-forward artificial neural networks to classify carcinoma with salivary biomarkers extracted from control and OSCC patient samples. We conducted experiments using various salivary biomarkers, ranging from 1 to 51, to train the model, and we achieved excellent results with precision, sensitivity, and specificity values of 98.53%, 96.30%, and 97.56%, respectively. Our system effectively classified the initial cases of OSCC with different amounts of biomarkers, aiding medical professionals in decision-making and providing a more-accurate diagnosis. This could contribute to a higher chance of treatment success and patient survival. Furthermore, the minimalist configuration of our model presents the potential for incorporation into resource-limited devices or environments.
Collapse
Affiliation(s)
- Afonso U. Fonseca
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| | - Juliana P. Felix
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| | - Hedenir Pinheiro
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| | - Gabriel S. Vieira
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
- Federal Institute Goiano, Computer Vision Lab, Urutaí 75790-000, GO, Brazil
| | | | | | - Fabrizzio Soares
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| |
Collapse
|
10
|
Thapa P, Singh V, Bhatt S, Maurya K, Kumar V, Nayyar V, Jot K, Mishra D, Shrivastava A, Mehta DS. Multimodal fluorescence imaging and spectroscopic techniques for oral cancer screening: a real-time approach. Methods Appl Fluoresc 2023; 11:045008. [PMID: 37666247 DOI: 10.1088/2050-6120/acf6ac] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
The survival rate of oral squamous cell carcinoma (OSCC) patients is very poor, but it can be improved using highly sensitive, specific, and accurate techniques. Autofluorescence and fluorescence techniques are very sensitive and helpful in cancer screening; being directly linked with the molecular levels of human tissue, they can be used as a quantitative tool for cancer detection. Here, we report the development of multi-modal autofluorescence and fluorescence imaging and spectroscopic (MAF-IS) smartphone-based systems for fast and real-time oral cancer screening. MAF-IS system is indigenously developed and offers the advantages of being a low-cost, handy, non-contact, non-invasive, and easily operable device that can be employed in hospitals, including low-resource settings. In this study, we report the results of 43 individuals with 28 OSCC and 15 oral potentially malignant disorders (OPMDs), i.e., epithelial dysplasia and oral submucous fibrosis, using the developed devices. We observed a red shift in fluorescence emission spectrain vivo. We found red-shift of 7.72 ± 6 nm, 3 ± 4.36 nm, and 1.33 ± 0.47 nm in the case of OSCC, epithelial dysplasia, and oral submucous fibrosis, respectively, compared to normal. The results were compared with histopathology and found to be consistent. Further, the MAF-IS system provides results in real-time with higher accuracy and sensitivity compared to devices using a single modality. Our system can achieve an accuracy of 97% with sensitivity and specificity of 100% and 94.7%, respectively, even with a smaller number of patients (28 patients of OSCC). The proposed MAF-IS device has great potential for fast screening and diagnosis of oral cancer in the future.
Collapse
Affiliation(s)
- Pramila Thapa
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Veena Singh
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Sunil Bhatt
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Kiran Maurya
- Department of Oral Pathology and Microbiology, Center for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Virendra Kumar
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Vivek Nayyar
- Department of Oral Pathology and Microbiology, Center for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Kiran Jot
- Department of Oral Pathology and Microbiology, Center for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Center for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Anurag Shrivastava
- Department of Surgical Disciplines, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Dalip Singh Mehta
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Santini D, Botticelli A, Galvano A, Iuliani M, Incorvaia L, Gristina V, Taffon C, Foderaro S, Paccagnella E, Simonetti S, Fazio F, Scagnoli S, Pomati G, Pantano F, Perrone G, De Falco E, Russo A, Spinelli GP. Network approach in liquidomics landscape. J Exp Clin Cancer Res 2023; 42:193. [PMID: 37542343 PMCID: PMC10401883 DOI: 10.1186/s13046-023-02743-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023] Open
Abstract
Tissue-based biopsy is the present main tool to explore the molecular landscape of cancer, but it also has many limits to be frequently executed, being too invasive with the risk of side effects. These limits and the ability of cancer to constantly evolve its genomic profile, have recently led to the need of a less invasive and more accurate alternative, such as liquid biopsy. By searching Circulating Tumor Cells and residues of their nucleic acids or other tumor products in body fluids, especially in blood, but also in urine, stools and saliva, liquid biopsy is becoming the future of clinical oncology. Despite the current lack of a standardization for its workflows, that makes it hard to be reproduced, liquid biopsy has already obtained promising results for cancer screening, diagnosis, prognosis, and risk of recurrence.Through a more accessible molecular profiling of tumors, it could become easier to identify biomarkers predictive of response to treatment, such as EGFR mutations in non-small cell lung cancer and KRAS mutations in colorectal cancer, or Microsatellite Instability and Mismatch Repair as predictive markers of pembrolizumab response.By monitoring circulating tumor DNA in longitudinal repeated sampling of blood we could also predict Minimal Residual Disease and the risk of recurrence in already radically resected patients.In this review we will discuss about the current knowledge of limitations and strengths of the different forms of liquid biopsies for its inclusion in normal cancer management, with a brief nod to their newest biomarkers and its future implications.
