1
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
2
|
Fukudome M, Uchiumi T. Regulation of nitric oxide by phytoglobins in Lotus japonicus is involved in mycorrhizal symbiosis with Rhizophagus irregularis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111984. [PMID: 38220094 DOI: 10.1016/j.plantsci.2024.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Various reactive molecular species are generated in plant-microbe interactions, and these species participate in defense and symbiotic responses. Leguminous plants successfully establish symbiosis by maintaining an appropriate level of nitric oxide (NO), which is generated in the roots and nodules during root nodule symbiosis. Phytoglobin (plant hemoglobin) controls NO levels in plants. In this study, we investigated mycorrhizal symbiosis, which occurs in more than 80% of land plants, between Rhizophagus irregularis and Lotus japonicus to clarify the involvement of phytoglobin-mediated NO regulation. The mycorrhizae of L. japonicus exhibited higher NO levels in the presence of R. irregularis than in its absence, especially at the infection site. LjGlb1-1, a phytoglobin that regulates NO level in L. japonicus, was upregulated during symbiosis with R. irregularis. In transformed hairy roots carrying the ProLjGlb1-1:GUS construct, LjGlb1-1 expression was observed at the R. irregularis infection site. We further examined the symbiotic phenotypes of L. japonicus lines with high and low LjGlb1-1 expression with R. irregularis. During mycorrhizal symbiosis, the high LjGlb1-1 expression line exhibited better growth than the wild-type, whereas the low expression line exhibited poor growth. In addition, the expression of LjPT4, a phosphate transporter specific to mycorrhizal symbiosis, was higher in the high LjGlb1-1 expression line, whereas that of the tubulin gene of R. irregularis was lower in the low LjGlb1-1 expression line than in the wild-type. These results confirm that NO regulation by LjGlb1-1 is involved in mycorrhizal symbiosis in L. japonicus, as it is reportedly in nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
3
|
Yamauchi T, Sumi K, Morishita H, Nomura Y. Root anatomical plasticity contributes to the different adaptive responses of two Phragmites species to water-deficit and low-oxygen conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23231. [PMID: 38479793 DOI: 10.1071/fp23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The runner reed (Phragmites japonica ) is the dominant species on riverbanks, whereas the common reed (Phragmites australis ) thrives in continuously flooded areas. Here, we aimed to identify the key root anatomical traits that determine the different adaptative responses of the two Phragmites species to water-deficit and low-oxygen conditions. Growth measurements revealed that P . japonica tolerated high osmotic conditions, whereas P . australis preferred low-oxygen conditions. Root anatomical analysis revealed that the ratios of the cortex to stele area and aerenchyma (gas space) to cortex area in both species increased under low-oxygen conditions. However, a higher ratio of cortex to stele area in P . australis resulted in a higher ratio of aerenchyma to stele, which includes xylem vessels that are essential for water and nutrient uptakes. In contrast, a lower ratio of cortex to stele area in P . japonica could be advantageous for efficient water uptake under high-osmotic conditions. In addition to the ratio of root tissue areas, rigid outer apoplastic barriers composed of a suberised exodermis may contribute to the adaptation of P . japonica and P . australis to water-deficit and low-oxygen conditions, respectively. Our results suggested that root anatomical plasticity is essential for plants to adapt and respond to different soil moisture levels.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan
| | - Kurumi Sumi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiromitsu Morishita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | |
Collapse
|
4
|
Daniel K, Hartman S. How plant roots respond to waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:511-525. [PMID: 37610936 DOI: 10.1093/jxb/erad332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Plant submergence is a major abiotic stress that impairs plant performance. Under water, reduced gas diffusion exposes submerged plant cells to an environment that is enriched in gaseous ethylene and is limited in oxygen (O2) availability (hypoxia). The capacity for plant roots to avoid and/or sustain critical hypoxia damage is essential for plants to survive waterlogging. Plants use spatiotemporal ethylene and O2 dynamics as instrumental flooding signals to modulate potential adaptive root growth and hypoxia stress acclimation responses. However, how non-adapted plant species modulate root growth behaviour during actual waterlogged conditions to overcome flooding stress has hardly been investigated. Here we discuss how changes in the root growth rate, lateral root formation, density, and growth angle of non-flood adapted plant species (mainly Arabidopsis) could contribute to avoiding and enduring critical hypoxic conditions. In addition, we discuss current molecular understanding of how ethylene and hypoxia signalling control these adaptive root growth responses. We propose that future research would benefit from less artificial experimental designs to better understand how plant roots respond to and survive waterlogging. This acquired knowledge would be instrumental to guide targeted breeding of flood-tolerant crops with more resilient root systems.
