1
|
Rahimian R, Perlman K, Fakhfouri G, Mpai R, Richard VR, Hercher C, Penney L, Davoli MA, Nagy C, Zahedi RP, Borchers CH, Giros B, Turecki G, Mechawar N. Proteomic evidence of depression-associated astrocytic dysfunction in the human male olfactory bulb. Brain Behav Immun 2024; 122:110-121. [PMID: 39128570 DOI: 10.1016/j.bbi.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
The olfactory bulb (OB), a major structure of the limbic system, has been understudied in human investigations of psychopathologies such as depression. To explore more directly the molecular features of the OB in depression, a global comparative proteome analysis was carried out with human post-mortem OB samples from 11 males having suffered from depression and 12 healthy controls. We identified 188 differentially abundant proteins (with adjusted p < 0.05) between depressed cases and controls. Gene ontology and gene enrichment analyses suggested that these proteins are involved in biological processes including the complement and coagulation cascades. Cell type enrichment analysis displayed a significant reduction in several canonical astrocytic proteins in OBs from depressed patients. Furthermore, using RNA-fluorescence in-situ hybridization, we observed a decrease in the percentage of ALDH1L1+ cells expressing canonical astrocytic markers including ALDOC, NFIA, GJA1 (connexin 43) and SLC1A3 (EAAT1). These results are consistent with previous reports of downregulated astrocytic marker expression in other brain regions in depressed patients. We also conducted a comparative phosphoproteomic analysis of OB samples and found a dysregulation of proteins involved in neuronal and astrocytic functions. To determine whether OB astrocytic abnormalities is specific to humans, we also performed proteomics on the OB of socially defeated male mice, a commonly used model of depression. Cell-type specific analysis revealed that in socially defeated animals, the most striking OB protein alterations were associated with oligodendrocyte-lineage cells rather than with astrocytes, highlighting an important species difference. Overall, this study further highlights cerebral astrocytic abnormalities as a consistent feature of depression in humans.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Refilwe Mpai
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Christa Hercher
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Lucy Penney
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - René P Zahedi
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Pathology, McGill University, Montréal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Tsantilas KA, Merrihew GE, Robbins JE, Johnson RS, Park J, Plubell DL, Canterbury JD, Huang E, Riffle M, Sharma V, MacLean BX, Eckels J, Wu CC, Bereman MS, Spencer SE, Hoofnagle AN, MacCoss MJ. A Framework for Quality Control in Quantitative Proteomics. J Proteome Res 2024; 23:4392-4408. [PMID: 39248652 DOI: 10.1021/acs.jproteome.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow, from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at the protein and peptide levels allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and ProteomeXchange under the identifier PXD051318.
Collapse
Affiliation(s)
- Kristine A Tsantilas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Julia E Robbins
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jea Park
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Deanna L Plubell
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jesse D Canterbury
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Josh Eckels
- LabKey, 500 Union St #1000, Seattle, Washington 98101, United States
| | - Christine C Wu
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Sandra E Spencer
- Canada's Michael Smith Genome Sciences Centre (BC Cancer Research Institute), University of British Columbia, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Schaiter A, Hentschel A, Kleefeld F, Schuld J, Umathum V, Procida-Kowalski T, Nelke C, Roth A, Hahn A, Krämer HH, Ruck T, Horvath R, van der Ven PFM, Bartkuhn M, Roos A, Schänzer A. Molecular composition of skeletal muscle in infants and adults: a comparative proteomic and transcriptomic study. Sci Rep 2024; 14:22965. [PMID: 39362957 PMCID: PMC11450201 DOI: 10.1038/s41598-024-74913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
To gain a deeper understanding of skeletal muscle function in younger age and aging in elderly, identification of molecular signatures regulating these functions under physiological conditions is needed. Although molecular studies of healthy muscle have been conducted on adults and older subjects, there is a lack of research on infant muscle in terms of combined morphological, transcriptomic and proteomic profiles. To address this gap of knowledge, we performed RNA sequencing (RNA-seq), tandem mass spectrometry (LC-MS/MS), morphometric analysis and assays for mitochondrial maintenance in skeletal muscle biopsies from both, infants aged 4-28 months and adults aged 19-65 years. We identified differently expressed genes (DEGs) and differentially expressed proteins (DEPs) in adults compared to infants. The down-regulated genes in adults were associated with functional terms primarily related to sarcomeres, cellular maintenance, and metabolic, immunological and developmental processes. Thus, our study indicates age-related differences in the molecular signatures and associated functions of healthy skeletal muscle. Moreover, the findings assert that processes previously associated solely with aging are indeed part of development and healthy aging. Hence, combined findings of this study also indicate that age-dependent controls are crucial in muscle disease studies, as otherwise the comparative results may not be reliable.