Collapse
Affiliation(s)
- Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Andrea Botticelli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Chiara Taffon
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Simone Foderaro
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Elisa Paccagnella
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
| | - Sonia Simonetti
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Federico Fazio
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy.
| | - Simone Scagnoli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | | | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Giuseppe Perrone
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, 80122, Naples, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| |
Collapse
|
12
|
Jiang B, Xie D, Wang S, Li X, Wu G. Advances in early detection methods for solid tumors. Front Genet 2023; 14:1091223. [PMID: 36911396 PMCID: PMC9998680 DOI: 10.3389/fgene.2023.1091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
During the last decade, non-invasive methods such as liquid biopsy have slowly replaced traditional imaging and invasive pathological methods used to diagnose and monitor cancer. Improvements in the available detection methods have enabled the early screening and diagnosis of solid tumors. In addition, advances in early detection methods have made the continuous monitoring of tumor progression using repeat sampling possible. Previously, the focus of liquid biopsy techniques included the following: 1) the isolation of circulating tumor cells, circulating tumor DNA, and extracellular tumor vesicles from solid tumor cells in the patient's blood; in addition to 2) analyzing genomic and proteomic data contained within the isolates. Recently, there has been a rapid devolvement in the techniques used to isolate and analyze molecular markers. This rapid evolvement in detection techniques improves their accuracy, especially when few samples are available. In addition, there is a tremendous expansion in the acquisition of samples and targets for testing; solid tumors can be detected from blood and other body fluids. Test objects have also expanded from samples taken directly from cancer to include indirect objects affected in cancer development. Liquid biopsy technology has limitations. Even so, this detection technique is the key to a new phase of oncogenetics. This review aims to provide an overview of the current advances in liquid biopsy marker selection, isolation, and detection methods for solid tumors. The advantages and disadvantages of liquid biopsy technology will also be explored.
Collapse
Affiliation(s)
- Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiunan Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Maryam S, Nogueira MS, Gautam R, Krishnamoorthy S, Venkata Sekar SK, Kho KW, Lu H, Ni Riordain R, Feeley L, Sheahan P, Burke R, Andersson-Engels S. Label-Free Optical Spectroscopy for Early Detection of Oral Cancer. Diagnostics (Basel) 2022; 12:diagnostics12122896. [PMID: 36552903 PMCID: PMC9776497 DOI: 10.3390/diagnostics12122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Oral cancer is the 16th most common cancer worldwide. It commonly arises from painless white or red plaques within the oral cavity. Clinical outcome is highly related to the stage when diagnosed. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Therefore, there is a need to develop a non-invasive cost-effective diagnostic technique to differentiate non-malignant and early-stage malignant lesions. Optical spectroscopy may provide an appropriate solution to facilitate early detection of these lesions. It has many advantages over traditional approaches including cost, speed, objectivity, sensitivity, painlessness, and ease-of use in clinical setting for real-time diagnosis. This review consists of a comprehensive overview of optical spectroscopy for oral cancer diagnosis, epidemiology, and recent improvements in this field for diagnostic purposes. It summarizes major developments in label-free optical spectroscopy, including Raman, fluorescence, and diffuse reflectance spectroscopy during recent years. Among the wide range of optical techniques available, we chose these three for this review because they have the ability to provide biochemical information and show great potential for real-time deep-tissue point-based in vivo analysis. This review also highlights the importance of saliva-based potential biomarkers for non-invasive early-stage diagnosis. It concludes with the discussion on the scope of development and future demands from a clinical point of view.
Collapse
Affiliation(s)
- Siddra Maryam
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
- Correspondence:
| | | | - Rekha Gautam
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | | | | | - Kiang Wei Kho
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | - Huihui Lu
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | - Richeal Ni Riordain
- ENTO Research Institute, University College Cork, T12 R229 Cork, Ireland
- Cork University Dental School and Hospital, Wilton, T12 E8YV Cork, Ireland
| | - Linda Feeley
- ENTO Research Institute, University College Cork, T12 R229 Cork, Ireland
- Cork University Hospital, T12 DC4A Cork, Ireland
| | - Patrick Sheahan
- ENTO Research Institute, University College Cork, T12 R229 Cork, Ireland
- South Infirmary Victoria University Hospital, T12 X23H Cork, Ireland
| | - Ray Burke
- Tyndall National Institute, University College Cork, T12 R229 Cork, Ireland
| | | |
Collapse
|
14
|
Joseph B, Gopalakrishnan S, Alamoudi RA, Alamoudi RA, Pachathundikandi SK, Alotaibi RN, Anil S. Detection of invisible dental biofilm using light-induced autofluorescence in adult patients-A systematic review. Photodiagnosis Photodyn Ther 2022; 39:102916. [PMID: 35605925 DOI: 10.1016/j.pdpdt.2022.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autofluorescence (AF) spectroscopy is a potent yet non-invasive technique with diagnostic and therapeutic applications. It identifies and characterizes changes occurring in the human body based on the changes in the fluorescence signatures. AIM The primary purpose of this systematic review is to address the question "Is it feasible to detect dental plaque using light-induced auto-fluorescence in adult patients with invisible grade 1 plaque?" MATERIALS AND METHODS The literature search was conducted independently MEDLINE, Embase, Cochrane Library, Web of Science, Google Scholar, and Scopus databases for relevant studies from January 2000 and June 2021, using the following terms in various combinations: detection, dental biofilm, plaque, light, auto-fluorescence, caries, gingivitis, sensitivity and specificity. Studies describing various fluorescence techniques for the detection of plaque, including sensitivity and specificity, were included. RESULTS The majority of the studies indicated that AF spectroscopy allows fluorescence-based detection of various diseases, including early-stage dental plaque. While results of conventional plaque detection techniques are inconsistent, the data from the AF technique is reliable and reproducible, which can be used for patient documentation. However, a wide range of non-uniformity existed in these studies. AF spectroscopy, as a non-invasive technique, represents a viable and patient-friendly clinical tool for the early detection of dental biofilm plaque, and its meticulous removal has been directly responsible for the prevention of this disease. CONCLUSION Despite the heterogeneity and limitations of studies included in this review, the future for light-induced autofluorescence spectroscopy technologies in diagnostic dentistry certainly presents an accurate and potentially applicable option.
