1
|
Li Q, Zhu W, Wen X, Zang Z, Da Y, Lu J. Different baseline functional patterns of the frontal cortex in amyotrophic lateral sclerosis patients with Corticospinal tract hyperintensity. Brain Res 2024; 1844:149140. [PMID: 39111522 DOI: 10.1016/j.brainres.2024.149140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Nearly half of the amyotrophic lateral sclerosis (ALS) patients showed hyperintensity of the corticospinal tract (CST+), yet whether brain functional pattern differs between CST+and CST- patients remains obscure. In the current study, 19 ALS CST+, 41 ALS CST- patients and 37 healthy controls (HC) underwent resting state fMRI scans. We estimated local activity and connectivity patterns via the Amplitude of Low Frequency Fluctuations (ALFF) and the Network-Based Statistic (NBS) approaches respectively. The ALS CST+patients did not differ from the CST- patients in amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) score and disease duration. ALFF of the superior frontal gyrus (SFG) and the inferior frontal gyrus pars opercularis (OIFG) were highest in the HC and lowest in the ALS CST- patients, resulting in significant group differences (PFWE<0.05). NBS analysis revealed a frontal network consisting of connections between SFG, OIFG, orbital frontal gyrus, middle cingulate cortex and the basal ganglia, which exhibited HC>ALS CST+ > ALS CST- group differences (PFWE=0.037) as well. The ALFF of the OIFG was significantly correlated with ALSFRS-R (R=0.34, P=0.028) and mean connectivity of the frontal network was trend-wise significantly correlated with disease duration (R=-0.31, P=0.052) in the ALS CST- patients. However, these correlations were insignificant in ALS CST+patients (P values > 0.8). In conclusion, The ALS CST+patients exhibited different patterns of baseline functional activity and connectivity in the frontal cortex which may indicate a functional compensatory effect.
Collapse
Affiliation(s)
- Qianwen Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Zhenxiang Zang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, No. 5, Dewai Ankang Hutong, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
2
|
Jiang M, Yang S, Tan Y, Li X, He L. Sensorimotor network ALFF markers as prognostic indicators of cervical spondylotic myelopathy post-decompression surgery outcomes. J Clin Neurosci 2024; 129:110769. [PMID: 39213814 DOI: 10.1016/j.jocn.2024.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To investigate the prognostic value of amplitude of low-frequency fluctuations (ALFF) within the sensorimotor network (SMN) in patients with cervical spondylotic myelopathy (CSM) following decompression surgery. METHODS Eighty-three presurgical CSM patients (pre-CSM), 60 of the same group followed-up 3 months after decompression surgery (post-CSM) and 83 healthy controls (HC) matched for age, sex and level of education underwent resting-state functional magnetic resonance imaging scans by 3.0 T MR. Then, ALFF values measurements were compared and ALFF alterations were assessed among pre- or postsurgical CSM patients and HC, as well as correlations with clinical indexes by Pearson correlation. RESULTS Compared with HC, the ALFF value of left inferior parietal marginal angular gyrus was decreased and the bilateral medial frontal gyrus was increased within pre-CSM (GRF correction). Compared with HC, the ALFF values of the left precentral gyrus, superior marginal gyrus, inferior parietal marginal angular gyrus, parietal lobule and postcentral gyrus decreased, while the ALFF value of the left auxiliary motor area, right anterior cuneiform lobule and right parietal lobule increased within post-CSM. Compared with pre-CSM patients, post-CSM patients had lower ALFF value in bilateral precuneus and precentral gyrus, but increased ALFF value in left medial superior frontal gyrus (Frontal_Sup_Medial_L). The ALFF value of the bilateral precuneus was positively correlated with the mJOA improvement rate, and the ALFF value of Frontal_Sup_Medial_L was positively correlated with the upper and lower limb scores within post-CSM. CONCLUSION Functional impairment and plasticity of SMN exist in CSM patients before and after surgery. ALFF within the SMN serves as a potential biomarker for predicting recovery outcomes.
Collapse
Affiliation(s)
- Meiying Jiang
- Department of Nuclear Medicine, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, 330006, China
| | - Shucheng Yang
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yongming Tan
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaofen Li
- Department of Radiology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, 330006, China.
| | - Laichang He
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Machado M, Fonseca R, Zanchetta G, Amoroso C, Vasconcelos A, Costa É, Nicoliche E, Gongora M, Orsini M, Vicente R, Teixeira S, Budde H, Cagy M, Velasques B, Ribeiro P. Absolute beta power in exercisers and nonexercisers in preparation for the oddball task. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 39357852 DOI: 10.1055/s-0044-1791518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
BACKGROUND High levels of physical conditioning are associated with improvements in cognitive performance. In this sense, electroencephalographic (ECG) correlates are used to investigate the enhancing role of physical exercise on executive functions. Oscillations in the β frequency range are proposed to be evident during sensorimotor activity. OBJECTIVE To investigate the ECG changes influenced by aerobic and resistance exercises performed in an attention task by analyzing the differences in absolute β power in the prefrontal and frontal regions before, during, and after the oddball paradigm in practitioners and nonpractitioners of physical exercise. METHODS There were 15 physical activity practitioners (aged 27 ± 4.71) and 15 nonpractitioners (age 28 ± 1.50) recruited. A two-way analysis of variance (ANOVA) was implemented to observe the main effect and the interaction between groups and moments (rest 1, pre-stimulus, and rest 2). RESULTS An interaction between group and moment factors was observed for Fp1 (p < 0.001); Fp2 (p = 0.001); F7 (p < 0.001); F8 (p < 0.001); F3 (p < 0.001); Fz (p < 0.001); and F4 (p < 0.001). Electrophysiological findings clarified exercisers' specificity and neural efficiency in each prefrontal and frontal subarea. CONCLUSION Our findings lend support to the current understanding of the cognitive processes underlying physical exercise and provide new evidence on the relationship between exercise and cortical activity.
Collapse
Affiliation(s)
- Marcos Machado
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Renato Fonseca
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Giovanna Zanchetta
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Carlos Amoroso
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Alexandre Vasconcelos
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Élida Costa
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Eduardo Nicoliche
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Mariana Gongora
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Marco Orsini
- Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Niterói RJ, Brazil
| | - Renan Vicente
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Silmar Teixeira
- Universidade Federal do Piauí, Departamento de Fisioterapia, Teresina PI, Brazil
| | - Henning Budde
- Medical School Hamburg, Faculty of Human Sciences, Hamburg, Germany
- Reykjavik University, Department of Sport Science, Reykjavik, Iceland
| | - Mauricio Cagy
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Departamento de Engenharia Biomédica, Rio de Janeiro RJ, Brazil
| | - Bruna Velasques
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Pedro Ribeiro
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| |
Collapse
|
4
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Hssain-Khalladi S, Giron A, Huneau C, Gitton C, Schwartz D, George N, Le Van Quyen M, Marrelec G, Marchand-Pauvert V. Further characterisation of late somatosensory evoked potentials using electroencephalogram and magnetoencephalogram source imaging. Eur J Neurosci 2024; 60:3772-3794. [PMID: 38726801 DOI: 10.1111/ejn.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/27/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024]
Abstract
Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.
Collapse
Affiliation(s)
- Sahar Hssain-Khalladi
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
- Sorbonne Université, Laboratoire d'Excellence SMART, Paris, France
| | - Alain Giron
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Clément Huneau
- Université de Nantes, CNRS, Laboratoire des Sciences du Numérique de Nantes, LS2N, Nantes, France
| | - Christophe Gitton
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Denis Schwartz
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Nathalie George
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Michel Le Van Quyen
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Guillaume Marrelec
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | | |
Collapse
|
6
|
Kim HJ, Bang M, Pae C, Lee SH. Multimodal neural correlates of dispositional resilience among healthy individuals. Sci Rep 2024; 14:9875. [PMID: 38684873 PMCID: PMC11059361 DOI: 10.1038/s41598-024-60619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Resilient individuals are less likely to develop psychiatric disorders despite extreme psychological distress. This study investigated the multimodal structural neural correlates of dispositional resilience among healthy individuals. Participants included 92 healthy individuals. The Korean version of the Connor-Davidson Resilience Scale and other psychological measures were used. Gray matter volumes (GMVs), cortical thickness, local gyrification index (LGI), and white matter (WM) microstructures were analyzed using voxel-based morphometry, FreeSurfer, and tract-based spatial statistics, respectively. Higher resilient individuals showed significantly higher GMVs in the inferior frontal gyrus (IFG), increased LGI in the insula, and lower fractional anisotropy values in the superior longitudinal fasciculus II (SLF II). These resilience's neural correlates were associated with good quality of life in physical functioning or general health and low levels of depression. Therefore, the GMVs in the IFG, LGI in the insula, and WM microstructures in the SLF II can be associated with resilience that contributes to emotional regulation, empathy, and social cognition.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| |
Collapse
|
7
|
Watanabe H, Washino S, Ogoh S, Miyamoto N, Kanehisa H, Kato H, Yoshitake Y. Observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery. Eur J Neurosci 2024; 59:1016-1028. [PMID: 38275099 DOI: 10.1111/ejn.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to examine whether observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery (AOMI). Twelve young males performed motor imagery of motor tasks with different difficulties while observing the actions of an expert performer and an expert performer with a swapped face. Motor tasks included bilateral wrist dorsiflexion (EASY) and unilateral two-ball rotating motions (DIFF). During the AOMI of EASY and DIFF, single-pulse transcranial magnetic stimulation was delivered to the left primary motor cortex, and motor-evoked potentials (MEPs) were obtained from the extensor carpi ulnaris and first dorsal interosseous muscles of the right upper limb, respectively. Visual analogue scale (VAS) assessed the subjective similarity of the expert performer with the swapped face in the EASY and DIFF to the participants themselves. The MEP amplitude in DIFF was larger in the observation of the expert performer with the swapped face than that of the expert performer (P = 0.012); however, the corresponding difference was not observed in EASY (P = 1.000). The relative change in the MEP amplitude from observing the action of the expert performer to that of the expert performer with the swapped face was positively correlated with VAS only in DIFF (r = 0.644, P = 0.024). These results indicate that observing the action of an expert performer with the observer's face enhances corticospinal excitability during AOMI, depending on the task difficulty and subjective similarity between the expert performer being observed and the observer.