Collapse
Affiliation(s)
| | - Andreas Hentschel
- Leibnitz Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Felix Kleefeld
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Vincent Umathum
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | | | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Pediatric Neurology, Justus-Liebig University Giessen, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany.
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Tsantilas KA, Merrihew GE, Robbins JE, Johnson RS, Park J, Plubell DL, Canterbury JD, Huang E, Riffle M, Sharma V, MacLean BX, Eckels J, Wu CC, Bereman MS, Spencer SE, Hoofnagle AN, MacCoss MJ. A framework for quality control in quantitative proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589318. [PMID: 38645098 PMCID: PMC11030400 DOI: 10.1101/2024.04.12.589318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at protein and peptide-level allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and on ProteomeXchange under the identifier PXD051318.
Collapse
Affiliation(s)
- Kristine A. Tsantilas
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Julia E. Robbins
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jea Park
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Deanna L. Plubell
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jesse D. Canterbury
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Washington 98195, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Brendan X. MacLean
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Josh Eckels
- LabKey, 500 Union St #1000, Seattle, Washington 98101, United States
| | - Christine C. Wu
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael S. Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607
| | - Sandra E. Spencer
- Canada’s Michael Smith Genome Sciences Centre (BC Cancer Research Institute), University of British Columbia, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| |
Collapse
|
5
|
Yannone SM, Tuteja V, Goleva O, Leung DYM, Stotland A, Keoseyan AJ, Hendricks NG, Van Eyk JE, Kreimer S. Blood to Biomarker Quantitation in Under One Hour with Rapid Proteomics using a Hyperthermoacidic Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596979. [PMID: 38853916 PMCID: PMC11160709 DOI: 10.1101/2024.06.01.596979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Multi-step multi-hour tryptic proteolysis has limited the utility of bottom-up proteomics for cases that require immediate quantitative information. The recently available hyperthermoacidic (HTA) protease "Krakatoa" digests samples in a single 5 to 30-minute step at pH 3 and >80 °C; conditions that disrupt most cells and tissues, denature proteins, and block disulfide reformation. The combination of quick single-step sample preparation with high throughput dual trapping column single analytical column (DTSC) liquid chromatography-mass spectrometry (LC-MS) achieves "Rapid Proteomics" in which the time from sample collection to actionable data is less than 1 hour. The presented development and systematic evaluation of this methodology found reproducible quantitation of over 160 proteins from just 1 microliter of whole blood. Furthermore, the preference of the HTA-protease for intact proteins over peptides allows for sensitive targeted quantitation of the Angiotensin I and II bioactive peptides in under half an hour. With these methods we analyzed serum and plasma from 53 individuals and quantified Angiotensin and proteins that were not detected with trypsin. This assessment of Rapid Proteomics suggests that concentration of circulating protein and peptide biomarkers could be measured in almost real-time by LC-MS. TOC Figure Rapid proteomics enables near real-time monitoring of circulating blood biomarkers. One microliter of blood is collected every 8 minutes, digested for 20 minutes, and then analyzed by targeted mass spectrometry for 8 minutes. This results in a 30-minute delay with datapoints every 8 minutes.
Collapse
|
6
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
7
|
Jiang X, Yeung D, Liu Y, Spicer V, Afshari H, Lao Y, Lin F, Krokhin O, Zahedi RP. Accelerating Proteomics Using Broad Specificity Proteases. J Proteome Res 2024; 23:1360-1369. [PMID: 38457694 DOI: 10.1021/acs.jproteome.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Trypsin is the gold-standard protease in bottom-up proteomics, but many sequence stretches of the proteome are inaccessible to trypsin and standard LC-MS approaches. Thus, multienzyme strategies are used to maximize sequence coverage in post-translational modification profiling. We present fast and robust SP3- and STRAP-based protocols for the broad-specificity proteases subtilisin, proteinase K, and thermolysin. All three enzymes are remarkably fast, producing near-complete digests in 1-5 min, and cost 200-1000× less than proteomics-grade trypsin. Using FragPipe resolved a major challenge by drastically reducing the duration of the required "unspecific" searches. In-depth analyses of proteinase K, subtilisin, and thermolysin Jurkat digests identified 7374, 8178, and 8753 unique proteins with average sequence coverages of 21, 29, and 37%, including 10,000s of amino acids not reported in PeptideAtlas' >2400 experiments. While we could not identify distinct cleavage patterns, machine learning could distinguish true protease products from random cleavages, potentially enabling the prediction of cleavage products. Finally, proteinase K, subtilisin, and thermolysin enabled label-free quantitation of 3111, 3659, and 4196 unique Jurkat proteins, which in our hands is comparable to trypsin. Our data demonstrate that broad-specificity proteases enable quantitative proteomics of uncharted areas of the proteome. Their fast kinetics may allow "on-the-fly" digestion of samples in the future.