Collapse
Affiliation(s)
- Kevin Daniel
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
5
|
Zhang J, Song F, Xu X, Xia T, Zhang X, Dong L, Yin D. Comprehensive evaluation of morphological and physiological responses of seventeen Crassulaceae species to waterlogging and drainage under temperate monsoon climate. BMC PLANT BIOLOGY 2024; 24:6. [PMID: 38163891 PMCID: PMC10759745 DOI: 10.1186/s12870-023-04676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Unpredictable rainfall frequently results in excess moisture, which is detrimental to the landscape because it interferes with the genetic, morphological, and physiological processes of plants, even though the majority of urban landscapes frequently experience moisture shortages. A study was conducted to analyze the effects of a 36-day waterlogging phase and a subsequent 12-day recovery period on the morpho-physiological responses of 17 Crassulaceae species with the goal of identifying those which were more tolerant of the conditions. Results revealed that waterlogging stress has an impact on all morpho-physiological parameters. Sensitive materials (S7, Hylotelephium telephium 'Purple Emperor' and S15, S. sexangulare) showed severe ornamental quality damage, mortality, decreases in total dry biomass, root-shoot ratio, and chlorophyll content, as well as higher MDA concentrations. Lower reductions in these parameters, along with improved antioxidant enzyme activities and greater recovery capabilities after drainage, were observed in the most tolerant materials S2 (H. spectabile 'Brilliant'), S3 (H. spectabile 'Carl'), and S5 (H. telephium 'Autumn Joy'). Furthermore, with the exception of early death materials (S7 and S15), all materials showed varying intensities of adventitious root formation in response to waterlogging. The 17 species were divided into 4 clusters based on the comprehensive evaluation value. The first group included S1-S3, S5-S6, S8-S12, which were waterlogged tolerant with the highest values (0.63-0.82). S14 belongs to the intermediate waterlogging tolerant. S4, S13, S16, and S17 were clustered into the low waterlogging-tolerant group. S7 and S15 were the most susceptible to waterlogging. The survival and success of Crassulaceae species (especially, the first and second cluster), throughout this prolonged period of waterlogging (36 days) and recovery were attributed to a combination of physiological and morphological responses, indicating that they are an appealing species for the creation of rain gardens or obstructed drainage locations.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Jianzhu University, Jinan, China
| | - Feng Song
- Shandong Jianzhu University, Jinan, China
| | - Xiaolei Xu
- Shandong Jianzhu University, Jinan, China
| | | | - Xu Zhang
- Shandong Jianzhu University, Jinan, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dejie Yin
- Shandong Jianzhu University, Jinan, China.
| |
Collapse
|
6
|
Tamaru S, Goto K, Sakagami JI. Spatial O 2 Profile in Coix lacryma-jobi and Sorghum bicolor along the Gas Diffusion Pathway under Waterlogging Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 13:3. [PMID: 38202311 PMCID: PMC10780499 DOI: 10.3390/plants13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
While internal aeration in plants is critical for adaptation to waterlogging, there is a gap in understanding the differences in oxygen diffusion gradients from shoots to roots between hypoxia-tolerant and -sensitive species. This study aims to elucidate the differences in tissue oxygen concentration at various locations on the shoot and root between a hypoxia-tolerant species and a -sensitive species using a microneedle sensor that allows for spatial oxygen profiling. Job's tears, a hypoxia-tolerant species, and sorghum, a hypoxia-susceptible species, were tested. Plants aged 10 days were acclimated to a hypoxic agar solution for 12 days. Oxygen was profiled near the root tip, root base, root shoot junction, stem, and leaf. An anatomical analysis was also performed on the roots used for the O2 profile. The oxygen partial pressure (pO2) values at the root base and tip of sorghum were significantly lower than that of the root of Job's tears. At the base of the root of Job's tears, pO2 rapidly decreased from the root cortex to the surface, indicating a function to inhibit oxygen leakage. No significant differences in pO2 between the species were identified in the shoot part. The root cortex to stele ratio was significantly higher from the root tip to the base in Job's tears compared to sorghum. The pO2 gradient began to differ greatly at the root shoot junction and root base longitudinally, and between the cortex and stele radially, between Job's tears and sorghum. Differences in the root oxygen retention capacity and the cortex to stele ratio are considered to be related to differences in pO2.
Collapse
Affiliation(s)
- Shotaro Tamaru
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City 890-0065, Japan; (S.T.)
| | - Keita Goto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City 890-0065, Japan; (S.T.)
| | - Jun-Ichi Sakagami
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City 890-0065, Japan; (S.T.)