Collapse
Affiliation(s)
- Hironori Watanabe
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
- Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Sohei Washino
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Chiba, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Naokazu Miyamoto
- Faculty of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroaki Kanehisa
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
| | - Hirokazu Kato
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Yasuhide Yoshitake
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Chui K, Ng CT, Chang TT. The visuo-sensorimotor substrate of co-speech gesture processing. Neuropsychologia 2023; 190:108697. [PMID: 37827428 DOI: 10.1016/j.neuropsychologia.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Co-speech gestures are integral to human communication and exhibit diverse forms, each serving a distinct communication function. However, existing literature has focused on individual gesture types, leaving a gap in understanding the comparative neural processing of these diverse forms. To address this, our study investigated the neural processing of two types of iconic gestures: those representing attributes or event knowledge of entity concepts, beat gestures enacting rhythmic manual movements without semantic information, and self-adaptors. During functional magnetic resonance imaging, systematic randomization and attentive observation of video stimuli revealed a general neural substrate for co-speech gesture processing primarily in the bilateral middle temporal and inferior parietal cortices, characterizing visuospatial attention, semantic integration of cross-modal information, and multisensory processing of manual and audiovisual inputs. Specific types of gestures and grooming movements elicited distinct neural responses. Greater activity in the right supramarginal and inferior frontal regions was specific to self-adaptors, and is relevant to the spatiomotor and integrative processing of speech and gestures. The semantic and sensorimotor regions were least active for beat gestures. The processing of attribute gestures was most pronounced in the left posterior middle temporal gyrus upon access to knowledge of entity concepts. This fMRI study illuminated the neural underpinnings of gesture-speech integration and highlighted the differential processing pathways for various co-speech gestures.
Collapse
Affiliation(s)
- Kawai Chui
- Department of English, National Chengchi University, Taipei, Taiwan; Research Centre for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Ting-Ting Chang
- Research Centre for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan; Department of Psychology, National Chengchi University, Taipei, Taiwan.
| |
Collapse
|
9
|
Friederici AD. Evolutionary neuroanatomical expansion of Broca's region serving a human-specific function. Trends Neurosci 2023; 46:786-796. [PMID: 37596132 DOI: 10.1016/j.tins.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
The question concerning the evolution of language is directly linked to the debate on whether language and action are dependent or not and to what extent Broca's region serves as a common neural basis. The debate resulted in two opposing views, one arguing for and one against the dependence of language and action mainly based on neuroscientific data. This article presents an evolutionary neuroanatomical framework which may offer a solution to this dispute. It is proposed that in humans, Broca's region houses language and action independently in spatially separated subregions. This became possible due to an evolutionary expansion of Broca's region in the human brain, which was not paralleled by a similar expansion in the chimpanzee's brain, providing additional space needed for the neural representation of language in humans.
Collapse
Affiliation(s)
- Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1A, 04103 Leipzig, Germany.
| |
Collapse
|
10
|
Huang H, Yan J, Lin Y, Lin J, Hu H, Wei L, Zhang X, Zhang Q, Liang S. Brain functional activity of swallowing: A meta-analysis of functional magnetic resonance imaging. J Oral Rehabil 2023; 50:165-175. [PMID: 36437597 DOI: 10.1111/joor.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Swallowing is one of the most important activities in our life and serves the dual roles of nutritional intake and eating enjoyment. OBJECTIVE The study aimed to conduct a meta-analysis to investigate the brain activity of swallowing. METHODS Studies of swallowing using functional magnetic resonance imaging were reviewed in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Science and Technology Periodical Database (VIP) and Wan Fang before 30 November 2021. Two authors analysed the studies for eligibility criteria. The final inclusion of studies was decided by consensus. An activation likelihood estimation (ALE) meta-analysis of these studies was performed with GingerALE, including 16 studies. RESULTS For swallowing, clusters with high activation likelihood were found in the bilateral insula, bilateral pre-central gyrus, bilateral post-central gyrus, left transverse temporal gyrus, right medial front gyrus, bilateral inferior frontal gyrus and bilateral cingulate gyrus. For water swallowing, clusters with high activation likelihood were found in the bilateral inferior frontal gyrus and the left pre-central gyrus. For saliva swallowing, clusters with high activation likelihood were found in the bilateral cingulate gyrus, bilateral pre-central gyrus, left post-central gyrus and left transverse gyrus. CONCLUSION This meta-analysis reflects that swallowing is regulated by both sensory and motor cortex, and saliva swallowing activates more brain areas than water swallowing, which would promote our knowledge of swallowing and provide some direction for clinical and other research.
Collapse
Affiliation(s)
- Haiyue Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yinghong Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaxin Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huimin Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linxuan Wei
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiwen Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
11
|
Visani E, Garofalo G, Rossi Sebastiano D, Duran D, Craighero L, Riggio L, Buccino G. Grasping the semantic of actions: a combined behavioral and MEG study. Front Hum Neurosci 2022; 16:1008995. [PMID: 36583012 PMCID: PMC9792482 DOI: 10.3389/fnhum.2022.1008995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
There is experimental evidence that the brain systems involved in action execution also play a role in action observation and understanding. Recently, it has been suggested that the sensorimotor system is also involved in language processing. Supporting results are slower response times and weaker motor-related MEG Beta band power suppression in semantic decision tasks on single action verbs labels when the stimulus and the motor response involve the same effector. Attenuated power suppression indicates decreased cortical excitability and consequent decreased readiness to act. The embodied approach forwards that the simultaneous involvement of the sensorimotor system in the processing of the linguistic content and in the planning of the response determines this language-motor interference effect. Here, in a combined behavioral and MEG study we investigated to what extent the processing of actions visually presented (i.e., pictures of actions) and verbally described (i.e., verbs in written words) share common neural mechanisms. The findings demonstrated that, whether an action is experienced visually or verbally, its processing engages the sensorimotor system in a comparable way. These results provide further support to the embodied view of semantic processing, suggesting that this process is independent from the modality of presentation of the stimulus, including language.
Collapse
Affiliation(s)
- Elisa Visani
- Bioengineering Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gioacchino Garofalo
- Division of Neuroscience, Universitity “Vita-Salute” San Raffaele, Milan, Italy,IRCCS San Raffaele, Milan, Italy
| | | | - Dunja Duran
- Bioengineering Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laila Craighero
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Lucia Riggio
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Buccino
- Division of Neuroscience, Universitity “Vita-Salute” San Raffaele, Milan, Italy,IRCCS San Raffaele, Milan, Italy,*Correspondence: Giovanni Buccino
| |
Collapse
|
12
|
Hybbinette H, Östberg P, Schalling E, Deboussard C, Plantin J, Borg J, Lindberg PG. Longitudinal changes in functional connectivity in speech motor networks in apraxia of speech after stroke. Front Neurol 2022; 13:1013652. [DOI: 10.3389/fneur.2022.1013652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
ObjectiveThe cerebral substrates of apraxia of speech (AOS) recovery remain unclear. Resting state fMRI post stroke can inform on altered functional connectivity (FC) within cortical language networks. Some initial studies report reduced FC between bilateral premotor cortices in patients with AOS, with lowest FC in patients with the most severe AOS. However, longitudinal FC studies in stroke are lacking. The aims of the present longitudinal study in early post stroke patients with AOS were (i) to compare connectivity strength in AOS patients to that in left hemisphere (LH) lesioned stroke patients without a speech-language impairment, (ii) to investigate the relation between FC and severity of AOS, aphasia and non-verbal oral apraxia (NVOA) and (iii) to investigate longitudinal changes in FC, from the subacute phase to the chronic phase to identify predictors of AOS recovery.MethodsFunctional connectivity measures and comprehensive speech-language assessments were obtained at 4 weeks and 6 months after stroke in nine patients with AOS after a LH stroke and in six LH lesioned stroke patients without speech-language impairment. Functional connectivity was investigated in a network for speech production: inferior frontal gyrus (IFG), anterior insula (aINS), and ventral premotor cortex (vPMC), all bilaterally to investigate signs of adaptive or maladaptive changes in both hemispheres.ResultsInterhemispheric vPMC connectivity was significantly reduced in patients with AOS compared to LH lesioned patients without speech-language impairment. At 6 months, the AOS severity was associated with interhemispheric aINS and vPMC connectivity. Longitudinal changes in FC were found in individuals, whereas no significant longitudinal change in FC was found at the group level. Degree of longitudinal AOS recovery was strongly associated with interhemispheric IFG connectivity strength at 4 weeks.ConclusionEarly interhemispheric IFG connectivity may be a strong predictor of AOS recovery. The results support the importance of interhemispheric vPMC connection in speech motor planning and severity of AOS and suggest that also bilateral aINS connectivity may have an impact on AOS severity. These findings need to be validated in larger cohorts.
Collapse
|
13
|
Kemmerer D. Revisiting the relation between syntax, action, and left BA44. Front Hum Neurosci 2022; 16:923022. [PMID: 36211129 PMCID: PMC9537576 DOI: 10.3389/fnhum.2022.923022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Among the many lines of research that have been exploring how embodiment contributes to cognition, one focuses on how the neural substrates of language may be shared, or at least closely coupled, with those of action. This paper revisits a particular proposal that has received considerable attention-namely, that the forms of hierarchical sequencing that characterize both linguistic syntax and goal-directed action are underpinned partly by common mechanisms in left Brodmann area (BA) 44, a cortical region that is not only classically regarded as part of Broca's area, but is also a core component of the human Mirror Neuron System. First, a recent multi-participant, multi-round debate about this proposal is summarized together with some other relevant findings. This review reveals that while the proposal is supported by a variety of theoretical arguments and empirical results, it still faces several challenges. Next, a narrower application of the proposal is discussed, specifically involving the basic word order of subject (S), object (O), and verb (V) in simple transitive clauses. Most languages are either SOV or SVO, and, building on prior work, it is argued that these strong syntactic tendencies derive from how left BA44 represents the sequential-hierarchical structure of goal-directed actions. Finally, with the aim of clarifying what it might mean for syntax and action to have "common" neural mechanisms in left BA44, two different versions of the main proposal are distinguished. Hypothesis 1 states that the very same neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action, whereas Hypothesis 2 states that anatomically distinct but functionally parallel neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action. Although these two hypotheses make different predictions, at this point neither one has significantly more explanatory power than the other, and further research is needed to elaborate and test them.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IND, United States
- Department of Psychological Sciences, Purdue University, West Lafayette, IND, United States
| |
Collapse
|
14
|
Consolini J, Sorella S, Grecucci A. Evidence for lateralized functional connectivity patterns at rest related to the tendency of externalizing or internalizing anger. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:788-802. [PMID: 35612724 PMCID: PMC9294029 DOI: 10.3758/s13415-022-01012-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Previous electroencephalographic and brain stimulation studies have shown that anger responses may be differently lateralized in the prefrontal cortex, with outward-oriented responses (externalized anger) linked to left prefrontal activity, and inward-oriented responses (internalized anger) linked to right prefrontal activity. However, the specific neural structures involved in this asymmetry, and how they interact to produce individual differences, remain unexplored. Furthermore, it is unclear whether such asymmetry may be explained by general behavioral tendencies, known as Behavioral Activation and Behavioral Inhibition Systems (BIS/BAS). Therefore, we analyzed the tendency of externalizing and internalizing anger, respectively measured by the Anger-Out and Anger-In subscales of the State-Trait Anger Expression Inventory, with the patterns of functional connectivity at rest of 71 participants. A left, prefrontal, resting-state, functional connectivity pattern was found for externalizing anger (Anger-Out), including the left inferior frontal gyrus and the left frontal eye fields. By contrast, a right, prefrontal, resting-state, functional connectivity pattern was found for internalizing anger (Anger-In), including the rostral and lateral prefrontal cortex, the orbitofrontal cortex, the frontal pole, the superior, middle and inferior frontal gyri, and the anterior cingulate. Notably, these patterns were not associated with the BIS/BAS scores. In this study, for the first time, we provide evidence using fMRI functional connectivity for two specific lateralized circuits contributing to individual differences in externalizing and internalizing anger. These results confirm and extend the asymmetry hypothesis for anger and have notable implications in the treatment of anger-related problems.