Collapse
Affiliation(s)
- Xuehui Jiang
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Darien Yeung
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Yang Liu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Havva Afshari
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ying Lao
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Oleg Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| | - René P Zahedi
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, Manitoba R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, Manitoba R3E 0 V9, Canada
| |
Collapse
|
8
|
Torkamannejad S, Chang G, Aroge FA, Sun B. Single Isotopologue for In-Sample Calibration and Absolute Quantitation by LC-MS/MS. J Proteome Res 2024; 23:1351-1359. [PMID: 38445850 DOI: 10.1021/acs.jproteome.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Targeted mass spectrometry (MS)-based absolute quantitative analysis has been increasingly used in biomarker discovery. The ability to accurately measure the masses by MS enabled the use of isotope-incorporated surrogates having virtually identical physiochemical properties with the target analytes as calibrators. Such a unique capacity allowed for accurate in-sample calibration. Current in-sample calibration uses multiple isotopologues or structural analogues for both the surrogate and the internal standard. Here, we simplified this common practice by using endogenous light peptides as the internal standards and used a mathematical deduction of "heavy matching light, HML" to directly quantify an endogenous analyte. This method provides all necessary assay performance parameters in the authentic matrix, including the lower limit of quantitation (LLOQ) and intercept of the calibration curve, by using only a single isotopologue of the analyte. This method can be applied to the quantitation of proteins, peptides, and small molecules. Using this method, we quantified the efficiency of heart tissue digestion and recovery using sodium deoxycholate as a detergent and two spiked exogenous proteins as mimics of heart proteins. The results demonstrated the robustness of the assay.
Collapse
Affiliation(s)
- Soroush Torkamannejad
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Ge Chang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Fabusuyi A Aroge
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T0A3, Canada
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
9
|
Zhang G, Zhu TF. Mirror-image trypsin digestion and sequencing of D-proteins. Nat Chem 2024; 16:592-598. [PMID: 38238467 DOI: 10.1038/s41557-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/28/2023] [Indexed: 04/07/2024]
Abstract
The development of mirror-image biology systems and related applications is hindered by the lack of effective methods to sequence mirror-image (D-) proteins. Although natural-chirality (L-) proteins can be sequenced by bottom-up liquid chromatography-tandem mass spectrometry (LC-MS/MS), the sequencing of long D-peptides and D-proteins with the same strategy requires digestion by a site-specific D-protease before mass analysis. Here we apply solid-phase peptide synthesis and native chemical ligation to chemically synthesize a mirror-image version of trypsin, a widely used protease for site-specific protein digestion. Using mirror-image trypsin digestion and LC-MS/MS, we sequence a mirror-image large subunit ribosomal protein (L25) and a mirror-image Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), and distinguish between different mutants of D-Dpo4. We also perform writing and reading of digital information in a long D-peptide of 50 amino acids. Thus, mirror-image trypsin digestion in conjunction with LC-MS/MS may facilitate practical applications of D-peptides and D-proteins as potential therapeutic and informational tools.
Collapse
Affiliation(s)
- Guanwei Zhang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- School of Life Sciences, New Cornerstone Science Laboratory, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Ting F Zhu
- School of Life Sciences, New Cornerstone Science Laboratory, Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
10
|
Athamneh M, Daya N, Hentschel A, Gangfuss A, Ruck T, Marina AD, Schara‐Schmidt U, Sickmann A, Güttsches A, Deschauer M, Preusse C, Vorgerd M, Roos A. Proteomic studies in VWA1-related neuromyopathy allowed new pathophysiological insights and the definition of blood biomarkers. J Cell Mol Med 2024; 28:e18122. [PMID: 38652110 PMCID: PMC11037410 DOI: 10.1111/jcmm.18122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.
