1
|
Ghazal B, Fareed A, Ahmad N, Azra, Salmen SH, Ansari MJ, Zeng Y, Farid A, Jenks MA, Qayyum A. Elicitors directed in vitro growth and production of stevioside and other secondary metabolites in Stevia rebaudiana (Bertoni) Bertoni. Sci Rep 2024; 14:14714. [PMID: 38926419 PMCID: PMC11208548 DOI: 10.1038/s41598-024-65483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Stevia rebaudiana (stevia) is a plant in the Asteraceae that contains several biologically active compounds including the antidiabetic diterpene glycosides (e.g. stevioside, rebaudioside and dulcoside) that can serve as zero-calorie sugar alternatives. In this study, an elicitation strategy was applied using 5% polyethylene glycol (PEG), sodium chloride (NaCl; 50 and 100 mM) and gibberellic acid (2.0 and 4.0 mg/L GA3) to investigate their effect on shoot morphogenesis, and the production of phenolics, flavonoids, total soluble sugars, proline and stevioside, as well as antioxidant activity, in shoot cultures of S. rebaudiana. Herewith, the media supplemented with 2 mg/L and 4 mg/L GA3 exhibited the highest shooting response (87% and 80%). The augmentation of lower concentrations of GA3 (2 mg/L) in combination with 6-benzylaminopurine (BAP) resulted in the maximum mean shoot length (11.1 cm). The addition of 100 mM NaCl salts to the media led to the highest observed total phenolics content (TPC; 4.11 mg/g-DW compared to the control 0.52 mg/g-DW), total flavonoids content (TFC; 1.26 mg/g-DW) and polyphenolics concentration (5.39 mg/g-DW) in shoots cultured. However, the maximum antioxidant activity (81.8%) was observed in shoots raised in media treated with 50 mM NaCl. The application of 2 mg/L of GA3 resulted in the highest accumulation of proline (0.99 μg/mL) as compared to controls (0.37 μg/mL). Maximum stevioside content (71 µL/mL) was observed in cultures supplemented with 100 mM NaCl and 5% PEG, followed by the 4 mg/L GA3 treatment (70 µL/mL) as compared to control (60 µL/mL). Positive correlation was observed between GA3 and stevioside content. Notably, these two compounds are derived from a shared biochemical pathway. These results suggest that elicitation is an effective option to enhance the accumulation of steviosides and other metabolites and provides the groundwork for future industrial scale production using bioreactors.
Collapse
Affiliation(s)
- Bushra Ghazal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Amna Fareed
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Nisar Ahmad
- Centre for Biotechnology and Microbiology, University of Swat-19200, Swat, Pakistan
| | - Azra
- Department of Plant Pathology, Amir Muhammad Khan Campus Mardan, The University of Agriculture, Peshawar, Pakistan
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh -11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 244001, India
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China.
| | - Abid Farid
- Department of Entomology, The University of Haripur, Haripur, 22620, Pakistan
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| |
Collapse
|
2
|
Grzegorczyk-Karolak I, Ejsmont W, Kiss AK, Tabaka P, Starbała W, Krzemińska M. Improvement of Bioactive Polyphenol Accumulation in Callus of Salvia atropatana Bunge. Molecules 2024; 29:2626. [PMID: 38893502 PMCID: PMC11173501 DOI: 10.3390/molecules29112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line-HL, and root line-RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5-50.2 mg/g dry weight) and blue (51.4-53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products.
Collapse
Affiliation(s)
- Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| | - Wiktoria Ejsmont
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| | - Anna Karolina Kiss
- Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemyslaw Tabaka
- Institute of Electrical Power Engineering, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Wiktoria Starbała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| | - Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| |
Collapse
|
3
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Ahmad MS, Luna-Arias JP. Antioxidant and Hypoglycemic Potential of Phytogenic Selenium Nanoparticle- and Light Regime-Mediated In Vitro Caralluma tuberculata Callus Culture Extract. ACS OMEGA 2024; 9:20101-20118. [PMID: 38737082 PMCID: PMC11079897 DOI: 10.1021/acsomega.3c10222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
In vitro plant cultures have emerged as a viable source, holding auspicious reservoirs for medicinal applications. This study aims to delineate the antioxidant and hypoglycemic potential of phytosynthesized selenium nanoparticle (SeNP)- and light stress-mediated in vitro callus cultures of Caralluma tuberculata extract. The morphophysicochemical characteristics of biogenic SeNPs were assessed through a combination of analytical techniques, including UV-visible spectrophotometry, scanning electron microscopy, energy-dispersive X-rays, Fourier transform infrared spectrometry, and zeta potential spectroscopy. The antioxidative potential of the callus extract 200 and 800 μg/mL concentrations was assessed through various tests and exhibited pronounced scavenging potential in reducing power (26.29%), ABTS + scavenging (42.51%), hydrogen peroxide inhibition (37.26%), hydroxyl radical scavenging (40.23%), and phosphomolybdate (71.66%), respectively. To inspect the hypoglycemic capacity of the callus extract, various assays consistently demonstrated a dosage-dependent relationship, with higher concentrations of the callus extract exerting a potent inhibitory impact on the catalytic sites of the alpha-amylase (78.24%), alpha-glucosidase (71.55%), antisucrase (59.24%), and antilipase (74.26%) enzyme activities, glucose uptake by yeast cells at 5, 10, and 25 mmol/L glucose solution (72.18, 60.58 and 69.33%), and glucose adsorption capacity at 5, 10, and 25 mmol/L glucose solution (74.37, 83.55, and 86.49%), respectively. The findings of this study propose selenium NPs and light-stress-mediated in vitro callus cultures of C. tuberculata potentially operating as competitive inhibitors. The outcomes of the study were exceptional and hold promising implications for future medicinal applications.
