1
|
Dempsey M, Thavarajah D. Low molecular weight carbohydrates and abiotic stress tolerance in lentil ( Lens culinaris Medikus): a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1408252. [PMID: 39421141 PMCID: PMC11484031 DOI: 10.3389/fpls.2024.1408252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Lentil (Lens culinaris Medikus) is a nutrient-rich, cool-season food legume that is high in protein, prebiotic carbohydrates, vitamins, and minerals. It is a staple food in many parts of the world, but crop performance is threatened by climate change, where increased temperatures and less predictable precipitation can reduce yield and nutritional quality. One mechanism that many plant species use to mitigate heat and drought stress is the production of disaccharides, oligosaccharides and sugar alcohols, collectively referred to as low molecular weight carbohydrates (LMWCs). Recent evidence indicates that lentil may also employ this mechanism - especially raffinose family oligosaccharides and sugar alcohols - and that these may be suitable targets for genomic-assisted breeding to improve crop tolerance to heat and drought stress. While the genes responsible for LMWC biosynthesis in lentil have not been fully elucidated, single nucleotide polymorphisms and putative genes underlying biosynthesis of LMWCs have been identified. Yet, more work is needed to confirm gene identity, function, and response to abiotic stress. This review i) summarizes the diverse evidence for how LMWCs are utilized to improve abiotic stress tolerance, ii) highlights current knowledge of genes that control LMWC biosynthesis in lentil, and iii) explores how LMWCs can be targeted using diverse genomic resources and markers to accelerate lentil breeding efforts for improved stress tolerance.
Collapse
Affiliation(s)
| | - Dil Thavarajah
- Plant and Environmental Sciences, Pulse Quality and Nutritional Breeding, Biosystems Research Complex, Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Cakmak I, Rengel Z. Potassium may mitigate drought stress by increasing stem carbohydrates and their mobilization into grains. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154325. [PMID: 39142140 DOI: 10.1016/j.jplph.2024.154325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Potassium (K) deficiency occurs commonly in crop plants. Optimal K nutrition is particularly important when plants are exposed to stress conditions (especially drought and heat) because a cellular demand for K increases. Low K in plant tissues is known to aggravate the effects of drought stress by impairing the osmoregulation process and the photosynthetic carbon metabolism. However, despite numerous publications about the role of K in enhancing tolerance to drought stress in crop plants, our understanding of the major mechanisms underlying the stress-mitigating effects of K is still limited. This paper summarizes and appraises the current knowledge on the major protective effects of K under drought stress, and then proposes a new K-related drought stress-mitigating mechanism, whereby optimal K nutrition may promote partitioning of carbohydrates in stem tissues and subsequent mobilization of these carbohydrates into developing grain under drought stress. The importance of stem reserves of carbohydrates is based on limited photosynthetic capacity during the grain-filling period under drought conditions due to premature leaf senescence as well as due to impaired assimilate transport from leaves to the developing grains. Plants with a high capacity to store large amounts of soluble carbohydrates in stems before anthesis and mobilize them into grain post-anthesis have a high potential to yield well in dry and hot environments. In practice, particular attention needs to be paid to the K nutritional status of plants grown with limited water supply, especially during grain filling. Because K is the mineral nutrient deposited mainly in stem, a special consideration should be given to stems of crop plants in research dealing with the effects of K on yield formation and stress mitigation.
Collapse
Affiliation(s)
- Ismail Cakmak
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956 Istanbul, Turkey.
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
| |
Collapse
|
3
|
Ntawuguranayo S, Zilberberg M, Nashef K, Bonfil DJ, Bainsla NK, Piñera-Chavez FJ, Reynolds MP, Peleg Z, Ben-David R. Stem traits promote wheat climate-resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1388881. [PMID: 39119506 PMCID: PMC11308436 DOI: 10.3389/fpls.2024.1388881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Introduction Wheat grain filling processes under post-anthesis stress scenarios depend mainly on stem traits and remobilization of stem water-soluble carbohydrates (WSC). Methods A diverse panel of advanced semi-dwarf spring wheat lines, representing a natural variation in stem traits (WSC content, stem diameter, peduncle length, and stem wall width), was used to identify specific traits that reliably reflect the relationship between WSC and grain yield. The panel was phenotyped under various environmental conditions: well-watered, water-limited, and heat stress in Mexico, and terminal-drought in Israel. Results Environmental stresses reduced grain yield (from 626 g m-2 under well-watered to 213 g m-2 under heat), lower internode diameter, and peduncle length. However, stem-WSC generally peaked 3-4 weeks after heading under all environmental conditions except heat (where it peaked earlier) and expressed the highest values under water-limited and terminal-drought environments. Increased investment in internode diameter and peduncle length was associated with a higher accumulation of stem WSC, which showed a positive association with yield and kernel weight. Across all environments, there were no apparent trade-offs between increased crop investment in internode diameter, peduncle length, and grain yield. Discussion Our results showed that selecting for genotypes with higher resource investment in stem structural biomass, WSC accumulation, and remobilization could be a valuable strategy to ameliorate grain size reduction under stress without compromising grain yield potential. Furthermore, easy-to-measure proxies for WSC (stem diameter at specific internodes and length of the last internode, i.e., the peduncle) could significantly increase throughput, potentially at the breeding scale.
Collapse
Affiliation(s)
- Simeon Ntawuguranayo
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Michael Zilberberg
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - Kamal Nashef
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| | - David J. Bonfil
- The institute of plant sciences, Agricultural Research Organization, Gilat Research Center, Gilat, Israel
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | - Zvi Peleg
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roi Ben-David
- The Institute of Plant Sciences, Agriculture Research Organization (ARO) - Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Laskoś K, Czyczyło-Mysza IM, Waligórski P, Dziurka K, Skrzypek E, Warchoł M, Juzoń-Sikora K, Janowiak F, Dziurka M, Grzesiak MT, Grzesiak S, Quarrie S, Marcińska I. Characterising Biological and Physiological Drought Signals in Diverse Parents of a Wheat Mapping Population. Int J Mol Sci 2024; 25:6573. [PMID: 38928284 PMCID: PMC11203422 DOI: 10.3390/ijms25126573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Water deficit affects the growth as well as physiological and biochemical processes in plants. The aim of this study was to determine differences in physiological and biochemical responses to drought stress in two wheat cultivars-Chinese Spring (CS) and SQ1 (which are parents of a mapping population of doubled haploid lines)-and to relate these responses to final yield and agronomic traits. Drought stress was induced by withholding water for 14 days, after which plants were re-watered and maintained until harvest. Instantaneous gas exchange parameters were evaluated on the 3rd, 5th, 10th, and 14th days of seedling growth under drought. After 14 days, water content and levels of chlorophyll a+b, carotenoids, malondialdehyde, soluble carbohydrates, phenolics, salicylic acid, abscisic acid (ABA), and polyamines were measured. At final maturity, yield components (grain number and weight), biomass, straw weight, and harvest index were evaluated. Physiological and biochemical parameters of CS responded more than those of SQ1 to the 14-day drought, reflected in a greater reduction in final biomass and yield in CS. Marked biochemical differences between responses of CS and SQ1 to the drought were found for soluble carbohydrates and polyamines. These would be good candidates for testing in the mapping population for the coincidence of the genetic control of these traits and final biomass and yield.