Collapse
Affiliation(s)
- Mohammed Athamneh
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Clinical Science, Faculty of MedicineYarmouk UniversityIrbidJordan
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Hentschel
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Andrea Gangfuss
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Tobias Ruck
- Department of Neurology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Ulrike Schara‐Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Albert Sickmann
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Anne‐Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Marcus Deschauer
- Department of NeurologyTechnical University of Munich, School of MedicineMunichGermany
| | - Corinna Preusse
- Institute of Neuropathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaCanada
| |
Collapse
|
11
|
Pugliese A, Della Marina A, de Paula Estephan E, Zanoteli E, Roos A, Schara-Schmidt U, Hentschel A, Azuma Y, Töpf A, Thompson R, Polavarapu K, Lochmüller H. Mutations in PTPN11 could lead to a congenital myasthenic syndrome phenotype: a Noonan syndrome case series. J Neurol 2024; 271:1331-1341. [PMID: 37923938 DOI: 10.1007/s00415-023-12070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
The RASopathies are a group of genetic rare diseases caused by mutations affecting genes involved in the RAS/MAPK (RAS-mitogen activated protein kinase) pathway. Among them, PTPN11 pathogenic variants are responsible for approximately 50% of Noonan syndrome (NS) cases and, albeit to a lesser extent, of Leopard syndrome (LPRD1), which present a few overlapping clinical features, such as facial dysmorphism, developmental delay, cardiac defects, and skeletal deformities. Motor impairment and decreased muscle strength have been recently reported. The etiology of the muscle involvement in these disorders is still not clear but probably multifactorial, considering the role of the RAS/MAPK pathway in skeletal muscle development and Acetylcholine Receptors (AChR) clustering at the neuromuscular junction (NMJ). We report, herein, four unrelated children carrying three different heterozygous mutations in the PTPN11 gene. Intriguingly, their phenotypic features first led to a clinical suspicion of congenital myasthenic syndrome (CMS), due to exercise-induced fatigability with a variable degree of muscle weakness, and serum proteomic profiling compatible with a NMJ defect. Moreover, muscle fatigue improved after treatment with CMS-specific medication. Although the link between PTPN11 gene and neuromuscular transmission is unconfirmed, an increasing number of patients with RASopathies are affected by muscle weakness and fatigability. Hence, NS or LPDR1 should be considered in children with suspected CMS but negative genetic workup for known CMS genes or additional symptoms indicative of NS, such as facial dysmorphism or intellectual disability.
Collapse
Affiliation(s)
- Alessia Pugliese
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Eduardo de Paula Estephan
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Department of Neurological Sciences, Psychiatry, and Medical Psychology, Sao Jose do Rio Preto State Medical School, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Andreas Roos
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, University of Newcastle, Newcastle Upon Tyne, UK
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Hentschel A, Piontek G, Dahlmann R, Findeisen P, Sakson R, Carbow P, Renné T, Reinders Y, Sickmann A. Highly sensitive therapeutic drug monitoring of infliximab in serum by targeted mass spectrometry in comparison to ELISA data. Clin Proteomics 2024; 21:16. [PMID: 38424496 PMCID: PMC10905900 DOI: 10.1186/s12014-024-09464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Presently, antibody concentration measurements for patients undergoing treatment are predominantly determined by ELISA, which still comes with known disadvantages. Therefore, our aim was to establish a targeted mass-spectrometric assay enabling the reproducible absolute quantification of peptides from the hypervariable and interaction regions of infliximab. METHODS Peptides of infliximab were measured post-trypsin digestion and subsequent separation on a Vanquish Horizon UHPLC coupled to a TSQ Altis Triple-Quad mass spectrometer. Normalization and absolute quantification were conducted using stable isotope-synthesized peptides. Calibration curves covering a range of 0.25-50 µg/ml were employed for quantitation. RESULTS We demonstrated the substantial influence of peptide selection, choice of hydrolase for digestion, and digestion time on absolute peptide yield (28-44% for peptide 1 and 64-97% for peptide 2). Furthermore, we showed that the generated calibration curves for absolute quantification were highly reproducible and robust (LLOQ1 0.72 µg/ml and LLOQ2 1.00 µg/ml) over several months. In comparison to ELISA values, the absolute values obtained by mass spectrometry often yielded lower results for both targeted peptides. CONCLUSIONS In this study, a semi-automated workflow was employed and tested with 8 patients and corresponding replicates (n = 3-4). We demonstrated the robust implementation of calibration curves for the absolute quantification of infliximab in patient samples, with coefficients of variation ranging from 0.5 to 9%. Taken together, we have developed a platform enabling the rapid (2 days of sample preparation and 30 min of measurement time per sample) and robust quantification of Infliximab antibody concentration in patients. The use of mass spectrometry also facilitates the straightforward expansion of the method to include additional antibody peptides.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Gina Piontek
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Rob Dahlmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | - Roman Sakson
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Phil Carbow
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany.