Collapse
Affiliation(s)
- Amir Ali
- Department
of Botany, PMAS Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department
of Botany, PMAS Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
- Pakistan
Academy of Sciences, Islamabad 44000, Pakistan
| | - Naveed Iqbal Raja
- Department
of Botany, PMAS Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Sher Mohammad
- Biotechnology
Laboratory, Agricultural Research Institute
(ARI) Tarnab Peshawar, Peshawar 25000, Pakistan
| | - M. Sheeraz Ahmad
- University
Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Juan Pedro Luna-Arias
- Department
of Cell Biology, and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National
Polytechnic Institute (CINVESTAV), Mexico City 07360, Mexico
| |
Collapse
|
4
|
Iqbal R, Khan T, Sherazi TA, Jalal A, Ali GS. Red light enhances the antibacterial properties, biofabrication, and stability of Fagonia indica callus-based silver nanoparticles. Photochem Photobiol 2024; 100:656-673. [PMID: 37705501 DOI: 10.1111/php.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Plant-based nanoparticles can be tuned through the frequency of light for efficient synthesis, structural properties, and antibacterial applications. This research assessed the effect of material type (callus and whole-plant extract) and the interaction with a specific range of light wavelength on AgNP synthesis. All types of AgNPs were characterized by their size, shape, associated functional groups, and surface charge. Interestingly, the size of red light and callus-based AgNPs (RC-AgNPs) was smaller (6.32 nm) compared to 14.59 nm for Ultraviolet light and callus-based AgNPs (UV-C-AgNPs). Zeta potential analysis showed that RC-AgNPs had higher stability (-29.2 mV) compared to UV-C-AgNPs (-16.7 mV). Similarly, red light-based AgNPs had higher Oxidation reduction potential in both whole-plant-based and callus-based AgNPs, indicating a more oxidizing nature compared to those synthesized under UV light. This was confirmed by the lower total phenolic and flavonoid content associated with them and their lower antioxidant activity. The higher antibacterial activities and lower minimum inhibitory concentrations of red light-based AgNPs against highly resistant pathogenic bacteria demonstrated the role of red light in enhancing antibacterial activity. These results indicate that AgNPs synthesized in red light and callus extract are more active compared to those synthesized under other wavelengths and/or in whole-plant extracts.
Collapse
Affiliation(s)
- Reema Iqbal
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
- Institute of Biotechnology and Genetic Engineering, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University, Abbottabad, Pakistan
| | - Abdullah Jalal
- Institute of Biotechnology and Genetic Engineering, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Gul Shad Ali
- Mid Florida Research and Education Centre (MREC), University of Florida, Florida, Gainesville, USA
| |
Collapse
|
5
|
Aasim M, Yıldırım B, Say A, Ali SA, Aytaç S, Nadeem MA. Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H 2O 2) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.). PLANT MOLECULAR BIOLOGY 2024; 114:33. [PMID: 38526768 DOI: 10.1007/s11103-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 × Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 × 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.
Collapse
Affiliation(s)
- Muhammad Aasim
- Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey.
| | - Buşra Yıldırım
- Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey
| | - Ahmet Say
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Seyid Amjad Ali
- Department of Information Systems and Technologies, Bilkent University, Ankara, Turkey
| | - Selim Aytaç
- Institute of Hemp Researches, Ondokuz Mayis University, Samsun, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
6
|
Khan S, Khan T, Karim S, Zahoor M, Jan T, Khan MA, Nadhman A. Efficient regeneration of shoots and roots in graphene oxide and carbon nanotubes mediated callus cultures: A qualitative and quantitative study. INDUSTRIAL CROPS AND PRODUCTS 2023; 204:117262. [DOI: 10.1016/j.indcrop.2023.117262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
7
|
Bajwa MN, Khanum M, Zaman G, Ullah MA, Farooq U, Waqas M, Ahmad N, Hano C, Abbasi BH. Effect of Wide-Spectrum Monochromatic Lights on Growth, Phytochemistry, Nutraceuticals, and Antioxidant Potential of In Vitro Callus Cultures of Moringa oleifera. Molecules 2023; 28:1497. [PMID: 36771159 PMCID: PMC9921732 DOI: 10.3390/molecules28031497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC µM) and FRAP (365.37 TEAC µM), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 µg/g DW), neochlorogenic acid (998.38 µg/g DW), quercetin (959.92 µg/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera.
Collapse
Affiliation(s)
| | - Mehnaz Khanum
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Asad Ullah
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Umar Farooq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology (CB&M), University of Swat, Swat 19200, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Pakistan Academy of Sciences, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
9
|
Miranda CL, Kumbi Y, Wu W, Lee HS, Reed RL, Stevens JF. Phytochemical characterization and bioactivity toward breast cancer cells of unhydrolyzed and acid-hydrolyzed extracts of Fagonia indica. Nat Prod Commun 2022; 17:10.1177/1934578x221109426. [PMID: 35875707 PMCID: PMC9302922 DOI: 10.1177/1934578x221109426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Phytochemicals from the genus, Fagonia, have been attracting increasing attention due to their potential beneficial effects on human health. Fagonia species contain various types of phytochemicals such as flavonoids, alkaloids, saponins, terpenoids, coumarins and tannins. In this study, we investigated the phytochemical composition of unhydrolyzed and acid-hydrolyzed extracts of Fagonia indica and their bioactivity toward breast cancer MCF-7 cells in vitro. The results revealed that F. indica contains phytochemicals consistent with the reported phytochemical composition of this Fagonia species, with greater amounts of aglycones detected in the hydrolyzed extract. The crude extract of F. indica without acid hydrolysis was found to be ineffective in inhibiting the growth of MCF-7 cells at doses below 1000 μg/mL. However, after acid hydrolysis (to mimic gastro-intestinal hydrolysis), the F. indica extract became growth-inhibitory to MCF-7 cells as low as 10 μg/mL and the cytotoxicity increased with increasing dose and time of treatment. The results suggest that F. indica extracts contain phytochemicals in glycosidic forms whose aglycones are active as anti-proliferative agents toward breast cancer cells in vitro.
Collapse
Affiliation(s)
- Cristobal L. Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| | - Yadano Kumbi
- BioResource Research Interdisciplinary Program, Oregon State University, Corvallis, Oregon, 97331
| | - Wenbin Wu
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| | - Hyi-Seung Lee
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
- Korean Institute of Ocean Science and Technology, Busan, South Korea
| | - Ralph L. Reed
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| |
Collapse
|
10
|
Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of Solanum virginianum L. Callus Culture Extracts. COSMETICS 2022. [DOI: 10.3390/cosmetics9040071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solanum virginianum L. (Solanum xanthocarpum) is an important therapeutic plant due to the presence of medicinally useful plant-derived compounds. S. virginianum has been shown to have anticancer, antioxidant, antibacterial, antiaging, and anti-inflammatory properties. This plant is becoming endangered due to overexploitation and the loss of its native habitat. The purpose of this research is to develop an ideal technique for the maximum biomass and phytochemical accumulation in S. virginianum leaf-induced in vitro cultures, as well as to evaluate their potential antiaging, anti-inflammatory, and antioxidant abilities. Leaf explants were grown on media (Murashige and Skoog (MS)) that were supplemented with various concentrations and combinations of plant hormones (TDZ, BAP, NAA, and TDZ + NAA) for this purpose. When compared with the other hormones, TDZ demonstrated the best response for callus induction, biomass accumulation, phytochemical synthesis, and biological activities. However, with 5 mg/L of TDZ, the optimal biomass production (FW: 251.48 g/L and DW: 13.59 g/L) was estimated. The highest total phenolic level (10.22 ± 0.44 mg/g DW) was found in 5 mg/L of TDZ, whereas the highest flavonoid contents (1.65 ± 0.11 mg/g DW) were found in 10 mg/L of TDZ. The results of the HPLC revealed that the highest production of coumarins (scopoletin: 4.34 ± 0.20 mg/g DW and esculetin: 0.87 ± 0.040 mg/g DW) was determined for 10 mg/L of TDZ, whereas the highest accumulations of caffeic acid (0.56 ± 0.021 mg/g DW) and methyl caffeate (18.62 ± 0.60 mg/g DW) were shown by 5 mg/L of TDZ. The determination of these phytochemicals (phenolics and coumarins) estimates that the results of our study on biological assays, such as antioxidant, anti-inflammatory, and antiaging assays, are useful for future cosmetic applications.