Collapse
Affiliation(s)
- Kamila Laskoś
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Ilona Mieczysława Czyczyło-Mysza
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Kinga Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Katarzyna Juzoń-Sikora
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Maciej T. Grzesiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Stanisław Grzesiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Steve Quarrie
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Izabela Marcińska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| |
Collapse
|
5
|
Mugwanya M, Kimera F, Abdelnaser A, Sewilam H. Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion ( Allium cepa) Cultivated under Deficit Drip Irrigation. Biomolecules 2023; 13:1634. [PMID: 38002316 PMCID: PMC10669905 DOI: 10.3390/biom13111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Freshwater scarcity is a major global challenge threatening food security. Agriculture requires huge quantities of water to feed the ever-increasing human population. Sustainable irrigation techniques such as deficit drip irrigation (DDI) are warranted to increase efficiency and maximize yield. However, DDI has been reported to cause water stress in plants. The study aimed to investigate the influence of the exogenous application of salicylic acid alone (SA) or in combination with glycine betaine (GB) on the growth, yield quality, and water-use efficiency of onions under different DDI treatments (100%, 70%, and 40% field capacity (FC)). Spray treatments (sub-treatments) were as follows: T1: (distilled water), T2: (1.09 mM SA), T3: (1.09 mM SA + 25 mM GB), T4: (1.09 mM SA + 50 mM GB), and T5: (1.09 mM SA + 100 mM GB). Our results indicated that T2 slightly ameliorated the effects of water stress by improved plant heights, leaf number, pseudostem diameter, bulb quality, and nutrient content of onion bulbs, especially under the 70% FC treatment. However, T3 recorded the poorest results on leaf number, pseudostem diameter, and bulb quality under the 70% and 40% FC treatments. Generally, our results indicated that onions could tolerate moderate water stress (70% FC) without severely affecting the growth and yield of onion. In conditions where freshwater is a limiting factor, a DDI treatment of 40% FC is recommended.
Collapse
Affiliation(s)
- Muziri Mugwanya
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (M.M.); (F.K.)
| | - Fahad Kimera
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (M.M.); (F.K.)
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
| | - Hani Sewilam
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (M.M.); (F.K.)
- UNESCO Chair in Hydrological Changes and Water Resources Management, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
6
|
Wu L, Meng F, Su X, Chen N, Peng D, Xing S. Transcriptomic responses to cold stress in Dendrobium huoshanense C.Z. Tang et S.J. Cheng. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1633-1646. [PMID: 38162923 PMCID: PMC10754796 DOI: 10.1007/s12298-023-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Dendrobium huoshanense C.Z. Tang et S.J. Cheng is a perennial epiphytic herb of the family Orchidaceae. The main metabolites of D. huoshanense include polysaccharides and flavonoids. Low temperature is the main environmental factor that limits the growth and development of plants. However, changes that occur at the molecular level in response to low temperatures in D. huoshanense are poorly understood. We performed a transcriptome analysis at two time points of 0 d (control group) and 7 d (cold stress group) under culture of D. huoshanense at 4 °C. A total of 37.63 Gb transcriptomic data were generated using the MGI 2000 platform. These reads were assembled into 170,754 transcripts and 23,724 differentially expressed genes (DEGs) were obtained. Pathway analysis indicated that "flavonoid biosynthesis," "anthocyanin biosynthesis," "flavone and flavonol biosynthesis," and "plant hormone signal transduction" might play a vital role in the response of D. huoshanense to cold stress. Several important pathway genes were identified to be altered under cold stress, such as genes encoding polysaccharides, flavonoids, and plant hormone-signaling transduction kinase. In addition, the content of mannose and total flavonoids increased under cold stress. Twelve DEGs related to polysaccharides, flavonoid, and hormone pathways were selected from the transcriptome data for validation with real-time quantitative PCR (RT-qPCR). Our results provide a transcriptome database and candidate genes for further study of the response of D. huoshanense to cold stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01385-7.
Collapse
Affiliation(s)
- Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, 244000 China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Na Chen
- Institute of Health and Medicine, Joint Research Center for Chinese Herbal Medicine of Anhui, Hefei Comprehensive National Science Center, Bozhou, 236800 China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038 China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
7
|
Song M, Zhou S, Hu N, Li J, Huang Y, Zhang J, Chen X, Du X, Niu J, Yang X, He D. Exogenous strigolactones alleviate drought stress in wheat (Triticum aestivum L.) by promoting cell wall biogenesis to optimize root architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108121. [PMID: 37866063 DOI: 10.1016/j.plaphy.2023.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Exogenous strigolactones (SLs, GR24) are widely used to alleviate drought stress in wheat. The physiological and biochemical mechanisms via which SLs help overcome drought stress in wheat shoots have been reported; however, the mechanisms in wheat roots are unclear. The present study explored the effects of the exogenous application of SLs on wheat roots' growth and molecular responses under drought stress using physiological analysis and RNA-seq. RNA-seq of roots showed that SLs mainly upregulated signal transduction genes (SIS8, CBL3, GLR2.8, LRK10L-2.4, CRK29, and CRK8) and transcription factors genes (ABR1, BHLH61, and MYB93). Besides, SLs upregulated a few downstream target genes, including antioxidant genes (PER2, GSTF1, and GSTU6), cell wall biogenesis genes (SUS4, ADF3, UGT13248, UGT85A24, UGT709G2, BGLU31, and LAC5), an aquaporin-encoding gene (TIP4-3), and dehydrin-encoding genes (DHN2, DHN3, and DHN4). As a result, SLs reduced oxidative damage, optimized root architecture, improved leaf-water relation, and alleviated drought damage. Thus, the present study provides novel insights into GR24-mediated drought stress management and a scientific basis for proposing GR24 application.
Collapse
Affiliation(s)
- Miao Song
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sumei Zhou
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Naiyue Hu
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junchang Li
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuan Huang
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiemei Zhang
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xu Chen
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xihe Du
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jishan Niu
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiwen Yang
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Dexian He
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Zhou Q, Sun H, Zhang G, Wang J, Tian J. Gene Co-Expression Analysis Reveals the Transcriptome Changes and Hub Genes of Fructan Metabolism in Garlic under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3357. [PMID: 37836095 PMCID: PMC10574564 DOI: 10.3390/plants12193357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Drought has become a serious environmental factor that affects the growth and yield of plants. Fructan, as an important storage compound in garlic, plays an important role in drought tolerance. Genomic changes in plants under drought stress clarify the molecular mechanism of plants' responses to stress. Therefore, we used RNA-seq to determine the transcriptomic changes in garlic under drought stress and identified the key module related to fructan metabolism by weighted gene co-expression network analysis. We conducted a comprehensive analysis of the garlic transcriptome under drought stress over a time course (0, 3, 6, 9, 12, 15 d). Drought significantly induces changes in gene expression. The number of specifically expressed genes were 1430 (3 d), 399 (6 d), 313 (9 d), 351 (12 d), and 1882 (15 d), and only 114 genes responded at each time point. The number of upregulated DEGs was higher than the number of downregulated DEGs. Gene ontology and a Kyoto Encyclopedia of Genes and Genomes analysis showed that garlic was more likely to cause changes in carbohydrate metabolism pathways under drought stress. Fructan content measurements showed that drought stress significantly induced fructan accumulation in garlic. To determine whether there were modules involved in the transcriptional regulation of fructan content in garlic, we further analyzed the genes related to fructan metabolism using WGCNA. They were enriched in two modules, with F-box protein and GADPH as hub genes, which are involved in garlic fructan metabolism in response to drought stress. These results provide important insights for the future research and cultivation of drought-tolerant garlic varieties.