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
13
|
Mayr AL, Hummel K, Leitsch D, Razzazi-Fazeli E. A Comparison of Bottom-Up Proteomic Sample Preparation Methods for the Human Parasite Trichomonas vaginalis. ACS OMEGA 2024; 9:9782-9791. [PMID: 38434803 PMCID: PMC10905575 DOI: 10.1021/acsomega.3c10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Bottom-up proteomic approaches depend on the efficient digestion of proteins into peptides for mass spectrometric analysis. Sample preparation strategies, based on magnetic beads, filter-aided systems, or in-solution digests, are commonly used for proteomic analysis. Time-intensive methods like filter-aided sample preparation (FASP) have led to the development of new, more time-efficient filter-based strategies like suspension trappings (S-Traps) or magnetic bead-based strategies like SP3. S-Traps have been reported as an alternative proteomic sample preparation method as they allow for high sodium dodecyl sulfate (SDS) concentrations to be present in the sample. In this study, we compare the efficiency of different protocols for FASP, SP3, and S-Trap-based digestion of proteins after extraction from Trichomonas vaginalis. Overall, we found a high number of protein IDs for all tested methods and a high degree of reproducibility within each method type. However, FASP with a 3 kDa cutoff filter unit outperformed the other methods analyzed, referring to the number of protein IDs. This is the first work providing the direct comparison of four different bottom-up proteomic approaches regarding the most efficient proteomic sample preparation protocol for the human parasite T. vaginalis.
Collapse
Affiliation(s)
- Anna-Lena Mayr
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Karin Hummel
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - David Leitsch
- ISPTM, Medical
University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
14
|
Aschman T, Wyler E, Baum O, Hentschel A, Rust R, Legler F, Preusse C, Meyer-Arndt L, Büttnerova I, Förster A, Cengiz D, Alves LGT, Schneider J, Kedor C, Bellmann-Strobl J, Sanchin A, Goebel HH, Landthaler M, Corman V, Roos A, Heppner FL, Radbruch H, Paul F, Scheibenbogen C, Dengler NF, Stenzel W. Post-COVID exercise intolerance is associated with capillary alterations and immune dysregulations in skeletal muscles. Acta Neuropathol Commun 2023; 11:193. [PMID: 38066589 PMCID: PMC10704838 DOI: 10.1186/s40478-023-01662-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023] Open
Abstract
The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also in many cases of post-infectious syndromes, colloquially referred to as "long COVID". Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms. We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2. Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues. In addition, complement system related proteins were more abundant in the serum of patients with PCS, matching observations on the transcriptomic level in the muscle tissue. We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain.
Collapse
Affiliation(s)
- Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Oliver Baum
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V, Dortmund, Germany
| | - Rebekka Rust
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Franziska Legler
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ivana Büttnerova
- Department of Autoimmune Diagnostics, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Alexandra Förster
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Julia Schneider
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Aminaa Sanchin
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Neuropathology, Universitätsmedizin Mainz, Mainz, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Faculty of Medicine, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
- Department of Neurology Bergmannsheil, Heimer-Institut Für Muskelforschung am Bergmannsheil, Bochum, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
15
|
Song JG, Baral KC, Kim GL, Park JW, Seo SH, Kim DH, Jung DH, Ifekpolugo NL, Han HK. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Deliv 2023; 30:2183816. [PMID: 36880122 PMCID: PMC10003146 DOI: 10.1080/10717544.2023.2183816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.