Collapse
|
11
|
Iqbal R, Khan T. Application of exogenous melatonin in vitro and in planta: a review of its effects and mechanisms of action. Biotechnol Lett 2022; 44:933-950. [PMID: 35751787 DOI: 10.1007/s10529-022-03270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Melatonin is a natural indolamine that regulates many physiological functions in plants. The most prominent role of melatonin in plants has been its ability to work as an anti-stressor agent. Exogenous melatonin can prevent cell death and promote cell proliferation through its antioxidant properties, enhancement of polyamine biosynthesis, and the ability to shift cell metabolism in case of stressors like sugar starvation. Melatonin scavenges reactive oxygen species and thus preventing damage to cell membranes and other organelles. Its application in different plant culture systems reveals its important physiological and biochemical roles during the growth and development of these cultures. It has been observed that the exogenous melatonin protects callus culture, reduces cold-induced apoptosis in cell suspension, and stimulates adventitious and lateral roots formation. This review presents the physiological and biochemical effects of exogenous melatonin on in vitro culture systems, including its impact on biomass accumulation, growth, and development of plants.
Collapse
Affiliation(s)
- Reema Iqbal
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, 18800, Pakistan.,Institute of Biotechnology and Genetic Engineering, University of Agriculture, Peshawar, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, 18800, Pakistan.
| |
Collapse
|
12
|
Bano AS, Khattak AM, Basit A, Alam M, Shah ST, Ahmad N, Gilani SAQ, Ullah I, Anwar S, Mohamed HI. Callus Induction, Proliferation, Enhanced Secondary Metabolites Production and Antioxidants Activity of Salvia moorcroftiana L. as Influenced by Combinations of Auxin, Cytokinin and Melatonin. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2022; 65. [DOI: 10.1590/1678-4324-2022210200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
13
|
Effect of LED Lighting on Physical Environment and Microenvironment on In Vitro Plant Growth and Morphogenesis: The Need to Standardize Lighting Conditions and Their Description. PLANTS 2021; 11:plants11010060. [PMID: 35009064 PMCID: PMC8747321 DOI: 10.3390/plants11010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
In the last decades, lighting installations in plant tissue culture have generally been renewed or designed based on LED technology. Thanks to this, many different light quality advances are available but, with their massive implementation, the same issue is occurring as in the 1960s with the appearance of the Grolux (Sylvania) fluorescent tubes: there is a lack of a methodological standardization of lighting. This review analyzes the main parameters and variables that must be taken into account in the design of LED-based systems, and how these need to be described and quantified in order to homogenize and standardize the experimental conditions to obtain reproducible and comparable results and conclusions. We have designed an experimental system in which the values of the physical environment and microenvironment conditions and the behavior of plant tissue cultures maintained in cabins illuminated with two lighting designs can be compared. Grolux tubes are compared with a combination of monochromatic LED lamps calibrated to provide a spectral emission, and light irradiance values similar to those generated by the previous discharge lamps, achieving in both cases wide uniformity of radiation conditions on the shelves of the culture cabins. This study can help to understand whether it is possible to use LEDs as one standard lighting source in plant tissue culture without affecting the development of the cultures maintained with the previously regulated protocols in the different laboratories. Finally, the results presented from this caparison indicate how temperature is one of the main factors that is affected by the chosen light source.
Collapse
|
14
|
Elicitation of Submerged Adventitious Root Cultures of Stevia rebaudiana with Cuscuta reflexa for Production of Biomass and Secondary Metabolites. Molecules 2021; 27:molecules27010014. [PMID: 35011247 PMCID: PMC8746614 DOI: 10.3390/molecules27010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Stevia rebaudiana is an important medicinal plant that belongs to the Asteraceae family. The leaves of Stevia rebaudiana are a rich source of many health-promoting agents such as polyphenols, flavonoids, and steviol glycoside, which play a key role in controlling obesity and diabetes. New strategies such as the elicitation of culture media are needed to enhance the productivity of active components. Herein, the Cuscuta reflexa extracts were exploited as elicitors to enhance the productivity of active components. Cuscuta reflexa is one of the parasitic plants that has the ability to elongate very fast and cover the host plant. Consequently, it may be possible that the addition of Cuscuta reflexa extracts to adventitious root cultures (ADR) of Stevia rebaudiana may elongate the root more than control cultures to produce higher quantities of the desired secondary metabolites. Therefore, the main objective of the current study was to investigate the effect of Cuscuta reflexa extract as a biotic elicitor on the biomass accumulation and production of antioxidant secondary metabolite in submerged adventitious root cultures of Stevia rebaudiana. Ten different concentrations of Cuscuta reflexa were added to liquid media containing 0.5 mg/L naphthalene acetic acid (NAA). The growth kinetics of adventitious roots was investigated for a period of 49 days with an interval of 7 days. The maximum biomass accumulation (7.83 g/3 flasks) was observed on medium containing 10 mg/L extract of Cuscuta reflexa on day 49. As the concentration of extract increases in the culture media, the biomass gradually decreases after 49 days of inoculation. In this study, the higher total phenolics content (0.31 mg GAE/g-DW), total flavonoids content (0.22 mg QE/g-DW), and antioxidant activity (85.54%) were observed in 100 mg/L treated cultures. The higher concentration (100 mg/L) of Cuscuta reflexa extract considerably increased the total phenolics content (TPC), total phenolics production (TPP), total flavonoids content (TFC), total flavonoids production (TFP), total polyphenolics content (TPPC), and total polyphenolics production (TPPP). It was concluded that the extract of Cuscuta reflexa moderately improved biomass accumulation but enhanced the synthesis of phenolics, flavonoids, and antioxidant activities. Here, biomass’s independent production of secondary metabolites was observed with the addition of extract. The present study will be helpful to scale up adventitious roots culture into a bioreactor for the production of secondary metabolites rather than biomass accumulation in medicinally important Stevia rebaudiana.