Collapse
Affiliation(s)
- Betsy Joseph
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India, 600077
| | - Sandeep Gopalakrishnan
- College of Nursing, University of Wisconsin-Milwaukee, 1921 E Hartford Ave, Milwaukee, WI 53211, USA
| | - Rana A Alamoudi
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ruaa A Alamoudi
- Endodontic Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suneesh K Pachathundikandi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Rasha N Alotaibi
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sukumaran Anil
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Post Box: 3050 Doha, Qatar; College of Dental Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
15
|
Rushing BR, Tilley S, Molina S, Schroder M, Sumner S. Commonalities in Metabolic Reprogramming between Tobacco Use and Oral Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10261. [PMID: 36011897 PMCID: PMC9408724 DOI: 10.3390/ijerph191610261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Tobacco use is a major public health concern and is linked to myriad diseases, including cancer. The link between tobacco use and oral cancer, specifically, is very strong, making tobacco use one of the primary risk factors for oral cancer. While this association is well known, the underlying biochemical changes that result from tobacco use, and how this links to metabolic phenotypes of oral cancer, is not well understood. To address this knowledge gap, a combination of literature reviews and metabolomics studies were performed to identify commonalities in metabolic perturbations between tobacco use and oral cancers. Metabolomics analysis was performed on pooled reference urine from smokers and non-smokers, healthy and malignant oral tissues, and cultured oral cells with or without treatment of the well-known tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Alterations in amino acid metabolism, carbohydrates/oxidative phosphorylation, fatty acid oxidation, nucleotide metabolism, steroid metabolism, and vitamin metabolism were found to be shared between tobacco use and oral cancer. These results support the conclusion that tobacco use metabolically reprograms oral cells to support malignant transformation through these pathways. These metabolic reprogramming events may be potential targets to prevent or treat oral cancers that arise from tobacco use.
Collapse
Affiliation(s)
- Blake R. Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Spencer Tilley
- Department of Nutrition, University of North Carolina at Chapel Hill, Durham, NC 27599, USA
| | - Sabrina Molina
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Madison Schroder
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
16
|
da Costa NL, de Sá Alves M, de Sá Rodrigues N, Bandeira CM, Oliveira Alves MG, Mendes MA, Cesar Alves LA, Almeida JD, Barbosa R. Finding the combination of multiple biomarkers to diagnose oral squamous cell carcinoma - A data mining approach. Comput Biol Med 2022; 143:105296. [PMID: 35149458 DOI: 10.1016/j.compbiomed.2022.105296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
Data mining has proven to be a reliable method to analyze and discover useful knowledge about various diseases, including cancer research. In particular, data mining and machine learning algorithms to study oral squamous cell carcinoma (OSCC), the most common form of oral cancer, is a new area of research. This malignant neoplasm can be studied using saliva samples. Saliva is an important biofluid that must be used to verify potential biomarkers associated with oral cancer. In this study, first, we provide an overview of OSSC diagnoses based on machine learning and salivary metabolites. To our knowledge, this is the first study to apply advanced data mining techniques to diagnose OSCC. Then, we give new results of classification and feature selection algorithms used to identify potential salivary biomarkers of OSCC. To accomplish this task, we used the filter feature selection random forest importance algorithm and a wrapper methodology to evaluate the importance of metabolites obtained from gas chromatography mass-spectrometry (GC-MS) in the context of differentiation of OSCC and the control group. Salivary samples (n = 68) were collected for the control group, and the OSCC group were from patients matched for gender, age, and smoking habit. The classification process occurred based on Random Forest (RF) classification algorithm along with 10-cross validation. The results showed that glucuronic acid, maleic acid, and batyl alcohol can classify the samples with an area under the curve (AUC) of 0.91 versus an AUC of 0.76 using all 51 metabolites analyzed. The methodology used in this study can assist healthcare professionals and be adopted to discover diagnostic biomarkers for other diseases.