- Faculty of Agriculture, Kagoshima University, Kagoshima City 890-0065, Japan
| |
Collapse
|
7
|
Hill RD, Igamberdiev AU, Stasolla C. Preserving root stem cell functionality under low oxygen stress: the role of nitric oxide and phytoglobins. PLANTA 2023; 258:89. [PMID: 37759033 DOI: 10.1007/s00425-023-04246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
MAIN CONCLUSION The preservation of quiescent center stem cell integrity in hypoxic roots by phytoglobins is exercised through their ability to scavenge nitric oxide and attenuate its effects on auxin transport and cell degradation. Under low oxygen stress, the retention or induction of phytoglobin expression maintains cell viability while loss or lack of induction of phytoglobin leads to cell degradation. Plants have evolved unique attributes to ensure survival in the environment in which they must exist. Common among the attributes is the ability to maintain stem cells in a quiescent (or low proliferation) state in unfriendly environments. From the seed embryo to meristematic regions of the plant, quiescent stem cells exist to regenerate the organism when environmental conditions are suitable to allow plant survival. Frequently, plants dispose of mature cells or organs in the process of acclimating to the stresses to ensure survival of meristems, the stem cells of which are capable of regenerating cells and organs that have been sacrificed, a feature not generally available to mammals. Most of the research on plant stress responses has dealt with how mature cells respond because of the difficulty of specifically examining plant meristem responses to stress. This raises the question as to whether quiescent stem cells behave in a similar fashion to mature cells in their response to stress and what factors within these critical cells determine whether they survive or degrade when exposed to environmental stress. This review attempts to examine this question with respect to the quiescent center (QC) stem cells of the root apical meristem. Emphasis is put on how varying levels of nitric oxide, influenced by the expression of phytoglobins, affect QC response to hypoxic stress.
Collapse
Affiliation(s)
- Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Graska J, Fidler J, Gietler M, Prabucka B, Nykiel M, Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. BIOLOGY 2023; 12:927. [PMID: 37508359 PMCID: PMC10376146 DOI: 10.3390/biology12070927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.
Collapse
Affiliation(s)
- Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| |
Collapse
|
9
|
Gao J, Zhuang S, Gui R. Subsurface aeration mitigates organic material mulching-induced anaerobic stress via regulating hormone signaling in Phyllostachys praecox roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1121604. [PMID: 36938059 PMCID: PMC10014838 DOI: 10.3389/fpls.2023.1121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Organic material mulching has been used extensively to allow Phyllostachys praecox to promote growth and development of shoots. However, the bamboo forest always showed a significant degradation, probably due to anaerobic damage caused by the mulching after several years. Therefore, we have innovatively proposed an improvement measure to aerate the underground pipes for the first time. We investigated the role of subsurface pipe aeration in regulating root hypoxia to reduce the stress and to identify the degradation mechanism. Results showed that aeration increased oxygen concentration, shoot yield and root growth compared with mulching, and the aeration enhanced the concentration of indole-3-acetic acid (IAA) and the expression of Aux/IAAs (Aux1, Aux2, Aux3, and Aux4). Aeration reduced gibberellin (GA), ethylene (ETH), and abscisic acid (ABA) contents as well as anaerobic enzyme activities (alanine transaminase, AlaAT; alcohol dehydrogenase, ADH; pyruvate decarboxylase, PDC; and lactate dehydrogenase, LDH), which alleviated root damage in anoxic conditions. Furthermore, correlation showed that the activities of ADH, LDH, PDC, and AlaAT showed significant linear correlations with soil oxygen levels. RDA analyses showed that ABA, IAA, and ETH were found as the key driving hormones of Aux/IAAs in the root of the forest mulched with organic material. Here we show that subsurface aeration increases soil oxygen concentration, shoot yield, root growth and regulates phytohormone concentrations and Aux/IAAs expression, which reduces anaerobic enzyme activities. Consequently, subsurface pipe aeration is an effective measure to mitigate the degradation of bamboo forests caused by soil hypoxia that results from organic material mulching.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Renyi Gui
- State Key Lab of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
10
|
Watercore Pear Fruit Respiration Changed and Accumulated γ-Aminobutyric Acid (GABA) in Response to Inner Hypoxia Stress. Genes (Basel) 2022; 13:genes13060977. [PMID: 35741739 PMCID: PMC9222961 DOI: 10.3390/genes13060977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023] Open
Abstract
Watercore is a physiological disorder which often occurs on the pear fruit and the excessive accumulation of sorbitol in fruit intercellular space is considered to be an important cause of watercore. Our previous studies found that the metabolic disorder of sugars may lead to hypoxia stress and disturb respiration, resulting in aggravated fruit rot and the formation of bitter substances. However, the further changes of respiration and the fruit response mechanism are not well understood. A comprehensive transcriptome analysis of ‘Akibae’ pear watercore fruit was performed in this study. The transcriptome results revealed the hypoxia stress significantly induced the expression of several key enzymes in the TCA cycle and may lead to the accumulation of succinic acid in watercore fruit. The glycolytic pathway was also significantly enhanced in watercore fruit. Moreover, the γ-aminobutyric acid (GABA) synthesis related genes, glutamate decarboxylase (GAD) genes and polyamine oxidase (PAO) genes, which associated with the GABA shunt and the polyamine degradation pathway were significantly upregulated. In addition, the PpGAD1 transcript level increased significantly along with the increase of GAD activity and GABA content in the watercore fruit. Above all, these findings suggested that the hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites succinic acid and GABA and that PpGAD1 may play a key role in response to watercore by controlling the GABA synthesis.