Collapse
Affiliation(s)
- Jennifer Consolini
- Department of Psychology and Cognitive Science, University of Trento, Corso Bettini, 31, Rovereto, TN, Italy.
| | - Sara Sorella
- Department of Psychology and Cognitive Science, University of Trento, Corso Bettini, 31, Rovereto, TN, Italy
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science, University of Trento, Corso Bettini, 31, Rovereto, TN, Italy
- Centre for Medical Sciences, CISMed, University of Trento, Trento, Italy
| |
Collapse
|
15
|
Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci 2022; 16:893903. [PMID: 35958984 PMCID: PMC9359080 DOI: 10.3389/fnins.2022.893903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Decreased tolerance in response to specific every-day sounds (misophonia) is a serious, debilitating disorder that is gaining rapid recognition within the mental health community. Emerging research findings suggest that misophonia may have a unique neural signature. Specifically, when examining responses to misophonic trigger sounds, differences emerge at a physiological and neural level from potentially overlapping psychopathologies. While these findings are preliminary and in need of replication, they support the hypothesis that misophonia is a unique disorder. In this theoretical paper, we begin by reviewing the candidate networks that may be at play in this complex disorder (e.g., regulatory, sensory, and auditory). We then summarize current neuroimaging findings in misophonia and present areas of overlap and divergence from other mental health disorders that are hypothesized to co-occur with misophonia (e.g., obsessive compulsive disorder). Future studies needed to further our understanding of the neuroscience of misophonia will also be discussed. Next, we introduce the potential of neurostimulation as a tool to treat neural dysfunction in misophonia. We describe how neurostimulation research has led to novel interventions in psychiatric disorders, targeting regions that may also be relevant to misophonia. The paper is concluded by presenting several options for how neurostimulation interventions for misophonia could be crafted.
Collapse
Affiliation(s)
- Andrada D. Neacsiu
- Duke Center for Misophonia and Emotion Regulation, Duke Brain Stimulation Research Center, Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria Szymkiewicz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jeffrey T. Galla
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Brenden Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Yashaswini Kulkarni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Cade W. Spector
- Department of Philosophy, Duke University, Durham, NC, United States
| |
Collapse
|
16
|
Wang Z, Xi Q, Zhang H, Song Y, Cao S. Different Neural Activities for Actions and Language within the Shared Brain Regions: Evidence from Action and Verb Generation. Behav Sci (Basel) 2022; 12:bs12070243. [PMID: 35877314 PMCID: PMC9312291 DOI: 10.3390/bs12070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
The Inferior Frontal Gyrus, Premotor Cortex and Inferior Parietal Lobe were suggested to be involved in action and language processing. However, the patterns of neural activities in the shared neural regions are still unclear. This study designed an fMRI experiment to analyze the neural activity associations between action and verb generation for object nouns. Using noun reading as a control task, we compared the differences and similarities of brain regions activated by action and verb generation. The results showed that the action generation task activated more in the dorsal Premotor Cortex (PMC), parts of the midline of PMC and the left Inferior Parietal Lobe (IPL) than the verb generation task. Subregions in the bilateral Supplementary Motor Area (SMA) and the left Inferior Frontal Gyrus (IFG) were found to be shared by action and verb generation. Then, mean activation level analysis and multi-voxel pattern analysis (MVPA) were performed in the overlapping activation regions of two generation tasks in the shared regions. The bilateral SMA and the left IFG were found to have overlapping activations with action and verb generation. All the shared regions were found to have different activation patterns, and the mean activation levels of the shared regions in the bilateral of SMA were significantly higher in the action generation. Based on the function of these brain regions, it can be inferred that the shared regions in the bilateral SMA and the left IFG process action and language generation in a task-specific and intention-specific manner, respectively.
Collapse
Affiliation(s)
- Zijian Wang
- School of Computer Science and Technology, Donghua University, Shanghai 200051, China
- Correspondence:
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China;
| | - Hong Zhang
- Department of Computer Science and Technology, Taiyuan Normal University, Taiyuan 030000, China;
| | - Yalin Song
- School of Software, Henan University, Kaifeng 475000, China;
| | - Shiqi Cao
- Department of Orthopaedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China;
- Department of Orthopaedics of TCM Clinical Unit, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
17
|
Schellekens W, Bakker C, Ramsey NF, Petridou N. Moving in on human motor cortex. Characterizing the relationship between body parts with non-rigid population response fields. PLoS Comput Biol 2022; 18:e1009955. [PMID: 35377877 PMCID: PMC9009778 DOI: 10.1371/journal.pcbi.1009955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/14/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
For cortical motor activity, the relationships between different body part representations is unknown. Through reciprocal body part relationships, functionality of cortical motor areas with respect to whole body motor control can be characterized. In the current study, we investigate the relationship between body part representations within individual neuronal populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in combination with our newly developed non-rigid population Response Field (pRF) model and graph theory. The non-rigid pRF metrics reveal somatotopic structures in all included motor cortices covering frontal, parietal, medial and insular cortices and that neuronal populations in primary sensorimotor cortex respond to fewer body parts than secondary motor cortices. Reciprocal body part relationships are estimated in terms of uniqueness, clique-formation, and influence. We report unique response profiles for the knee, a clique of body parts surrounding the ring finger, and a central role for the shoulder and wrist. These results reveal associations among body parts from the perspective of the central nervous system, while being in agreement with intuitive notions of body part usage.
Collapse
Affiliation(s)
- Wouter Schellekens
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| | - Carlijn Bakker
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Nick F. Ramsey
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Natalia Petridou
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| |
Collapse
|
18
|
Wang Z, Zhang Z, Sun Y. Different Neural Information Flows Affected by Activity Patterns for Action and Verb Generation. Front Psychol 2022; 13:802756. [PMID: 35401310 PMCID: PMC8987928 DOI: 10.3389/fpsyg.2022.802756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Shared brain regions have been found for processing action and language, including the left inferior frontal gyrus (IFG), the premotor cortex (PMC), and the inferior parietal lobule (IPL). However, in the context of action and language generation that shares the same action semantics, it is unclear whether the activity patterns within the overlapping brain regions would be the same. The changes in effective connectivity affected by these activity patterns are also unclear. In this fMRI study, participants were asked to perform hand action and verb generation tasks toward object pictures. We identified shared and specific brain regions for the two tasks in the left PMC, IFG, and IPL. The mean activation level and multi-voxel pattern analysis revealed that the activity patterns in the shared sub-regions were distinct for the two tasks. The dynamic causal modeling results demonstrated that the information flows for the two tasks were different across the shared sub-regions. These results provided the first neuroimaging evidence that the action and verb generation were task context driven in the shared regions, and the distinct patterns of neural information flow across the PMC-IFG-IPL neural network were affected by the polymodal processing in the shared regions.
Collapse
Affiliation(s)
- Zijian Wang
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Zuo Zhang
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Yaoru Sun
- School of Computer Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Yaoru Sun,
| |
Collapse
|
19
|
Visani E, Sebastiano DR, Duran D, Garofalo G, Magliocco F, Silipo F, Buccino G. The Semantics of Natural Objects and Tools in the Brain: A Combined Behavioral and MEG Study. Brain Sci 2022; 12:brainsci12010097. [PMID: 35053840 PMCID: PMC8774003 DOI: 10.3390/brainsci12010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Current literature supports the notion that the recognition of objects, when visually presented, is sub-served by neural structures different from those responsible for the semantic processing of their nouns. However, embodiment foresees that processing observed objects and their verbal labels should share similar neural mechanisms. In a combined behavioral and MEG study, we compared the modulation of motor responses and cortical rhythms during the processing of graspable natural objects and tools, either verbally or pictorially presented. Our findings demonstrate that conveying meaning to an observed object or processing its noun similarly modulates both motor responses and cortical rhythms; being natural graspable objects and tools differently represented in the brain, they affect in a different manner both behavioral and MEG findings, independent of presentation modality. These results provide experimental evidence that neural substrates responsible for conveying meaning to objects overlap with those where the object is represented, thus supporting an embodied view of semantic processing.
Collapse
Affiliation(s)
- Elisa Visani
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.V.); (D.R.S.); (D.D.)
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.V.); (D.R.S.); (D.D.)
| | - Dunja Duran
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.V.); (D.R.S.); (D.D.)
| | - Gioacchino Garofalo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, University San Raffaele, Via Olgettina 60, 20132 Milan, Italy;
| | - Fabio Magliocco
- Centro Psico-Sociale di Seregno—Azienda Socio-Sanitaria Territoriale di Vimercate, 20871 Vimercate, Italy;
| | - Francesco Silipo
- Dipartimento di Scienze Mediche e Chirurgiche, University “Magna Graecia” of Catanzaro, Viale Salvatore Venuta, 88100 Germaneto, Italy;
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, University San Raffaele, Via Olgettina 60, 20132 Milan, Italy;
- Correspondence:
| |
Collapse
|
20
|
Del Maschio N, Fedeli D, Garofalo G, Buccino G. Evidence for the Concreteness of Abstract Language: A Meta-Analysis of Neuroimaging Studies. Brain Sci 2021; 12:32. [PMID: 35053776 PMCID: PMC8773921 DOI: 10.3390/brainsci12010032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The neural mechanisms subserving the processing of abstract concepts remain largely debated. Even within the embodiment theoretical framework, most authors suggest that abstract concepts are coded in a linguistic propositional format, although they do not completely deny the role of sensorimotor and emotional experiences in coding it. To our knowledge, only one recent proposal puts forward that the processing of concrete and abstract concepts relies on the same mechanisms, with the only difference being in the complexity of the underlying experiences. In this paper, we performed a meta-analysis using the Activation Likelihood Estimates (ALE) method on 33 functional neuroimaging studies that considered activations related to abstract and concrete concepts. The results suggest that (1) concrete and abstract concepts share the recruitment of the temporo-fronto-parietal circuits normally involved in the interactions with the physical world, (2) processing concrete concepts recruits fronto-parietal areas better than abstract concepts, and (3) abstract concepts recruit Broca's region more strongly than concrete ones. Based on anatomical and physiological evidence, Broca's region is not only a linguistic region mainly devoted to speech production, but it is endowed with complex motor representations of different biological effectors. Hence, we propose that the stronger recruitment of this region for abstract concepts is expression of the complex sensorimotor experiences underlying it, rather than evidence of a purely linguistic format of its processing.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milano, Italy; (N.D.M.); (D.F.)
| | - Davide Fedeli
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milano, Italy; (N.D.M.); (D.F.)