Collapse
Affiliation(s)
- Nattane Luíza da Costa
- Informatics Nucleo, Goiano Federal Institute of Education, Science and Technology, Campus Urutaí, Urutaí-GO, Brazil.
| | - Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Nayara de Sá Rodrigues
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Celso Muller Bandeira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Mônica Ghislaine Oliveira Alves
- Technology Reaearch Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruzes, Brazil; School of Medicine, Anhembi Morumbi University, São José dos Campos, Brazil.
| | | | - Levy Anderson Cesar Alves
- School of Dentistry, Universidade Paulista, São Paulo, Brazil; School of Dentistry, Universidade Municipal de São Caetano do Sul, São Caetano do Sul, Brazil.
| | - Janete Dias Almeida
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Rommel Barbosa
- Instituto de Informática, Universidade Federal de Goiás, Goiânia-GO, Brazil.
| |
Collapse
|
17
|
Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M, Bhat AA, Macha MA. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022; 21:79. [PMID: 35303879 PMCID: PMC8932066 DOI: 10.1186/s12943-022-01543-7] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar
- Department of Internal Medicine and Medical Specialities, University of Genova, Genova, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE 68198, Omaha, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, University of Nebraska Medical Center, NE 68198, Omaha, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, (IUST), 192122, Awantipora, Jammu & Kashmir, India.
| |
Collapse
|
18
|
Detection of inaccessible head and neck lesions using human saliva and fluorescence spectroscopy. Lasers Med Sci 2021; 37:1821-1827. [PMID: 34637056 PMCID: PMC8506087 DOI: 10.1007/s10103-021-03437-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/01/2021] [Indexed: 12/04/2022]
Abstract
Head and neck cancer detection using fluorescence spectroscopy from human saliva is reported here. This study has been conducted on squamous cell carcinoma (SCC), and dysplastic (precancer) and control (normal) groups using an in-house developed compact set-up. Fluorescence set-up consists of a 375-nm laser diode and optical components. Spectral bands of flavin adenine dinucleotide (FAD), porphyrins, and Raman are observed in the spectral range of 400 to 800 nm. Presence of FAD and porphyrin bands in human saliva is confirmed by the liquid phantoms of FAD and porphyrin. Significant differences in fluorescence intensities among all the three groups are observed. Three spectral ranges from 455 to 600, 605 to 770, and 400 to 800 nm are selected for each group and area values under each spectral range are computed. To differentiate among the groups, receiver operating characteristic (ROC) analysis is employed on the area values. ROC differentiates among the groups with accuracies of 98%, 92.85%, and 81.13% respectively in the spectral ranges of 400 to 800 nm. However, in other two spectral ranges (455 to 600 and 605 to 770 nm), low accuracy values are found. Obtained accuracy values indicate that selection of human saliva for head and neck cancer detection may be a good alternative.
Collapse
|
19
|
Lukose J, M. SP, N. M, Barik AK, Pai KM, Unnikrishnan VK, George SD, Kartha VB, Chidangil S. Photonics of human saliva: potential optical methods for the screening of abnormal health conditions and infections. Biophys Rev 2021; 13:359-385. [PMID: 34093888 PMCID: PMC8170462 DOI: 10.1007/s12551-021-00807-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Human saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sanoop Pavithran M.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Mithun N.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Keerthilatha M. Pai
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. K. Unnikrishnan
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sajan D. George
- Centre for Applied Nanoscience, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. B. Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
20
|
Supawat B, Aye KT, Ritpanja J, Nueangwong W, Kothan S, Pan J, Tungjai M. Differences in Spectroscopic Properties of Saliva Taken From Normal Subjects and Oral Cancer Patients: Comparison Studies. J Fluoresc 2021; 31:747-754. [PMID: 33638767 DOI: 10.1007/s10895-021-02707-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Oral cancer disease is among the most common cancers in the world and are associated with mortality and morbidity. The characterization of saliva samples may help to distinguish patients with oral cancer disease from normal subjects. To characterize spectra of saliva samples from normal subjects and oral cancer patients by use of fluorescence, absorption, and 1H-NMR spectroscopy. Whole unstimulated saliva samples were collected from patients with oral cancer disease and normal subjects. The saliva samples were analyzed by absorption, fluorescence and 1H-NMR spectroscopic techniques. The characteristic spectra of saliva samples from patients with oral cancer disease and normal subjects were compared. For fluorescence spectroscopic studies, six fluorophores were found in saliva samples. Autofluorescence emission spectra and synchronous spectra of saliva were different between normal subjects and oral cancer patients. For absorption spectroscopic studies, the typical absorption spectra of saliva samples from normal subjects and oral cancer patients were also different in absorption intensity, 1st and 2nd derivative of absorption spectra values. For 1H-NMR studies, nine metabolites and four metabolites were found in saliva samples taken from normal subjects and oral cancer patients, respectively. The metabolic profiles of saliva samples from normal subjects and oral cancer patients were not similar. The characteristic spectra of saliva samples from normal subjects and oral cancer patients were found. These results showed differences in the spectra of saliva samples between both that groups. The spectra from each spectroscopic techniques could determine a candidate saliva biomarkers for distinguishing patients with oral cancer disease from normal subjects.
Collapse
Affiliation(s)
- Benjamaporn Supawat
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khin TheNu Aye
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Ph.D. degree program in biomedical sciences, Faculty of Associated Medical Sciences, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, 50200, Thailand
| | | | | | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jie Pan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Montree Tungjai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
21
|
Kouznetsova VL, Li J, Romm E, Tsigelny IF. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral Dis 2020; 27:484-493. [PMID: 32762095 DOI: 10.1111/odi.13591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine-learning model for elucidation of these diseases based on saliva metabolites of patients. METHODS Data mining, metabolomic pathways analysis, study of metabolite-gene networks related to these diseases. Machine-learning and deep-learning methods for development of the model for recognition of oral cancer versus periodontitis, using patients' saliva. RESULTS The most accurate classifications between oral cancer and periodontitis were performed using neural networks, logistic regression and stochastic gradient descent confirmed by the separate 10-fold cross-validations. The best results were achieved by the deep-learning neural network with the TensorFlow program. Accuracy of the resulting model was 79.54%. The other methods, which did not rely on deep learning, were able to achieve comparable, although slightly worse results with respect to accuracy. CONCLUSION Our results demonstrate a possibility to distinguish oral cancer from periodontal disease by analysis the saliva metabolites of a patient, using machine-learning methods. These findings may be useful in the development of a non-invasive method to aid care providers in determining between oral cancer and periodontitis quickly and effectively.
