1
|
Jang J, Lee J, Park J, Cha S, Lee SB, Park SM, Hong SH, Kim WJ, Lee M, Yang SR. Recombinant RAGE antagonist peptide promotes alveolar epithelial cell regeneration via the RAGE/MAPKs/MMP2 pathway in emphysema. Biochem Pharmacol 2025; 231:116668. [PMID: 39608502 DOI: 10.1016/j.bcp.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The progression of chronic obstructive pulmonary disease (COPD) results in irreversible pulmonary damage and sustained inflammatory responses. While alternative approaches have been explored, the specific role of alveolar epithelial cells in the pathogenesis of COPD remains unclear. Additionally, the association between emphysema and DAMP-RAGE signaling in COPD patients are not understood. Therefore, this study demonstrates to determine the therapeutic effect of a RAGE antagonist peptide (RAP), which we previously identified on the pathogenesis of COPD. We assessed the expression of RAGE ligands and RAGE binding signaling in COPD patients using GEO data. PPE-induced emphysema mouse model and AGER-/- mouse were employed, along treated with RAP. The association between RAGE and the development of emphysema was examined in H&E staining and western blot analysis in mouse lung tissue and BALF. We next analyzed the damage caused by oxidative stress and inflammation through CSE and RAP in human alveolar epithelial cell line A549. Our results show that inhibiting of RAGE alleviates emphysema by suppressing inflammation and MMP activity. Inhibition of RAGE in alveolar epithelial cells significantly induced the mitigation of lung injury, independent of macrophage infiltration. Furthermore, it was confirmed that RAP ameliorated CSE-induced oxidative stress, inflammation, and cell cycle arrest in human alveolar epithelial cells. These findings demonstrate that inhibiting RAGE in alveolar epithelial cells suppress lung injury and emphysema by inhibiting oxidative stress-induced inflammation and MMPs, while promoting alveolar epithelial cell proliferation. Furthermore, blocking of the DAMP-RAGE interaction through RAP offers a promising therapeutic approach for mitigating emphysema.
Collapse
Affiliation(s)
- Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sangryul Cha
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Se Bi Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea; Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon, Gangwon State, South Korea.
| |
Collapse
|
2
|
Chang YB, Kim HD, Kim SM, Lim JH, Woo MJ, Suh HJ, Jo K. Photoaging protective effect of enzyme extracted pomegranate peel against oxidative damage in UVB-irradiated HaCaT cells. Biomed Pharmacother 2024; 181:117679. [PMID: 39561588 DOI: 10.1016/j.biopha.2024.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
In this study, the ultraviolet B (UVB)-induced skin photoaging inhibitory activity of pomegranate peel extract with increased ellagic acid content through enzymatic hydrolysis was evaluated in HaCaT cells. Among various enzymes, Viscozyme with high tannase and β-glucosidase activities was used, and 1.0 % Viscozyme was added to hydrolyze pomegranate peel for 2 h at 40°C to establish the optimal reaction conditions for high ellagic acid content. Subsequently, when cells were treated with enzyme extracted pomegranate peels (40 μg/mL), the gene expression of matrix metalloproteinases (MMP)-2 and 13, which play key role in skin elasticity and moisture, and the protein expression of MMP13 were downregulated compared to the UVB-control group (UVB-C). In addition, the protein expression levels of tissue inhibitors, metalloproteinase-1 and 2, and collagen type I alpha 1 were upregulated, the gene expression of hyaluronic acid synthase-1, and filaggrin significantly increased, and interleukin-1β increased by photoaging was decreased. Furthermore, compared to the UVB-C, there was a significant increase in the gene expression of superoxide dismutase-1 and glutathione peroxidase, which resulted in a decrease in reactive oxygen species and malondialdehyde levels. These results were confirmed to be due to the inhibition of the mitogen-activated protein kinase pathway and downregulation of the protein expression of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38. In conclusion, pomegranate peel, from which ellagic acid was extracted using Viscozyme, showed a reactive oxygen species inhibitory effect in UVB-irradiated HaCaT cells and thus may have a significant potential as a cosmetic ingredient with anti-aging effects.
Collapse
Affiliation(s)
- Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hae Dun Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hoon Lim
- World Food Services, Gangneung 25451, Republic of Korea
| | - Moon Jea Woo
- World Food Services, Gangneung 25451, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
4
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
5
|
Hu X, Chen M, Nawaz J, Duan X. Regulatory Mechanisms of Natural Active Ingredients and Compounds on Keratinocytes and Fibroblasts in Mitigating Skin Photoaging. Clin Cosmet Investig Dermatol 2024; 17:1943-1962. [PMID: 39224224 PMCID: PMC11368101 DOI: 10.2147/ccid.s478666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Background The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts. Methods We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Results In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-β pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects. Conclusion The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinru Hu
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng Chen
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jahanzeb Nawaz
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Baek J, Kim JH, Park J, Kim DH, Sa S, Han JS, Kim W. 1-Kestose Blocks UVB-Induced Skin Inflammation and Promotes Type I Procollagen Synthesis via Regulating MAPK/AP-1, NF-κB and TGF-β/Smad Pathway. J Microbiol Biotechnol 2024; 34:911-919. [PMID: 38379292 DOI: 10.4014/jmb.2311.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-β/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jiwon Park
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Do Hyun Kim
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Soonok Sa
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Jung-Sook Han
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Park SH, Park J, Lee M, Jun W, Kim J, Geum J, Kim OK, Lee J. Wheat Ceramide Powder Mitigates Ultraviolet B-Induced Oxidative Stress and Photoaging by Inhibiting Collagen Proteolysis and Promoting Collagen Synthesis in Hairless Mice. Prev Nutr Food Sci 2023; 28:418-426. [PMID: 38188085 PMCID: PMC10764234 DOI: 10.3746/pnf.2023.28.4.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
The protective effects of wheat ceramide powder (WC-P) on ultraviolet B (UVB)-induced skin oxidative stress and photoaging in hairless mice were investigated in this study. Moreover, the activities of antioxidant enzymes, inflammation, wrinkle formation-related pathway, and moisturizing capacity were evaluated. Mice were randomly divided into six groups (n=8): normal control (non-UVB irradiation), control (UVB irradiation), L-ascorbic acid [positive control, UVB irradiation with dietary supplementation of L-ascorbic acid at 100 mg/kg/body weight (bw)], WC-P5 (UVB irradiation with dietary supplementation of WC-P at 5 mg/kg/bw), WC-P20 (UVB irradiation with dietary supplementation of WC-P at 20 mg/kg/bw), and WC-P40 (UVB irradiation with dietary supplementation of WC-P at 40 mg/kg/bw). AIN-96G diet and water were supplemented ad libitum, and 100 mL of L-ascorbic acid and WC-P dissolved in water were forcefully administered orally to mice. UVB irradiation resulted in dehydration and wrinkle formation in the dorsal skin of mice. However, WC-P supplementation suppressed. Furthermore, WC-P supplementation enhanced the activites of antioxidant enzymes and expression of transforming growth factor-β receptor I, procollaten C-endopeptideas enhancer protein, hyaluronan synthase, and ceramide synthase 4 and reduced the activation of the inflammation and the c-Jun N-terminal kinase/c-FOS/c-Jun- mediated matrix metalloproteinase pathways. These findings demonstrate that WC-P can protect the skin from UVB-induced oxidative stress, inflammation, and photoaging by inhibiting collagen proteolysis and promoting collagen synthesis, thereby promoting skin health.