Collapse
|
15
|
Nazir S, Jan H, Zaman G, Khan T, Ashraf H, Meer B, Zia M, Drouet S, Hano C, Abbasi BH. Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of Ocimum basilicum (Thai basil). ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:626-634. [PMID: 34597252 DOI: 10.1080/21691401.2021.1984935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Nano-elicitation is one among the prioritised strategies considered globally for sustainable and uniform production of industrially important medicinal compounds. Ocimum basilicum (Thai basil), a renowned medicinal species is a reservoir of commercially vital metabolites and proved for its health assuring effects in cancer, diabetes, microbial and cardiovascular diseases. However, its consumption and industrial demand raised intent to divert towards better alternates for ensuring sustainable production of medicinal compounds. Herein, we investigated the comparative potential of metal oxide [copper oxide (CuO) and manganese oxide (MnO)] nanoparticles to elicit the biosynthesis of bioactive metabolites and antioxidative capacity of O.basilicum callus cultures. Results showed that callus grown on MS media supplemented with 10 mg/L CuO-NPs resulted in the highest biomass accumulation (FW: 172.8 g/L, DW: 16.7 g/L), phenolic contents (TPC: 27.5 mg/g DW), and flavonoid contents (TFC: 9.1 mg/g DW) along with antioxidant activities (DPPH: 94%, ABTS: 881 μM TEAC, FRAP: 386 μM TEAC) compared with MnO-NPs and control. Likewise, the Superoxide dismutase (SOD: 1.28 nM/min/mg FW) and Peroxidase (POD: 0.48 nM/min/mg FW) activities were also recorded maximum in CuO-NPs elicited cultures than MnO-NPs and control. Moreover, the HPLC results showed that rosmarinic acid (11.4 mg/g DW), chicoric acid (16.6 mg/g DW), eugenol (0.21 mg/g DW) was found optimum in cultures at 10 mg/L CuO-NPs. Overall, it can be concluded that CuO nanoparticles can be effectively used as a elicitor for biosynthesis of metabolites in callus cultures of O. basilicum (Thai basil). The study is indeed a contribution to the field that will help decoding the mechanism of action of CuO NPs. However, further molecular investigations are needed to fully develop understanding about the metabolic potential of O. bascillicum and scalling up this protocol for bulkup production of bioactive compounds.
Collapse
Affiliation(s)
- Saher Nazir
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Hajra Ashraf
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bisma Meer
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, Orléans, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, Orléans, France
| | | |
Collapse
|
16
|
Khan H, Khan T, Ahmad N, Zaman G, Khan T, Ahmad W, Batool S, Hussain Z, Drouet S, Hano C, Abbasi BH. Chemical Elicitors-Induced Variation in Cellular Biomass, Biosynthesis of Secondary Cell Products, and Antioxidant System in Callus Cultures of Fagonia indica. Molecules 2021; 26:molecules26216340. [PMID: 34770749 PMCID: PMC8587688 DOI: 10.3390/molecules26216340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Fagonia indica is a rich source of pharmacologically active compounds. The variation in the metabolites of interest is one of the major issues in wild plants due to different environmental factors. The addition of chemical elicitors is one of the effective strategies to trigger the biosynthetic pathways for the release of a higher quantity of bioactive compounds. Therefore, this study was designed to investigate the effects of chemical elicitors, aluminum chloride (AlCl3) and cadmium chloride (CdCl2), on the biosynthesis of secondary metabolites, biomass, and the antioxidant system in callus cultures of F. indica. Among various treatments applied, AlCl3 (0.1 mM concentration) improved the highest in biomass accumulation (fresh weight (FW): 404.72 g/L) as compared to the control (FW: 269.85 g/L). The exposure of cultures to AlCl3 (0.01 mM) enhanced the accumulation of secondary metabolites, and the total phenolic contents (TPCs: 7.74 mg/g DW) and total flavonoid contents (TFCs: 1.07 mg/g DW) were higher than those of cultures exposed to CdCl2 (0.01 mM) with content levels (TPC: 5.60 and TFC: 0.97 mg/g) as compared to the control (TPC: 4.16 and TFC: 0.42 mg/g DW). Likewise, AlCl3 and CdCl2 also promoted the free radical scavenging activity (FRSA; 89.4% and 90%, respectively) at a concentration of 0.01 mM, as compared to the control (65.48%). For instance, the quantification of metabolites via high-performance liquid chromatography (HPLC) revealed an optimum production of myricetin (1.20 mg/g), apigenin (0.83 mg/g), isorhamnetin (0.70 mg/g), and kaempferol (0.64 mg/g). Cultures grown in the presence of AlCl3 triggered higher quantities of secondary metabolites than those grown in the presence of CdCl2 (0.79, 0.74, 0.57, and 0.67 mg/g). Moreover, AlCl3 at 0.1 mM enhanced the biosynthesis of superoxide dismutase (SOD: 0.08 nM/min/mg-FW) and peroxidase enzymes (POD: 2.37 nM/min/mg-FW), while CdCl2 resulted in an SOD activity up to 0.06 nM/min/mg-FW and POD: 2.72 nM/min/mg-FW. From these results, it is clear that AlCl3 is a better elicitor in terms of a higher and uniform productivity of biomass, secondary cell products, and antioxidant enzymes compared to CdCl2 and the control. It is possible to scale the current strategy to a bioreactor for a higher productivity of metabolites of interest for various pharmaceutical industries.
Collapse
Affiliation(s)
- Habiba Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.K.); (T.K.); (G.Z.); (T.K.); (W.A.); (S.B.)
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.K.); (T.K.); (G.Z.); (T.K.); (W.A.); (S.B.)
- Department of Biotechnology, University of Malakand, Malakand 23050, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology (CB&M), University of Swat, Swat 19200, Pakistan; (N.A.); (Z.H.)
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.K.); (T.K.); (G.Z.); (T.K.); (W.A.); (S.B.)
| | - Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.K.); (T.K.); (G.Z.); (T.K.); (W.A.); (S.B.)
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Waqar Ahmad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.K.); (T.K.); (G.Z.); (T.K.); (W.A.); (S.B.)
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.K.); (T.K.); (G.Z.); (T.K.); (W.A.); (S.B.)
| | - Zahid Hussain
- Center for Biotechnology and Microbiology (CB&M), University of Swat, Swat 19200, Pakistan; (N.A.); (Z.H.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, CEDEX 2, 45067 Orléans, France;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, CEDEX 2, 45067 Orléans, France;
- Correspondence: (C.H.); (B.H.A.); Tel./Fax: +33-2-37-30-97-53 (C.H.); +92-51-90644121 (B.H.A.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.K.); (T.K.); (G.Z.); (T.K.); (W.A.); (S.B.)