Collapse
|
11
|
Liu C, Zeng Y, Su Z, Zhou D. Physiological Responses of Typical Wetland Plants Following Flooding Process—From an Eco-Hydrological Model Perspective. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.721244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaerobics increase resistance to gas transport and microbial activity in flooded soils. This may result in the presence of aerenchyma in the roots of some wetland plants. Increased aerenchyma airspaces enable oxygen to be transported from the above-ground plant parts to the submerged roots and rhizosphere. Nevertheless, there is still a lack of studies linking field experiments and eco-hydrological modeling to the parameterization of the physiological responses of typical wetland plant species to natural flooding events. Furthermore, from the modeling perspective, the contribution of aerenchyma was not sufficiently considered. The goal of this study was to develop and apply an eco-hydrological model capable of simulating various patterns of plant physiological responses to natural flooding events based on key processes of root oxygen diffusion and aerenchyma functioning in a variably-saturated wetland soil environment. Eco-hydrological experiments were conducted accordingly, with surface water level, root-zone soil water content, soil temperature, leaf net photosynthesis rate and root morphology monitored simultaneously in situ at a site dominated by meadow species Deyeuxia angustifolia (Kom.) Y. L. Chang and invaded shrub species Salix rosmarinifolia Linn. var. brachypoda (Trautv.et Mey.) Y.L. Chou in a typical natural floodplain wetland. The results are as follows: (1) Root oxygen respiration rates are strongly correlated with leaf net photosynthesis rates of the two plant types, particularly under flooding conditions during the growing season; (2) Meadow species with a preference for wet microhabitats has a competitive advantage over first-year invading shrub species during flooding events; and (3) an aerenchyma sub-model could improve the eco-hydrological model’s accuracy in capturing plant physiological responses. These findings have the potential to contribute to the management of wetland and its restorations.
Collapse
|
12
|
Zhan Y, Yan N, Miao X, Li Q, Chen C. Different Responses of Soil Environmental Factors, Soil Bacterial Community, and Root Performance to Reductive Soil Disinfestation and Soil Fumigant Chloropicrin. Front Microbiol 2021; 12:796191. [PMID: 34975820 PMCID: PMC8714892 DOI: 10.3389/fmicb.2021.796191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Reductive soil disinfestation (RSD) and soil fumigant chloropicrin (SFC) are two common agricultural strategies for the elimination of soil-borne pathogens. However, the differences in soil environmental factors, soil bacterial microbiome, and root performance between SFC and RSD are poorly understood. In this study, three soil treatments, untreated control (CK), SFC with 0.5 t⋅ha–1 chloropicrin, and RSD with 15 t⋅ha–1 animal feces, were compared. We evaluated their effects on soil environmental factors, bacterial community structure, and root activity using chemical analysis and high-throughput sequencing. RSD treatment improved soil composition structure, bacterial diversity, and root performance to a greater extent. Carbon source utilization preference and bacterial community structure were strikingly altered by SFC and RSD practices. Bacterial richness, diversity, and evenness were notably lowered in the SFC- and RSD-treated soil compared with the CK-treated soil. However, RSD-treated soil harbored distinct unique and core microbiomes that were composed of more abundant and diverse potentially disease-suppressive and organic-decomposable agents. Also, soil bacterial diversity and composition were closely related to soil physicochemical properties and enzyme activity, of which pH, available Na (ANa), available Mg (AMg), available Mn (AMn), total Na (TNa), total Ca (TCa), total Cu (TCu), total Sr (TSr), urease (S-UE), acid phosphatase (S-ACP), and sucrase (S-SC) were the main drivers. Moreover, RSD treatment also significantly increased ginseng root activity. Collectively, these results suggest that RSD practices could considerably restore soil nutrient structure and bacterial diversity and improve root performance, which can be applied as a potential agricultural practice for the development of disease-suppressive soil.
Collapse
|
13
|
Beamer ZG, Routray P, Choi WG, Spangler MK, Lokdarshi A, Roberts DM. Aquaporin family lactic acid channel NIP2;1 promotes plant survival under low oxygen stress in Arabidopsis. PLANT PHYSIOLOGY 2021; 187:2262-2278. [PMID: 34890456 PMCID: PMC8644545 DOI: 10.1093/plphys/kiab196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 05/05/2023]
Abstract
Under anaerobic stress, Arabidopsis thaliana induces the expression of a collection of core hypoxia genes that encode proteins for an adaptive response. Among these genes is NIP2;1, which encodes a member of the "Nodulin 26-like Intrinsic Protein" (NIP) subgroup of the aquaporin superfamily of membrane channel proteins. NIP2;1 expression is limited to the "anoxia core" region of the root stele under normal growth conditions, but shows substantial induction (up to 1,000-fold by 2-4 h of hypoxia) by low oxygen stress, and accumulation in all root tissues. During hypoxia, NIP2;1-GFP accumulates predominantly on the plasma membrane by 2 h, is distributed between the plasma and internal membranes during sustained hypoxia, and remains elevated in root tissues through 4 h of reoxygenation recovery. In response to hypoxia challenge, T-DNA insertion mutant nip2;1 plants exhibit elevated lactic acid within root tissues, reduced efflux of lactic acid, and reduced acidification of the external medium compared to wild-type plants. Previous biochemical evidence demonstrates that NIP2;1 has lactic acid channel activity, and our work supports the hypothesis that NIP2;1 prevents lactic acid toxicity by facilitating release of cellular lactic acid from the cytosol to the apoplast, supporting eventual efflux to the rhizosphere. In evidence, nip2;1 plants demonstrate poorer survival during argon-induced hypoxia stress. Expressions of the ethanolic fermentation transcript Alcohol Dehydrogenase1 and the core hypoxia-induced transcript Alanine Aminotransferase1 are elevated in nip2;1, and expression of the Glycolate Oxidase3 transcript is reduced, suggesting NIP2;1 lactic acid efflux regulates other pyruvate and lactate metabolism pathways.