Collapse
Affiliation(s)
- Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Jin Kim
- GREEN STORE, Inc., Gyeonggi 13558, Korea
| | | | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| |
Collapse
|
8
|
Chwil M, Matraszek-Gawron R, Kostryco M, Różańska-Boczula M. Nutritionally Important Pro-Health Active Ingredients and Antioxidant Properties of Fruits and Fruit Juice of Selected Biennial Fruiting Rubus idaeus L. Cultivars. Pharmaceuticals (Basel) 2023; 16:1698. [PMID: 38139824 PMCID: PMC10747748 DOI: 10.3390/ph16121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Raspberry fruits are an important source of many biologically active chemical compounds exerting nutritional and pro-health effects. The study presents a comparative analysis of nutritionally important bioactive chemical compounds-polyphenols; flavonoids, including anthocyanins; vitamin C; amino acids; fatty acids; and primary metabolites-contained in the fruits of three biennial fruiting cultivars, R. idaeus 'Glen Ample', 'Laszka', and 'Radziejowa', i.e., common cultivars in Poland and Europe. The antioxidant activity of fresh fruits and juice was determined with five methods. The analyses revealed the strong free radical scavenging potential of the fruits and juice, confirmed by the high concentration of nutrients, e.g., polyphenols, anthocyanins, vitamin C, amino acids, and fatty acids. The antioxidant activity of the juice determined with the ferric reducing antioxidant power (FRAP) and OH radical methods was from 2.5 to 4.0 times higher than that of the fruits. The following orders of total polyphenol contents were established in the analyzed cultivars: 'Glen Ample' < 'Laszka' < 'Radziejowa' in the fruits and 'Glen Ample' < 'Radziejowa' < 'Laszka' in the juice. The highest antioxidant activity was exhibited by the 'Radziejowa' fruits. Given their high content of dietary fiber, the fruits of the analyzed raspberry cultivars can be consumed by dieting subjects. The concentrations of vitamin C (28-34 mg/100 g) and anthocyanins (20-34 mg/100 g) indicate the biological and pharmacological activity of these fruits. The main unsaturated fatty acids in the fruits were gamma-linoleic acid (C18:2n6c) and alpha-linolenic acid (C18:3n3), which neutralize excess free radicals. The amino acids nutritionally essential to humans were dominated by leucine, arginine, and phenylalanine. This is the first comparative analysis of the antioxidant activity of fruits and juice and the contents of selected active compounds in the fruits of biennial fruiting cultivars of R. idaeus, i.e., a highly commercialized crop in Europe.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Mikołaj Kostryco
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Monika Różańska-Boczula
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
9
|
Choi YJ, Lee SY, Son SR, Park JY, Jang DS, Lee S. The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts. Antioxidants (Basel) 2023; 12:1803. [PMID: 37891882 PMCID: PMC10604389 DOI: 10.3390/antiox12101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Skin aging is a complex biological process influenced by a variety of factors, including UV radiation. UV radiation accelerates collagen degradation via the production of reactive oxygen species (ROS) and cytokines, including TNF-α. In a prior investigation, the inhibitory properties of flavonol and flavone glucuronides derived from Potentilla chinensis on TNF-α-induced ROS and MMP-1 production were explored. Consequently, we verified the skin-protective effects of these flavonol and flavone glucuronides, including potentilloside A, from P. chinensis, and conducted a structure-activity relationship analysis as part of our ongoing research. We investigated the protective effects of the extract and its 11 isolates on TNF-α-stimulated normal human dermal fibroblasts (NHDFs). Ten flavonol and flavone glucuronides significantly inhibited ROS generation (except for 7) and suppressed MMP-1 secretion, except for 2. In contrast, six isolates (1, 5, 6, 11, 9, 10, and 11) showed a significant reverse effect on COLIA1 secretion. Comparing the three experimental results of each isolate, potentilloside A (1) showed the most potent skin cell-protective effect among the isolates. Evaluation of the signaling pathway of potentilloside A in TNF-α-stimulated NHDF revealed that potentilloside A inhibits the phosphorylation of ERK, JNK, and c-Jun. Taken together, these results suggest that compounds isolated from P. chinensis, especially potentilloside A, can be used to inhibit skin damage, including aging.
Collapse
Affiliation(s)
- Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| | - So Young Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.Y.L.); (S.-R.S.)
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.Y.L.); (S.-R.S.)
| | - Jun Yeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.Y.L.); (S.-R.S.)
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
10
|
Wang X, Zhang Y, Wang D, Su N, Yang L, Fu H, Zhang J, Li M, Wang C. Protective effects of Aureobasidium pullulans lysate on UV-damaged human skin fibroblasts and HaCaT cells. BIORESOUR BIOPROCESS 2023; 10:55. [PMID: 38647892 PMCID: PMC10992526 DOI: 10.1186/s40643-023-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/16/2023] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Aureobasidium pullulans (A. pullulans) has a wide range of applications. Ultraviolet (UV) rays from the sun can cause skin photoaging. In order to explore the protective effect and application potential of A. pullulans lysate on UV-damaged human skin fibroblasts (HSF) and HaCaT Cells, this study investigates the anti-aging and anti-inflammatory effects of A. pullulans lysate as well as the mechanism of anti-oxidative stress at the cellular and molecular levels through cytotoxicity experiments, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT-qPCR). RESULTS The experimental results have shown that the A. pullulans lysate can effectively reduce the loss of extracellular matrix components (EMC), such as collagen and hyaluronic acid (HA). It is also capable of scavenging excess reactive oxygen species (ROS) from the body, thereby increasing the activity of catalase, decreasing the overexpression of intracellular matrix metalloproteinases (MMPs), enhancing the gene expression of metalloproteinase inhibitors (TIMPs), and decreasing the level of inflammatory factors, reducing UV-induced apoptosis of HaCaT cells. Meanwhile, oxidative stress homeostasis is also regulated through the Nrf2/Keap1 and MAPK signaling pathways. CONCLUSIONS This study shows that the A. pullulans lysate has the potential to resist photoaging.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yongtao Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Ning Su
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Li Yang
- Beijing Sino-German Union Cosmetic Institute Co., Ltd, Beijing, People's Republic of China
| | - Hao Fu
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiachan Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China.
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Gao W, Yuan LM, Zhang Y, Huang FZ, Gao F, Li J, Xu F, Wang H, Wang YS. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-β/Smad and attenuation of MAPK/AP-1 pathway. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:135-146. [PMID: 36114328 DOI: 10.1007/s43630-022-00304-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Stem cell therapy is widely employed for the treatment of skin diseases, especially in skin rejuvenation. Exosomes derived from stem cells have been demonstrated to possess anti-photoaging effects; however, the precise components within exosomes that are responsible for this effect remain unknown. Previously, miR-1246 was found to be one of the most abundant nucleic acids in adipose-derived stem cells (ADSCs)-derived exosomes. This study examined whether miR-1246 was the major therapeutic agent employed by ADSCs to protect against UVB-induced photoaging. Lentivirus infection was used to obtain miR-1246-overexpressing ADSCs and exosomes. We then determined the anti-photoaging effects of miR-1246-overexpressing exosomes (OE-EX) on both UVB-irradiated human skin fibroblasts (HSFs) and Kunming mice. The results showed that OE-EX could significantly decrease MMP-1 by inhibiting the MAPK/AP-1 signaling pathway. Meanwhile, OE-EX markedly increased procollagen type I secretion by activating the TGF-β/Smad pathway. OE-EX also exhibited an anti-inflammatory effect by preventing the UVB-induced degradation of IκB-α and NF-κB overexpression. Animal experiments demonstrated that OE-EX could reduce UVB-induced wrinkle formation, epidermis thickening, and the loss of collagen fibers reduction in Kunming mice. The combined results suggested that miR-1246 is the key component within ADSCs-derived exosomes that protects against UVB-induced skin photoaging.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Li-Min Yuan
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yue Zhang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fang-Zhou Huang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fei Gao
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Jian Li
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Feng Xu
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
12
|
Jung YY, Ha IJ, Lee M, Ahn KS. Skin Improvement with Antioxidant Effect of Yuja ( Citrus junos) Peel Fractions: Wrinkles, Moisturizing, and Whitening. Antioxidants (Basel) 2022; 12:antiox12010051. [PMID: 36670913 PMCID: PMC9854771 DOI: 10.3390/antiox12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Yuja (Citrus junos) has been cultivated and used for food and medicinal purposes in China and Korea. Its antioxidant, anti-wrinkle, moisturizing, and whitening effects were evaluated in HaCaT, HDF, and B16F10 cells. UVB has been known to cause cellular stress and the production of reactive oxygen species (ROS). Ambivalence of oxidative stress has been reported; however, excessive levels of ROS contribute to skin aging through the loss of elasticity and collagen fibers of connective tissue in the dermis. Skin aging is one of the biological processes that is affected by various factors, including UVB. Pro-Collagen I and hyaluronic acid contents were measured in UVB-irradiated HaCaT and HDF cells to evaluate the anti-wrinkle and moisturizing effects of Yuja-peel (YJP) fractions in -EA (ethyl acetate), -Hex (hexane), and -BuOH (butanol). The expression of matrix metalloproteinases (MMPs) involved in collagen degradation was confirmed to be inhibited by YJP fractions at both the protein and mRNA levels. Filaggrin and serine palmitoyltransferase (SPT), which are moisturizing factors, were induced by YJP fractions. B16F10 cells were treated with α-MSH to induce hyperpigmentation, and then the whitening efficacy of YJP fractions was verified by observing a decrease in melanin content. Overall, our results contribute to the development of various novel skin-improving cosmetics and pharmaceuticals with YJP fractions as active ingredients.