- Correspondence: (C.H.); (B.H.A.); Tel./Fax: +33-2-37-30-97-53 (C.H.); +92-51-90644121 (B.H.A.)
| |
Collapse
|
17
|
Scarlet Flax Linum grandiflorum (L.) In Vitro Cultures as a New Source of Antioxidant and Anti-Inflammatory Lignans. Molecules 2021; 26:molecules26154511. [PMID: 34361665 PMCID: PMC8348589 DOI: 10.3390/molecules26154511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.
Collapse
|
18
|
The Protective Function and Modification of Secondary Metabolite Accumulation in Response to Light Stress in Dracocephalum forrestii Shoots. Int J Mol Sci 2021; 22:ijms22157965. [PMID: 34360728 PMCID: PMC8347274 DOI: 10.3390/ijms22157965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023] Open
Abstract
The aim of this work was to determine the effect of stress conditions caused by different light sources, i.e., blue LED (λ = 430 nm), red LED (λ = 670 nm), blue and red LED (70%:30%) and white LED (430–670 nm) on the growth and morphology of cultivated in vitro Dracocephalum forrestii shoot culture. It also examines the effects on bioactive phenolic compound production and photosynthetic pigment content, as well as on antioxidant enzyme activity (CAT, SOD, POD) and antioxidant properties. The most beneficial proliferation effect was observed under white LEDs (7.1 ± 2.1 shoots per explant). The white and blue lights stimulated the highest fresh weight gain, while red light induced the highest dry weight gain. The total phenolic acid content ranged from 13.824 ± 1.181 to 20.018 ± 801 mg g DW−1 depending on light conditions. The highest content of rosmarinic acid was found in the control shoots (cultivated under fluorescent lamps), followed by culture grown under red light. All LED treatments, especially red and blue, increased salvianolic acid B content, and blue increased apigenin p-coumarylrhamnoside biosynthesis. The greatest ferric reduction activity was observed in shoots cultivated under red light, followed by blue; this is associated with the presence of the highest total phenol content, especially phenolic acids. Similarly, the highest DPPH radical scavenging potential was observed under red light followed by blue. This study proves that LEDs have emerged as significant support for directed in vitro propagation, taking advantage of specific stress responses on various light spectra. This study also showed how stress induced by different LED light spectra increases in Dracocephalum forrestii the synthesis of pharmacologically-active compounds. Hence, light stress may turn out to be a simpler alternative to metabolic engineering for improving the production of secondary metabolites of therapeutic value.
Collapse
|
19
|
UV-C mediated accumulation of pharmacologically significant phytochemicals under light regimes in in vitro culture of Fagonia indica (L.). Sci Rep 2021; 11:679. [PMID: 33436717 PMCID: PMC7804141 DOI: 10.1038/s41598-020-79896-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Fagonia indica (L.) is an important medicinal plant with multitude of therapeutic potentials. Such application has been attributed to the presence of various pharmacological important phytochemicals. However, the inadequate biosynthesis of such metabolites in intact plants has hampered scalable production. Thus, herein, we have established an in vitro based elicitation strategy to enhance such metabolites in callus culture of F. indica. Cultures were exposed to various doses of UV radiation (UV-C) and grown in different photoperiod regimes and their impact was evaluated on biomass accumulation, biosynthesis of phytochemicals along antioxidant expression. Cultures grown under photoperiod (16L/8D h) after exposure to UV-C (5.4 kJ/m2) accumulated optimal biomass (438.3 g/L FW; 16.4 g/L DW), phenolics contents (TPC: 11.8 μgGAE/mg) and flavonoids contents (TFC: 4.05 μgQE/mg). Similarly, HPLC quantification revealed that total production (6.967 μg/mg DW) of phytochemicals wherein kaempferol (1.377 μg/mg DW), apigenin (1.057 μg/mg DW), myricetin (1.022 μg/mg DW) and isorhamnetin (1.022 μg/mg DW) were recorded highly accumulated compounds in cultures at UV-C (5.4 kJ/m2) dose than other UV-C radiations and light regimes.. The antioxidants activities examined as DPPH (92.8%), FRAP (182.3 µM TEAC) and ABTS (489.1 µM TEAC) were also recorded highly expressed by cultures under photoperiod after treatment with UV-C dose 5.4 kJ/m2. Moreover, same cultures also expressed maximum % inhibition towards phospholipase A2 (sPLA2: 35.8%), lipoxygenase (15-LOX: 43.3%) and cyclooxygenases (COX-1: 55.3% and COX-2: 39.9%) with 1.0-, 1.3-, 1.3- and 2.8-fold increased levels as compared with control, respectively. Hence, findings suggest that light and UV can synergistically improve the metabolism of F. indica and could be used to produce such valuable metabolites on commercial scale.