Collapse
Affiliation(s)
- Qianyi Zhou
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China; (Q.Z.); (H.S.); (G.Z.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Haihong Sun
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China; (Q.Z.); (H.S.); (G.Z.)
| | - Guoli Zhang
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China; (Q.Z.); (H.S.); (G.Z.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Jian Wang
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China; (Q.Z.); (H.S.); (G.Z.)
| | - Jie Tian
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China; (Q.Z.); (H.S.); (G.Z.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China
| |
Collapse
|
9
|
Hura T, Hura K, Ostrowska A, Gadzinowska J, Urban K, Pawłowska B. The role of invasive plant species in drought resilience in agriculture: the case of sweet briar (Rosa rubiginosa L.). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2799-2810. [PMID: 36124695 DOI: 10.1093/jxb/erac377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/05/2022] [Indexed: 06/06/2023]
Abstract
Sweet briar (Rosa rubiginosa) belongs to the group of wild roses. Under natural conditions it grows throughout Europe, and was introduced also into the southern hemisphere, where it has efficiently adapted to dry lands. This review focuses on the high adaptation potential of sweet briar to soil drought in the context of global climatic changes, especially considering steppe formation and desertification of agricultural, orchard, and horticultural areas. We provide a comprehensive overview of current knowledge on sweet briar traits associated with drought tolerance and particularly water use efficiency, sugar accumulation, accumulation of CO2 in intercellular spaces, stomatal conductance, gibberellin level, effective electron transport between photosystem II and photosystem I, and protein content. We discuss the genetics and potential applications in plant breeding and suggest future directions of study concerning invasive populations of R. rubiginosa. Finally, we point out that sweet briar can provide new genes for breeding in the context of depleting gene pools of the crop plants.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Karolina Urban
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Bożena Pawłowska
- Department of Ornamental Plants and Garden Arts, Agricultural University, 29 Listopada 54 Avenue, 31-425 Kraków, Poland
| |
Collapse
|
10
|
Verbeke S, Padilla-Díaz CM, Martínez-Arias C, Goossens W, Haesaert G, Steppe K. Mechanistic modeling reveals the importance of turgor-driven apoplastic water transport in wheat stem parenchyma during carbohydrate mobilization. THE NEW PHYTOLOGIST 2023; 237:423-440. [PMID: 36259090 DOI: 10.1111/nph.18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
During stem elongation, wheat (Triticum aestivum) increases its stem carbohydrate content before anthesis as a reserve for grain filling. Hydraulic functioning during this mobilization process is not well understood, and contradictory results exist on the direct effect of drought on carbohydrate mobilization. In a dedicated experiment, wheat plants were subjected to drought stress during carbohydrate mobilization. Measurements, important to better understand stem physiology, showed some unexpected patterns that could not be explained by our current knowledge on water transport. Traditional water flow and storage models failed to properly describe the drought response in wheat stems during carbohydrate mobilization. To explain the measured patterns, hypotheses were formulated and integrated in a dedicated model for wheat. The new mechanistic model simulates two hypothetical water storage compartments: one where water is quickly exchanged with the xylem and one that contains the carbohydrate storage. Water exchange between these compartments is turgor-driven. The model was able to simulate the measured increase in stored carbohydrate concentrations with a decrease in water content and stem diameter. Calibration of the model showed the importance of turgor-driven apoplastic water flow during carbohydrate mobilization. This resulted in an increase in stem hydraulic capacitance, which became more important under drought stress.
Collapse
Affiliation(s)
- Sarah Verbeke
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Carmen María Padilla-Díaz
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Clara Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
11
|
Barquero M, Poveda J, Laureano-Marín AM, Ortiz-Liébana N, Brañas J, González-Andrés F. Mechanisms involved in drought stress tolerance triggered by rhizobia strains in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1036973. [PMID: 36438093 PMCID: PMC9686006 DOI: 10.3389/fpls.2022.1036973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 05/29/2023]
Abstract
Rhizobium spp. is a well-known microbial plant biostimulant in non-legume crops, but little is known about the mechanisms by which rhizobia enhance crop productivity under drought stress. This work analyzed the mechanisms involved in drought stress alleviation exerted by Rhizobium leguminosarum strains in wheat plants under water shortage conditions. Two (LBM1210 and LET4910) of the four R. leguminosarum strains significantly improved the growth parameters (fresh and dry aerial weight, FW and DW, respectively), chlorophyll content, and relative water content (RWC) compared to a non-inoculated control under water stress, providing values similar to or even higher for FW (+4%) and RWC (+2.3%) than the non-inoculated and non-stressed control. Some other biochemical parameters and gene expression explain the observed drought stress alleviation, namely the reduction of MDA, H2O2 (stronger when inoculating with LET4910), and ABA content (stronger when inoculating with LBM1210). In agreement with these results, inoculation with LET4910 downregulated DREB2 and CAT1 genes in plants under water deficiency and upregulated the CYP707A1 gene, while inoculation with LBM1210 strongly upregulated the CYP707A1 gene, which encodes an ABA catabolic enzyme. Conversely, from our results, ethylene metabolism did not seem to be involved in the alleviation of drought stress exerted by the two strains, as the expression of the CTR1 gene was very similar in all treatments and controls. The obtained results regarding the effect of the analyzed strains in alleviating drought stress are very relevant in the present situation of climate change, which negatively influences agricultural production.
Collapse
Affiliation(s)
- Marcia Barquero
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Ana M. Laureano-Marín
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | - Noemí Ortiz-Liébana
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Javier Brañas
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | | |
Collapse
|
12
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
13
|
Tillett BJ, Hale CO, Martin JM, Giroux MJ. Genes Impacting Grain Weight and Number in Wheat ( Triticum aestivum L. ssp. aestivum). PLANTS (BASEL, SWITZERLAND) 2022; 11:1772. [PMID: 35807724 PMCID: PMC9269389 DOI: 10.3390/plants11131772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 05/05/2023]
Abstract
The primary goal of common wheat (T. aestivum) breeding is increasing yield without negatively impacting the agronomic traits or product quality. Genetic approaches to improve the yield increasingly target genes that impact the grain weight and number. An energetic trade-off exists between the grain weight and grain number, the result of which is that most genes that increase the grain weight also decrease the grain number. QTL associated with grain weight and number have been identified throughout the hexaploid wheat genome, leading to the discovery of numerous genes that impact these traits. Genes that have been shown to impact these traits will be discussed in this review, including TaGNI, TaGW2, TaCKX6, TaGS5, TaDA1, WAPO1, and TaRht1. As more genes impacting the grain weight and number are characterized, the opportunity is increasingly available to improve common wheat agronomic yield by stacking the beneficial alleles. This review provides a synopsis of the genes that impact grain weight and number, and the most beneficial alleles of those genes with respect to increasing the yield in dryland and irrigated conditions. It also provides insight into some of the genetic mechanisms underpinning the trade-off between grain weight and number and their relationship to the source-to-sink pathway. These mechanisms include the plant size, the water soluble carbohydrate levels in plant tissue, the size and number of pericarp cells, the cytokinin and expansin levels in developing reproductive tissue, floral architecture and floral fertility.