Collapse
Affiliation(s)
- Young Yun Jung
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Republic of Korea
- Correspondence: (M.L.); (K.S.A.)
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Correspondence: (M.L.); (K.S.A.)
| |
Collapse
|
13
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
14
|
Martins RM, de Siqueira Martins S, Barbosa GLF, Fonseca MJV, Rochette PJ, Moulin VJ, de Freitas LAP, de Freitas LAP. Photoprotective effect of solid lipid nanoparticles of rutin against UVB radiation damage on skin biopsies and tissue-engineered skin. J Microencapsul 2022; 39:668-679. [PMID: 36476253 DOI: 10.1080/02652048.2022.2156631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid lipid nanoparticles (SLNs) containing rutin were prepared to enhance their photochemopreventive effect on the skin. SLNs were produced by the hot melt microemulsion technique. Two 3D skin models: ex vivo skin explants and 3D tissue engineering skin were used to evaluate the photochemopreventive effect of topical formulations containing rutin SLNs, against ultraviolet B (UVB) radiation, inducing sunburn cells, caspase-3, cyclobutane pyrimidine dimers, lipid peroxidation, and metalloproteinase formation. The rutin SLNs presented average size of 74.22 ± 2.77 nm, polydispersion index of 0.16 ± 0.04, encapsulation efficiency of 98.90 ± 0.25%, and zeta potential of -53.0 ± 1.61 mV. The rutin SLNs were able to efficiently protect against UVB induced in the analysed parameters in both skin models. Furthermore, the rutin SLNs inhibited lipid peroxidation and metalloproteinase formation. These results support the use of rutin SLNs as skin photochemopreventive agents for topical application to the skin.
Collapse
Affiliation(s)
- Rodrigo Molina Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Paraíba, Brazil.,Center of Higher Education and Development (CESED)-UNIFACISA, Campina Grande, Paraíba, Brazil
| | - Silvia de Siqueira Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Zhang Q, Qiao S, Yang C, Jiang G. Nuclear factor-kappa B and effector molecules in photoaging. Cutan Ocul Toxicol 2022; 41:187-193. [PMID: 35658705 DOI: 10.1080/15569527.2022.2081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nuclear factor-kappa B (NF-κB) has important but complex functions in the photoaging of the human skin. This protein complex is activated upon UV irradiation and plays a key role in the signalling pathway of the inflammatory cascade. NF-κB induces the expression of various proinflammatory cytokines, such as tumour necrosis factor (TNF) and interleukin-1 (IL-1). These proinflammatory cytokines can in turn stimulate the activation of NF-κB, forming a vicious cycle. These processes cause chronic inflammation and contribute to skin ageing. In addition, the activation of NF-κB upregulates the expression of matrix metalloproteinases (MMPs) and leads to the degradation of structural proteins in the dermis. NF-κB disrupts the barrier function of the skin under prolonged and repeated UV stimulations in these ways. Such activity causes chronic skin damage, followed by the formation of wrinkles, dryness, roughness, laxity, and other photoaging manifestations. This study on the NF-κB signalling pathway and effector molecules provides a new perspective to understand and prevent photoaging.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Shiyun Qiao
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Kim M, Ha LK, Oh S, Fang M, Zheng S, Bellere AD, Jeong J, Yi TH. Antiphotoaging Effects of Damiana ( Turnera diffusa) Leaves Extract via Regulation AP-1 and Nrf2/ARE Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111486. [PMID: 35684259 PMCID: PMC9182839 DOI: 10.3390/plants11111486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 05/13/2023]
Abstract
Damiana (Turnera diffusa), of the family Passifloraceae, has been widely studied for its pharmacological effects, especially for antioxidant and antibacterial actions. However, there are limited scientific findings describing its antiphotoaging effects on the skin. In the present study, the underlying molecular mechanisms of the protective effect of Damiana were investigated in keratinocytes (HaCaTs) and normal human dermal fibroblasts (HDFs) subject to UVB irradiation. The mRNA expression of matrix metalloproteinases (MMPs) and procollagen type I was determined by reverse transcription-polymerase chain reaction. The protein expression of antiphotoaging-related signaling molecules in the activator protein-1 (AP-1) and nuclear factor erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathways was assessed by Western blotting. We observed that Damiana blocked the upregulated production of reactive oxygen species induced in UVB-irradiated HaCaTs and HDFs in a dose-dependent manner. Treatment with Damiana also significantly ameliorated the mRNA expression of MMPs and procollagen type I. In addition, the phosphorylation level of c-Jun and c-Fos was also decreased through the attenuated expression of p-38, p-ERK, and p-JNK after treatment with Damiana. Furthermore, the treatment of cells with Damiana resulted in the inhibition of Smad-7 expression in the TGF-β/Smad pathway and upregulated the expression of the Nrf2/ARE signaling pathway. Hence, the synthesis of procollagen type I, a precursor of collagen I, was promoted. Collectively, these results provide us with the novel insight that Damiana is a potential source of antiphotoaging compounds.
Collapse
Affiliation(s)
- Minseon Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Lee-Keun Ha
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Sarang Oh
- Snow White Factory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Korea; (S.O.); (J.J.)
| | - Minzhe Fang
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Arce D. Bellere
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Jeehaeng Jeong
- Snow White Factory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Korea; (S.O.); (J.J.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
- Correspondence: ; Tel.: +82-31-201-3693
| |
Collapse
|
17
|
De Santis D, Carbone K, Garzoli S, Laghezza Masci V, Turchetti G. Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract. Foods 2022; 11:foods11101455. [PMID: 35627025 PMCID: PMC9140405 DOI: 10.3390/foods11101455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The leaves of Rubus idaeus L., a by-product of the fruit food industry, are a known source of bioactive molecules, although the chemical composition has only been partially investigated. The main objective of this study was to examine the biological activities and the chemical composition of the extract of leaves of R. idaeus (RH), obtained by steam distillation (SD). The antioxidant capacity; the total phenolic content (TPC); the cytotoxic activity against tumor cell lines; and the antibacterial activity, in addition to the study of the chemical fingerprinting, carried out by Gas/Chromatography-Mass-Spectrometry (GC/MS) and Headspace (HS)-GC/MS, were established. The extract showed a strong antioxidant capacity and a modest antibacterial activity against two bacterial strains, as well as significant cytotoxic activity against tumor cell lines (Caco-2 and HL60) and being proliferative on healthy cells. Many of the GC-identified volatile molecules (1,8-cineol, β-linalool, geraniol, caryophyllene, τ-muurolol, citral, α-terpineol, 3- carene, α-terpinen-7-al, etc.) can explain most of the biological properties exhibited by the extract of R. idaeus L. The high biological activity of the RH and the high compatibility with the various matrices suggest good prospects for this extract, both in the food and cosmetic fields or in dietary supplements for improving human health.