Collapse
Affiliation(s)
- Zachary G Beamer
- Department of Biochemistry and Cellular, and Molecular Biology, the University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, Nevada 89557, USA
| | - Margaret K Spangler
- Department of Biochemistry and Cellular, and Molecular Biology, the University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ansul Lokdarshi
- Department of Biochemistry and Cellular, and Molecular Biology, the University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
14
|
Jiménez JDLC, Pellegrini E, Pedersen O, Nakazono M. Radial Oxygen Loss from Plant Roots—Methods. PLANTS 2021; 10:plants10112322. [PMID: 34834684 PMCID: PMC8622749 DOI: 10.3390/plants10112322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
In flooded soils, an efficient internal aeration system is essential for root growth and plant survival. Roots of many wetland species form barriers to restrict radial O2 loss (ROL) to the rhizosphere. The formation of such barriers greatly enhances longitudinal O2 diffusion from basal parts towards the root tip, and the barrier also impedes the entry of phytotoxic compounds produced in flooded soils into the root. Nevertheless, ROL from roots is an important source of O2 for rhizosphere oxygenation and the oxidation of toxic compounds. In this paper, we review the methodological aspects for the most widely used techniques for the qualitative visualization and quantitative determination of ROL from roots. Detailed methodological approaches, practical set-ups and examples of ROL from roots with or without barriers to ROL are included. This paper provides practical knowledge relevant to several disciplines, including plant–soil interactions, biogeochemistry and eco-physiological aspects of roots and soil biota.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan;
- Correspondence:
| | - Elisa Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy;
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, DK2100 Copenhagen, Denmark;
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, DK2100 Copenhagen, Denmark;
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan;
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
15
|
León J, Castillo MC, Gayubas B. The hypoxia-reoxygenation stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5841-5856. [PMID: 33367851 PMCID: PMC8355755 DOI: 10.1093/jxb/eraa591] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 05/04/2023]
Abstract
Plants are very plastic in adapting growth and development to changing adverse environmental conditions. This feature will be essential for plants to survive climate changes characterized by extreme temperatures and rainfall. Although plants require molecular oxygen (O2) to live, they can overcome transient low-O2 conditions (hypoxia) until return to standard 21% O2 atmospheric conditions (normoxia). After heavy rainfall, submerged plants in flooded lands undergo transient hypoxia until water recedes and normoxia is recovered. The accumulated information on the physiological and molecular events occurring during the hypoxia phase contrasts with the limited knowledge on the reoxygenation process after hypoxia, which has often been overlooked in many studies in plants. Phenotypic alterations during recovery are due to potentiated oxidative stress generated by simultaneous reoxygenation and reillumination leading to cell damage. Besides processes such as N-degron proteolytic pathway-mediated O2 sensing, or mitochondria-driven metabolic alterations, other molecular events controlling gene expression have been recently proposed as key regulators of hypoxia and reoxygenation. RNA regulatory functions, chromatin remodeling, protein synthesis, and post-translational modifications must all be studied in depth in the coming years to improve our knowledge on hypoxia-reoxygenation transition in plants, a topic with relevance in agricultural biotechnology in the context of global climate change.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| | - Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| | - Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
16
|
Wu Q, Su N, Huang X, Cui J, Shabala L, Zhou M, Yu M, Shabala S. Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis. PLANT COMMUNICATIONS 2021; 2:100188. [PMID: 34027398 PMCID: PMC8132176 DOI: 10.1016/j.xplc.2021.100188] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 05/03/2023]
Abstract
When plants are exposed to hypoxic conditions, the level of γ-aminobutyric acid (GABA) in plant tissues increases by several orders of magnitude. The physiological rationale behind this elevation remains largely unanswered. By combining genetic and electrophysiological approach, in this work we show that hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to cytosolic K+ homeostasis and Ca2+ signaling. We show that reduced O2 availability affects H+-ATPase pumping activity, leading to membrane depolarization and K+ loss via outward-rectifying GORK channels. Hypoxia stress also results in H2O2 accumulation in the cell that activates ROS-inducible Ca2+ uptake channels and triggers self-amplifying "ROS-Ca hub," further exacerbating K+ loss via non-selective cation channels that results in the loss of the cell's viability. Hypoxia-induced elevation in the GABA level may restore membrane potential by pH-dependent regulation of H+-ATPase and/or by generating more energy through the activation of the GABA shunt pathway and TCA cycle. Elevated GABA can also provide better control of the ROS-Ca2+ hub by transcriptional control of RBOH genes thus preventing over-excessive H2O2 accumulation. Finally, GABA can operate as a ligand directly controlling the open probability and conductance of K+ efflux GORK channels, thus enabling plants adaptation to hypoxic conditions.