Collapse
|
20
|
Khan T, Khan MA, Karam K, Ullah N, Mashwani ZUR, Nadhman A. Plant in vitro Culture Technologies; A Promise Into Factories of Secondary Metabolites Against COVID-19. FRONTIERS IN PLANT SCIENCE 2021; 12:610194. [PMID: 33777062 PMCID: PMC7994895 DOI: 10.3389/fpls.2021.610194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/15/2021] [Indexed: 05/11/2023]
Abstract
The current pandemic has caused chaos throughout the world. While there are few vaccines available now, there is the need for better treatment alternatives in line with preventive measures against COVID-19. Along with synthetic chemical compounds, phytochemicals cannot be overlooked as candidates for drugs against severe respiratory coronavirus 2 (SARS-CoV-2). The important role of secondary metabolites or phytochemical compounds against coronaviruses has been confirmed by studies that reported the anti-coronavirus role of glycyrrhizin from the roots of Glycyrrhiza glabra. The study demonstrated that glycyrrhizin is a very promising phytochemical against SARS-CoV, which caused an outbreak in 2002-2003. Similarly, many phytochemical compounds (apigenin, betulonic acid, reserpine, emodin, etc.) were isolated from different plants such as Isatis indigotica, Lindera aggregate, and Artemisia annua and were employed against SARS-CoV. However, owing to the geographical and seasonal variation, the quality of standard medicinal compounds isolated from plants varies. Furthermore, many of the important medicinal plants are either threatened or on the verge of endangerment because of overharvesting for medicinal purposes. Therefore, plant biotechnology provides a better alternative in the form of in vitro culture technology, including plant cell cultures, adventitious roots cultures, and organ and tissue cultures. In vitro cultures can serve as factories of secondary metabolites/phytochemicals that can be produced in bulk and of uniform quality in the fight against COVID-19, once tested. Similarly, environmental and molecular manipulation of these in vitro cultures could provide engineered drug candidates for testing against COVID-19. The in vitro culture-based phytochemicals have an additional benefit of consistency in terms of yield as well as quality. Nonetheless, as the traditional plant-based compounds might prove toxic in some cases, engineered production of promising phytochemicals can bypass this barrier. Our article focuses on reviewing the potential of the different in vitro plant cultures to produce medicinally important secondary metabolites that could ultimately be helpful in the fight against COVID-19.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
- *Correspondence: Tariq Khan, ;
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
- Mubarak Ali Khan,
| | - Kashmala Karam
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
21
|
Zafar H, Gul FZ, Mannan A, Zia M. ZnO NPs reveal distinction in toxicity under different spectral lights: An in vitro experiment on Brassica nigra (Linn.) Koch. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Begum S, Zahid A, Khan T, Khan NZ, Ali W. Comparative analysis of the effects of chemically and biologically synthesized silver nanoparticles on biomass accumulation and secondary metabolism in callus cultures of Fagonia indica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1739-1750. [PMID: 32801500 PMCID: PMC7415059 DOI: 10.1007/s12298-020-00851-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 05/25/2023]
Abstract
Biotechnological strategies are needed to produce larger quantities of biomass and phytochemicals. In this study, callus cultures of Fagonia indica were elicited with different concentrations of chemically and biologically synthesized silver nanoparticles (chem- and bioAgNPs) to compare their effects on biomass, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of the extracts from callus. The results revealed that bioAgNPs being more biocompatible produced the highest biomass initially on day 10 (FW = 4.2152 ± 0.13 g; DW = 0.18527 ± 0.01 g) and day 20 (FW = 7.6558 ± 0.10 g; DW = 0.3489 ± 0.01 g) when supplemented in media as 62.5 µg/mL and 250 µg/mL, respectively. Initially, the highest TPC (319.32 ± 8.28 µg GAE/g of DW) was recorded on day 20 in chemAgNPs (31.25 µg/mL) induced callus as compared to TPC = 302.85 ± 3.002 µg GAE/g of DW in bioAgNPs-induced callus. Compared to the highest values of TFC (108.15 ± 2.10 µg QE/g of DW) produced in 15.6 µg/mL chemAgNPs-induced callus on day 20, TFC produced in bioAgNPs (62.5 µg/mL) was 168.61 ± 3.17 µg GAE/g of DW on day 10. Similarly, chemAgNPs-induced callus (62.5 µg/mL) showed the highest free radical scavenging activity (FRSA) i.e. 87.18% on day 20 while bioAgNPs (125 µg/mL) showed 81.69% FRSA on day 20 compared to highest among control callus (63.98% on day 40). The highest total antioxidant capacity of chemAgNPs-(125 µg/mL) induced callus was 330.42 ± 13.65 µg AAE/g of DW on day 20 compared to bioAgNPs-(62.5 µg/mL) induced callus (312.96 ± 1.73 µg AAE/g of DW) on day 10. Conclusively, bioAgNPs are potent elicitors of callus cultures of F. indica.
Collapse
Affiliation(s)
- Shabana Begum
- Department of Biotechnology, University of Malakand, Chakdara, Dir Lower, 18800 Pakistan
| | - Ayesha Zahid
- Department of Biotechnology, University of Malakand, Chakdara, Dir Lower, 18800 Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Dir Lower, 18800 Pakistan
| | - Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Chakdara, Dir Lower, 18800 Pakistan
| | - Waqar Ali
- Department of Biotechnology, University of Malakand, Chakdara, Dir Lower, 18800 Pakistan
| |
Collapse
|
23
|
Khurshid R, Ullah MA, Tungmunnithum D, Drouet S, Shah M, Zaeem A, Hameed S, Hano C, Abbasi BH. Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. PLoS One 2020; 15:e0233963. [PMID: 32530961 PMCID: PMC7292357 DOI: 10.1371/journal.pone.0233963] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important physiological cascades. Current study was carried out to investigate growth and developmental aspects of E. alba under differential effect of multispectral lights. In vitro derived callus culture of E. alba was exposed to multispectral monochromatic lights under controlled aseptic conditions. Maximum dry weight was recorded in culture grown under red light (11.2 g/L) whereas negative effect was observed under exposure of yellow light on callus growth (4.87 g/L). Furthermore, red light significantly enhanced phenolics and flavonoids content (TPC: 57.8 mg/g, TFC: 11.1 mg/g) in callus cultures compared to rest of lights. HPLC analysis further confirmed highest accumulation of four major compounds i.e. coumarin (1.26 mg/g), eclalbatin (5.00 mg/g), wedelolactone (32.54 mg/g) and demethylwedelolactone (23.67 mg/g) and two minor compounds (β-amyrin: 0.38 mg/g, luteolin: 0.39 mg/g) in red light treated culture whereas stigmasterol was found optimum (0.22 mg/g) under blue light. In vitro based biological activities including antioxidant, antidiabetic and lipase inhibitory assays showed optimum values in cultures exposed to red light, suggesting crucial role of these phytochemicals in the enhancement of the therapeutic potential of E. alba. These results clearly revealed that the use of multispectral lights in in vitro cultures could be an effective strategy for enhanced production of phytochemicals.