Collapse
Affiliation(s)
| | - Jeremy Li
- MAP program, University of California, San Diego, CA, USA
| | | | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, CA, USA.,CureMatch Inc. San Diego, CA, USA.,Department of Neurosciences, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Nie Z, Yeh SCA, LePalud M, Badr F, Tse F, Armstrong D, Liu LWC, Deen MJ, Fang Q. Optical Biopsy of the Upper GI Tract Using Fluorescence Lifetime and Spectra. Front Physiol 2020; 11:339. [PMID: 32477151 PMCID: PMC7237753 DOI: 10.3389/fphys.2020.00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Screening and surveillance for gastrointestinal (GI) cancers by endoscope guided biopsy is invasive, time consuming, and has the potential for sampling error. Tissue endogenous fluorescence spectra contain biochemical and physiological information, which may enable real-time, objective diagnosis. We first briefly reviewed optical biopsy modalities for GI cancer diagnosis with a focus on fluorescence-based techniques. In an ex vivo pilot clinical study, we measured fluorescence spectra and lifetime on fresh biopsy specimens obtained during routine upper GI screening procedures. Our results demonstrated the feasibility of rapid acquisition of time-resolved fluorescence (TRF) spectra from fresh GI mucosal specimens. We also identified spectroscopic signatures that can differentiate between normal mucosal samples obtained from the esophagus, stomach, and duodenum.
Collapse
Affiliation(s)
- Zhaojun Nie
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Shu-Chi Allison Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michelle LePalud
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Fares Badr
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Frances Tse
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David Armstrong
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Louis W. C. Liu
- Division of Gastrointestinal Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - M. Jamal Deen
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Engineering Physics, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Falamas A, Faur CI, Baciut M, Rotaru H, Chirila M, Cinta Pinzaru S, Hedesiu M. Raman Spectroscopic Characterization of Saliva for the Discrimination of Oral Squamous Cell Carcinoma. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1719129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- A. Falamas
- Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C. I. Faur
- Department of Oral Radiology, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Baciut
- Department of Oral and Maxillofacial Surgery, “Iuliu-Hateganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - H. Rotaru
- Department of Oral and Maxillofacial Surgery, “Iuliu-Hateganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Chirila
- Department of ENT Surgery, “Iuliu-Hateganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - S. Cinta Pinzaru
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - M. Hedesiu
- Department of Oral Radiology, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Kaczor-Urbanowicz KE, Wei F, Rao SL, Kim J, Shin H, Cheng J, Tu M, Wong DTW, Kim Y. Clinical validity of saliva and novel technology for cancer detection. Biochim Biophys Acta Rev Cancer 2019; 1872:49-59. [PMID: 31152821 PMCID: PMC6692231 DOI: 10.1016/j.bbcan.2019.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022]
Abstract
Cancer, a local disease at an early stage, systemically evolves as it progresses by triggering alterations in surrounding microenvironment, disturbing immune surveillance and further disseminating its molecular contents into circulation. This pathogenic characteristic of cancer makes the use of biofluids such as blood/serum/plasma, urine, tear and cerebrospinal fluids credible surrogates harboring tumor tissue-derived molecular alterations for the detection of cancer. Most importantly, a number of recent reports have credentialed the clinical validity of saliva for the detection of systemic diseases including cancers. In this review, we discussed the validity of saliva as credible biofluid and clinical sample type for the detection of cancers. We have presented the molecular constituents of saliva that could mirror the systemic status of our body and recent findings of salivaomics associated with cancers. Recently, liquid biopsy to detect cancer-derived circulating tumor DNA has emerged as a credible cancer-detection tool with potential benefits in screening, diagnosis and also risk management of cancers. We have further presented the clinical validity of saliva for liquid biopsy of cancers and a new technology platform based on electrochemical detection of cancer-derived ctDNA in saliva with superior sensitivity and point-of-care potential. The clinical utilities of saliva for the detection of cancers have been evidenced, but biological underpinning on the existence of molecular signatures of cancer-origin in saliva, such as via exosomal distribution, should be addressed in detail.