Collapse
Affiliation(s)
- Diana De Santis
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
- Correspondence:
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, Square Aldo Moro 5, 00185 Rome, Italy;
| | - Valentina Laghezza Masci
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| | - Giovanni Turchetti
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| |
Collapse
|
18
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
19
|
Anti-Photoaging Effect of Hydrolysates from Pacific Whiting Skin via MAPK/AP-1, NF-κB, TGF-β/Smad, and Nrf-2/HO-1 Signaling Pathway in UVB-Induced Human Dermal Fibroblasts. Mar Drugs 2022; 20:md20050308. [PMID: 35621960 PMCID: PMC9147990 DOI: 10.3390/md20050308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic exposure to ultraviolet (UV) light promotes the breakdown of collagen in the skin and disrupts the extracellular matrix (ECM) structure, leading to skin wrinkling. Pacific whiting (Merluccius productus) is a fish abundant on the Pacific coast. In the current study, we investigated the anti-wrinkle effect of hydrolysate from Pacific whiting skin gelatin (PWG) in UVB-irradiated human dermal fibroblasts and the molecular mechanisms involved. PWG effectively restored type 1 procollagen synthesis reduced by UVB-irradiation. Also, we found that PWG inhibited collagen degradation by inhibiting MMP1 expression. Furthermore, PWG decreased cytokines TNF-α, IL-6, and IL-1β associated with inflammatory responses and increased antioxidant enzymes, HO-1, SOD, GPx, CAT, and GSH content, a defense system against oxidative stress. In terms of molecular mechanisms, PWG increased collagen synthesis through activating the transforming growth factor β (TGF-β)/Smad pathway and decreased collagen degradation through inhibiting the mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) pathway. It also suppressed the inflammatory response through suppressing the nuclear factor-κB (NF-κB) pathway and increased antioxidant enzyme activity through activating the nuclear factor erythroid 2/heme oxygenase 1 (Nrf-2/HO-1) pathway. These multi-target mechanisms suggest that PWG may serve as an effective anti-photoaging material.
Collapse
|
20
|
Abstract
UVB is a causative factor for severe skin damage, such as cell aging, death, and inflammation. UVB easily permeates into the epidermis layer of human skin, which is mainly composed of keratinocyte cells. In previous results, we found that purple corn silk (PCS) extract showed the potential to inhibit keratinocyte damages of UVB-treated cells. Thus, in this study, we aimed to evaluate the preventive effects of PCS extract against the inflammation of UVB-induced keratinocyte cells using the HaCaT cell line. HaCaT cells were treated with PCS extract at various concentrations for 1 h, then exposed to 25 mJ/cm2 UVB before subsequent experiments. Fragmented DNA was observed using flow cytometry. The inflammatory response was investigated through NF-κB activity by immunofluorescence staining and related protein expression by Western blotting. The results demonstrated that PCS extract decreased the sub-G1 DNA content. Interestingly, PCS extract attenuated NF-κB activity via suppressed NF-κB nuclear translocation and protein expression. Moreover, PCS extract remarkably decreased c-Jun phosphorylation and decreased proinflammatory cytokines, along with iNOS and COX-2 levels in UVB-treated cells compared to the UVB-control group. This finding exhibited that PCS extract minimized inflammation in keratinocyte cells induced by UVB radiation.
Collapse
|
21
|
Kim D, Lee M, Yang JH, Yang JS, Kim OK. Dual Skin-Whitening and Anti-wrinkle Function of Low-Molecular-Weight Fish Collagen. J Med Food 2022; 25:192-204. [PMID: 35148197 DOI: 10.1089/jmf.2021.k.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the protective effects of low-molecular-weight fish collagen from tilapia against melanogenesis in melanocytes, ultraviolet B (UVB)-irradiated Hs27 skin fibroblasts, and hairless mice. We observed collagen production-related pathways in UVB-irradiated Hs27 skin fibroblasts and hairless mice, and the melanogenesis-related pathways in melanocyte and UVB-irradiated hairless mice. The collagen production-related pathways were activated in the UVB-irradiated Hs27 skin fibroblasts and hairless mice. In addition, UVB exposure stimulated the melanogenesis-related pathways in melanocytes and hairless mice. However, treatment with low-molecular-weight fish collagen significantly increased the messenger RNA expressions of collagen production-related factors and significantly decreased the production of cytokines. Furthermore, treatment with low-molecular-weight fish collagen suppressed melanogenesis by inhibiting glutathione synthesis and downregulating melanocyte-inducing transcription factor expression through the suppression of cyclic AMP/protein kinase A/cAMP-responsive binding protein signaling and nitric oxide production. Low-molecular-weight fish collagen exerts protective effects against UVB-induced photoaging, through anti-inflammatory, antioxidant, and anti-melanogenesis activities and could be used for developing effective natural anti-photoaging products.
Collapse
Affiliation(s)
- Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | | | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
22
|
Ahn Y, Kim MG, Choi YJ, Lee SJ, Suh HJ, Jo K. Photoprotective effects of sphingomyelin-containing milk phospholipids in ultraviolet B-irradiated hairless mice by suppressing nuclear factor-κB expression. J Dairy Sci 2022; 105:1929-1939. [PMID: 34998560 DOI: 10.3168/jds.2021-21192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Ceramide-containing phospholipids improve skin hydration and barrier function and are ideal for use in skin care products. In this study, we evaluated the photoprotective effect of milk phospholipids on the skin condition of UVB-irradiated hairless mice. Skin parameters were assessed following oral administration of milk phospholipids. The UVB irradiation induced photoaging in mice. The animals were divided into 5 groups: a control group (oral administration of saline with no UBV irradiation), UVB group (oral administration of saline with UVB irradiation), and 3 UVB irradiation groups receiving the milk phospholipids at 3 different concentrations of oral administration, 50 mg/kg (ML group), 100 mg/kg (MM group), and 150 mg/kg (MH group), for 8 wk. An increase in skin hydration and transepidermal water loss were improved in the 150 mg/kg of milk phospholipid-administered group. Hematoxylin and eosin staining revealed a decrease in epidermal thickness in the milk phospholipid-administered groups (50, 100, and 150 mg/kg of body weight). In particular, the 100 and 150 mg/kg groups showed significant changes in the area, length, and depth of the wrinkles compared with the UVB group. Moreover, the gene expression of matrix metalloproteins was attenuated, and that of proinflammatory cytokines, especially tumor necrosis factor-α, was significantly reduced in the milk phospholipid-administered groups than in the UVB group. The reduced ceramide and increased sphingosine-1-phosphate levels in the skin tissue due to UVB exposure were restored to levels similar to those of the control group following milk phospholipid administration. These results were confirmed to be due to the downregulation of protein expression of nuclear factor kappa-B (NF-κB) and phosphorylated IκB-α (inhibitor of κB α). Collectively, oral administration of milk phospholipids improves skin health through a synergistic effect on photoprotective activity.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Min G Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yong J Choi
- Solus Advanced Materials Co., Ltd., Yongin 16858, Republic of Korea
| | - Sang J Lee
- Holistic Bio Co., Ltd., Seongnam 13494, Republic of Korea
| | - Hyung J Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
Wu YZ, Tsai YY, Chang LS, Chen YJ. Evaluation of Gallic Acid-Coated Gold Nanoparticles as an Anti-Aging Ingredient. Pharmaceuticals (Basel) 2021; 14:ph14111071. [PMID: 34832853 PMCID: PMC8624563 DOI: 10.3390/ph14111071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemic environment-induced oxidative stress-mediated matrix metalloproteinase-1 (MMP-1) plays a crucial role in the degradation of the extracellular matrix (ECM), which might contribute to premature skin aging. Synthesized, environmentally friendly gallic acid-coated gold nanoparticles (GA–AuNPs) have been evaluated as an anti-aging antioxidant. Their microstructure was characterized by transmission electron microscopy (TEM), which showed that GA–AuNPs are spherical when prepared at pH 11. Dynamic light scattering (DLS) analysis revealed that the average hydrodynamic diameter of a GA–AuNP is approximately 40 nm and with a zeta potential of −49.63 ± 2.11 mV. Additionally, the present data showed that GA–AuNPs have a superior ability to inhibit high glucose-mediated MMP-1-elicited type I collagen degradation in dermal fibroblast cells. Collectively, our data indicated that high-glucose-mediated ROS production was reduced upon cell treatment with GA–AuNPs, which blocked p38 MAPK/ERK-mediated c-Jun, c-Fos, ATF-2 phosphorylation, and the phosphorylation of NFκB, leading to the down-regulation of MMP-1 mRNA and protein expression in high glucose-treated cells. Our findings suggest that GA-AuNPs have a superior ability to inhibit high-glucose-mediated MMP-1-elicited ECM degradation, which highlights its potential as an anti-aging ingredient.