Collapse
Affiliation(s)
| | | | | | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Biosciences Building, Bozeman, MT 59717-3150, USA; (B.J.T.); (C.O.H.); (J.M.M.)
| |
Collapse
|
14
|
Hickey K, Wood M, Sexton T, Sahin Y, Nazarov T, Fisher J, Sanguinet KA, Cousins A, Kirchhoff H, Smertenko A. Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes. Cells 2022; 11:1765. [PMID: 35681460 PMCID: PMC9179661 DOI: 10.3390/cells11111765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.
Collapse
Affiliation(s)
- Kahleen Hickey
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Magnus Wood
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Tom Sexton
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Yunus Sahin
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Jessica Fisher
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164, USA;
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| |
Collapse
|
15
|
Benkeblia N. Insights on Fructans and Resistance of Plants to Drought Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.827758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Drought, one of the major abiotic stresses affecting plants, is characterized by a decrease of water availability, resulting in a decrease of the water potential (Ψ) of the cells. One of the strategies of plants in resisting to this low Ψ and related stresses is regulating their water-plant relation and the interplay between Ψsolutes and the turgor pressure (Ψp). This regulation avoids the dehydration induced by low Ψ and is resulting from the accumulation of specific molecules which induce higher tolerance to water deficit and also other mechanisms that prevent or repair cell damages. In plants, fructans, the non-structural carbohydrates (NSC), have other physiological functions than carbon reserve. Among these roles, fructans have been implicated in protecting plants against water deficit caused by drought. As an efficient strategy to survive to this abiotic stress, plants synthesize fructans in response to osmotic pressure in order to osmoregulate the cellular flux, therefore, protecting the membrane damage and maintaining Ψp. Although different studies have been conducted to elucidate the mechanisms behind this strategy, still the concept itself is not well-understood and many points remain unclear and need to be elucidated in order to understand the causal relation between water deficit and fructans accumulation during water scarcity. This understanding will be a key tool in developing strategies to enhance crop tolerance to stressful dry conditions, particularly under the changing climate prediction. This review aims to give new insights on the roles of fructans in the response and resistance of plants to water deficit and their fate under this severe environmental condition.
Collapse
|
16
|
Liu R, Jiao T, Zhang Z, Yao Z, Li Z, Wang S, Xin H, Li Y, Wang A, Zhu J. Ectopic Expression of the Allium cepa 1-SST Gene in Cotton Improves Drought Tolerance and Yield Under Drought Stress in the Field. FRONTIERS IN PLANT SCIENCE 2022; 12:783134. [PMID: 35095957 PMCID: PMC8790044 DOI: 10.3389/fpls.2021.783134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In some plants, sucrose: sucrose 1-fructosyltransferase (1-SST) is the first irreversible key enzyme in fructan biosynthesis. Studies have shown that fructan accumulation enhances abiotic stress tolerance of plants. To investigate the role of 1-SST in drought stress responses, a total of 37 cotton plants expressing a 1-SST gene from Allium cepa were developed by Agrobacterium-mediated transformation. Under drought stress in the field, compared with wild-type, ectopic expression of Ac1-SST in cotton resulted in significantly higher soluble sugars (especially 1-kestose), proline and relative water contents, as well as decreased malondialdehyde content, which contributed to maintaining intracellular osmoregulation and reducing membrane damage. In addition, ectopic expression of Ac1-SST in cotton significantly improved the photosynthesis rate, performance of PSII (including Pn, Fv/Fm, WUE, ΦPSII, and PItotal) and plant growth under drought stress. Furthermore, compared with the wild-type, under the droughted field, the yield loss per square meter of transgenic cotton was reduced by an average of 20.9% over two consecutive years. Our results indicate that the Ac1-SST gene can be used to improve drought tolerance and yield of cotton varieties, and might also be a promising drought-resistant gene for improving other crop varieties.
Collapse
Affiliation(s)
- RuiNa Liu
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - TianQi Jiao
- Woda Agricultural Technology Co., Ltd, Shihezi, China
| | - ZeXing Zhang
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Zhang Yao
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - ZhongQing Li
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Saisai Wang
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongliang Xin
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - YuXia Li
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - AiYing Wang
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - JianBo Zhu
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
D’Oria A, Jing L, Arkoun M, Pluchon S, Pateyron S, Trouverie J, Etienne P, Diquélou S, Ourry A. Transcriptomic, Metabolomic and Ionomic Analyses Reveal Early Modulation of Leaf Mineral Content in Brassica napus under Mild or Severe Drought. Int J Mol Sci 2022; 23:781. [PMID: 35054964 PMCID: PMC8776245 DOI: 10.3390/ijms23020781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.
Collapse
Affiliation(s)
- Aurélien D’Oria
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France;
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France; (M.A.); (S.P.)
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Jacques Trouverie
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Philippe Etienne
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Sylvain Diquélou
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| | - Alain Ourry
- Unicaen, INRAE, UMR 950 Eva, SFR Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France; (A.D.); (J.T.); (P.E.); (S.D.)
| |
Collapse
|
18
|
Ma Q, Xu X, Wang W, Zhao L, Ma D, Xie Y. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:203-214. [PMID: 34118683 DOI: 10.1016/j.plaphy.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Drought is one of the main abiotic factors that affect alfalfa yield. The identification of genes that control this complex trait can provide important insights for alfalfa breeding. However, little is known about how alfalfa responds and adapts to drought stress, particularly in cultivars of differing drought tolerance. In this study, the drought-tolerant cultivar Dryland 'DT' and the drought-sensitive cultivar WL343HQ 'DS' were used to characterize leaf and root physiological responses and transcriptional changes in response to water deficit. Under drought stress, Dryland roots (DTR) showed more differentially expressed genes than WL343HQ roots (DSR), whereas WL343HQ leaves (DSL) showed more differentially expressed genes than Dryland leaves (DTL). Many of these genes were involved in stress-related pathways, carbohydrate metabolism, and lignin and wax biosynthesis, which may have improved the drought tolerance of alfalfa. We also observed that several genes related to ABA metabolism, root elongation, peroxidase activity, cell membrane stability, ubiquitination, and genetic processing responded to drought stress in alfalfa. We highlighted several candidate genes, including sucrose synthase, xylan 1,4-beta-xylosidase, primary-amine oxidase, and alcohol-forming fatty acyl-CoA reductase, for future studies on drought stress resistance in alfalfa and other plant species. In summary, our results reveal the unique drought adaptation and resistance characteristics of two alfalfa genotypes. These findings, which may be valuable for drought resistance breeding, warrant further gene functional analysis to augment currently available information and to clarify the drought stress regulatory mechanisms of alfalfa and other plants.
Collapse
Affiliation(s)
- Qiaoli Ma
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| | - Xing Xu
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| | - Wenjing Wang
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China.
| | - Lijuan Zhao
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China.
| | - Dongmei Ma
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China.
| | - Yingzhong Xie
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
19
|
Liang Y, Wei G, Ning K, Li M, Zhang G, Luo L, Zhao G, Wei J, Liu Y, Dong L, Chen S. Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:19-35. [PMID: 34034158 DOI: 10.1016/j.plaphy.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Drought stress is one of the main limiting factors in geographical distribution and production of Codonopsis pilosula. Understanding the biochemical and genetic information of the response of C. pilosula to drought stress is urgently needed for breeding tolerant varieties. Here, carbohydrates, namely trehalose, raffinose, maltotetraose, sucrose, and melezitose, significantly accumulated in C. pilosula roots under drought stress and thus served as biomarkers for drought stress response. Compared with those in the control group, the expression levels of key genes such as adenosine diphosphate glucose pyrophosphorylase, starch branching enzyme, granule-bound starch synthase, soluble starch synthase, galacturonate transferase, cellulose synthase A catalytic subunit, cellulase Korrigan in the carbohydrate biosynthesis pathway were markedly up-regulated in C. pilosula roots in the drought treatment group, some of them even exceeded 70%. Notably, and that of key genes including trehalose-6-phosphatase, trehalose-6-phosphate phosphatase, galactinol synthase, and raffinose synthase in the trehalose and raffinose biosynthesis pathways was improved by 12.6%-462.2% in C. pilosula roots treated by drought stress. The accumulation of carbohydrates in C. pilosula root or rhizosphere soil was correlated with microbiome variations. Analysis of exogenous trehalose and raffinose confirmed that increased carbohydrate content improved the drought tolerance of C. pilosula in a dose-dependent manner. This study provided solid foundation for breeding drought-tolerant C. pilosula varieties and developing drought-resistant microbial fertilizers.