Collapse
Affiliation(s)
- Qi Wu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nana Su
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Corresponding author
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Corresponding author
| |
Collapse
|
17
|
Naidoo G. Waterlogging tolerance of the common reeds
Phragmites mauritianus
and
P. australis. Afr J Ecol 2021. [DOI: 10.1111/aje.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gonasageran Naidoo
- University of KwaZulu‐NatalSchool of Life Sciences Westville South Africa
| |
Collapse
|
18
|
Jiménez JDLC, Clode PL, Signorelli S, Veneklaas EJ, Colmer TD, Kotula L. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3279-3293. [PMID: 33543268 DOI: 10.1093/jxb/erab043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/01/2021] [Indexed: 05/25/2023]
Abstract
Lack of O2 and high concentrations of iron (Fe) and manganese (Mn) commonly occur in waterlogged soils. The development of a barrier to impede radial O2 loss (ROL) is a key trait improving internal O2 transport and waterlogging tolerance in plants. We evaluated the ability of the barrier to ROL to impede the entry of excess Fe into the roots of the waterlogging-tolerant grass Urochloa humidicola. Plants were grown in aerated or stagnant deoxygenated nutrient solution with 5 µM or 900 µM Fe. Quantitative X-ray microanalysis was used to determine cell-specific Fe concentrations at two positions behind the root apex in relation to ROL and the formation of apoplastic barriers. At a mature zone of the root, Fe was 'excluded' at the exodermis where a suberized lamella was evident, a feature also associated with a strong barrier to ROL. In contrast, the potassium (K) concentration was similar in all root cells, indicating that K uptake was not affected by apoplastic barriers. The hypothesis that the formation of a tight barrier to ROL impedes the apoplastic entry of toxic concentrations of Fe into the mature zones of roots was supported by the significantly higher accumulation of Fe on the outer side of the exodermis.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, CP 12900 Montevideo, Uruguay
| | - Erik J Veneklaas
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Yamauchi T, Pedersen O, Nakazono M, Tsutsumi N. Key root traits of Poaceae for adaptation to soil water gradients. THE NEW PHYTOLOGIST 2021; 229:3133-3140. [PMID: 33222170 PMCID: PMC7986152 DOI: 10.1111/nph.17093] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
Drought and flooding are contrasting abiotic stressors for plants. Evidence is accumulating for root anatomical traits being essential for the adaptation to drought or flooding. However, an integrated approach to comprehensively understand root anatomical traits has not yet been established. Here we analysed the root anatomical traits of 18 wild Poaceae species differing in adaptation to a range of soil water content. Regression model analyses revealed the optimal anatomical traits that were required by the plants to adapt to low or high soil water content. While the area and number of each root tissue (e.g. stele, cortex, xylem or aerenchyma) were not strongly correlated to the soil water content, the ratio of the root tissue areas (cortex to stele ratio (CSR), xylem to stele ratio (XSR) and aerenchyma to cortex ratio (ACR)) could fully explain the adaptations of the wild Poaceae species to the soil water gradients. Our results demonstrate that the optimal anatomical traits for the adaptations to soil water content can be determined by three indices (i.e. CSR, XSR and ACR), and thus we propose that these root anatomical indices can be used to improve the tolerance of crops to drought and flooding stresses.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Japan Science and Technology AgencyPRESTOKawaguchiSaitama332‐0012Japan
- Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyoTokyo113‐8657Japan
| | - Ole Pedersen
- Freshwater Biological LaboratoryDepartment of BiologyUniversity of CopenhagenUniversitetsparken 4, 3 floorCopenhagen2100Denmark
- UWA School of Agriculture and EnvironmentFaculty of ScienceThe University of Western AustraliaPerthWA6009Australia
| | - Mikio Nakazono
- UWA School of Agriculture and EnvironmentFaculty of ScienceThe University of Western AustraliaPerthWA6009Australia
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaAichi464‐8601Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyoTokyo113‐8657Japan
| |
Collapse
|
20
|
Manrique-Gil I, Sánchez-Vicente I, Torres-Quezada I, Lorenzo O. Nitric oxide function during oxygen deprivation in physiological and stress processes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:904-916. [PMID: 32976588 PMCID: PMC7876777 DOI: 10.1093/jxb/eraa442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 05/07/2023]
Abstract
Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.