| | - Gioacchino Garofalo
- Divisione di Neuroscienze, Università Vita-Salute San Raffaele, 20132 Milano, Italy;
- IRCCS San Raffaele, 20132 Milano, Italy
| | - Giovanni Buccino
- Divisione di Neuroscienze, Università Vita-Salute San Raffaele, 20132 Milano, Italy;
- IRCCS San Raffaele, 20132 Milano, Italy
| |
Collapse
|
21
|
Walia P, Fu Y, Schwaitzberg SD, Intes X, De S, Cavuoto L, Dutta A. Neuroimaging guided tES to facilitate complex laparoscopic surgical tasks - insights from functional near-infrared spectroscopy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7437-7440. [PMID: 34892815 DOI: 10.1109/embc46164.2021.9631005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fundamentals of Laparoscopic Surgery (FLS) is a prerequisite for board certification in general surgery in the USA. In FLS, the suturing task with intracorporeal knot tying is considered the most complex task. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (PFC) has been shown to facilitate FLS surgical skill acquisition where 2mA tDCS for 15min with the anode over F3 (10/10 EEG montage) and cathode over F4 has improved performance score in an open knot-tying task. Since PFC has a functional organization related to the hierarchy of cognitive control, we performed functional near-infrared spectroscopy (fNIRS) to investigate PFC sub-domain activation during a more complex FLS suturing task with intracorporeal knot tying. We performed fNIRS-based analysis using AtlasViewer software on two expert surgeons and four novice medical students. We found an average cortical activation mainly at the left frontopolar PFC across the experts, while the average cortical activation across the novices was primarily at the left pars opercularis of the inferior frontal gyrus and ventral premotor cortex, inferior parietal lobule, and supramarginal gyrus. Here, the average cortical activation across the novices included not only the cognitive control related brain regions but also motor control complexity related brain regions. Therefore, we present a computational pipeline to identify a 4x1 high-definition (HD) tDCS montage of motor complexity related PFC sub-regions using ROAST software.Clinical Relevance-A computational pipeline for fNIRS-guided tES to individualize electrode montage that may facilitate FLS surgical training in our future studies.
Collapse
|
22
|
A hierarchical processing unit for multi-component behavior in the avian brain. iScience 2021; 24:103195. [PMID: 34703993 PMCID: PMC8524150 DOI: 10.1016/j.isci.2021.103195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Multi-component behavior is a form of goal-directed behavior that depends on the ability to execute various responses in a precise temporal order. Even though this function is vital for any species, little is known about how non-mammalian species accomplish such behavior and what the underlying neural mechanisms are. We show that humans and a non-mammalian species (pigeons) perform equally well in multi-component behavior and provide a validated experimental approach useful for cross-species comparisons. Applying molecular imaging methods, we identified brain regions most important for the examined behavioral dynamics in pigeons. Especially activity in the nidopallium intermedium medialis pars laterale (NIML) was specific to multi-component behavior since only activity in NIML was predictive for behavioral efficiency. The data suggest that NIML is important for hierarchical processing during goal-directed behavior and shares functional characteristics with the human inferior frontal gyrus in multi-component behavior. Pigeons and humans perform equally well in the STOP-CHANGE paradigm We identified relevant brain regions for the examined behavioral dynamics in pigeons ZENK expression in NIML was predictive for behavioral efficiency This study provides a validated experimental approach for cross-species comparisons
Collapse
|
23
|
Shenker JJ, Steele CJ, Chakravarty MM, Zatorre RJ, Penhune VB. Early musical training shapes cortico-cerebellar structural covariation. Brain Struct Funct 2021; 227:407-419. [PMID: 34657166 DOI: 10.1007/s00429-021-02409-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/05/2021] [Indexed: 01/18/2023]
Abstract
Adult abilities in complex cognitive domains such as music appear to depend critically on the age at which training or experience begins, and relevant experience has greater long-term effects during periods of peak maturational change. Previous work has shown that early trained musicians (ET; < age 7) out-perform later-trained musicians (LT; > age 7) on tests of musical skill, and also have larger volumes of the ventral premotor cortex (vPMC) and smaller volumes of the cerebellum. These cortico-cerebellar networks mature and function in relation to one another, suggesting that early training may promote coordinated developmental plasticity. To test this hypothesis, we examined structural covariation between cerebellar volume and cortical thickness (CT) in sensorimotor regions in ET and LT musicians and non-musicians (NMs). Results show that ETs have smaller volumes in cerebellar lobules connected to sensorimotor cortices, while both musician groups had greater cortical thickness in right pre-supplementary motor area (SMA) and right PMC compared to NMs. Importantly, early musical training had a specific effect on structural covariance between the cerebellum and cortex: NMs showed negative correlations between left lobule VI and right pre-SMA and PMC, but this relationship was reduced in ET musicians. ETs instead showed a significant negative correlation between vermal IV and right pre-SMA and dPMC. Together, these results suggest that early musical training has differential impacts on the maturation of cortico-cerebellar networks important for optimizing sensorimotor performance. This conclusion is consistent with the hypothesis that connected brain regions interact during development to reciprocally influence brain and behavioral maturation.
Collapse
Affiliation(s)
- Joseph J Shenker
- Department of Psychology, Concordia University, Montreal, QC, Canada. .,BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada.
| | - Christopher J Steele
- Department of Psychology, Concordia University, Montreal, QC, Canada.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Robert J Zatorre
- BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada.,Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Virginia B Penhune
- Department of Psychology, Concordia University, Montreal, QC, Canada.,BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada
| |
Collapse
|
24
|
Walia P, Kumar KN, Dutta A. Neuroimaging Guided Transcranial Electrical Stimulation in Enhancing Surgical Skill Acquisition. Comment on Hung et al. The Efficacy of Transcranial Direct Current Stimulation in Enhancing Surgical Skill Acquisition: A Preliminary Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2021, 11, 707. Brain Sci 2021; 11:1078. [PMID: 34439698 PMCID: PMC8395024 DOI: 10.3390/brainsci11081078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Surgical skill acquisition may be facilitated with a safe application of transcranial direct current stimulation (tDCS). A preliminary meta-analysis of randomized control trials showed that tDCS was associated with significantly better improvement in surgical performance than the sham control; however, meta-analysis does not address the mechanistic understanding. It is known from skill learning studies that the hierarchy of cognitive control shows a rostrocaudal axis in the frontal lobe where a shift from posterior to anterior is postulated to mediate progressively abstract, higher-order control. Therefore, optimizing the transcranial electrical stimulation to target surgical task-related brain activation at different stages of motor learning may provide the causal link to the learning behavior. This comment paper presents the computational approach for neuroimaging guided tDCS based on open-source software pipelines and an open-data of functional near-infrared spectroscopy (fNIRS) for complex motor tasks. We performed an fNIRS-based cortical activation analysis using AtlasViewer software that was used as the target for tDCS of the motor complexity-related brain regions using ROAST software. For future studies on surgical skill training, it is postulated that the higher complexity laparoscopic suturing with intracorporeal knot tying task may result in more robust activation of the motor complexity-related brain areas when compared to the lower complexity laparoscopic tasks.
Collapse
Affiliation(s)
- Pushpinder Walia
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Kavya Narendra Kumar
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| |
Collapse
|
25
|
Giachero A, Quadrini A, Pisano F, Calati M, Rugiero C, Ferrero L, Pia L, Marangolo P. Procedural Learning through Action Observation: Preliminary Evidence from Virtual Gardening Activity in Intellectual Disability. Brain Sci 2021; 11:766. [PMID: 34207553 PMCID: PMC8226894 DOI: 10.3390/brainsci11060766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Intellectual disability (ID) compromises intellectual and adaptive functioning. People with an ID show difficulty with procedural skills, with loss of autonomy in daily life. From an embodiment perspective, observation of action promotes motor skill learning. Among promising technologies, virtual reality (VR) offers the possibility of engaging the sensorimotor system, thus, improving cognitive functions and adaptive capacities. Indeed, VR can be used as sensorimotor feedback, which enhances procedural learning. In the present study, fourteen subjects with an ID underwent progressive steps training combined with VR aimed at learning gardening procedures. All participants were trained twice a week for fourteen weeks (total 28 sessions). Participants were first recorded while sowing zucchini, then they were asked to observe a virtual video which showed the correct procedure. Next, they were presented with their previous recordings, and they were asked to pay attention and to comment on the errors made. At the end of the treatment, the results showed that all participants were able to correctly garden in a real environment. Interestingly, action observation facilitated, not only procedural skills, but also specific cognitive abilities. This evidence emphasizes, for the first time, that action observation combined with VR improves procedural learning in ID.
Collapse
Affiliation(s)
- Alberto Giachero
- Aphasia Experimental Laboratory-Fondazione Carlo Molo Onlus, 10121 Turin, Italy; (A.G.); (M.C.); (C.R.)
- Dipartimento di Psicologia, University of Turin, 10124 Turin, Italy;
| | | | - Francesca Pisano
- Dipartimento di Studi Umanistici, University Federico II, 80133 Naples, Italy;
| | - Melanie Calati
- Aphasia Experimental Laboratory-Fondazione Carlo Molo Onlus, 10121 Turin, Italy; (A.G.); (M.C.); (C.R.)
| | - Cristian Rugiero
- Aphasia Experimental Laboratory-Fondazione Carlo Molo Onlus, 10121 Turin, Italy; (A.G.); (M.C.); (C.R.)
| | - Laura Ferrero
- Fondazione Agape dello Spirito Santo Onlus-Villa Lauro, 10132 Turin, Italy;
| | - Lorenzo Pia
- Dipartimento di Psicologia, University of Turin, 10124 Turin, Italy;
| | - Paola Marangolo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Dipartimento di Studi Umanistici, University Federico II, 80133 Naples, Italy;
| |
Collapse
|
26
|
Wang C, Oughourlian T, Tishler TA, Anwar F, Raymond C, Pham AD, Perschon A, Villablanca JP, Ventura J, Subotnik KL, Nuechterlein KH, Ellingson BM. Cortical morphometric correlational networks associated with cognitive deficits in first episode schizophrenia. Schizophr Res 2021; 231:179-188. [PMID: 33872855 DOI: 10.1016/j.schres.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) is a chronic cognitive and behavioral disorder associated with abnormal cortical activity during information processing. Several brain structures associated with the seven performance domains evaluated using the MATRICS (Measurement and Treatment Research to Improve Cognition in Schizophrenia) Consensus Cognitive Battery (MCCB) have shown cortical volume loss in first episode schizophrenia (FES) patients. However, the relationship between morphological organization and MCCB performance remains unclear. Therefore, in the current observational study, high-resolution structural MRI scans were collected from 50 FES patients, and the morphometric correlation network (MCN) using cortical volume was established to characterize the cortical pattern associated with poorer MCCB performance. We also investigated topological properties, such as the modularity, the degree and the betweenness centrality. Our findings show structural volume was directly and strongly associated with the cognitive deficits of FES patients in the precuneus, anterior cingulate, and fusiform gyrus, as well as the prefrontal, parietal, and sensorimotor cortices. The medial orbitofrontal, fusiform, and superior frontal gyri were not only identified as the predominant nodes with high degree and betweenness centrality in the MCN, but they were also found to be critical in performance in several of the MCCB domains. Together, these results suggest a widespread cortical network is altered in FES patients and that performance on the MCCB domains is associated with the core pathophysiology of SCZ.