Collapse
Affiliation(s)
- Jae Geun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Dong Hoon Jung
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Nonye Linda Ifekpolugo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
16
|
Smith AN, Joshi S, Chanzu H, Alfar HR, Prakhya KS, Whiteheart SW. α-Synuclein is the major platelet isoform but is dispensable for activation, secretion, and thrombosis. Platelets 2023; 34:2267147. [PMID: 37927048 PMCID: PMC10629845 DOI: 10.1080/09537104.2023.2267147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023]
Abstract
Platelets play many roles in the vasculature ensuring proper hemostasis and maintaining integrity. These roles are facilitated, in part, by cargo molecules released from platelet granules via Soluble NSF Attachment Protein Receptor (SNARE) mediated membrane fusion, which is controlled by several protein-protein interactions. Chaperones have been characterized for t-SNAREs (i.e. Munc18b for Syntaxin-11), but none have been clearly identified for v-SNAREs. α-Synuclein has been proposed as a v-SNARE chaperone which may affect SNARE-complex assembly, fusion pore opening, and thus secretion. Despite its abundance and that it is the only isoform present, α-synuclein's role in platelet secretion is uncharacterized. In this study, immunofluorescence showed that α-synuclein was present on punctate structures that co-stained with markers for α-granules and lysosomes and in a cytoplasmic pool. We analyzed the phenotype of α-synuclein-/- mice and their platelets. Platelets from knockout mice had a mild, agonist-dependent secretion defect but aggregation and spreading in vitro were unaffected. Consistently, thrombosis/hemostasis were unaffected in the tail-bleeding, FeCl3 carotid injury and jugular vein puncture models. None of the platelet secretory machinery examined, e.g. the v-SNAREs, were affected by α-synuclein's loss. The results indicate that, despite its abundance, α-synuclein has only a limited role in platelet function and thrombosis.
Collapse
Affiliation(s)
- Alexis N. Smith
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Harry Chanzu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
- Present address: GenScript USA Inc., 860 Centennial Ave. Piscataway, NJ 08854, USA
| | - Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Shuford CM, Grant RP. Cheaper, faster, simpler trypsin digestion for high-throughput targeted protein quantification. J Mass Spectrom Adv Clin Lab 2023; 30:74-82. [PMID: 38093969 PMCID: PMC10716584 DOI: 10.1016/j.jmsacl.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 10/17/2024] Open
Abstract
Introduction LC-MS-based methods for protein quantification have a stigma of being relatively expensive and low-throughput. This is partly due to the cost and speed of trypsin digestion, which has primarily focused on advancements in research-based biomarker discovery applications that rely on protein/peptide identifications rather than clinical biomarker quantification. However, there is a need for simple, fast, and reproducibly efficient surrogate peptide recovery in clinical biomarker quantification. Methods Multiple methodologies were evaluated to enhance tryptic digestion for the analysis of thyroglobulin, a prototypical serum protein biomarker. The main criteria for assessment were the yield and speed of formation of surrogate peptides. Various factors such as different additives, types of trypsin, microwave- and pressure-assisted systems, and enzyme concentration were considered as key variables, in addition to digestion time. Results It was observed that digestion additives/denaturants had a significant impact on the speed and yield of digestion for each surrogate peptide. Increasing the concentration of trypsin alone was found to accelerate digestions appreciably for most surrogate peptides, without affecting the yield. However, the use of sequencing-grade trypsins and microwave/pressure-assisted systems did not offer significant advantages over the use of 'standard-grade' TPCK-treated trypsin in combination with a conventional incubator, once digestion time and additive had been optimized. Conclusion We have dispelled the notion that trypsin digestion is inherently slow and expensive for targeted quantification of serum proteins. Additionally, we have established a groundwork for experimentation that can pave the way for the creation of efficient trypsin digestion protocols, aiming to optimize yield, speed, and cost. It is our hope that these advancements will promote the wider incorporation of such assays in clinical laboratories.
Collapse
|
18
|
Woessmann J, Petrosius V, Üresin N, Kotol D, Aragon-Fernandez P, Hober A, auf dem Keller U, Edfors F, Schoof EM. Assessing the Role of Trypsin in Quantitative Plasma and Single-Cell Proteomics toward Clinical Application. Anal Chem 2023; 95:13649-13658. [PMID: 37639361 PMCID: PMC10500548 DOI: 10.1021/acs.analchem.3c02543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Mass spectrometry-based bottom-up proteomics is rapidly evolving and routinely applied in large-scale biomedical studies. Proteases are a central component of every bottom-up proteomics experiment, digesting proteins into peptides. Trypsin has been the most widely applied protease in proteomics due to its characteristics. With ever-larger cohort sizes and possible future clinical application of mass spectrometry-based proteomics, the technical impact of trypsin becomes increasingly relevant. To assess possible biases introduced by trypsin digestion, we evaluated the impact of eight commercially available trypsins in a variety of bottom-up proteomics experiments and across a range of protease concentrations and storage times. To investigate the universal impact of these technical attributes, we included bulk HeLa cell lysate, human plasma, and single HEK293 cells, which were analyzed over a range of selected reaction monitoring (SRM), data-independent acquisition (DIA), and data-dependent acquisition (DDA) instrument methods on three LC-MS instruments. The quantification methods employed encompassed both label-free approaches and absolute quantification utilizing spike-in heavy-labeled recombinant protein fragment standards. Based on this extensive data set, we report variations between commercial trypsins, their source, and their concentration. Furthermore, we provide suggestions on the handling of trypsin in large-scale studies.