Collapse
Affiliation(s)
- Razia Khurshid
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- COSM’ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, Orléans, France
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Afifa Zaeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Safia Hameed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- COSM’ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, Orléans, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
24
|
Lebrun M, Miard F, Scippa GS, Hano C, Morabito D, Bourgerie S. Effect of biochar and redmud amendment combinations on Salix triandra growth, metal(loid) accumulation and oxidative stress response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110466. [PMID: 32200145 DOI: 10.1016/j.ecoenv.2020.110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Remediation of metal(loid) polluted soils is an important area of research nowadays. In particular, one remediation technique is much studied, phytomanagement. Phytomanagement combines amendment application and plant growth in order to reduce the risk posed by contaminants. Salicaceae plants showed tolerance towards metal(loid)s and the ability to accumulate high amounts of metal(loid)s in their tissue. Amendments are often applied to counterbalance the reduced soil fertility and high metal(loid) concentrations. Two amendments gathered attention over the last decades, biochar (product of biomass pyrolysis), which can be activated for better effects, and redmud (by-product of alumina production). Those two amendments showed ability to improve soil conditions and thus plant growth, although few studied their combined application. Moreover, since metal(loid)s are known to induce the overproduction of reactive oxygen species, it is important to measure the level of oxidative stress in the plant, to which plants respond using enzymatic and non-enzymatic systems. But no studies evaluate the response of Salicaceae plants to metal(loid) stress and amendment application at the biochemical level in a real soil condition. Therefore, a mesocosm study was set up to evaluate the effect of amending a mine soil with redmud combined to diverse biochars on the soil properties and Salix triandra growth, metal(loid) accumulation and stress marker levels. Results showed that all amendment combinations improved the soil fertility, reduced metal(loid) mobility and thus ameliorated Salix triandra growth, which accumulated metal(loid)s mainly in its roots. Moreover, among the different amendment combinations, Salix triandra plants still suffered from oxidative stress when grown on PG soil amended with redmud and chemical activated carbon, showing elevated levels of phenolic compounds and salicinoids and important antioxidant and enzymatic activities. Finally, one treatment showed levels of these stress markers similar or lower than the control, the combination of redmud with steam activated carbon. In conclusion, this treatment seemed a good solution in a phytomanagement strategy using Salix triandra, improving soil conditions and plant growth and reducing oxidative stress level in the plant roots.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Università degli Studi del Molise, Dipartimento di Bioscienze e Territorio, 86090, Pesche, Italy; Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Florie Miard
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Gabriella S Scippa
- Università degli Studi del Molise, Dipartimento di Bioscienze e Territorio, 86090, Pesche, Italy
| | - Christophe Hano
- Université d'Orléans, LBLGC INRA, USC 1328- Antenne Scientifique Universitaire de Chartres, 21 Rue de Loigny La Bataille, 28000, Chartres, France
| | - Domenico Morabito
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
25
|
Usman H, Ullah MA, Jan H, Siddiquah A, Drouet S, Anjum S, Giglioli-Guviarc’h N, Hano C, Abbasi BH. Interactive Effects of Wide-Spectrum Monochromatic Lights on Phytochemical Production, Antioxidant and Biological Activities of Solanum xanthocarpum Callus Cultures. Molecules 2020; 25:E2201. [PMID: 32397194 PMCID: PMC7248882 DOI: 10.3390/molecules25092201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Solanum xanthocarpum is considered an important traditional medicinal herb because of its unique antioxidant, and anti-diabetic, anti-aging, and anti-inflammatory potential. Because of the over exploitation linked to its medicinal properties as well as destruction of its natural habitat, S. xanthocarpum is now becoming endangered and its supply is limited. Plant in vitro culture and elicitation are attractive alternative strategies to produce biomass and stimulate biosynthesis of medicinally important phytochemicals. Here, we investigated the potential influence of seven different monochromatic light treatments on biomass and secondary metabolites accumulation in callus culture of S. xanthocarpum as well as associated biological activities of the corresponding extracts. Among different light treatments, highest biomass accumulation was observed in white light-treated callus culture. Optimum accumulation of total flavonoid contents (TFC) and total phenolic contents (TPC) were observed in callus culture kept under continuous white and blue light respectively than control. Quantification of phytochemicals through HPLC revealed that optimum production of caffeic acid (0.57 ± 0.06 mg/g DW), methyl-caffeate (17.19 mg/g ± 1.79 DW), scopoletin (2.28 ± 0.13 mg/g DW), and esculetin (0.68 ± 0.07 mg/g DW) was observed under blue light callus cultures. Compared to the classic photoperiod condition, caffeic acid, methyl-caffeate, scopoletin, and esculetin were accumulated 1.7, 2.5, 1.1, and 1.09-folds higher, respectively. Moreover, high in vitro cell free antioxidant, anti-diabetic, anti-aging, and anti-inflammatory activities were closely associated with the production of these secondary metabolites. These results clearly showed the interest to apply multispectral light as elicitor of in vitro callus cultures S. xanthocarpum to promote the production of important phytochemicals, and allow us to propose this system as an alternative for the collection of this endangered species from the wild.
Collapse
Affiliation(s)
- Hazrat Usman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Aisha Siddiquah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan;
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| |
Collapse
|
26
|
Nazir M, Asad Ullah M, Mumtaz S, Siddiquah A, Shah M, Drouet S, Hano C, Abbasi BH. Interactive Effect of Melatonin and UV-C on Phenylpropanoid Metabolite Production and Antioxidant Potential in Callus Cultures of Purple Basil ( Ocimum basilicum L. var.s purpurascens). Molecules 2020; 25:E1072. [PMID: 32121015 PMCID: PMC7179200 DOI: 10.3390/molecules25051072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023] Open
Abstract
The present study evaluated the interactive effect of melatonin and UV-C on phenylpropanoid metabolites profile and antioxidant potential of Ocimum basilicum L. Callus was treated with varying concentrations of melatonin and UV-C radiations for different time durations, either alone and/or in combination. Individual treatments of both UV-C and melatonin proved to be more effective than combine treatments. Results indicated that UV-C (10 min) exposure increased rosmarinic acid (134.5 mg/g dry weight (DW)), which was 2.3-fold greater than control. Chichoric acid (51.52 mg/g DW) and anthocyanin (cyanide 0.50 mg/g DW) were almost 4.1-fold, while peonidin was found 2.7-fold higher in UV-C (50 min) exposure. In the case of melatonin, 1.0 mg/L concentrations showed maximum rosmarinic acid (79.4 mg/g DW) accumulation; i.e., 1.4-fold more, as compared to the control. However, 2 mg/L melatonin accumulate chichoric acid (39.99 mg/g DW) and anthocyanin (cyanide: 0.45 mg/g DW and peonidin: 0.22 mg/g DW); i.e., 3.2, 3.7 and 2.0-fold increase, as compared to the control, respectively. On the other hand, melatonin-combined treatment (melatonin (Mel) (4 mg/L) + UV-C (20 min)) was proved to be effective in caffeic acid elicitation, which was 1.9-fold greater than the control. Furthermore, antioxidant potential was evaluated by both in vitro (DPPH, ABTS and FRAP assays) and in cellulo methods. Maximum in vitro antioxidant activity (DPPH: 90.6% and ABTS: 1909.5 µM) was observed for UV-C (50 min)-treated cultures. The highest in vitro antioxidant activity measured with the ABTS assay as compared to the FRAP assay, suggesting the main contribution of antioxidants from basil callus extracts acting through a hydrogen atom transfer (HAT) over an electron transfer (ET)-based mechanism. Cellular antioxidant assay was evaluated by production of ROS/RNS species using yeast cell cultures and further confirmed the protective action of the corresponding callus extracts against oxidative stress. Overall, both melatonin and UV-C are here proved to be effective elicitors since a positive correlation between the induced production of phenolic compounds, and in cellulo antioxidant action of basil callus extracts were observed.