Collapse
Affiliation(s)
- Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
- Correspondence:
| |
Collapse
|
21
|
Yamauchi T, Noshita K, Tsutsumi N. Climate-smart crops: key root anatomical traits that confer flooding tolerance. BREEDING SCIENCE 2021; 71:51-61. [PMID: 33762876 PMCID: PMC7973492 DOI: 10.1270/jsbbs.20119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 05/05/2023]
Abstract
Plants require water, but a deficit or excess of water can negatively impact their growth and functioning. Soil flooding, in which root-zone is filled with excess water, restricts oxygen diffusion into the soil. Global climate change is increasing the risk of crop yield loss caused by flooding, and the development of flooding tolerant crops is urgently needed. Root anatomical traits are essential for plants to adapt to drought and flooding, as they determine the balance between the rates of water and oxygen transport. The stele contains xylem and the cortex contains aerenchyma (gas spaces), which respectively contribute to water uptake from the soil and oxygen supply to the roots; this implies that there is a trade-off between the ratio of cortex and stele sizes with respect to adaptation to drought or flooding. In this review, we analyze recent advances in the understanding of root anatomical traits that confer drought and/or flooding tolerance to plants and illustrate the trade-off between cortex and stele sizes. Moreover, we introduce the progress that has been made in modelling and fully automated analyses of root anatomical traits and discuss how key root anatomical traits can be used to improve crop tolerance to soil flooding.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Koji Noshita
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Department of Biology, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
- Plant Frontier Research Center, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
22
|
Pedersen O, Sauter M, Colmer TD, Nakazono M. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. THE NEW PHYTOLOGIST 2021; 229:42-49. [PMID: 32045027 DOI: 10.1111/nph.16375] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 05/25/2023]
Abstract
Flooding causes oxygen deprivation in soils. Plants adapt to low soil oxygen availability by changes in root morphology, anatomy, and architecture to maintain root system functioning. Essential traits include aerenchyma formation, a barrier to radial oxygen loss, and outgrowth of adventitious roots into the soil or the floodwater. We highlight recent findings of mechanisms of constitutive aerenchyma formation and of changes in root architecture. Moreover, we use modelling of internal aeration to demonstrate the beneficial effect of increasing cortex-to-stele ratio on sustaining root growth in waterlogged soils. We know the genes for some of the beneficial traits, and the next step is to manipulate these genes in breeding in order to enhance the flood tolerance of our crops.
Collapse
Affiliation(s)
- Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, 2100, Copenhagen, Denmark
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mikio Nakazono
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
23
|
Keep Calm and Survive: Adaptation Strategies to Energy Crisis in Fruit Trees under Root Hypoxia. PLANTS 2020; 9:plants9091108. [PMID: 32867316 PMCID: PMC7570223 DOI: 10.3390/plants9091108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/05/2023]
Abstract
Plants are permanently facing challenges imposed by the environment which, in the context of the current scenario of global climate change, implies a constant process of adaptation to survive and even, in the case of crops, at least maintain yield. O2 deficiency at the rhizosphere level, i.e., root hypoxia, is one of the factors with the greatest impact at whole-plant level. At cellular level, this O2 deficiency provokes a disturbance in the energy metabolism which has notable consequences on the yield of plant crops. In this sense, although several physiological studies describe processes involved in plant adaptation to root hypoxia in woody fruit trees, with emphasis on the negative impacts on photosynthetic rate, there are very few studies that include -omics strategies for specifically understanding these processes in the roots of such species. Through a de novo assembly approach, a comparative transcriptome study of waterlogged Prunus spp. genotypes contrasting in their tolerance to root hypoxia was revisited in order to gain a deeper insight into the reconfiguration of pivotal pathways involved in energy metabolism. This re-analysis describes the classically altered pathways seen in the roots of woody fruit trees under hypoxia, but also routes that link them to pathways involved with nitrogen assimilation and the maintenance of cytoplasmic pH and glycolytic flow. In addition, the effects of root hypoxia on the transcription of genes related to the mitochondrial oxidative phosphorylation system, responsible for providing adenosine triphosphate (ATP) to the cell, are discussed in terms of their roles in the energy balance, reactive oxygen species (ROS) metabolism and aerenchyma formation. This review compiles key findings that help to explain the trait of tolerance to root hypoxia in woody fruit species, giving special attention to their strategies for managing the energy crisis. Finally, research challenges addressing less-explored topics in recovery and stress memory in woody fruit trees are pointed out.