Collapse
Affiliation(s)
- Chencai Wang
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Talia Oughourlian
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Todd A Tishler
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Faizan Anwar
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Catalina Raymond
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Alex D Pham
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Abby Perschon
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - J Pablo Villablanca
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Joseph Ventura
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Kenneth L Subotnik
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Keith H Nuechterlein
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Benjamin M Ellingson
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Neuroscience Interdisciplinary Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America.
| |
Collapse
|
27
|
Ogino Y, Kawamichi H, Takizawa D, Sugawara SK, Hamano YH, Fukunaga M, Toyoda K, Watanabe Y, Abe O, Sadato N, Saito S, Furui S. Enhanced structural connectivity within the motor loop in professional boxers prior to a match. Sci Rep 2021; 11:9015. [PMID: 33907206 PMCID: PMC8079439 DOI: 10.1038/s41598-021-88368-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/12/2021] [Indexed: 02/01/2023] Open
Abstract
Professional boxers train to reduce their body mass before a match to refine their body movements. To test the hypothesis that the well-defined movements of boxers are represented within the motor loop (cortico-striatal circuit), we first elucidated the brain structure and functional connectivity specific to boxers and then investigated plasticity in relation to boxing matches. We recruited 21 male boxers 1 month before a match (Time1) and compared them to 22 age-, sex-, and body mass index (BMI)-matched controls. Boxers were longitudinally followed up within 1 week prior to the match (Time2) and 1 month after the match (Time3). The BMIs of boxers significantly decreased at Time2 compared with those at Time1 and Time3. Compared to controls, boxers presented significantly higher gray matter volume in the left putamen, a critical region representing motor skill training. Boxers presented significantly higher functional connectivity than controls between the left primary motor cortex (M1) and left putamen, which is an essential region for establishing well-defined movements. Boxers also showed significantly higher structural connectivity in the same region within the motor loop from Time1 to Time2 than during other periods, which may represent the refined movements of their body induced by training for the match.
Collapse
Affiliation(s)
- Yuichi Ogino
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-15 Maebashi, Gunma, 371-8510, Japan.
| | - Hiroaki Kawamichi
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-15 Maebashi, Gunma, 371-8510, Japan
| | - Daisuke Takizawa
- Department of Anesthesiology, Japanese Red Cross Medical Center, 1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan
| | - Sho K Sugawara
- Neural Prosthesis Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Keiko Toyoda
- Department of Radiology, The Jikei University School of Medicine, 3-28-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-864, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-15 Maebashi, Gunma, 371-8510, Japan
| | - Shigeru Furui
- Department of Radiology, Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
28
|
Giacomo JD, Gongora M, Silva F, Nicoliche E, Bittencourt J, Marinho V, Gupta D, Orsini M, Teixeira S, Cagy M, Bastos V, Budde H, Basile LF, Velasques B, Ribeiro P. Repetitive transcranial magnetic stimulation changes cognitive/motor tasks performance: An absolute alpha and beta power study. Neurosci Lett 2021; 753:135866. [PMID: 33812932 DOI: 10.1016/j.neulet.2021.135866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
The voluntary movement demands integration between cognitive and motor functions. During the initial stages of motor learning until mastery of a new motor task, and during a demanding task that is not automatic, cognitive and motor functions can be perceived as independent from each other. Areas used for actually performing motor tasks are essentially the same used by Motor Imagery (MI). The main objective of this study was to investigate inhibition effects on cognitive functions of motor skills induced by low-frequency (1 Hz) Repetitive Transcranial Magnetic Stimulation (rTMS) at the sensory-motor integration site (Cz). In particular, the goal was to examine absolute alpha and beta power changes on frontal regions during Execution, Action observation, and Motor Imagery of finger movement tasks. Eleven healthy, right-handed volunteers of both sexes (5 males, 6 females; mean age 28 ± 5 years), with no history of psychiatric or neurological disorders, participated in the experiment. The execution task consisted of the subject flexing and extending the index finger. The action observation task involved watching a video of the same movement. The motor imagery task was imagining the flexion and extension of the index finger movement. After performing the tasks randomly, subjects were submitted to 15 min of low-frequency rTMS and performed the tasks again. All tasks were executed simultaneously with EEG signals recording. Our results demonstrated a significant interaction between rTMS and the three tasks in almost all analyzed regions showing that rTMS can affect the frontal region regarding Execution, Action observation, and Motor Imagery tasks.
Collapse
Affiliation(s)
- Jessé Di Giacomo
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil.
| | - Mariana Gongora
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Farmy Silva
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Eduardo Nicoliche
- Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | | | - Victor Marinho
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Piauí, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Marco Orsini
- Antônio Pedro University Hospital, Fluminense Federal University, UFF, Niterói, Brazil; Centro Universitario Severino Sombra, Faculty of Medicine, Vassouras, Brazil
| | - Silmar Teixeira
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Piauí, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Piauí, Brazil
| | - Henning Budde
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany; Sport Science, Reykjavik University, Reykjavik, Iceland
| | - Luis F Basile
- Laboratory of Psychophysiology, Faculdade da Saúde, UMESP, São Paulo, Brazil; Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Bruna Velasques
- Bioscience Department, School of Physical Education of the Federal University of Rio de Janeiro (EEFD/UFRJ), Rio de Janeiro, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil; Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Piauí, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil; Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Sheets JR, Briggs RG, Dadario NB, Young IM, Bai MY, Poologaindran A, Baker CM, Conner AK, Sughrue ME. A Cortical Parcellation Based Analysis of Ventral Premotor Area Connectivity. Neurol Res 2021; 43:595-607. [PMID: 33749536 DOI: 10.1080/01616412.2021.1902702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction. The ventral premotor area (VPM) plays a crucial role in executing various aspects of motor control. These include hand reaching, joint coordination, and direction of movement in space. While many studies discuss the VPM and its relationship to the rest of the motor network, there is minimal literature examining the connectivity of the VPM outside of the motor network. Using region-based fMRI studies, we built a neuroanatomical model to account for these extra-motor connections.Methods. Thirty region-based fMRI studies were used to generate an activation likelihood estimation (ALE) using BrainMap software. Cortical parcellations overlapping the ALE were used to construct a preliminary model of the VPM connections outside the motor network. Diffusion spectrum imaging (DSI)-based fiber tractography was performed to determine the connectivity between cortical parcellations in both hemispheres, and a laterality index (LI) was calculated with resultant tract volumes. The resulting connections were described using the cortical parcellation scheme developed by the Human Connectome Project (HCP).Results. Four cortical regions were found to comprise the VPM. These four regions included 6v, 4, 3b, and 3a. Across mapped brains, these areas showed consistent interconnections between each other. Additionally, ipsilateral connections to the primary motor cortex, supplementary motor area, and dorsal premotor cortex were demonstrated. Inter-hemispheric asymmetries were identified, especially with areas 1, 55b, and MI connecting to the ipsilateral VPM regions.Conclusion. We describe a preliminary cortical model for the underlying connectivity of the ventral premotor area. Future studies should further characterize the neuroanatomic underpinnings of this network for neurosurgical applications.
Collapse
Affiliation(s)
- John R Sheets
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Michael Y Bai
- Department of Neurosurgery, Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | | | - Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Department of Neurosurgery, Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
30
|
Ryan D, Fullen B, Rio E, Segurado R, Stokes D, O’Sullivan C. Effect of Action Observation Therapy in the Rehabilitation of Neurologic and Musculoskeletal Conditions: A Systematic Review. Arch Rehabil Res Clin Transl 2021; 3:100106. [PMID: 33778479 PMCID: PMC7984987 DOI: 10.1016/j.arrct.2021.100106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To investigate the effect of action observation therapy (AOT) in the rehabilitation of neurologic and musculoskeletal conditions. DATA SOURCES Searches were completed until July 2020 from the electronic databases Allied and Complementary Medicine Database (via OVID SP), Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, EMBASE, MEDLINE, and the Physiotherapy Evidence Database. STUDY SELECTION Randomized controlled trials comparing AOT with standard care were assessed. Musculoskeletal (amputee, orthopedic) and neurologic (dementia, cerebral palsy, multiple sclerosis, Parkinson disease, stroke) conditions were included. There were no age limitations. Articles had to be available in English. DATA EXTRACTION Two reviewers independently screened titles, abstracts and full extracts of studies for eligibility and assessed the risk of bias of each study using the Cochrane Risk of Bias Tool. Data extraction included participant characteristics and intervention duration, frequency, and type. RESULTS The effect of AOT in different outcome measures (OMs) was referenced in terms of body structures and functions, activities and participation, and environmental factors as outlined by the International Classification of Functioning, Disability, and Health (ICF). Of the 3448 articles identified, 36 articles with 1405 patients met the inclusion criteria. Seven of the 11 meta-analyses revealed a significant effect of intervention, with results presented using the mean difference and 95% CI. A best evidence synthesis was used across all OMs. Strong evidence supports the use of AOT in the rehabilitation of individuals with stroke and Parkinson disease; moderate evidence supports AOT in the rehabilitation of populations with orthopedic and multiple sclerosis diagnoses. However, moderate evidence is provided for and against the effect of AOT in persons with Parkinson disease and cerebral palsy. CONCLUSIONS This review suggests that AOT is advantageous in the rehabilitation of certain conditions in improving ICF domains. No conclusions can be drawn regarding treatment parameters because of the heterogeneity of the intervention. AOT has been considerably less explored in musculoskeletal conditions.