Collapse
Affiliation(s)
- Yun-Zhen Wu
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Z.W.); (Y.-Y.T.)
| | - Yen-Yu Tsai
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Z.W.); (Y.-Y.T.)
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Z.W.); (Y.-Y.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Kim OK, Kim D, Lee M, Park SH, Yamada W, Eun S, Lee J. Standardized Edible Bird's Nest Extract Prevents UVB Irradiation-Mediated Oxidative Stress and Photoaging in the Skin. Antioxidants (Basel) 2021; 10:antiox10091452. [PMID: 34573084 PMCID: PMC8470287 DOI: 10.3390/antiox10091452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated whether standardized edible bird’s nest extract (BNE-PK) can prevent ultraviolet B (UVB) irradiation-mediated oxidative stress and photoaging in the skin using in vitro and in vivo models. BNE-PK increased skin hydration by hyaluronic acid synthesis and activation of ceramide synthase in UVB-irradiated hairless mice and HaCaT cells. Furthermore, BNE-PK suppressed melanogenesis by down-regulation of the cAMP/PKA/CREB/MITF/TRP-1/TRP-2/tyrosinase pathway in UVB-irradiated hairless mice and 3-isobutyl-1-methylxanthine (IBMX)-treated B16F10 cells. In UVB-irradiated hairless mice, BNE-PK attenuated the wrinkle formation-related JNK/c-FOS/c-Jun/MMP pathway and activated the TGF-βRI/SMAD3/pro-collagen type I pathway during UVB-mediated oxidative stress. Based on these findings, our data suggest that BNE-PK may potentially be used for the development of effective natural anti-photoaging functional foods for skin health.
Collapse
Affiliation(s)
- Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
| | - Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
| | - Wakana Yamada
- Oryza Oil & Fat Chemical Co., Ltd., Ichinomiya 493-8001, Japan;
| | - Sangwon Eun
- R&D Division, Daehan Chemtech Co. Ltd., Seoul 01811, Korea;
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-31-201-3838; Fax: +82-31-204-8119
| |
Collapse
|
25
|
Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021; 97:1383-1403. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.
Collapse
Affiliation(s)
- Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
26
|
Pihl C, Togsverd-Bo K, Andersen F, Haedersdal M, Bjerring P, Lerche CM. Keratinocyte Carcinoma and Photoprevention: The Protective Actions of Repurposed Pharmaceuticals, Phytochemicals and Vitamins. Cancers (Basel) 2021; 13:cancers13153684. [PMID: 34359586 PMCID: PMC8345172 DOI: 10.3390/cancers13153684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Keratinocyte carcinoma is the most common type of cancer. Sun exposure and ultraviolet radiation are significant contributors to the development of carcinogenesis, mediated by DNA damage, increased oxidative stress, inflammation, immunosuppression and dysregulated signal transduction. Photoprevention involves using different compounds to delay or prevent ultraviolet radiation-induced skin cancer. In this review, we look at new avenues for systemic photoprevention that are based on pharmaceuticals, plant-derived phytochemicals and vitamins. We also investigate the mechanisms underlying these strategies for preventing the onset of carcinogenesis. Abstract Ultraviolet radiation (UVR) arising from sun exposure represents a major risk factor in the development of keratinocyte carcinomas (KCs). UVR exposure induces dysregulated signal transduction, oxidative stress, inflammation, immunosuppression and DNA damage, all of which promote the induction and development of photocarcinogenesis. Because the incidence of KCs is increasing, better prevention strategies are necessary. In the concept of photoprevention, protective compounds are administered either topically or systemically to prevent the effects of UVR and the development of skin cancer. In this review, we provide descriptions of the pathways underlying photocarcinogenesis and an overview of selected photoprotective compounds, such as repurposed pharmaceuticals, plant-derived phytochemicals and vitamins. We discuss the protective potential of these compounds and their effects in pre-clinical and human trials, summarising the mechanisms of action involved in preventing photocarcinogenesis.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Katrine Togsverd-Bo
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Flemming Andersen
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
- Private Hospital Molholm, 7100 Vejle, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Fang CL, Paul CR, Day CH, Chang RL, Kuo CH, Ho TJ, Hsieh DJY, Viswanadha VP, Kuo WW, Huang CY. Poria cocos (Fuling) targets TGFβ/Smad7 associated collagen accumulation and enhances Nrf2-antioxidant mechanism to exert anti-skin aging effects in human dermal fibroblasts. ENVIRONMENTAL TOXICOLOGY 2021; 36:729-736. [PMID: 33336893 DOI: 10.1002/tox.23075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/27/2020] [Indexed: 05/27/2023]
Abstract
Oxidative stress is a major cause of aging related skin injuries. Hydrogen peroxide related ROS accumulation triggers increase in matrix metalloproteinases and elevated collagen degradation, which is a characteristic of skin aging. In this study, we investigated the protective effect of Poria cocos, used widely in the treatment of inflammatory diseases, against H2 O2 induced oxidative stress. The aqueous extract of dried P. cocos was obtained by heating 10 g in 500 ml of distilled water. The mixture was evaporated up to 400 ml and the remaining 100 ml was filtered through muslin cloth repeatedly to obtain a clear aqueous extract of the P. cocos. Hs68 human dermal fibroblast cells were challenged with 100 μM of H2 O2 for 24 h. Following H2 O2 challenge, the cells were treated with increasing concentration of P. cocos extract (100-400 μg/ml) for 24 h. P. cocos extract hindered the H2 O2 induced cell death significantly that was correlated with reduction in ROS accumulation. Western blot analysis show that P. cocos extract suppressed the expression of metallomatrix proteinases, inflammatory markers and skin aging markers, but increased TGF-β1 levels and antioxidant related proteins. These data suggest that P. cocos is effective in attenuating oxidative stress associated skin aging effects and may be a potential agent in cosmetics products.
Collapse
Affiliation(s)
- Chien-Liang Fang
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung City, Taiwan
| | - Catherine Reena Paul
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
28
|
Effects of phenylethanol glycosides from Orobanche cernua Loefling on UVB-Induced skin photodamage: a comparative study. Photochem Photobiol Sci 2021; 20:599-614. [PMID: 33909279 DOI: 10.1007/s43630-021-00038-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Previous study has found that Orobanche cernua Loefling(OC) and its main ingredient, acteoside, possess excellently anti-photo-aging effect. In addition to acteoside, crenatoside, isoacteoside and 2'-acetylacteoside were also identified as the main phenylethanol glycosides (PhGs) in OC. To screen optimum effective substance and further clarify the photoprotective ingredients of OC, the effects of four major PhGs in OC were compared using UVB-irradiated HaCaT cells. Results indicated that acteoside, isoacteoside and 2'-acetylacteoside effectively decreased UVB-induced MMP-1 expression and stimulated type I procollagen synthesis through inhibition of MAPK/AP-1 and activation of TGF-β/Smad pathway. Moreover, acteoside and 2'-acetylacteoside significantly reduced UVB-induced ROS and TARC secretion, which is involved in the inhibition of NF-κβ/Iκβα and stimulation of Nrf2 antioxidant defense system. However, crenatoside did not show any effect on the regulation of signal cascades mentioned above. Together, our results suggested that 2'-acetylacteoside and isoacteoside also served as efficient agents against UV radiation-induced skin damage. Among them, acteoside and 2'-acetylacteoside showed a higher efficiency than that of isoacteoside, which possessed great potential in treating skin photo-damage.