Collapse
Affiliation(s)
- Karolina Elżbieta Kaczor-Urbanowicz
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Section of Orthodontics, UCLA School of Dentistry, University of California at Los Angeles, United States of America
| | - Fang Wei
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Shannon Liu Rao
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jinseok Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Heebum Shin
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jordan Cheng
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Michael Tu
- EZLife Bio Inc., 21250 Califa St #101, Woodland Hills, CA 9367, United States of America
| | - David T W Wong
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| | - Yong Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| |
Collapse
|
25
|
Multispectral Depth-Resolved Fluorescence Lifetime Spectroscopy Using SPAD Array Detectors and Fiber Probes. SENSORS 2019; 19:s19122678. [PMID: 31200569 PMCID: PMC6631026 DOI: 10.3390/s19122678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/29/2023]
Abstract
Single Photon Avalanche Diode (SPAD) arrays are increasingly exploited and have demonstrated potential in biochemical and biomedical research, both for imaging and single-point spectroscopy applications. In this study, we explore the application of SPADs together with fiber-optic-based delivery and collection geometry to realize fast and simultaneous single-point time-, spectral-, and depth-resolved fluorescence measurements at 375 nm excitation light. Spectral information is encoded across the columns of the array through grating-based dispersion, while depth information is encoded across the rows thanks to a linear arrangement of probe collecting fibers. The initial characterization and validation were realized against layered fluorescent agarose-based phantoms. To verify the practicality and feasibility of this approach in biological specimens, we measured the fluorescence signature of formalin-fixed rabbit aorta samples derived from an animal model of atherosclerosis. The initial results demonstrate that this detection configuration can report fluorescence spectral and lifetime contrast originating at different depths within the specimens. We believe that our optical scheme, based on SPAD array detectors and fiber-optic probes, constitute a powerful and versatile approach for the deployment of multidimensional fluorescence spectroscopy in clinical applications where information from deeper tissue layers is important for diagnosis.
Collapse
|
26
|
Abstract
BACKGROUND Oral cancer is one of the most frequently occurring cancers. Metabolic reprogramming is an important hallmark of cancer. Metabolomics characterizes all the small molecules in a biological sample, and a complete set of small molecules in such sample is referred as metabolome. Nuclear magnetic resonance spectroscopy and mass spectrometry are two widely used techniques in metabolomics studies. Increasing evidence demonstrates that metabolomics techniques can be used to explore the metabolic signatures in oral cancer. Elucidation of metabolic alterations in oral cancer is also important for the understanding of its pathological mechanisms. AIM OF REVIEW In this paper, we summarize the latest progress of metabolomics study in oral cancer and provide the suggestions for the future studies. KEY SCIENTIFIC CONCEPTS OF REVIEW The metabolomics studies in saliva, serum, and tumor tissues revealed the existence of metabolic signatures in bio-fluids and tissues of oral cancer, and several tumor-specific metabolites identified in individual study could discriminate oral cancer from healthy controls or precancerous lesions, which are potential biomarkers for the screening or early diagnosis of oral cancer. Metabolomics study of oral cancers in the future should aim to establish a routine procedure with high sensitivity, profile intracellular metabolites to find out the metabolic characteristics of tumor cells, and investigate the mechanism behind metabolomic alterations and the metabolic response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Xun Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
27
|
Ghosh A, Raha S, Dey S, Chatterjee K, Roy Chowdhury A, Barui A. Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive exfoliative cytology for the screening of oral cancer. Analyst 2019; 144:1309-1325. [DOI: 10.1039/c8an02092b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FTIR spectroscopy and Raman spectroscopy of biological analytes are increasingly explored as screening tools for early detection of cancer.
Collapse
Affiliation(s)
- Aritri Ghosh
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Sreyan Raha
- Department of Physics
- Bose Institute
- Kolkata-700009
- India
| | - Susmita Dey
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Kabita Chatterjee
- Department of Oral and Maxillofacial Pathology
- Buddha Institute of Dental Sciences
- Patna 800020
- India
| | - Amit Roy Chowdhury
- Department of Aerospace and Applied Mechanics
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Ananya Barui
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| |
Collapse
|
28
|
Kumar P, Singh A, Kumar Kanaujia S, Pradhan A. Human Saliva for Oral Precancer Detection: a Comparison of Fluorescence & Stokes Shift Spectroscopy. J Fluoresc 2017; 28:419-426. [PMID: 29256095 DOI: 10.1007/s10895-017-2203-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/13/2017] [Indexed: 12/01/2022]
Abstract
We report here a study on human saliva tested as a diagnostic medium for oral cancer detection on three groups: oral squamous cell carcinoma (OSCC), oral sub mucous fibrosis (OSMF; precancer), and healthy controls (normal). Measurements have been conducted using fluorescence spectroscopy with 350 nm excitation and Stokes shift (SS) spectroscopy (SSS) with 120 nm shift from a total of 99 saliva samples. For classification, principal component analysis (PCA) and linear discriminant analysis (LDA) have been applied on the data sets. Linear discriminant (LD) scores of fluorescence spectra are able to differentiate OSCC to normal, OSMF to normal and OSCC to OSMF with sensitivities 91%, 92%, 91% and specificities 97%, 100%, 94% respectively, while LD scores of SS spectra differentiate respective groups with sensitivities 100%, 94%, 94% and specificities 97%, 100%, 94%. Cross-validation on the datasets of PC scores during LDA illustrates that sensitivity and specificity of SSS data are less affected than those of fluorescence data. Saliva is thus seen as a potential non-invasive and simple diagnostic medium, with SS spectroscopy as a better diagnostic tool for oral precancer.