Collapse
Affiliation(s)
- Yichuan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lu Luo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guanghui Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
20
|
LC–MS/MS method validation for the quantitation of 1-kestose in wheat flour. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Wu S, Greiner S, Ma C, Zhong J, Huang X, Rausch T, Zhao H. A Fructan Exohydrolase from Maize Degrades Both Inulin and Levan and Co-Exists with 1-Kestotriose in Maize. Int J Mol Sci 2021; 22:5149. [PMID: 34068004 PMCID: PMC8152283 DOI: 10.3390/ijms22105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/03/2022] Open
Abstract
Enzymes with fructan exohydrolase (FEH) activity are present not only in fructan-synthesizing species but also in non-fructan plants. This has led to speculation about their functions in non-fructan species. Here, a cell wall invertase-related Zm-6&1-FEH2 with no "classical" invertase motif was identified in maize. Following heterologous expression in Pichia pastoris and in Nicotiana benthamiana leaves, the enzyme activity of recombinant Zm-6&1-FEH2 displays substrate specificity with respect to inulin and levan. Subcellular localization showed Zm-6&1-FEH2 exclusively localized in the apoplast, and its expression profile was strongly dependent on plant development and in response to drought and abscisic acid. Furthermore, formation of 1-kestotriose, an oligofructan, was detected in vivo and in vitro and could be hydrolyzed by Zm-6&1-FEH2. In summary, these results support that Zm-6&1-FEH2 enzyme from maize can degrade both inulin-type and levan-type fructans, and the implications of the co-existence of Zm-6&1-FEH2 and 1-kestotriose are discussed.
Collapse
Affiliation(s)
- Silin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (S.W.); (X.H.)
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany; (S.G.); (J.Z.); (T.R.)
| | - Chongjian Ma
- Department of Horticulture, Henry Fok College of Biology and Agricultural Science, Shaoguan University, Shaoguan 512005, China;
| | - Jiaxin Zhong
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany; (S.G.); (J.Z.); (T.R.)
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (S.W.); (X.H.)
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany; (S.G.); (J.Z.); (T.R.)
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, College of Horticulture, South China Agricultural University, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; (S.W.); (X.H.)
| |
Collapse
|
22
|
Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars. PLANTS 2021; 10:plants10040811. [PMID: 33924128 PMCID: PMC8074330 DOI: 10.3390/plants10040811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
Wheat is a staple food consumed by the majority of people in the world and its production needs to be doubled to feed the growing population. On the other hand, global wheat productivity is greatly affected due to drought and low fertility of soil under arid and semi-arid regions. Application of supplementary irrigation and plant growth-promoting rhizobacteria (PGPR) has been suggested as sustainable measures to combat drought stress and to improve soil fertility and, hence, crop yield. This research was undertaken to study the effect of supplementary irrigation together with a combination of various PGPR on the growth and yield of two wheat cultivars, namely Sardari and Sirvan. The results of variance analysis (mean of squares) showed that the effect of irrigation, cultivar, and irrigation and biofertilizer and irrigation on height, spike length, seed/spike, and numbers of spikes/m2, 1000-seed weight, and grain yield were significant at 1% probability level. The effect of cultivar and irrigation interactions showed that the highest grain yield was obtained in a treatment with two additional irrigations in Sirvan cultivar (5015.0 kg/ha) and Sardari (4838.9 kg/ha) as compared to the 3598 kg/ha and 3598.3 kg/h grain yield in Sirvan and Sardari cultivars with similar treatment, but without irrigation, i.e., dryland farming. Drought conditions significantly affected the wheat grain yield while supplementary irrigation resulted in 39.38% and 34.48% higher yields in Sirvan and Sardari cultivars.
Collapse
|
23
|
Ghouili E, Sassi K, Jebara M, Hidri Y, Ouertani RN, Muhovski Y, Jebara SH, El Ayed M, Abdelkarim S, Chaieb O, Jallouli S, Kalleli F, M’hamdi M, Souissi F, Abid G. Physiological responses and expression of sugar associated genes in faba bean ( Vicia faba L.) exposed to osmotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:135-150. [PMID: 33627968 PMCID: PMC7873190 DOI: 10.1007/s12298-021-00935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Faba bean (Vicia faba L.) is the major food legume crop in Tunisia. However, its growth and yield is strongly affected by water-limited environments. In this study, osmotic stress exhibited a negative effect on Bachar and Badii cultivar. Nevertheless, the deteriorating effects of osmotic stress were relatively low on studied parameters of Bachar due to its better efficiency to reduce oxidative damage by increasing enzymatic activities such as catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX), accumulation of total chlorophyll (Chlt), soluble sugars and leaf relative water content (RWC). GC-MS analysis determined a total of 11 soluble carbohydrates induced by osmotic stress and differentially accumulated in the both cultivars. Bachar showed elevated levels of mannose, glucose, galactose, ribose, rhamnose and myo-inositol which might help to maintain osmotic adjustment, membranes and proteins protection from the damaging effect of reactive oxygen species. Sugar metabolism related genes (VfNINV3, VfPHS2, VfFRK4, VfHXK1, VfGPI1, VfSTP1.1, VfpGlcT1.1, VfSTP5.1, VfpGlcT1.2, VfSWEET2.1, VfVINV2, VfSUS1, VfPGM1, VfSUT1.1, VfGPT1, VfSPS1, VfSPP1, VfPHS1, VfSUT4.1 and VfTMT1.1) were differentially expressed in both cultivars demonstrating their important roles in sugar accumulation. Most of these genes were upregulated in the leaves of Bachar under moderate and severe stress, which could lead to increase glycolysis and tricarboxylic acid cycle in order to accelerate energy production, necessary to increase osmotic regulation and consequently enhancing the osmotic stress tolerance in that cultivar. Overall, sugars accumulation ability can be used as a useful indicator for the osmotic stress tolerant potential in faba bean breeding programs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s12298-021-00935-1).