Collapse
|
29
|
Anuar NNM, Zulkafali NIN, Ugusman A. Modulation of Matrix Metalloproteinases by Plant-derived Products. Curr Cancer Drug Targets 2021; 21:91-106. [PMID: 33222671 DOI: 10.2174/1568009620666201120144838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent metalloendopeptidases that are responsible for the degradation, repair, and remodeling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases, such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic, and food industries. This review summarises the current knowledge of plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signaling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviors, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.
Collapse
Affiliation(s)
- Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nurul Iman Natasya Zulkafali
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Dieckol, an Algae-Derived Phenolic Compound, Suppresses UVB-Induced Skin Damage in Human Dermal Fibroblasts and Its Underlying Mechanisms. Antioxidants (Basel) 2021; 10:antiox10030352. [PMID: 33652913 PMCID: PMC7996756 DOI: 10.3390/antiox10030352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet (UV) irradiation is considered to be the primary environmental factor that causes skin damage. In the present study, we investigated the protective effect of dieckol (DK), a compound isolated from the brown seaweed Ecklonia cava, against UVB-induced skin damage in human dermal fibroblasts (HDF cells). The results indicated that DK effectively inhibited the activity of collagenase. DK remarkably reduced the intracellular reactive oxygen species level and improved the viability of UVB-irradiated HDF cells. Besides, DK significantly and dose-dependently improved collagen synthesis and inhibited intracellular collagenase activity in UVB-irradiated HDF cells. In addition, DK markedly reduced the expression of proinflammatory cytokines and matrix metalloproteinases. Further analyses revealed that these processes were mediated through the regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinase signaling pathways in the UVB-irradiated HDF cells. In conclusion, these results indicate that DK possesses strong in vitro photoprotective effects and therefore has the potential to be used as an ingredient in the cosmeceutical industry.
Collapse
|
31
|
Effect of Rubus idaeus Extracts in Murine Chondrocytes and Explants. Biomolecules 2021; 11:biom11020245. [PMID: 33572124 PMCID: PMC7915036 DOI: 10.3390/biom11020245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis is characterized by cartilage loss resulting from the activation of chondrocytes associated with a synovial inflammation. Activated chondrocytes promote an increased secretion of matrix proteases and proinflammatory cytokines leading to cartilage breakdown. Since natural products possess anti-inflammatory properties, we investigated the direct effect of Rubus idaeus extracts (RIE) in chondrocyte metabolism and cartilage loss. The effect of RIE in chondrocyte metabolism was analyzed in murine primary chondrocytes and cartilage explants. We also assessed the contribution of RIE in an inflammation environment by culturing mice primary chondrocytes with the supernatant of Raw 264.7 macrophage-like cells primed with RIE. In primary chondrocytes, RIE diminished chondrocyte hypertrophy (Col10), while increasing the expression of catabolic genes (Mmp-3, Mmp-13) and reducing anabolic genes (Col2a1, Acan). In cartilage explants, Rubus idaeus prevented the loss of proteoglycan (14.84 ± 3.07% loss of proteoglycans with IL1 alone vs. 3.03 ± 1.86% with IL1 and 100 µg/mL of RIE), as well as the NITEGE neoepitope expression. RIE alone reduced the expression of Il1 and Il6 in macrophages, without changes in Tnf and Cox2 expression. The secretome of macrophages pre-treated with RIE and transferred to chondrocytes decreases the gene and protein expression of Mmp-3 and Cox2. In conclusion, these data suggest that RIE may protect from chondrocyte catabolism and cartilage loss in inflammatory conditions. Further evaluations are need before considering RIE as a candidate for the treatment for osteoarthritis.
Collapse
|
32
|
Land Lail H, Feresin RG, Hicks D, Stone B, Price E, Wanders D. Berries as a Treatment for Obesity-Induced Inflammation: Evidence from Preclinical Models. Nutrients 2021; 13:nu13020334. [PMID: 33498671 PMCID: PMC7912458 DOI: 10.3390/nu13020334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation that accompanies obesity is associated with the infiltration of metabolically active tissues by inflammatory immune cells. This propagates a chronic low-grade inflammation associated with increased signaling of common inflammatory pathways such as NF-κB and Toll-like receptor 4 (TLR4). Obesity-associated inflammation is linked to an increased risk of chronic diseases, including type 2 diabetes, cardiovascular disease, and cancer. Preclinical rodent and cell culture studies provide robust evidence that berries and their bioactive components have beneficial effects not only on inflammation, but also on biomarkers of many of these chronic diseases. Berries contain an abundance of bioactive compounds that have been shown to inhibit inflammation and to reduce reactive oxygen species. Therefore, berries represent an intriguing possibility for the treatment of obesity-induced inflammation and associated comorbidities. This review summarizes the anti-inflammatory properties of blackberries, blueberries, strawberries, and raspberries. This review highlights the anti-inflammatory mechanisms of berries and their bioactive components that have been elucidated through the use of preclinical models. The primary mechanisms mediating the anti-inflammatory effects of berries include a reduction in NF-κB signaling that may be secondary to reduced oxidative stress, a down-regulation of TLR4 signaling, and an increase in Nrf2.
Collapse
|
33
|
Gao W, Wang X, Si Y, Pang J, Liu H, Li S, Ding Q, Wang Y. Exosome Derived from ADSCs Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochem Photobiol 2021; 97:795-804. [PMID: 33351957 DOI: 10.1111/php.13370] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Stem cell therapies have attracted a lot of attention in the fields of dermatological and esthetic medicine. The paracrine action of stem cells is deemed to play a crucial role in skin treatments. Many reports have demonstrated the beneficial effects of conditioned medium (CM) derived from ADSCs on skin photoaging. However, few reports have presented the application of exosome (Exo) derived from ADSCs in the treatment of photoaging. To clarify the effects of Exo, we collected Exo from the CM of ADSCs and the photoprotective effects of Exo, as well as those of the CM with and without Exo, were investigated by detecting the intracellular ROS, DNA damage and some photoaging-associated signal pathways on UVB-treated human dermal fibroblasts. The results showed that Exo had significant efficiency in preventing photoaging, and it could inhibit UVB-induced cellular DNA damage, overexpression of ROS and MMP-1 via regulating Nrf2 and MAPK/AP-1 pathway. In addition, Exo could effectively activate the TGF-β/Smad pathway to elevate the expression of procollagen type I. However, these photoprotective effects were weakened when Exo was removed from the CM. Taken together, the results suggested that Exo, a key component of paracrine activity, played an important role in the treatment of photoaging.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xiu Wang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yue Si
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jinlong Pang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Shanshan Li
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Qi Ding
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yushuai Wang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| |
Collapse
|
34
|
Gledovic A, Janosevic Lezaic A, Nikolic I, Tasic-Kostov M, Antic-Stankovic J, Krstonosic V, Randjelovic D, Bozic D, Ilic D, Tamburic S, Savic S. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. NANOMATERIALS 2021; 11:nano11010217. [PMID: 33467701 PMCID: PMC7830947 DOI: 10.3390/nano11010217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/15/2023]
Abstract
This study focuses on the development of biocompatible oil-in-water (O/W) nanoemulsions based on polyglycerol esters, as promising carriers for natural actives: red raspberry seed oil—RO and hydro-glycolic fruit extracts from red raspberry—RE and French oak—FE. Nanoemulsions were obtained via phase inversion composition (PIC) method at room temperature by dilution of microemulsion phase, confirmed by visual appearance, percentage of transmittance, microscopic, rheological and differential scanning calorimetry (DSC) investigations. The results have shown that the basic RO-loaded formulation could be further enriched with hydro-glycolic fruit extracts from red raspberry or French oak, while keeping a semi-transparent appearance due to the fine droplet size (Z-ave: 50 to 70 nm, PDI value ≤ 0.1). The highest antioxidant activity (~92% inhibition of the DPPH radical) was achieved in the formulation containing both lipophilic (RO) and hydrophilic antioxidants (FE), due to their synergistic effect. The nanoemulsion carrier significantly increased the selective cytotoxic effect of RO towards malignant melanoma (Fem-X) cells, compared to normal human keratinocytes (HaCaT). In vivo study on human volunteers showed satisfactory safety profiles and significant improvement in skin hydration during 2 h after application for all nanoemulsions. Therefore, polyglycerol ester-based nanoemulsions can be promoted as effective carriers for red raspberry seed oil and/or hydro-glycolic fruit extracts in topical formulations intended for skin protection and hydration.