Collapse
Key Words
- 10MWT, 10-m walk test
- ADL, activities of daily living
- AHA, Assisting Hand Assessment
- AOT, action observation therapy
- BBS, Berg Balance Scale
- BBT, Box and Block Test
- FOG, freezing of gait
- ICF, International Classification of Functioning Disability, and Health
- MAS, Modified Ashworth Scale
- MCID, minimum clinically important difference
- MD, mean difference
- MDC, minimal detectable change
- MI, motor imagery
- MNS, mirror neuron system
- MUUL, Melbourne Assessment of Unilateral Upper Limb Function
- Neuronal plasticity
- OM, outcome measures
- PDQ-39, 39-item Parkinson Disease Questionnaire
- ROM, range of motion
- Rehabilitation
- RoB, risk of bias
- SF-36, Short Form-36 Health Survey
- Systematic review
- TUG, Timed Up and Go
- UPDRS, Unified Parkinson Disease Rating Scale
- VAS, Visual Analog Scale
- WOMAC, Western Ontario McMaster Universities Osteoarthritis Index
Collapse
Affiliation(s)
- Deirdre Ryan
- UCD School of Public Health, Physiotherapy, and Sports Science, Dublin, Ireland
| | - Brona Fullen
- UCD School of Public Health, Physiotherapy, and Sports Science, Dublin, Ireland
| | - Ebonie Rio
- School of Allied Health, La Trobe University Melbourne, Melbourne, Victoria, Australia
| | - Ricardo Segurado
- UCD School of Public Health, Physiotherapy, and Sports Science, Dublin, Ireland
| | | | - Cliona O’Sullivan
- UCD School of Public Health, Physiotherapy, and Sports Science, Dublin, Ireland
| |
Collapse
|
31
|
Lee D, Almeida J. Within-category representational stability through the lens of manipulable objects. Cortex 2021; 137:282-291. [PMID: 33662692 DOI: 10.1016/j.cortex.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022]
Abstract
Our ability to recognize an object amongst many exemplars is one of our most important features, and one that putatively distinguishes humans from non-human animals and potentially from (current) computational and artificial intelligence models. We can recognize objects consistently regardless of when we see them suggesting that we have stable representations across time and different contexts. Importantly, little is known about how humans can replicate within-category object representations across time. Here, we investigate neural stability of within-category object representations by computing the similarity between representational geometries of activity patterns for 80 images of tools obtained on different functional magnetic resonance imaging (fMRI) scanning days. We show that within-category representational stability is observable in regions that span lateral and ventral temporal cortex, inferior and superior parietal cortex, and premotor cortex - regions typically associated with tool processing and visuospatial processing. We then focus on what kinds of representations best explain the representational geometries within these regions. We test the similarity of these geometries with those coming from the different layers of a convolutional neural network, and those coming from perceived and veridical visual similarity models. We find that regions supporting within-category representational stability show stronger relationship with higher-level visual/semantic features, suggesting that neural replicability is derived from perceived and higher-level visual information. Within category representational stability may thus originate from long-range cross talk between category-specific regions (and in this case strongly within ventral and lateral temporal cortex) over more abstract, rather than veridical/lower-level, visual (sensorial) representations, and perhaps in the service of object-centered representations.
Collapse
Affiliation(s)
- Dongha Lee
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| |
Collapse
|
32
|
Vallinoja J, Jaatela J, Nurmi T, Piitulainen H. Gating Patterns to Proprioceptive Stimulation in Various Cortical Areas: An MEG Study in Children and Adults using Spatial ICA. Cereb Cortex 2021; 31:1523-1537. [PMID: 33140082 PMCID: PMC7869097 DOI: 10.1093/cercor/bhaa306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Proprioceptive paired-stimulus paradigm was used for 30 children (10-17 years) and 21 adult (25-45 years) volunteers in magnetoencephalography (MEG). Their right index finger was moved twice with 500-ms interval every 4 ± 25 s (repeated 100 times) using a pneumatic-movement actuator. Spatial-independent component analysis (ICA) was applied to identify stimulus-related components from MEG cortical responses. Clustering was used to identify spatiotemporally consistent components across subjects. We found a consistent primary response in the primary somatosensory (SI) cortex with similar gating ratios of 0.72 and 0.69 for the children and adults, respectively. Secondary responses with similar transient gating behavior were centered bilaterally in proximity of the lateral sulcus. Delayed and prolonged responses with strong gating were found in the frontal and parietal cortices possibly corresponding to larger processing network of somatosensory afference. No significant correlation between age and gating ratio was found. We confirmed that cortical gating to proprioceptive stimuli is comparable to other somatosensory and auditory domains, and between children and adults. Gating occurred broadly beyond SI cortex. Spatial ICA revealed several consistent response patterns in various cortical regions which would have been challenging to detect with more commonly applied equivalent current dipole or distributed source estimates.
Collapse
Affiliation(s)
- Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 Espoo, Finland
| | - Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 Espoo, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Aalto NeuroImaging, MEG Core, Aalto University School of Science, 00076 Espoo, Finland
| |
Collapse
|
33
|
Increased links between language and motor areas: A proof-of-concept study on resting-state functional connectivity following Personalized Observation, Execution and Mental imagery therapy in chronic aphasia. Brain Cogn 2021; 148:105659. [PMID: 33485051 DOI: 10.1016/j.bandc.2020.105659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022]
Abstract
A tight coupling of language and motor processes has been established, which is consistent with embodied cognition theory. However, very few therapies have been designed to exploit the synergy between motor and language processes to help rehabilitate people with aphasia (PWA). Moreover, the underlying mechanisms supporting the efficacy of such approaches remain unknown. Previous work in our laboratory has demonstrated that personalized observation, execution, and mental imagery therapy (POEM)-a new therapy using three sensorimotor strategies to trigger action verb naming-leads to significant improvements in verb retrieval in PWA. Moreover, these improvements were supported by significant activations in language and sensorimotor processing areas, which further reinforce the role of both processes in language recovery (Durand et al., 2018). The present study investigates resting state functional connectivity (rsFC) changes following POEM in a pre-/post-POEM therapy design. A whole brain network functional connectivity approach was used to assess and describe changes in rsFC in a group of four PWA, who were matched and compared with four healthy controls (HC). Results showed increased rsFC in PWA within and between visuo-motor and language areas (right cuneal cortex-left supracalcarin (SCC) cortex/right precentral gyrus (PreCG)-left lingual gyrus (LG)) and between areas involved in action processing (right anterior parahippocampal gyrus (aPaHC)-left superior parietal lobule (SPL). In comparison to HC, the PWA group showed increased rsFC between the right inferior frontal gyrus (IFG) and left thalamus, which are areas involved in lexico-semantic processing. This proof-of-concept study suggests that the sensorimotor and language strategies used in POEM may induce modifications in large-scale networks, probably derived from the integration of visual and sensorimotor systems to sustain action naming, which is consistent with the embodied cognition theory.
Collapse
|
34
|
Rabellino D, Frewen PA, McKinnon MC, Lanius RA. Peripersonal Space and Bodily Self-Consciousness: Implications for Psychological Trauma-Related Disorders. Front Neurosci 2020; 14:586605. [PMID: 33362457 PMCID: PMC7758430 DOI: 10.3389/fnins.2020.586605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Peripersonal space (PPS) is defined as the space surrounding the body where we can reach or be reached by external entities, including objects or other individuals. PPS is an essential component of bodily self-consciousness that allows us to perform actions in the world (e.g., grasping and manipulating objects) and protect our body while interacting with the surrounding environment. Multisensory processing plays a critical role in PPS representation, facilitating not only to situate ourselves in space but also assisting in the localization of external entities at a close distance from our bodies. Such abilities appear especially crucial when an external entity (a sound, an object, or a person) is approaching us, thereby allowing the assessment of the salience of a potential incoming threat. Accordingly, PPS represents a key aspect of social cognitive processes operational when we interact with other people (for example, in a dynamic dyad). The underpinnings of PPS have been investigated largely in human models and in animals and include the operation of dedicated multimodal neurons (neurons that respond specifically to co-occurring stimuli from different perceptive modalities, e.g., auditory and tactile stimuli) within brain regions involved in sensorimotor processing (ventral intraparietal sulcus, ventral premotor cortex), interoception (insula), and visual recognition (lateral occipital cortex). Although the defensive role of the PPS has been observed in psychopathology (e.g., in phobias) the relation between PPS and altered states of bodily consciousness remains largely unexplored. Specifically, PPS representation in trauma-related disorders, where altered states of consciousness can involve dissociation from the body and its surroundings, have not been investigated. Accordingly, we review here: (1) the behavioral and neurobiological literature surrounding trauma-related disorders and its relevance to PPS; and (2) outline future research directions aimed at examining altered states of bodily self-consciousness in trauma related-disorders.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Paul A. Frewen
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph’s Healthcare, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
| | - Ruth A. Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
35
|
Kostorz K, Flanagin VL, Glasauer S. Synchronization between instructor and observer when learning a complex bimanual skill. Neuroimage 2020; 216:116659. [DOI: 10.1016/j.neuroimage.2020.116659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
|
36
|
Macedonia M, Lehner AE, Repetto C. Positive effects of grasping virtual objects on memory for novel words in a second language. Sci Rep 2020; 10:10760. [PMID: 32612096 PMCID: PMC7329851 DOI: 10.1038/s41598-020-67539-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/09/2020] [Indexed: 11/19/2022] Open
Abstract
Theories of embodied cognition describe language processing and representation as inherently connected to the sensorimotor experiences collected during acquisition. While children grasp their world, collect bodily experiences and name them, in second language (L2), students learn bilingual word lists. Experimental evidence shows that embodiment by mean of gestures enhances memory for words in L2. However, no study has been conducted on the effects of grasping in L2. In a virtual scenario, we trained 46 participants on 18 two- and three-syllabic words of Vimmi, an artificial corpus created for experimental purposes. The words were assigned concrete meanings of graspable objects. Six words were learned audio-visually, by reading the words projected on the wall and by hearing them. Another 6 words were trained by observation of virtual objects. Another 6 words were learned by observation and additional grasping the virtual objects. Thereafter participants were subministered free, cued recall, and reaction time tests in order to assess the word retention and the word recognition. After 30 days, the recall tests were repeated remotely to assess the memory in the long term. The results show that grasping of virtual objects can lead to superior memory performance and to lower reaction times during recognition.
Collapse
Affiliation(s)
- M Macedonia
- Department of Information Engineering, Johannes Kepler University, Linz, Austria.
- Linz Center of Mechatronics GmbH, Johannes Kepler University, Linz, Austria.
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - A E Lehner
- Department of Linguistics, University of Vienna, Vienna, Austria
| | - C Repetto
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
37
|
Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex. J Neurosci 2020; 40:3385-3407. [PMID: 32241837 DOI: 10.1523/jneurosci.2226-19.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.
Collapse
|
38
|
Riccardi N, Yourganov G, Rorden C, Fridriksson J, Desai R. Degradation of Praxis Brain Networks and Impaired Comprehension of Manipulable Nouns in Stroke. J Cogn Neurosci 2020; 32:467-483. [PMID: 31682566 PMCID: PMC10274171 DOI: 10.1162/jocn_a_01495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Distributed brain systems contribute to representation of semantic knowledge. Whether sensory and motor systems of the brain are causally involved in representing conceptual knowledge is an especially controversial question. Here, we tested 57 chronic left-hemisphere stroke patients using a semantic similarity judgment task consisting of manipulable and nonmanipulable nouns. Three complementary methods were used to assess the neuroanatomical correlates of semantic processing: voxel-based lesion-symptom mapping, resting-state functional connectivity, and gray matter fractional anisotropy. The three measures provided converging evidence that injury to the brain networks required for action observation, execution, planning, and visuomotor coordination are associated with specific deficits in manipulable noun comprehension relative to nonmanipulable items. Damage or disrupted connectivity of areas such as the middle posterior temporal gyrus, anterior inferior parietal lobe, and premotor cortex was related specifically to the impairment of manipulable noun comprehension. These results suggest that praxis brain networks contribute especially to the comprehension of manipulable object nouns.