Collapse
Affiliation(s)
- Munazza Nazir
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.N.); (M.A.U.); (A.S.); (M.S.)
- Department of Botany, University of Azad Jammu &Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.N.); (M.A.U.); (A.S.); (M.S.)
| | - Sadia Mumtaz
- Department of Biotechnology, Women University of Azad Jammu &Kashmir Bagh, Azad Kashmir 12500, Pakistan;
| | - Aisha Siddiquah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.N.); (M.A.U.); (A.S.); (M.S.)
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.N.); (M.A.U.); (A.S.); (M.S.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, 45067 Orléans CEDEX 2, France or or (S.D.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, 45067 Orléans CEDEX 2, France or or (S.D.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.N.); (M.A.U.); (A.S.); (M.S.)
| |
Collapse
|
27
|
Ullah MA, Tungmunnithum D, Garros L, Hano C, Abbasi BH. Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 196:111505. [PMID: 31129506 DOI: 10.1016/j.jphotobiol.2019.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Lepidium sativum L. is an important edible, herbaceous plant with huge medicinal value as cardio-protective, hepatoprotective and antitumor agent. This study was designed and performed to investigate biosynthesis of plant's active ingredients in callus cultures of L. sativum in response to the exposure of multi spectral lights. Optimum biomass accumulation (15.36 g/L DW), total phenolic and flavonoid contents (TPC; 47.43 mg/g; TFC; 9.41 mg/g) were recorded in calli placed under white light (24 h) compared to rest of the treatments. Antioxidant enzymatic activities i.e. superoxide dismutase and peroxidase were found optimum in cultures exposed to green light (SOD; 0.054 nM/min/mg FW, POD; 0.501 nM/min/mg FW). Phytochemical analysis further confirmed the potential influence of white light exposure on enhanced production of plant's metabolites. Significant enhancement level of major metabolic compounds such as chlorogenic acid (7.20 mg/g DW), quercetin (22.08 mg/g DW), kaempferol (7.77 mg/g DW) and minor compounds including ferulic acid, sinapic acid, protocatechuic acid, vanillic acid and caffeic acid were recorded in white light compared to control (photoperiod), whereas blue light increased the p-coumaric acid accumulation. Moreover, callus cultures of this plant under white light (24 h) showed highest in vitro based anti-diabetic and antioxidant activities compared to other conditions. Finding of our current study revealed that multi spectral lights are proved to be an effective strategy for enhancing metabolic quantity of antioxidant and anti-diabetic bioactive compounds in callus cultures of L. sativum L.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i -Azam University, Islamabad 45320, Pakistan
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans Cedex 2, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i -Azam University, Islamabad 45320, Pakistan; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France; EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, Tours, France.
| |
Collapse
|
28
|
Ullah MA, Tungmunnithum D, Garros L, Drouet S, Hano C, Abbasi BH. Effect of Ultraviolet-C Radiation and Melatonin Stress on Biosynthesis of Antioxidant and Antidiabetic Metabolites Produced in In Vitro Callus Cultures of Lepidium sativum L. Int J Mol Sci 2019; 20:E1787. [PMID: 30978911 PMCID: PMC6479895 DOI: 10.3390/ijms20071787] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Lepidium sativum L. is a rich source of polyphenols that have huge medicinal and pharmaceutical applications. In the current study, an effective abiotic elicitation strategy was designed for enhanced biosynthesis of polyphenols in callus culture of L. sativum. Callus was exposed to UV-C radiations for different time intervals and various concentrations of melatonin. Secondary metabolites were quantified by using high-performance liquid chromatography (HPLC). Results indicated the total secondary metabolite accumulation of nine quantified compounds was almost three fold higher (36.36 mg/g dry weight (DW)) in melatonin (20 μM) treated cultures, whereas, in response to UV-C (60 min), a 2.5 fold increase (32.33 mg/g DW) was recorded compared to control (13.94 mg/g DW). Metabolic profiling revealed the presence of three major phytochemicals, i.e., chlorogenic acid, kaemferol, and quercetin, in callus culture of L. sativum. Furthermore, antioxidant, antidiabetic, and enzymatic activities of callus cultures were significantly enhanced. Maximum antidiabetic activities (α-glucosidase: 57.84%; α-amylase: 62.66%) were recorded in melatonin (20 μM) treated callus cultures. Overall, melatonin proved to be an effect elicitor compared to UV-C and a positive correlation in these biological activities and phytochemical accumulation was observed. The present study provides a better comparison of both elicitors and their role in the initiation of physiological pathways for enhanced metabolites biosynthesis in vitro callus culture of L. sativum.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37000 Tours, France.
| |
Collapse
|
29
|
Shah M, Ullah MA, Drouet S, Younas M, Tungmunnithum D, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Interactive Effects of Light and Melatonin on Biosynthesis of Silymarin and Anti-Inflammatory Potential in Callus Cultures of Silybum marianum (L.) Gaertn. Molecules 2019; 24:E1207. [PMID: 30934786 PMCID: PMC6480540 DOI: 10.3390/molecules24071207] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Silybum marianum (L.) Gaertn. is a well-known medicinal herb, primarily used in liver protection. Light strongly affects several physiological processes along with secondary metabolites biosynthesis in plants. Herein, S. marianum was exploited for in vitro potential under different light regimes in the presence of melatonin. The optimal callogenic response occurred in the combination of 1.0 mg/L α-naphthalene acetic acid and 0.5 mg/L 6-benzylaminopurine under photoperiod. Continuous light associated with melatonin treatment increased total flavonoid content (TFC), total phenolic content (TPC) and antioxidant potential, followed by photoperiod and dark treatments. The increased level of melatonin has a synergistic effect on biomass accumulation under continuous light and photoperiod, while an adverse effect was observed under dark conditions. More detailed phytochemical analysis showed maximum total silymarin content (11.92 mg/g dry weight (DW)) when placed under continuous light + 1.0 mg/L melatonin. Individually, the level of silybins (A and B), silydianin, isolsilychristin and silychristin was found highest under continuous light. Anti-inflammatory activities were also studied and highest percent inhibition was recorded against 15-lipoxygenase (15-LOX) for cultures cultivated under continuous light (42.33%). The current study helps us to better understand the influence of melatonin and different light regimes on silymarin production as well as antioxidant and anti-inflammatory activities in S. marianum callus extracts.
Collapse
Affiliation(s)
- Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
| | - Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Nathalie Giglioli-Guivarc'h
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, 37000 Tours, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, 37000 Tours, France.
| |
Collapse
|