Collapse
Affiliation(s)
- Emna Ghouili
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, BP 43, 1082 Tunis-Mahrajène, Tunisia
| | - Moez Jebara
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Yassine Hidri
- Laboratory of Integrated Olive Production, Olive Tree Institute, BP 208, 1082 Tunis-Mahrajène, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Yordan Muhovski
- Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, BP 234, 5030 Gembloux, Belgium
| | - Salwa Harzalli Jebara
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Mohamed El Ayed
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Souhir Abdelkarim
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Oumaima Chaieb
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Fatma Kalleli
- Department of Horticultural Sciences and Vegetable Crops, High Institute of Agronomy of Chott Mariem, University of Sousse, 4042 Sousse, Tunisia
| | - Mahmoud M’hamdi
- Department of Horticultural Sciences and Vegetable Crops, High Institute of Agronomy of Chott Mariem, University of Sousse, 4042 Sousse, Tunisia
| | - Fatma Souissi
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
24
|
Zhang Z, Huang J, Gao Y, Liu Y, Li J, Zhou X, Yao C, Wang Z, Sun Z, Zhang Y. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7241-7256. [PMID: 32822501 PMCID: PMC7906786 DOI: 10.1093/jxb/eraa380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
Water stress is a primary trigger for reducing grain number per spike in wheat during the reproductive period. However, under stress conditions, the responses of plant organs and the interactions between them at the molecular and physiological levels remain unclear. In this study, when water stress occurred at the young microspore stage, RNA-seq data indicated that the spike had 970 differentially expressed genes, while the stem, comprising the two internodes below the spike (TIS), had 382. Abscisic acid (ABA) signal transduction genes were down-regulated by water stress in both these tissues, although to a greater extent in the TIS than in the spike. A reduction in sucrose was observed, and was accompanied by increases in cell wall invertase (CWIN) and sucrose:sucrose 1-fructosyl-transferase (1-SST) activities. Hexose and fructan were increased in the TIS but decreased in the spike. ABA was increased in the spike and TIS, and showed significant positive correlation with CWIN and 1-SST activities in the TIS. Overall, our results suggest that water stress induces the conversion of sucrose to hexose by CWIN, and to fructan by 1-SST, due to increased down-regulation of ABA signal transduction related-genes in the TIS; this leads to deficient sucrose supply to the spike and a decrease in grain number.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yanmei Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinpeng Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chunsheng Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Heibei Province, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Heibei Province, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Heibei Province, China
- Correspondence:
| |
Collapse
|
25
|
Fu L, Wu J, Yang S, Jin Y, Liu J, Yang M, Rasheed A, Zhang Y, Xia X, Jing R, He Z, Xiao Y. Genome-wide association analysis of stem water-soluble carbohydrate content in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2897-2914. [PMID: 32594265 DOI: 10.1007/s00122-020-03640-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/19/2020] [Indexed: 05/14/2023]
Abstract
GWAS identified 36 potentially new loci for wheat stem water-soluble carbohydrate (WSC) contents and 13 pleiotropic loci affecting WSC and thousand-kernel weight. Five KASP markers were developed and validated. Water-soluble carbohydrates (WSC) reserved in stems contribute significantly to grain yield (GY) in wheat. However, knowledge of the genetic architecture underlying stem WSC content (SWSCC) is limited. In the present study, 166 diverse wheat accessions from the Yellow and Huai Valleys Winter Wheat Zone of China and five other countries were grown in four well-watered environments. SWSCC at 10 days post-anthesis (10DPA), 20DPA and 30DPA, referred as WSC10, WSC20 and WSC30, respectively, and thousand-kernel weight (TKW) were assessed. Correlation analysis showed that TKW was significantly and positively correlated with WSC10 and WSC20. Genome-wide association study was performed on SWSCC and TKW with 373,106 markers from the wheat 660 K and 90 K SNP arrays. Totally, 62 stable loci were detected for SWSCC, with 36, 24 and 19 loci for WSC10, WSC20 and WSC30, respectively; among these, 36 are potentially new, 16 affected SWSCC at two or three time-points, and 13 showed pleiotropic effects on both SWSCC and TKW. Linear regression showed clear cumulative effects of favorable alleles for increasing SWSCC and TKW. Genetic gain analyses indicated that pyramiding favorable alleles of SWSCC had simultaneously improved TKW. Kompetitive allele-specific PCR markers for five pleiotropic loci associated with both SWSCC and TKW were developed and validated. This study provided a genome-wide landscape of the genetic architecture of SWSCC, gave a perspective for understanding the relationship between WSC and GY and explored the theoretical basis for co-improvement of WSC and GY. It also provided valuable loci and markers for future breeding.
Collapse
Affiliation(s)
- Luping Fu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jingchun Wu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Shurong Yang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730000, Gansu, China
| | - Yirong Jin
- Dezhou Institute of Agricultural Sciences, Dezhou, 253000, Shandong, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, 518000, China
| | - Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ruilian Jing
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing, 100081, China.
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
26
|
Liu Y, Zhang P, Li M, Chang L, Cheng H, Chai S, Yang D. Dynamic responses of accumulation and remobilization of water soluble carbohydrates in wheat stem to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:262-270. [PMID: 32784106 DOI: 10.1016/j.plaphy.2020.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 05/16/2023]
Abstract
Remobilization of stem water soluble carbohydrates (WSC) can supply crucial carbon resources for grain filling against drought stress. Here, spatiotemporal variations in post-anthesis WSC levels and compensatory effects for grain weight from different internodes of the main stem were investigated, when exposed two wheat genotypes with contrasting drought tolerance to drought-stressed and well-watered conditions. Analysis of variance revealed that stem WSC levels were predominantly affected by days after anthesis, water stress and their interactions. Compared with well-watered conditions, the peak time of WSC levels was curtailed by 7-14 days in drought-stressed plants. Drought stress highly promoted WSC levels (ca. 20-30%) in upper internodes during the early period of grain filling, but significantly reduced WSC levels (ca. 40-90%) in all internodes during the late period. The drought-tolerant genotype LJ196 was more superior in WSC partitioning than the drought-prone genotype XD18, due to its stronger capacity for stem WSC remobilization, especially for pre-anthesis reserves under drought stress. This was associated with a better grain filling and compensation to the loss of grain weight. The WSC levels induced by drought stress formed a high-to-low concentration gradient from the lower to the upper internodes. Presumably, it might favorably drive WSC flux from stem to developing kernels, indicative of higher WSC remobilization efficiency generally in lower internodes than in upper ones. These findings provide the well-understanding of the spatiotemporal pattern of post-anthesis WSC accumulation and remobilization along stem internodes and their roles in the wheat grain-filling process under drought stress.