Collapse
|
24
|
Pedersen O, Revsbech NP, Shabala S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3941-3954. [PMID: 32253437 DOI: 10.1093/jxb/eraa175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This Expert View provides an update on the recent development of new microsensors, and briefly summarizes some novel applications of existing microsensors, in plant biology research. Two major topics are covered: (i) sensors for gaseous analytes (O2, CO2, and H2S); and (ii) those for measuring concentrations and fluxes of ions (macro- and micronutrients and environmental pollutants such as heavy metals). We show that application of such microsensors may significantly advance understanding of mechanisms of plant-environmental interaction and regulation of plant developmental and adaptive responses under adverse environmental conditions via non-destructive visualization of key analytes with high spatial and/or temporal resolution. Examples included cover a broad range of environmental situations including hypoxia, salinity, and heavy metal toxicity. We highlight the power of combining microsensor technology with other advanced biophysical (patch-clamp, voltage-clamp, and single-cell pressure probe), imaging (MRI and fluorescent dyes), and genetic techniques and approaches. We conclude that future progress in the field may be achieved by applying existing microsensors for important signalling molecules such as NO and H2O2, by improving selectivity of existing microsensors for some key analytes (e.g. Na, Mg, and Zn), and by developing new microsensors for P.
Collapse
Affiliation(s)
- Ole Pedersen
- Department of Biology, University of Copenhagen, Denmark
- School of Agriculture and Environment, The University of Western Australia, Australia
| | - Niels Peter Revsbech
- Aarhus University Centre for Water Technology, Department of Bioscience, Aarhus University, Denmark
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, China
| |
Collapse
|
25
|
Di Bella CE, Kotula L, Striker GG, Colmer TD. Submergence tolerance and recovery in Lotus: Variation among fifteen accessions in response to partial and complete submergence. JOURNAL OF PLANT PHYSIOLOGY 2020; 249:153180. [PMID: 32422486 DOI: 10.1016/j.jplph.2020.153180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Several Lotus species are perennial forage legumes which tolerate waterlogging, but knowledge of responses to partial or complete shoot submergence is scant. We evaluated the responses of 15 Lotus accessions to partial and complete shoot submergence and variations in traits associated with tolerance and recovery after de-submergence. Accessions of Lotus tenuis, L. corniculatus, L. pedunculatus and L. japonicus were raised for 43 d and then subjected to aerated root zone (control), deoxygenated stagnant root zone with shoots in air (stagnant), stagnant root zone with partial (75 %) and complete submergence of shoots, for 7 d. The recovery ability from complete submergence was also assessed. We found inter- and intra-specific variations in the stem extension responses (i.e. promoted or restricted compared to controls) depending on water depth. Eight of 15 accessions promoted the stem extension when in partial submergence, while three of those eight (all L. tenuis accessions) had a restricted stem extension when under complete submergence. Two accessions (belonging to L. corniculatus and L. penduculatus species) also promoted the stem extension under complete submergence. The accessions that attained better recovery in terms of leaves produced after de-submergence, were those that had high leaf and root sugar concentration at de-submergence, and high thickness and persistence of gas films on leaves during submergence (all L. tenuis accessions). We conclude that all Lotus accessions were able to tolerate 7 d of partial and complete shoot submergence, despite adopting different stem extension responses.
Collapse
Affiliation(s)
- Carla E Di Bella
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia; ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina; UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia; ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
26
|
Colmer TD, Winkel A, Kotula L, Armstrong W, Revsbech NP, Pedersen O. Root O 2 consumption, CO 2 production and tissue concentration profiles in chickpea, as influenced by environmental hypoxia. THE NEW PHYTOLOGIST 2020; 226:373-384. [PMID: 31838743 DOI: 10.1111/nph.16368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Roots in flooded soils experience hypoxia, with the least O2 in the vascular cylinder. Gradients in CO2 across roots had not previously been measured. The respiratory quotient (RQ; CO2 produced : O2 consumed) is expected to increase as O2 availability declines. A new CO2 microsensor and an O2 microsensor were used to measure profiles across roots of chickpea seedlings in aerated or hypoxic conditions. Simultaneous, nondestructive flux measurements of O2 consumption, CO2 production, and thus RQ, were taken for roots with declining O2 . Radial profiling revealed severe hypoxia and c. 0.8 kPa CO2 within the root vascular cylinder. The distance penetrated by O2 into the roots was shorter at lower O2 . The gradient in CO2 was in the opposite direction to that of O2 , across the roots and diffusive boundary layer. RQ increased as external O2 was lowered. For chickpea roots in solution at air equilibrium, O2 was very low and CO2 was elevated within the vascular cylinder; the extent of the severely hypoxic core increased as external O2 was reduced. The increased RQ in roots in response to declining external O2 highlighted the shift from respiration to ethanolic fermentation as the severely hypoxic/anoxic core became a progressively greater proportion of the root tissues.
Collapse
Affiliation(s)
- Timothy David Colmer
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Anders Winkel
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100, Copenhagen, Denmark
| | - Lukasz Kotula
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - William Armstrong
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Biological Sciences, University of Hull, Kingston upon Hull, Yorkshire, HU6 7RX, UK
| | - Niels Peter Revsbech
- Department of Bioscience, Aarhus University Centre for Water Technology, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Ole Pedersen
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100, Copenhagen, Denmark
| |
Collapse
|
27
|
Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun 2019; 10:4020. [PMID: 31488841 PMCID: PMC6728379 DOI: 10.1038/s41467-019-12045-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.
Collapse
|