Collapse
|
39
|
Uchino H, Kazumata K, Ito M, Nakayama N, Kuroda S, Houkin K. Crossed cerebellar diaschisis as an indicator of severe cerebral hyperperfusion after direct bypass for moyamoya disease. Neurosurg Rev 2020; 44:599-605. [PMID: 32076897 DOI: 10.1007/s10143-020-01265-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Cerebral hyperperfusion (HP) complicates the postoperative course of patients with moyamoya disease (MMD) after direct revascularization surgery. Crossed cerebellar diaschisis (CCD) has been considered to be rarely associated with HP after revascularization surgery. This study aimed to describe the clinical features and factors associated with CCD secondary to cerebral HP after revascularization surgery for MMD. We analyzed 150 consecutive hemispheres including 101 in adults and 49 in pediatric patients who underwent combined direct and indirect bypass for MMD. Using single-photon emission computed tomography (SPECT), serial cerebral blood flow (CBF) was measured immediately after the surgery and on postoperative days 2 and 7. Pre- and postoperative voxel-based analysis of SPECT findings was performed to compare the changes in regional CBF. Multivariate logistic regression analysis was performed to test the effect of multiple variables on CCD. Asymptomatic and symptomatic HP was observed in 41.3% (62/150) and 16.7% (25/150) of the operated hemispheres, respectively. CCD was observed in 18.4% (16/87) of these hemispheres with radiological HP. Multivariate analysis revealed that the occurrence of CCD was significantly associated with symptomatic HP (p = 0.0015). Voxel-based analysis showed that the CBF increase in the operated frontal cortex, and the CBF reduction in the contralateral cerebellar hemisphere on day 7 were significantly larger in symptomatic HP than in asymptomatic HP (median 11.3% vs 7.5%; - 6.0% vs - 1.7%, respectively). CCD secondary to postoperative HP is more common than anticipated in MMD. CCD could potentially be used as an indicator of severe postoperative HP in patients with MMD.
Collapse
Affiliation(s)
- Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, University of Toyama, Toyama, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Cognitive control of orofacial motor and vocal responses in the ventrolateral and dorsomedial human frontal cortex. Proc Natl Acad Sci U S A 2020; 117:4994-5005. [PMID: 32060124 PMCID: PMC7060705 DOI: 10.1073/pnas.1916459117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the primate brain, a set of areas in the ventrolateral frontal (VLF) cortex and the dorsomedial frontal (DMF) cortex appear to control vocalizations. The basic role of this network in the human brain and how it may have evolved to enable complex speech remain unknown. In the present functional neuroimaging study of the human brain, a multidomain protocol was utilized to investigate the roles of the various areas that comprise the VLF-DMF network in learning rule-based cognitive selections between different types of motor actions: manual, orofacial, nonspeech vocal, and speech vocal actions. Ventrolateral area 44 (a key component of the Broca's language production region in the human brain) is involved in the cognitive selection of orofacial, as well as, speech and nonspeech vocal responses; and the midcingulate cortex is involved in the analysis of speech and nonspeech vocal feedback driving adaptation of these responses. By contrast, the cognitive selection of speech vocal information requires this former network and the additional recruitment of area 45 and the presupplementary motor area. We propose that the basic function expressed by the VLF-DMF network is to exert cognitive control of orofacial and vocal acts and, in the language dominant hemisphere of the human brain, has been adapted to serve higher speech function. These results pave the way to understand the potential changes that could have occurred in this network across primate evolution to enable speech production.
Collapse
|
41
|
Thirioux B, Harika-Germaneau G, Langbour N, Jaafari N. The Relation Between Empathy and Insight in Psychiatric Disorders: Phenomenological, Etiological, and Neuro-Functional Mechanisms. Front Psychiatry 2020; 10:966. [PMID: 32116810 PMCID: PMC7020772 DOI: 10.3389/fpsyt.2019.00966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/06/2019] [Indexed: 01/12/2023] Open
Abstract
Lack of insight, i.e., unawareness of one's mental illness, is frequently encountered in psychiatric conditions. Insight is the capacity to recognize (psychical insight) and accept one's mental illness (emotional insight). Insight growth necessitates developing an objective perspective on one's subjective pathological experiences. Therefore, insight has been posited to require undamaged self-reflexion and cognitive perspective-taking capacities. These enable patients to look objectively at themselves from the imagined perspective of someone else. Preserved theory-of-mind performances have been reported to positively impact insight in psychosis. However, some patients with schizophrenia or obsessive-compulsive disorders, although recognizing their mental disease, are still not convinced of this and do not accept it. Hence, perspective-taking explains psychical insight (recognition) but not emotional insight (acceptance). Here, we propose a new conceptual model. We hypothesize that insight growth relies upon the association of intact self-reflexion and empathic capacities. Empathy (feeling into someone else) integrates heterocentered visuo-spatial perspective (feeling into), embodiment, affective (feeling into) and cognitive processes, leading to internally experience the other's thought. We posit that this subjective experience enables to better understand the other's thought about oneself and to affectively adhere to this. We propose that the process of objectification, resulting from empathic heterocentered, embodiment, and cognitive processes, generates an objective viewpoint on oneself. It enables to recognize one's mental illness and positively impacts psychical insight. The process of subjectification, resulting from empathic affective processes, enables to accept one's illness and positively impacts emotional insight. That is, affectively experiencing the thought of another person about oneself reinforces the adhesion of the emotional system to the objective recognition of the disease. Applying our model to different psychiatric disorders, we predict that the negative effect of impaired self-reflexion and empathic capacities on insight is a transnosographic state and that endophenotypical differences modulate this common state, determining a psychiatric disease as specific.
Collapse
Affiliation(s)
- Bérangère Thirioux
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à vocation régionale Pierre Deniker, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Ghina Harika-Germaneau
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à vocation régionale Pierre Deniker, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Nicolas Langbour
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à vocation régionale Pierre Deniker, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à vocation régionale Pierre Deniker, Centre Hospitalier Henri Laborit, Poitiers, France
- Université de Poitiers, CHU de Poitiers, INSERM U 1084, Experimental and Clinical Neuroscience Laboratory, Groupement de Recherche CNRS 3557, Poitiers, France
| |
Collapse
|
42
|
Pisano F, Marangolo P. Looking at ancillary systems for verb recovery: Evidence from non-invasive brain stimulation. Brain Cogn 2020; 139:105515. [PMID: 31902738 DOI: 10.1016/j.bandc.2019.105515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022]
Abstract
Several behavioural and neuroimaging studies have suggested that the language function is not restricted into the left areas but it involves regions not predicted by the classical language model. Accordingly, the Embodied Cognition theory postulates a close interaction between the language and the motor system. Indeed, it has been shown that non-invasive brain stimulation (NIBS) is effective for language recovery also when applied over sensorimotor regions, such as the motor cortex, the cerebellum and the spinal cord. We will review a series of NIBS studies in post-stroke aphasic people aimed to assess the impact of NIBS on verb recovery. We first present results which, following the classical assumption of the Broca's area as the key region for verb processing, have shown that the modulation over this area is efficacious for verb improvement. Then, we will present experiments which, according to Embodied Cognition, have directly investigated through NIBS the role of different sensorimotor regions in enhancing verb production. Since verbs play a crucial role for sentence construction which are most often impaired in the aphasic population, we believe that these results have important clinical implications. Indeed, they address the possibility that different structures might support verb processing.
Collapse
Affiliation(s)
- F Pisano
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - P Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
43
|
Catrambone V, Greco A, Averta G, Bianchi M, Vanello I, Bicchi A, Valenza G, Scilingo EP. EEG Processing to Discriminate Transitive-Intransitive Motor Imagery Tasks: Preliminary Evidences using Support Vector Machines. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:231-234. [PMID: 30440380 DOI: 10.1109/embc.2018.8512239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is known that brain dynamics significantly changes during motor imagery tasks of upper limb involving different kind of interactions with an object. Nevertheless, an automatic discrimination of transitive (i.e., actions involving an object) and intransitive (i.e., meaningful gestures that do not include the use of objects) imaginary actions using EEG dynamics has not been performed yet. In this study we exploit measures of EEG spectra to automatically discern between imaginary transitive and intransitive movements of the upper limb. To this end, nonlinear support vector machine algorithms are used to properly combine EEG-derived features, while a recursive feature elimination procedure highlights the most discriminant cortical regions and associated EEG frequency oscillations. Results show the significance of $\gamma ( 30 -45$ Hz) oscillations over the fronto-occipital and ipsilateral-parietal areas for the automatic classification of transitive-intransitive imaginary upper limb movements with a satisfactory accuracy of 70.97%.
Collapse
|
44
|
Di Nota PM, Huhta JM. Complex Motor Learning and Police Training: Applied, Cognitive, and Clinical Perspectives. Front Psychol 2019; 10:1797. [PMID: 31440184 PMCID: PMC6692711 DOI: 10.3389/fpsyg.2019.01797] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/19/2019] [Indexed: 01/13/2023] Open
Abstract
The practices surrounding police training of complex motor skills, including the use of force, varies greatly around the world, and even over the course of an officer’s career. As the nature of policing changes with society and the advancement of science and technology, so should the training practices that officers undertake at both central (i.e., police academy basic recruit training) and local (i.e., individual agency or precinct) levels. The following review is intended to bridge the gap between scientific knowledge and applied practice to inform best practices for training complex motor skills that are unique and critical to law enforcement, including the use of lethal force. We begin by providing a basic understanding of the fundamental cognitive processes underlying motor learning, from novel skill acquisition to complex behaviors including situational awareness, and decision-making that precede and inform action. Motor learning, memory, and perception are then discussed within the context of occupationally relevant stress, with a review of evidence-based training practices that promote officer performance and physiological responses to stress during high-stakes encounters. A lack of applied research identifying the neurophysiological mechanisms underlying motor learning in police is inferred from a review of evidence from various clinical populations suffering from disorders of cognitive and motor systems, including Alzheimer’s and Parkinson’s disease and stroke. We conclude this review by identifying practical, organizational, and systemic challenges to implementing evidence-based practices in policing and provide recommendations for best practices that will promote training effectiveness and occupational safety of end-users (i.e., police trainers and officers).
Collapse
Affiliation(s)
- Paula M Di Nota
- Department of Psychology, University of Toronto, Mississauga, ON, Canada.,Office of Applied Research & Graduate Studies, Justice Institute of British Columbia, New Westminster, BC, Canada
| | - Juha-Matti Huhta
- Police University College, Tampere, Finland.,Faculty of Education, University of Tampere, Tampere, Finland
| |
Collapse
|
45
|
Sato W, Kochiyama T, Uono S, Sawada R, Kubota Y, Yoshimura S, Toichi M. Widespread and lateralized social brain activity for processing dynamic facial expressions. Hum Brain Mapp 2019; 40:3753-3768. [PMID: 31090126 DOI: 10.1002/hbm.24629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 11/07/2022] Open
Abstract
Dynamic facial expressions of emotions constitute natural and powerful means of social communication in daily life. A number of previous neuroimaging studies have explored the neural mechanisms underlying the processing of dynamic facial expressions, and indicated the activation of certain social brain regions (e.g., the amygdala) during such tasks. However, the activated brain regions were inconsistent across studies, and their laterality was rarely evaluated. To investigate these issues, we measured brain activity using functional magnetic resonance imaging in a relatively large sample (n = 51) during the observation of dynamic facial expressions of anger and happiness and their corresponding dynamic mosaic images. The observation of dynamic facial expressions, compared with dynamic mosaics, elicited stronger activity in the bilateral posterior cortices, including the inferior occipital gyri, fusiform gyri, and superior temporal sulci. The dynamic facial expressions also activated bilateral limbic regions, including the amygdalae and ventromedial prefrontal cortices, more strongly versus mosaics. In the same manner, activation was found in the right inferior frontal gyrus (IFG) and left cerebellum. Laterality analyses comparing original and flipped images revealed right hemispheric dominance in the superior temporal sulcus and IFG and left hemispheric dominance in the cerebellum. These results indicated that the neural mechanisms underlying processing of dynamic facial expressions include widespread social brain regions associated with perceptual, emotional, and motor functions, and include a clearly lateralized (right cortical and left cerebellar) network like that involved in language processing.