Collapse
Affiliation(s)
- Yuan Liu
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; School of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Peipei Zhang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China
| | - Mengfei Li
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; School of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Lei Chang
- School of Agronomy, Gansu Agricultural University, 730070, Lanzhou, Gansu, China
| | - Hongbo Cheng
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Shouxi Chai
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; School of Agronomy, Gansu Agricultural University, 730070, Lanzhou, Gansu, China
| | - Delong Yang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; School of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
27
|
Khadka K, Raizada MN, Navabi A. Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1149. [PMID: 32849707 PMCID: PMC7417477 DOI: 10.3389/fpls.2020.01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Abstract
There is a need to increase wheat productivity to meet the food demands of the ever-growing human population. However, accelerated development of high yielding varieties is hindered by drought, which is worsening due to climate change. In this context, germplasm diversity is central to the development of drought-tolerant wheat. Extensive collections of these genetic resources are conserved in national and international genebanks. In addition to phenotypic assessments, the use of advanced molecular techniques (e.g., genotype by sequencing) to identify quantitative trait loci (QTLs) for drought tolerance related traits is useful for genome- and marker-assisted selection based approaches. Therefore, to assist wheat breeders at a critical time, we searched the recent peer-reviewed literature (2011-current), first, to identify wheat germplasm observed to be useful genetic sources for drought tolerance, and second, to report QTLs associated with drought tolerance. Though many breeders limit the parents used in breeding programs to a familiar core collection, the results of this review show that larger germplasm collections have been sources of useful genes for drought tolerance in wheat. The review also demonstrates that QTLs for drought tolerance in wheat are associated with diverse physio-morphological traits, at different growth stages. Here, we also briefly discuss the potential of genome engineering/editing to improve drought tolerance in wheat. The use of CRISPR-Cas9 and other gene-editing technologies can be used to fine-tune the expression of genes controlling drought adaptive traits, while high throughput phenotyping (HTP) techniques can potentially accelerate the selection process. These efforts are empowered by wheat researcher consortia.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
28
|
Zhang Q, Liu H, Wu X, Wang W. Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC PLANT BIOLOGY 2020; 20:315. [PMID: 32620139 PMCID: PMC7350183 DOI: 10.1186/s12870-020-02526-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Frequently occurring drought stress negatively affects the production of maize worldwide. Numerous efforts have been made to develop drought-tolerant maize lines and to explore drought tolerant mechanisms in maize. However, there is a lack of comparative studies on transcriptomic changes between drought-tolerant and control maize lines. RESULTS In the present study, we have developed a drought-tolerant maize mutant (C7-2t) by irradiating the seeds of maize inbred line ChangC7-2 (C7-2) with 60Co-γ. Compared to its wild type C7-2, C7-2t exhibited a significantly delayed wilting and higher drought tolerance under both the controlled and field conditions, indicating its high water-holding ability. Transcriptomic profiling was performed to identify differentially expressed genes (DEGs) between C7-2 and C7-2t during drought. As a result, a total of 4552 DEGs were implied in drought tolerance of C7-2 and C7-2t. In particular, the expression of photosynthesis-related genes in C7-2 was inhibited, whereas these genes in C7-2t were almost unaffected under drought. Moreover, a specific set of the DEGs were involved in phenylpropanoid biosynthesis and taurine (hypotaurine) metabolism in C7-2t; these DEGs were enriched in cell components associated with membrane systems and cell wall biosynthesis. CONCLUSIONS The drought tolerance of C7-2t was largely due to its high water-holding ability, stable photosynthesis (for supporting osmoregulation) and strengthened biosynthesis of cell walls under drought conditions.
Collapse
Affiliation(s)
- Qinbin Zhang
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
29
|
Huang X, Luo W, Wu S, Long Y, Li R, Zheng F, Greiner S, Rausch T, Zhao H. Apoplastic maize fructan exohydrolase Zm-6-FEH displays substrate specificity for levan and is induced by exposure to levan-producing bacteria. Int J Biol Macromol 2020; 163:630-639. [PMID: 32622772 DOI: 10.1016/j.ijbiomac.2020.06.254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Fructan exohydrolases (FEHs) are structurally related to cell wall invertases. While the latter are ubiquitous in higher plants, the role of FEHs in non-fructan species has remained enigmatic. To explore possible roles of FEHs in maize, a full length putative Zm-6-FEH-encoding cDNA was cloned displaying high sequence similarity with cell wall invertases. For functional characterization, Zm-6-FEH protein was expressed in Picha pastoris and in Nicotiana benthamiana leaves. Enzyme activity of recombinant Zm-6-FEH protein showed a strong preference for levan as substrate. Expression profiling in maize seedlings revealed higher transcript amounts in the more mature leaf parts as compared to the growth zone at the base of the leaf, in good correlation with FEH enzyme activities. Subcellular localization analysis indicated Zm-6-FEH location in the apoplast. Noteworthy, incubation of leaf discs with levan and co-incubation with high levan-producing bacteria selectively up-regulated transcript levels of Zm-6-FEH, accompanied by an increase of 6-FEH enzyme activity. In summary, the results indicate that Zm-6-FEH, a novel fructan exohydrolase of a non-fructan species, may have a role in plant defense against levan-producing bacteria.
Collapse
Affiliation(s)
- Xiaojia Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Silin Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Rui Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Fenghua Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Huang X, Wang C, Hou J, Du C, Liu S, Kang J, Lu H, Xie Y, Guo T, Ma D. Coordination of carbon and nitrogen accumulation and translocation of winter wheat plant to improve grain yield and processing quality. Sci Rep 2020; 10:10340. [PMID: 32587292 PMCID: PMC7316831 DOI: 10.1038/s41598-020-67343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
The objective of this work was to characterize the accumulation of carbon (C) and nitrogen (N), and the translocation of wheat (Triticum aestivum L.) cultivars to achieve both high-quality and high-yield. Twenty-four wheat cultivars, including 12 cultivars containing high-quality gluten subunit 5 + 10 at Glu-D1, and 12 cultivars with no Glu-D1 5 + 10, were planted at Yuanyang and Xuchang in Henan Province, during 2016-2017, and 2017-2018 cropping seasons. Wheat cultivars containing Glu-D1 5 + 10 had an advantage in grain quality traits. Significant difference (P < 0.05) was observed for grain protein concentration (GPC) between 5 + 10 group and no 5 + 10 group. Grain yield (GY) was significantly correlated with kernel number (KN) (r = 0.778, P < 0.01), thousand-kernel weight (TKW) (r = 0.559, P < 0.01), dry matter accumulation at post-anthesis (r = 0.443, P < 0.05), and stem water-soluble carbohydrate (WSC) accumulation (r = 0.487, P < 0.05) and translocation amount (r = 0.490, P < 0.05). GPC, dough stability time (DST) and nitrogen agronomic efficiency (NAE) were significantly correlated with nitrogen accumulation (NAA) at maturity stage (r = 0.524, = 0.404, = 0.418, P < 0.01, < 0.05, < 0.05, respectively), and nitrogen translocation amount (r = 0.512, = 0.471, = 0.405, P < 0.05, < 0.05, < 0.05, respectively). These results suggest that good-quality, high-yield, and high-efficiency could achieve through the selection of high-quality wheat cultivars and coordination of C and N accumulation and translocation. High-quality gluten subunit gene Glu-D1 5 + 10 and stem WSC could be used as a selection index for breeding and production of high-quality and high-yield wheat.
Collapse
Affiliation(s)
- Xin Huang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junfeng Hou
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenyang Du
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sujun Liu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Kang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongfang Lu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tiancai Guo
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
31
|
Zhang P, Liu Y, Li M, Ma J, Wang C, Su J, Yang D. Abscisic acid associated with key enzymes and genes involving in dynamic flux of water soluble carbohydrates in wheat peduncle under terminal drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:719-728. [PMID: 32353677 DOI: 10.1016/j.plaphy.2020.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Remobilization of stem water soluble carbohydrates (WSC) can supply crucial carbon resources for grain filling under drought stress, while the regulatory metabolism associated with abscisic acid (ABA) is still limited. Two cultivars, LJ196 (drought-tolerant) and XD18 (drought-prone), were pot-grown under well-watered (WW) and drought-stressed (DS) conditions. Concentrations of WSC components and ABA, and fructan metabolizing enzymes and genes were investigated in peduncle after anthesis. When compared with those under the WW, LJ196 remained higher grain yield and grain-filling rate than XD18 under the DS. During the early period of grain filling (0-14 DAA), DS increased concentrations of total WSC and its components, but thereafter substantially reduced them. The gene expression levels and enzymatic activities of fructan 1-exohydrolases (1-FEH) and fructan 6-exohydrolases (6-FEH) showed similar trends, whereas those of fructan: fructan 1-fructosyltransferase (1-FFT), and sucrose: fructan 6-fructosyltransferase (6-SFT) were depressed and declined over the period of examination. LJ196 still showed higher levels of ABA and fructan metabolizing. The ABA concentration under the DS was positively and significantly correlated with total WSC and fructan concentration, and expression levels of these enzymes and genes as well, with more prominently with those of 6-FEH. Presumably, ABA could enhance fructan hydrolysis by strongly up-regulating the gene expression and enzymatic activity of 6-FEH to accelerate WSC remobilization. However, stem WSC induced by DS could be not fully remobilized to grains, due to its weaker correlation with grain-filling rate and finally indicating lower grain yield. The findings would provide useful information for wheat production under water-deficit environments.