Collapse
Affiliation(s)
- Jakob Woessmann
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Valdemaras Petrosius
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nil Üresin
- The
Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech
Research and Innovation Centre (BRIC), University
of Copenhagen, 2200 Copenhagen, Denmark
| | - David Kotol
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Pedro Aragon-Fernandez
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andreas Hober
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Ulrich auf dem Keller
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Fredrik Edfors
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Erwin M. Schoof
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Abdelkader Y, Perez-Davalos L, LeDuc R, Zahedi RP, Labouta HI. Omics approaches for the assessment of biological responses to nanoparticles. Adv Drug Deliv Rev 2023; 200:114992. [PMID: 37414362 DOI: 10.1016/j.addr.2023.114992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Nanotechnology has enabled the development of innovative therapeutics, diagnostics, and drug delivery systems. Nanoparticles (NPs) can influence gene expression, protein synthesis, cell cycle, metabolism, and other subcellular processes. While conventional methods have limitations in characterizing responses to NPs, omics approaches can analyze complete sets of molecular entities that change upon exposure to NPs. This review discusses key omics approaches, namely transcriptomics, proteomics, metabolomics, lipidomics and multi-omics, applied to the assessment of biological responses to NPs. Fundamental concepts and analytical methods used for each approach are presented, as well as good practices for omics experiments. Bioinformatics tools are essential to analyze, interpret and visualize large omics data, and to correlate observations in different molecular layers. The authors envision that conducting interdisciplinary multi-omics analyses in future nanomedicine studies will reveal integrated cell responses to NPs at different omics levels, and the incorporation of omics into the evaluation of targeted delivery, efficacy, and safety will improve the development of nanomedicine therapies.
Collapse
Affiliation(s)
- Yasmin Abdelkader
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Luis Perez-Davalos
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada
| | - Richard LeDuc
- Children's Hospital Research Institute of Manitoba, 513 - 715 McDermot Av. W, Winnipeg, Manitoba R3E 3P4, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada
| | - Rene P Zahedi
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada; Department of Internal Medicine, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; CancerCare Manitoba Research Institute, 675 McDermot Av., Manitoba R3E 0V9, Canada
| | - Hagar I Labouta
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada; Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt, 21521.
| |
Collapse
|
20
|
Vosáhlová-Kadlecová Z, Gilar M, Molnárová K, Kozlík P, Kalíková K. Mixed-mode column allows simple direct coupling with immobilized enzymatic reactor for on-line protein digestion. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123866. [PMID: 37657402 DOI: 10.1016/j.jchromb.2023.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Liquid chromatography coupled with mass spectrometry is widely used in the field of proteomic analysis after off-line protein digestion. On-line digestion with chromatographic column connected in a series with immobilized enzymatic reactor is not often used approach. In this work we investigated the impact of chromatographic conditions on the protein digestion efficiency. The investigation of trypsin reactor activity was performed by on-line digestion of N-α-benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA), followed by separation of the digests on the mixed-mode column. Two trypsin column reactors with the different trypsin coverage on the bridged ethylene hybrid particles were evaluated. To ensure optimal trypsin activity, the separation temperature was set at 37.0 °C and the pH of the mobile phase buffer was maintained at 8.5. The on-line digestion itself ongoing during the initial state of gradient was carried out at a low flow rate using a mobile phase that was free of organic modifiers. Proteins such as cytochrome C, enolase, and myoglobin were successfully digested on-line without prior reduction or alkylation, and the resulting peptides were separated using a mixed-mode column. Additionally, proteins that contain multiple cysteines, such as α-lactalbumin, albumin, β-lactoglobulin A, and conalbumin, were also successfully digested on-line (after reduction and alkylation). Moreover, trypsin immobilized enzymatic reactors were utilized for over 300 injections without any noticeable loss of digestion activity.