Collapse
Affiliation(s)
- Pavan Kumar
- Department of Physics, Indian Institute of Technology Kanpur (IITK), Kanpur, 208016, India
| | - Ashutosh Singh
- Department of ENT, Ganesh Shankar Vidyarthi Memorial College (GSVM), Kanpur, 208002, India
| | | | - Asima Pradhan
- Department of Physics, Indian Institute of Technology Kanpur (IITK), Kanpur, 208016, India. .,Center for Lasers and Photonics (CELP), IIT Kanpur, Kanpur, 208016, India.
| |
Collapse
|
29
|
Pal R, Edward K, Ma L, Qiu S, Vargas G. Spectroscopic characterization of oral epithelial dysplasia and squamous cell carcinoma using multiphoton autofluorescence micro-spectroscopy. Lasers Surg Med 2017; 49:866-873. [PMID: 28677822 DOI: 10.1002/lsm.22697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Multiphoton autofluorescence microscopy (MPAM) has shown potential in identifying features that are directly related to tissue microstructural and biochemical changes throughout epithelial neoplasia. In this study, we evaluate the autofluorescence spectral characteristics of neoplastic epithelium in dysplasia and oral squamous cell carcinoma (OSCC) using multiphoton autofluorescence spectroscopy (MPAS) in an in vivo hamster model of oral neoplasia in order to identify unique signatures that could be used to delineate normal oral mucosa from neoplasia. MATERIALS/METHODS A 9,10-dimethyl-1,2-benzanthracene (DMBA) hamster model of oral precancer and OSCC was used for in vivo MPAM and MPAS. Multiphoton Imaging and spectroscopy were performed with 780 nm excitation while a bandpass emission 450-650 nm was used for MPAM. Autofluorescence spectra was collected in the spectral window of 400-650 nm. RESULTS MPAS with fluorescence excitation at 780 nm revealed an overall red shift of a primary blue-green peak (480-520 nm) that is attributed to NADH and FAD. In the case of oral squamous cell carcinoma (OSCC) and some high-grade dysplasia an additional prominent peak at 635 nm, attributed to PpIX was observed. The fluorescence intensity at 635 nm and an intensity ratio of the primary blue-green peak versus 635 nm peak, showed statistically significant difference between control and neoplastic tissue. DISCUSSION Neoplastic transformation in the epithelium is known to alter the intracellular homeostasis of important tissue metabolites such as NADH, FAD, and PpIX, which was observed by MPAS in their native environment. A combination of deep tissue microscopy owing to higher penetration depth of multiphoton excitation and depth resolved spectroscopy could prove to be invaluable in identification of cytologic as well as biomolecular spectral characteristic of oral epithelial neoplasia. Lasers Surg. Med. 49:866-873, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Pal
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas, 77555.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, 77555
| | - Kert Edward
- Department of Physics, University of the West Indies, UWI Mona, Kingston 7, Mona, Jamaica
| | - Liang Ma
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas, 77555
| | - Suimin Qiu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555
| | - Gracie Vargas
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas, 77555.,Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
30
|
Wan QS, Wang T, Zhang KH. Biomedical optical spectroscopy for the early diagnosis of gastrointestinal neoplasms. Tumour Biol 2017; 39:1010428317717984. [PMID: 28671054 DOI: 10.1177/1010428317717984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal cancer is a leading contributor to cancer-related morbidity and mortality worldwide. Early diagnosis currently plays a key role in the prognosis of patients with gastrointestinal cancer. Despite the advances in endoscopy over the last decades, missing lesions, undersampling and incorrect sampling in biopsies, as well as invasion still result in a poor diagnostic rate of early gastrointestinal cancers. Accordingly, there is a pressing need to develop non-invasive methods for the early detection of gastrointestinal cancers. Biomedical optical spectroscopy, including infrared spectroscopy, Raman spectroscopy, diffuse scattering spectroscopy and autofluorescence, is capable of providing structural and chemical information about biological specimens with the advantages of non-destruction, non-invasion and reagent-free and waste-free analysis and has thus been widely investigated for the diagnosis of oesophageal, gastric and colorectal cancers. This review will introduce the advances of biomedical optical spectroscopy techniques, highlight their applications for the early detection of gastrointestinal cancers and discuss their limitations.
Collapse
Affiliation(s)
- Qin-Si Wan
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
A Preliminary Study of the Effects of pH upon Fluorescence in Suspensions of Prevotella intermedia. PLoS One 2016; 11:e0158835. [PMID: 27441707 PMCID: PMC4956196 DOI: 10.1371/journal.pone.0158835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023] Open
Abstract
The quantification of fluorescence in dental plaque is currently being developed as a diagnostic tool to help inform and improve oral health. The oral anaerobe Prevotella intermedia exhibits red fluorescence due to the accumulation of porphyrins. pH affects the fluorescence of abiotic preparations of porphyrins caused by changes in speciation between monomers, higher aggregates and dimers, but this phenomenon has not been demonstrated in bacteria. Fluorescence spectra were obtained from suspensions of P. intermedia that were adjusted to pHs commensurate with the range found within dental plaque. Two fluorescent motifs were identified; 410 nm excitation / 634 nm emission (peak A) and 398 nm excitation / 622 nm emission (peak B). A transition in the fluorescence spectra was observed from peak A to peak B with increasing pH which was also evident as culture age increased from 24 hours to 96 hours. In addition to these 'blue-shifts', the intensity of peak A increased with pH whilst decreasing with culture age from 24 to 96 hours. A bacterium's relationship with the local physiochemical environment at the time of image capture may therefore affect the quantification of dental plaque fluorescence.
Collapse
|
32
|
Mishra S, Saadat D, Kwon O, Lee Y, Choi WS, Kim JH, Yeo WH. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics. Biosens Bioelectron 2016; 81:181-197. [PMID: 26946257 DOI: 10.1016/j.bios.2016.02.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 01/05/2023]
Abstract
There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies.