Collapse
Affiliation(s)
- Ana Gledovic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
- Correspondence: (A.G.); (S.S.); Tel.: +381-113951367 (A.G.); +381-113951288 (S.S.)
| | - Aleksandra Janosevic Lezaic
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
| | - Ines Nikolic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
| | - Marija Tasic-Kostov
- Department of Pharmacy, Faculty of Medicine, University of Nis, 18000 Nis, Serbia; (M.T.-K.); (D.I.)
| | - Jelena Antic-Stankovic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia; (J.A.-S.); (D.B.)
| | - Veljko Krstonosic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Randjelovic
- Department of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Bozic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia; (J.A.-S.); (D.B.)
| | - Dusan Ilic
- Department of Pharmacy, Faculty of Medicine, University of Nis, 18000 Nis, Serbia; (M.T.-K.); (D.I.)
| | - Slobodanka Tamburic
- Cosmetic Science Research Group, London College of Fashion, University of the Arts London, London WC1V 7EY, UK;
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
- Correspondence: (A.G.); (S.S.); Tel.: +381-113951367 (A.G.); +381-113951288 (S.S.)
| |
Collapse
|
35
|
Cui X, Ma Y, Wang H, Huang J, Li L, Tang J, Cheng B. The Anti-photoaging Effects of Pre- and Post-treatment of Platelet-rich Plasma on UVB-damaged HaCaT Keratinocytes. Photochem Photobiol 2020; 97:589-599. [PMID: 33174201 DOI: 10.1111/php.13354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023]
Abstract
Platelet-rich plasma (PRP) has seen wide clinical use owing to its regenerative and repair abilities. OBJECTIVE To investigate the anti-photoaging effects of pre- and post-treatment of PRP on UVB-damaged HaCaT cells. METHODS HaCaT cells were irradiated with 80 mJ/cm2 UVB, before or after PRP treatment (1000 × 107 /L), and following measurements were taken: survival rate of UVB-irradiated HaCaT cells, malondialdehyde (MDA) content and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT). Western blot was used to determine the effect of different PRP intervention on the expression of PI3K, AKT, ERK, MMP-1, MMP-9, TIMP-1 and γ-H2AX in the UVB-irradiated HaCaT cells. RESULTS pre- and post-PRP treatment reduced MDA content and increased the activities of GSH-Px, SOD and CAT in photoaged HaCaT cells. These changes resulted in reduced cytotoxic effects. Besides, different PRP intervention promoted cell proliferation via PI3K/AKT pathway. Furthermore, PRP application suppressed the expression of γ-H2AX. Also, PRP intervention alleviated photoaging effects by upregulating the expression level of tissue inhibitor of metalloproteinases-1 (TIMP-1) while downregulating matrix metalloproteinase (MMP) expression level in photoaged HaCaT cells. CONCLUSION pre- and post-PRP treatment play anti-photoaging role through strengthening cellular oxidative defense capacity, mitigating MMP expression, alleviating DNA damages and promoting proliferation of UVB-irradiated HaCaT cells.
Collapse
Affiliation(s)
- Xiao Cui
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China.,The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area of Chinese PLA, Guangzhou, China
| | - Yongshi Ma
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hong Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jianfang Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Linlin Li
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China.,The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area of Chinese PLA, Guangzhou, China
| | - Jianbing Tang
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China.,The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area of Chinese PLA, Guangzhou, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China.,The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area of Chinese PLA, Guangzhou, China
| |
Collapse
|
36
|
Trehalose against UVB-induced skin photoaging by suppressing MMP expression and enhancing procollagen I synthesis in HaCaT cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
TGF-β1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway. Chem Biol Interact 2020; 331:109249. [DOI: 10.1016/j.cbi.2020.109249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
|
38
|
Schisandra Inhibit Bleomycin-Induced Idiopathic Pulmonary Fibrosis in Rats via Suppressing M2 Macrophage Polarization. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5137349. [PMID: 32884941 PMCID: PMC7455820 DOI: 10.1155/2020/5137349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause and limited to the lungs. Schisandrae chinensis fructus (Wuweizi, Schisandra) is commonly used traditional Chinese medicines (TCM) for the treatment of pulmonary fibrosis, bronchitis, and other lung diseases in China. In this study, we investigated the therapeutic effect of Schisandra on IPF which is induced by bleomycin (BLM) in rats and the inhibition of alternatively activated macrophage (M2) polarization. Bleomycin-induced pulmonary fibrosis was used as a model for IPF, and rats were given drug interventions for 7 and 28 days to evaluate the role of Schisandra in the early oxidative phase and late fibrotic phases of BLM-induced pulmonary injury. The data showed that Schisandra exerted protective effects on BLM-induced pulmonary injury in two phases, which were improving inflammatory cell infiltration and severe damages of lung architectures and decreasing markers of M2 subtype. In order to prove the inhibitory effect of Schisandra on M2 polarization, in vitro experiments, we found that Schisandra downregulated the M2 ratio, which confirmed that the polarization of M2 was suppressed. Moreover, Schisandra blocked TGF-β1 signaling in AMs by reducing the levels of Smad3 and Smad4; meanwhile, the upregulation of Smad7 by Schisandra also promoted the effect of inhibition on the TGF-β1/Smad pathway. These results demonstrate that suppression of M2 polarization by Schisandra is associated with the development of IPF in rats.
Collapse
|
39
|
Hernandez DF, Cervantes EL, Luna-Vital DA, Mojica L. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit Rev Food Sci Nutr 2020; 61:3740-3755. [PMID: 32772550 DOI: 10.1080/10408398.2020.1805407] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Besides providing essential nutrients for humans, food contains bioactive compounds that exert diverse biological activities such as anti-microbial, anti-cancerogenic, anti-viral, anti-inflammatory and antioxidant. The cosmetic industry is interested in natural bioactive compounds for their use in nutricosmetic and cosmeceutical products. These products aimed to reduce skin aging, inflammation or provide photoprotection against UV radiation. As a result, nutricosmetics and cosmeceuticals are becoming innovative self-care products in the beauty market. These products contain phytochemicals as active compounds obtained from fruits, vegetables, legumes, medicinal herbs and plants with anti-aging potential. This review summarizes the information within the last 5 years related to bioactive compounds present in fruits, vegetables, herbs and spices commonly used for human consumption. Their antioxidant and biological potential for modulating molecular markers involved in the aging process, as well as their mechanism of action. Diverse natural foods and their byproducts could be used as a source of bioactive compounds for developing cosmeceutical and nutricosmetic products.