Collapse
Affiliation(s)
- Wataru Sato
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | | | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Shiga, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Motomi Toichi
- Faculty of Human Health Science, Kyoto University, Kyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder Research, Kyoto, Japan
| |
Collapse
|
46
|
Brihmat N, Tarri M, Quidé Y, Anglio K, Pavard B, Castel-Lacanal E, Gasq D, De Boissezon X, Marque P, Loubinoux I. Action, observation or imitation of virtual hand movement affect differently regions of the mirror neuron system and the default mode network. Brain Imaging Behav 2019; 12:1363-1378. [PMID: 29243119 DOI: 10.1007/s11682-017-9804-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Virtual reality (VR)-based paradigms use visual stimuli that can modulate visuo-motor networks leading to the stimulation of brain circuits. The aims of this study were to compare the changes in blood-oxygenation level dependent (BOLD) signal when watching and imitating moving real (RH) and virtual hands (VH) in 11 healthy participants (HP). No differences were found between the observation of RH or VH making this VR-based experiment a promising tool for rehabilitation protocols. VH-imitation involved more the ventral premotor cortex (vPMC) as part of the mirror neuron system (MNS) compared to execution and VH-observation conditions. The dorsal-anterior Precuneus (da-Pcu) as part of the Precuneus/posterior Cingulate Cortex (Pcu/pCC) complex, a key node of the Default Mode Network (DMN), was also less deactivated and therefore more involved. These results may reflect the dual visuo-motor roles for the vPMC and the implication of the da-Pcu in the reallocation of attentional and neural resources for bimodal task management. The ventral Pcu/pCC was deactivated regardless of the condition confirming its role in self-reference processes. Imitation of VH stimuli can then modulate the activation of specific areas including those belonging to the MNS and the DMN.
Collapse
Affiliation(s)
- Nabila Brihmat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - Mohamed Tarri
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yann Quidé
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Ketty Anglio
- Department of Rehabilitation and Physical Medicine, Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse CHU, Toulouse, France
| | - Bernard Pavard
- Informatic Research Institute of Toulouse, IRIT, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Evelyne Castel-Lacanal
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Rehabilitation and Physical Medicine, Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse CHU, Toulouse, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Rehabilitation and Physical Medicine, Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse CHU, Toulouse, France
| | - Xavier De Boissezon
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Rehabilitation and Physical Medicine, Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse CHU, Toulouse, France
| | - Philippe Marque
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Rehabilitation and Physical Medicine, Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse CHU, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
47
|
Manuweera T, Yarossi M, Adamovich S, Tunik E. Parietal Activation Associated With Target-Directed Right Hand Movement Is Lateralized by Mirror Feedback to the Ipsilateral Hemisphere. Front Hum Neurosci 2019; 12:531. [PMID: 30687047 PMCID: PMC6333851 DOI: 10.3389/fnhum.2018.00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
Current research shows promise in restoring impaired hand function after stroke with the help of Mirror Visual Feedback (MVF), putatively by facilitating activation of sensorimotor areas of the brain ipsilateral to the moving limb. However, the MVF related clinical effects show variability across studies. MVF tasks that have been used place varying amounts of visuomotor demand on one’s ability to complete the task. Therefore, we ask here whether varying visuomotor demand during MVF may translate to differences in brain activation patterns. If so, we argue that this may provide a mechanistic explanation for variable clinical effects. To address this, we used functional magnetic resonance imaging (fMRI) to investigate the interaction of target directed movement and MVF on the activation of, and functional connectivity between, regions within the visuomotor network. In an event-related fMRI design, twenty healthy subjects performed finger flexion movements using their dominant right hand, with feedback presented in a virtual reality (VR) environment. Visual feedback was presented in real time VR as either veridical feedback with and without a target (VT+ and VT-, respectively), or MVF with and without a target (MT+ and MT-, respectively). fMRI contrasts revealed predominantly activation in the ipsilateral intraparietal sulcus for the main effect of MVF and bilateral superior parietal activation for the main effect of target. Importantly, we noted significant and robust activation lateralized to the ipsilateral parietal cortex alone in the MT+ contrast with respect to the other conditions. This suggests that combining MVF with targeted movements performed using the right hand may redirect enhanced bilateral parietal activation due to target presentation to the ipsilateral cortex. Moreover, functional connectivity analysis revealed that the interaction between the ipsilateral parietal lobe and the motor cortex was significantly greater during target-directed movements with mirror feedback compared to veridical feedback. These findings provide a normative basis to investigate the integrity of these networks in patient populations. Identification of the brain regions involved in target directed movement with MVF in stroke may have important implications for optimal delivery of MVF based therapy.
Collapse
Affiliation(s)
- Thushini Manuweera
- Rutgers School of Graduate Studies, Rutgers University, Newark, NJ, United States.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mathew Yarossi
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| | - Sergei Adamovich
- Rutgers School of Graduate Studies, Rutgers University, Newark, NJ, United States.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Eugene Tunik
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, United States.,Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
48
|
Di Giacomo J, Gongora M, Silva F, Vicente R, Arias-Carrion O, Orsini M, Teixeira S, Cagy M, Velasques B, Ribeiro P. Repetitive Transcranial Magnetic Stimulation changes absolute theta power during cognitive/motor tasks. Neurosci Lett 2018; 687:77-81. [PMID: 30253222 DOI: 10.1016/j.neulet.2018.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) studies are used to test motor imagery hypothesis. Motor Imagery (MI) represents conscious access to contents of movement intention, generally executed unconsciously during motor preparation. The main objective of this study was to investigate electrophysiological changes, which occurred before and after low-frequency rTMS application when we compared three different tasks: execution, action observation and motor imagery of finger movement. We hypothesize that absolute theta power over frontal regions would change between sensorimotor integration tasks and after 1 Hz of rTMS application. Eleven healthy, right-handed volunteers of both sexes (5 males, 6 females; mean age 28 ± 5 years), with no history of psychiatric or neurological disorders, participated in the experiment. After performing the tasks randomly, subjects were submitted to 15 min of low-frequency rTMS applied on Superior Parietal Cortex (SPC) and performed the tasks again. All tasks were executed simultaneously with Eletroencephalography (EEG) signals recording. Our results clarified the specificity of each sub-region during MI activity. Frontopolar cortex presented involvement with motor process and showed main effect for task and moment. Inferior frontal gyrus presented involvement with long-term memory retrieval and showed interaction between task and moment in the left hemisphere while the right hemisphere showed a main effect for task and moment. The lack of the main effect for conditions on the anterior frontal cortex collaborates with the hypothesis that in this region an integrated circuit of performance monitoring exists.
Collapse
Affiliation(s)
- Jessé Di Giacomo
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil.
| | - Mariana Gongora
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Farmy Silva
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Renan Vicente
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Oscar Arias-Carrion
- Unidad de transtornos del movimento y Sueño. Hospital General Dr. Manuel Gea González. Ciudad de México, Mexico
| | - Marco Orsini
- Antônio Pedro University Hospital, Fluminense Federal University, UFF, Niterói, Brazil; Centro Universitario Severino Sombra, Faculty of Medicine, Vassouras, Brazil
| | - Silmar Teixeira
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Piauí, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Velasques
- Bioscience Department, School of Physical Education of the Federal University of Rio de Janeiro (EEFD/UFRJ), Rio de Janeiro, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil; Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro e, RJ, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Piauí, Brazil; Bioscience Department, School of Physical Education of the Federal University of Rio de Janeiro (EEFD/UFRJ), Rio de Janeiro, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Explaining the neural activity distribution associated with discrete movement sequences: Evidence for parallel functional systems. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 19:138-153. [PMID: 30406305 PMCID: PMC6344389 DOI: 10.3758/s13415-018-00651-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
To explore the effects of practice we scanned participants with fMRI while they were performing four-key unfamiliar and familiar sequences, and compared the associated activities relative to simple control sequences. On the basis of a recent cognitive model of sequential motor behavior (C-SMB), we propose that the observed neural activity would be associated with three functional networks that can operate in parallel and that allow (a) responding to stimuli in a reaction mode, (b) sequence execution using spatial sequence representations in a central-symbolic mode, and (c) sequence execution using motor chunk representations in a chunking mode. On the basis of this model and findings in the literature, we predicted which neural areas would be active during execution of the unfamiliar and familiar keying sequences. The observed neural activities were largely in line with our predictions, and allowed functions to be attributed to the active brain areas that fit the three above functional systems. The results corroborate C-SMB’s assumption that at advanced skill levels the systems executing motor chunks and translating key-specific stimuli are racing to trigger individual responses. They further support recent behavioral indications that spatial sequence representations continue to be used.
Collapse
|
50
|
Langner R, Eickhoff SB, Bilalić M. A network view on brain regions involved in experts' object and pattern recognition: Implications for the neural mechanisms of skilled visual perception. Brain Cogn 2018; 131:74-86. [PMID: 30290974 DOI: 10.1016/j.bandc.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
Skilled visual object and pattern recognition form the basis of many everyday behaviours. The game of chess has often been used as a model case for studying how long-term experience aides in perceiving objects and their spatio-functional interrelations. Earlier research revealed two brain regions, posterior middle temporal gyrus (pMTG) and collateral sulcus (CoS), to be linked to chess experts' superior object and pattern recognition, respectively. Here we elucidated the brain networks these two expertise-related regions are embedded in, employing resting-state functional connectivity analysis and meta-analytic connectivity modelling with the BrainMap database. pMTG was preferentially connected with dorsal visual stream areas and a parieto-prefrontal network for action planning, while CoS was preferentially connected with posterior medial cortex and hippocampus, linked to scene perception, perspective-taking and navigation. Functional profiling using BrainMap meta-data revealed that pMTG was linked to semantic processing as well as inhibition and attention, while CoS was linked to face and shape perception as well as passive viewing. Our findings suggest that pMTG subserves skilled object recognition by mediating the link between object identity and object affordances, while CoS subserves skilled pattern recognition by linking the position of individual objects with typical spatio-functional layouts of their environment stored in memory.
Collapse
Affiliation(s)
- Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Merim Bilalić
- Department of Psychology, University of Northumbria at Newcastle, Newcastle, England, United Kingdom; Department of Neuroradiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|