Collapse
Affiliation(s)
- Saswat Mishra
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Darius Saadat
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
| | - Ohjin Kwon
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Yongkuk Lee
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Woon-Seop Choi
- School of Display Engineering, Hoseo University, Asan, Republic of Korea
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA.
| | - Woon-Hong Yeo
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Center for Rehabilitation Science and Engineering, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
33
|
Singh SP, Ibrahim O, Byrne HJ, Mikkonen JW, Koistinen AP, Kullaa AM, Lyng FM. Recent advances in optical diagnosis of oral cancers: Review and future perspectives. Head Neck 2015; 38 Suppl 1:E2403-11. [PMID: 26613806 DOI: 10.1002/hed.24293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/30/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Optical diagnosis techniques offer several advantages over traditional approaches, including objectivity, speed, and cost, and these label-free, noninvasive methods have the potential to change the future workflow of cancer management. The oral cavity is particularly accessible and, thus, such methods may serve as alternate/adjunct tools to traditional methods. Recently, in vivo human clinical studies have been initiated with a view to clinical translation of such technologies. A comprehensive review of optical methods in oral cancer diagnosis is presented. After an introduction to the epidemiology and etiological factors associated with oral cancers currently used, diagnostic methods and their limitations are presented. A thorough review of fluorescence, infrared absorption, and Raman spectroscopic methods in oral cancer diagnosis is presented. The applicability of minimally invasive methods based on serum/saliva is also discussed. The review concludes with a discussion on future demands and scope of developments from a clinical point of view. © 2015 Wiley Periodicals, Inc. Head Neck 38: E2403-E2411, 2016.
Collapse
Affiliation(s)
- S P Singh
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,SIB Laboratories, University of Eastern Finland, Kuopio, Finland
| | - Ola Ibrahim
- DIT Centre for Radiation and Environmental Science, FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland.,School of Physics, Dublin Institute of Technology, Dublin, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Jopi W Mikkonen
- SIB Laboratories, University of Eastern Finland, Kuopio, Finland
| | - Arto P Koistinen
- SIB Laboratories, University of Eastern Finland, Kuopio, Finland
| | - Arja M Kullaa
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Research Group of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Fiona M Lyng
- DIT Centre for Radiation and Environmental Science, FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland.,School of Physics, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
34
|
A novel multimodal optical imaging system for early detection of oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 121:290-300.e2. [PMID: 26725720 DOI: 10.1016/j.oooo.2015.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Several imaging techniques have been advocated as clinical adjuncts to improve identification of suspicious oral lesions. However, these have not yet shown superior sensitivity or specificity over conventional oral examination techniques. We developed a multimodal, multi-scale optical imaging system that combines macroscopic biochemical imaging of fluorescence lifetime imaging with subcellular morphologic imaging of reflectance confocal microscopy for early detection of oral cancer. We tested our system on excised human oral tissues. STUDY DESIGN In total, 4 tissue specimens were imaged. These specimens were diagnosed as either clinically normal, oral lichen planus, gingival hyperplasia, or superficially invasive squamous cell carcinoma. The optical and fluorescence lifetime properties of each specimen were recorded. RESULTS Both quantitative and qualitative differences among normal, benign, and squamous cell carcinoma lesions can be resolved with fluorescence lifetime imaging reflectance confocal microscopy. The results demonstrate that an integrated approach based on these two methods can potentially enable rapid screening and evaluation of large areas of oral epithelial tissue. CONCLUSIONS Early results from ongoing studies of imaging human oral cavity illustrate the synergistic combination of the 2 modalities. An adjunct device based on such optical characterization of oral mucosa can potentially be used to detect oral carcinogenesis in early stages.
Collapse
|
35
|
Yuvaraj M, Aruna P, Koteeswaran D, Tamilkumar P, Ganesan S. Rapid fluorescence spectroscopic characterization of salivary DNA of normal subjects and OSCC patients using ethidium bromide. J Fluoresc 2015; 25:79-85. [PMID: 25618462 DOI: 10.1007/s10895-014-1482-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022]
Abstract
Recently, deoxyribonucleic acid (DNA) based biomarker(s) detection has been employed for cancer diagnosis. Earlier reports have suggested the presence of more DNA in the saliva of oral squamous cell carcinoma (OSCC) than normal by electrophoresis technique. Based on these, steady state and excited state kinetics of salivary DNA has been performed with 27 normal subjects and 67 OSCC patients saliva using ethidium bromide as a probe to look for the possibility in discrimination between them. On statistical analysis the sensitivity and specificity of 88.9 and 94.0 % has been achieved from the fluorescence emission spectra and 88.9 and 92.5 % with that of fluorescence excitation.
Collapse
Affiliation(s)
- Manoharan Yuvaraj
- Department of Medical Physics, Anna University, Chennai, 600 025, India
| | | | | | | | | |
Collapse
|
36
|
K G, Nazeer SS, M G, Jayasree RS, Nirmal R M, N K. Endogenous porphyrin fluorescence as a biomarker for monitoring the anti-angiogenic effect in antitumor response to hesperetin loaded nanoparticles in experimental oral carcinogenesis. RSC Adv 2014. [DOI: 10.1039/c4ra06140c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Motor oil classification based on time-resolved fluorescence. PLoS One 2014; 9:e100555. [PMID: 24988439 PMCID: PMC4079594 DOI: 10.1371/journal.pone.0100555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/23/2014] [Indexed: 11/22/2022] Open
Abstract
A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils.
Collapse
|