Collapse
Affiliation(s)
- Peipei Zhang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China
| | - Yuan Liu
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mengfei Li
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Jingfu Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Delong Yang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
32
|
Volaire F, Morvan-Bertrand A, Prud’homme MP, Benot ML, Augusti A, Zwicke M, Roy J, Landais D, Picon-Cochard C. The resilience of perennial grasses under two climate scenarios is correlated with carbohydrate metabolism in meristems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:370-385. [PMID: 31557303 PMCID: PMC6913708 DOI: 10.1093/jxb/erz424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 05/30/2023]
Abstract
Extreme climatic events (ECEs) such as droughts and heat waves affect ecosystem functioning and species turnover. This study investigated the effect of elevated CO2 on species' resilience to ECEs. Monoliths of intact soil and their plant communities from an upland grassland were exposed to 2050 climate scenarios with or without an ECE under ambient (390 ppm) or elevated (520 ppm) CO2. Ecophysiological traits of two perennial grasses (Dactylis glomerata and Holcus lanatus) were measured before, during, and after ECE. At similar soil water content, leaf elongation was greater under elevated CO2 for both species. The resilience of D. glomerata increased under enhanced CO2 (+60%) whereas H. lanatus mostly died during ECE. D. glomerata accumulated 30% more fructans, which were more highly polymerized, and 4-fold less sucrose than H. lanatus. The fructan concentration in leaf meristems was significantly increased under elevated CO2. Their relative abundance changed during the ECE, resulting in a more polymerized assemblage in H. lanatus and a more depolymerized assemblage in D. glomerata. The ratio of low degree of polymerization fructans to sucrose in leaf meristems was the best predictor of resilience across species. This study underlines the role of carbohydrate metabolism and the species-dependent effect of elevated CO2 on the resilience of grasses to ECE.
Collapse
Affiliation(s)
| | | | | | - Marie-Lise Benot
- UCA, INRA, VetAgro Sup, UMR 874, Clermont-Ferrand, France
- INRA and Université de Bordeaux, UMR 1202 BIOGECO33610, Cestas, France
| | - Angela Augusti
- UCA, INRA, VetAgro Sup, UMR 874, Clermont-Ferrand, France
- CNR-Institute of Research on Terrestrial Ecosystems, Porano (TR), Italy
| | - Marine Zwicke
- UCA, INRA, VetAgro Sup, UMR 874, Clermont-Ferrand, France
| | - Jacques Roy
- CNRS, UPS 3248, Ecotron Européen de Montpellier, Montferrier-sur-Lez, France
| | - Damien Landais
- CNRS, UPS 3248, Ecotron Européen de Montpellier, Montferrier-sur-Lez, France
| | | |
Collapse
|
33
|
Tshikunde NM, Mashilo J, Shimelis H, Odindo A. Agronomic and Physiological Traits, and Associated Quantitative Trait Loci (QTL) Affecting Yield Response in Wheat ( Triticum aestivum L.): A Review. FRONTIERS IN PLANT SCIENCE 2019; 10:1428. [PMID: 31749826 PMCID: PMC6848381 DOI: 10.3389/fpls.2019.01428] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/15/2019] [Indexed: 05/21/2023]
Abstract
Enhanced grain yield has been achieved in bread wheat (Triticum aestivum L.) through development and cultivation of superior genotypes incorporating yield-related agronomic and physiological traits derived from genetically diverse and complementary genetic pool. Despite significant breeding progress, yield levels in wheat have remained relatively low and stagnant under marginal growing environments. There is a need for genetic improvement of wheat using yield-promoting morpho-physiological attributes and desired genotypes under the target production environments to meet the demand for food and feed. This review presents breeding progress in wheat for yield gains using agronomic and physiological traits. Further, the paper discusses globally available wheat genetic resources to identify and select promising genotypes possessing useful agronomic and physiological traits to enhance water, nutrient-, and radiation-use efficiency to improve grain yield potential and tolerance to abiotic stresses (i.e. elevated CO2, high temperature, and drought stresses). Finally, the paper highlights quantitative trait loci (QTL) linked to agronomic and physiological traits to aid breeding of high-performing wheat genotypes.
Collapse
Affiliation(s)
- Nkhathutsheleni Maureen Tshikunde
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Jacob Mashilo
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Limpopo Department of Agriculture and Rural Development, Research Services, Towoomba Research Station, Bela-Bela, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Alfred Odindo
- School of Agricultural, Earth and Environmental Sciences, Discipline of Crop Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
34
|
Marček T, Hamow KÁ, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS One 2019; 14:e0212411. [PMID: 30779775 PMCID: PMC6380608 DOI: 10.1371/journal.pone.0212411] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereals, whose growth and development is strongly limited by drought. This study investigated the physiological and metabolic response of six winter wheat cultivars to drought with the emphasis on the induction of dominant metabolites affected by the treatment and genotypes or both. The plants were exposed to a moderate (non-lethal) drought stress, which was induced by withholding watering for six days under controlled greenhouse conditions. A decline in CO2 assimilation (Pn) and transpiration rate, stomata closure, a decrease in relative water content (RWC) and increase of malondialdehyde content were observed in drought-treated plants of all cultivars. These changes were most pronounced in Ellvis, while Soissons was able to retain the higher RWC and Pn. Among the studied metabolites, sugars (sucrose, glucose, fructose, several disaccharides), organic acids (malic acid, oxalic acids), amino acids (proline, threonine, gamma-aminobutyric acid (GABA), glutamine) and sugar alcohols such as myo-inositol accumulated to higher levels in the plants exposed to drought stress in comparison with the control. The accumulation of several metabolites in response to drought differed between the genotypes. Drought induced the production of sucrose, malic acid and oxalic acid, unknown organic acid 1, unknown disaccharide 1, 2 and 3, GABA, L-threonine, glutamic acid in four (Soissons, Žitarka, Antonija or Toborzó) out of six genotypes. In addition, Soissons, which was the most drought tolerant genotype, accumulated the highest amount of unknown disaccharide 5, galactonic and phosphoric acids. The two most drought sensitive cultivars, Srpanjka and Ellvis, demonstrated different metabolic adjustment in response to the stress treatment. Srpanjka responded to drought by increasing the amount of glucose and fructose originated from hydrolyses of sucrose and accumulating unidentified sugar alcohols 1 and 2. In Ellvis, drought caused inhibition of photosynthetic carbon metabolism, as evidence by the decreased Pn, gs, RWC and accumulation levels of sugar metabolites (sucrose, glucose and fructose). The results revealed the differences in metabolic response to drought among the genotypes, which drew attention on metabolites related with general response and on those metabolites which are part of specific response that may play an important role in drought tolerance.
Collapse
Affiliation(s)
- Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kamirán Áron Hamow
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Végh
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|