Collapse
Affiliation(s)
- David Fonseca Hernandez
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Eugenia Lugo Cervantes
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, Department of Bioengineering and Science, Puebla, Puebla, Mexico
| | - Luis Mojica
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| |
Collapse
|
40
|
Anitua E, Troya M, Goñi F, Gómez P, Tierno R, Pino A. A Novel Autologous Topical Serum Based on Plasma Rich in Growth Factors Technology Counteracts Ultraviolet Light-Derived Photo-Oxidative Stress. Skin Pharmacol Physiol 2020; 33:67-81. [DOI: 10.1159/000507716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
|
41
|
Choo BK, Nan L, Nam HH, Park JC. Ethanol extract of Magnolia sieboldii buds ameliorated esophageal tissue injury induced by gastric acid reflux in rats via regulating the nuclear factor-κB signaling pathway. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_57_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Protective Effects of Unsaponifiable Matter from Perilla Seed Meal on UVB-induced Damages and the Underlying Mechanisms in Human Skin Fibroblasts. Antioxidants (Basel) 2019; 8:antiox8120644. [PMID: 31847198 PMCID: PMC6943425 DOI: 10.3390/antiox8120644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Unsaponifiable matter (USM) from perilla seed meal contains numerous phytochemicals, including tocopherols, phytosterols, squalene, and policosanols, that exhibit antioxidant and health-promoting properties. In this study, the protective effects of USM on UVB-induced skin aging were investigated in Hs68 cells. UVB irradiation decreased cell viability by 26% compared to the control. However, USM blocked UVB-induced cytotoxicity. Moreover, USM treatment significantly decreased the UVB-induced production of reactive oxygen species and attenuated the UVB-induced production and mRNA expression of matrix metalloproteinases (MMPs) by inhibiting the phosphorylation of mitogen-activated protein kinases and activator protein 1 (AP-1). Furthermore, UVB exposure led to a 49.4% reduction in collagen synthesis. However, USM treatment restored collagen synthesis through upregulation of the transforming growth factor beta (TGF-β)/Smad2/3 pathways. These data indicate that USM regulates the production of MMPs and collagen by modulation of the TGF-β/Smad pathway and AP-1 activity, suggesting that USM may be a useful anti-photoaging ingredient.
Collapse
|
43
|
Haiyuan YU, Shen X, Liu D, Hong M, Lu Y. The protective effects of β-sitosterol and vermicularin from Thamnolia vermicularis (Sw.) Ach. against skin aging in vitro. AN ACAD BRAS CIENC 2019; 91:e20181088. [PMID: 31800700 DOI: 10.1590/0001-3765201920181088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023] Open
Abstract
Aged skin, featured with dryness and wrinkles, has received mounting attention due to its adverse influences on beauty. β-Sitosterol and vermicularin are two common active ingredients of Thamnolia vermicularis (Sw.) Ach., a traditional Chinese medicine, of which the anti-aging effect has been discovered. Their protective performance against skin aging was assayed by co-culturing with skin cells in this work. Results showed that β-sitosterol promoted the biosynthesis of hyaluronic acid by increasing the expression of hyaluronic acid synthases in fibroblasts and enhanced the expression of skin barrier functional proteins including aquaporin 3, loricrin, filaggrin and involucrin in keratinocytes, which conduced to the moisture retention within skin. Moreover, vermicularin might function as an anti-wrinkle agent by preventing the loss of collagen type I. Specifically, vermicularin reduced the amount of reactive oxygen species within hydrogen-peroxide-induced fibroblasts; together with suppressing the activation of mitogen-activated protein kinases, it could inhibit the production of matrix metalloproteinases-1. The present research will contribute to the development of the compounds as anti-aging ingredients for future applications in cosmetic formulations and functional food as well as promote further studies of raw materials containing alike compounds.
Collapse
Affiliation(s)
- Y U Haiyuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Xueqing Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Dan Liu
- Technology Center, Shanghai Inoherb Cosmetics limited company, 121 Chengyin Road, 200083 Shanghai, People's Republic of China
| | - Minhua Hong
- Technology Center, Shanghai Inoherb Cosmetics limited company, 121 Chengyin Road, 200083 Shanghai, People's Republic of China
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| |
Collapse
|
44
|
Wang J, Zhang C, Zhu J, Ding J, Chen Y, Han X. Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to Microcystin-LR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:662-678. [PMID: 31279213 DOI: 10.1016/j.scitotenv.2019.06.387] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 05/17/2023]
Abstract
Microcystin-leucine-arginine (MC-LR), which produced by toxic cyanobacteria and widely present in eutrophic waters, has been shown to have potent acute hepatotoxicity. MC-LR has been revealed to inflict damage to brain, while the neurotoxicity of chronic exposure to MC-LR and mechanisms underlying it are still confusing. Here, the mice were exposed to MC-LR dissolved in drinking water at dose of 1, 7.5, 15, and 30 μg/L for consecutive 180 days. MC-LR accumulated in mouse brains and impaired the blood-brain barrier by inducing the expression of matrix metalloproteinase-8 (MMP-8), which was regulated by NF-κB, c-Fos and c-Jun. Furthermore, MC-LR exposure induced microglial and astrocyte activation and resultant neuroinflammatory response. This study highlights the risks to human health of the current microcystin exposure.
Collapse
Affiliation(s)
- Jing Wang
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Changliang Zhang
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinling Zhu
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
45
|
Gong M, Zhai X, Yu L, Li C, Ma X, Shen Q, Han Y, Yang D. ADSCs inhibit photoaging‐ and photocarcinogenesis‐related inflammatory responses and extracellular matrix degradation. J Cell Biochem 2019; 121:1205-1215. [PMID: 31468588 DOI: 10.1002/jcb.29354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 08/13/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Meihua Gong
- Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital Second Affiliated Hospital of Jinan University Medical College Shenzhen China
- Department of Plastic Surgery The 2nd Hospital of Harbin Medical University Harbin China
| | - Xu Zhai
- Department of Plastic Surgery The 2nd Hospital of Harbin Medical University Harbin China
| | - Li Yu
- Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital Second Affiliated Hospital of Jinan University Medical College Shenzhen China
| | - Chunyang Li
- Department of Plastic Surgery The 2nd Hospital of Harbin Medical University Harbin China
| | - Xu Ma
- Department of Plastic Surgery The 2nd Hospital of Harbin Medical University Harbin China
| | - Qi Shen
- Department of Plastic Surgery The 2nd Hospital of Harbin Medical University Harbin China
| | - Yubo Han
- Department of Plastic Surgery The 2nd Hospital of Harbin Medical University Harbin China
| | - Daping Yang
- Department of Plastic Surgery The 2nd Hospital of Harbin Medical University Harbin China
| |
Collapse
|
46
|
α-Ionone Protects Against UVB-Induced Photoaging in Human Dermal Fibroblasts. Molecules 2019; 24:molecules24091804. [PMID: 31075987 PMCID: PMC6539661 DOI: 10.3390/molecules24091804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Ultraviolet (UV) light-induced wrinkle formation is a major dermatological problem and is associated with alteration in collagen. Here, we investigated the potential of α-ionone, a naturally occurring aromatic compound, in regulation of UVB-induced photoaging in human Hs68 dermal fibroblasts and identified the mechanisms involved. We found that in human dermal fibroblasts, α-ionone inhibited UVB-induced loss of collagen. α-Ionone upregulated the molecules participating in the TGF-β–SMAD pathway (TGF-β1, phospho-SMAD2/3, Col1A1, and Col1A2), but downregulated the molecules involved in the MAPK–AP-1 signaling pathway (phospho-p38, phospho-JNK, phospho-ERK, phospho-c-Fos, phospho-c-Jun, MMP1, MMP3, and MMP9), in human dermal fibroblasts. α-Ionone treatment also increased hyaluronic acid contents, and this effect was accompanied by an upregulation of mRNA expression of genes (HAS1 and HAS2) involved in hyaluronic acid synthesis. Thus, α-ionone is effective in the prevention of UVB-induced decrease of collagen and hyaluronic acid in human dermal fibroblasts. We propose that α-ionone may prove beneficial for the prevention of UV-induced wrinkle formation and skin damage.
Collapse
|
47
|
The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39:BSR20181377. [PMID: 30833362 PMCID: PMC6418402 DOI: 10.1042/bsr20181377] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) with early metastasis of the primary tumor results in poor prognosis and poor therapeutic outcomes. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a substantial role in regulating gene expression post-transcriptionally and influence the development and progression of tumors. Numerous studies have discovered that miRNAs play significant roles in the invasion and metastasis of CC by affecting specific pathways, including Notch, Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)-Akt pathways. miRNAs also effectively modulate the process of epithelial–mesenchymal transition. Many studies provide new insights into the role of miRNAs and the pathogenesis of metastatic CC. In this review, we will offer an overview and update of our present understanding of the potential roles of miRNAs in metastatic CC.
Collapse
|