Collapse
Affiliation(s)
- Zuzana Vosáhlová-Kadlecová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Katarína Molnárová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic.
| |
Collapse
|
21
|
Psatha K, Kollipara L, Drakos E, Deligianni E, Brintakis K, Patsouris E, Sickmann A, Rassidakis GZ, Aivaliotis M. Interruption of p53-MDM2 Interaction by Nutlin-3a in Human Lymphoma Cell Models Initiates a Cell-Dependent Global Effect on Transcriptome and Proteome Level. Cancers (Basel) 2023; 15:3903. [PMID: 37568720 PMCID: PMC10417430 DOI: 10.3390/cancers15153903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
In most lymphomas, p53 signaling pathway is inactivated by various mechanisms independent to p53 gene mutations or deletions. In many cases, p53 function is largely regulated by alterations in the protein abundance levels by the action of E3 ubiquitin-protein ligase MDM2, targeting p53 to proteasome-mediated degradation. In the present study, an integrating transcriptomics and proteomics analysis was employed to investigate the effect of p53 activation by a small-molecule MDM2-antagonist, nutlin-3a, on three lymphoma cell models following p53 activation. Our analysis revealed a system-wide nutlin-3a-associated effect in all examined lymphoma types, identifying in total of 4037 differentially affected proteins involved in a plethora of pathways, with significant heterogeneity among lymphomas. Our findings include known p53-targets and novel p53 activation effects, involving transcription, translation, or degradation of protein components of pathways, such as a decrease in key members of PI3K/mTOR pathway, heat-shock response, and glycolysis, and an increase in key members of oxidative phoshosphorylation, autophagy and mitochondrial translation. Combined inhibition of HSP90 or PI3K/mTOR pathway with nutlin-3a-mediated p53-activation enhanced the apoptotic effects suggesting a promising strategy against human lymphomas. Integrated omic profiling after p53 activation offered novel insights on the regulatory role specific proteins and pathways may have in lymphomagenesis.
Collapse
Affiliation(s)
- Konstantina Psatha
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
- Department of Pathology, Medical School, University of Crete, 70013 Heraklion, Greece;
- First Department of Pathology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 54124 Thessaloniki, Greece
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., 44139 Dortmund, Germany; (L.K.); (A.S.)
| | - Elias Drakos
- Department of Pathology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
| | - Konstantinos Brintakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece;
| | - Eustratios Patsouris
- First Department of Pathology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., 44139 Dortmund, Germany; (L.K.); (A.S.)
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - George Z. Rassidakis
- Department of Oncology-Pathology, Karolinska Institute, 17164 Stockholm, Sweden;
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
22
|
Yildiz P, Ozcan S. A single protein to multiple peptides: Investigation of protein-peptide correlations using targeted alpha-2-macroglobulin analysis. Talanta 2023; 265:124878. [PMID: 37392709 DOI: 10.1016/j.talanta.2023.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Recent advances in proteomics technologies have enabled the analysis of thousands of proteins in a high-throughput manner. Mass spectrometry (MS) based proteomics uses a peptide-centric approach where biological samples undergo specific proteolytic digestion and then only unique peptides are used for protein identification and quantification. Considering the fact that a single protein may have multiple unique peptides and a number of different forms, it becomes essential to understand dynamic protein-peptide relationships to ensure robust and reliable peptide-centric protein analysis. In this study, we investigated the correlation between protein concentration and corresponding unique peptide responses under a conventional proteolytic digestion condition. Protein-peptide correlation, digestion efficiency, matrix-effect, and concentration-effect were evaluated. Twelve unique peptides of alpha-2-macroglobulin (A2MG) were monitored using a targeted MS approach to acquire insights into protein-peptide dynamics. Although the peptide responses were reproducible between replicates, protein-peptide correlation was moderate in protein standards and low in complex matrices. The results suggest that reproducible peptide signal could be misleading in clinical studies and a peptide selection could dramatically change the outcome at protein level. This is the first study investigating quantitative protein-peptide correlations in biological samples using all unique peptides representing the same protein and opens a discussion on peptide-based proteomics.
Collapse
Affiliation(s)
- Pelin Yildiz
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Nanografi Nanotechnology Co, Middle East Technical University (METU) Technopolis, 06531, Ankara, Turkiye
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Cancer Systems Biology Laboratory (CanSyL), Middle East Technical University (METU), 06800, Ankara, Turkiye.
| |
Collapse
|
23
|
Magnetic field-driven biochemical landscape of browning abatement in goat milk using spatial-omics uncovers. Food Chem 2023; 408:135276. [PMID: 36571880 DOI: 10.1016/j.foodchem.2022.135276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Influence of magnetic field (MF) treatment on the glycation of goat milk proteins is yet to be elucidated. Proteomic and metabolomic analyses of brown goat milk samples with and without MF treatment were performed. Assessed glycation degree and structural modification of proteins explained that MF treatment dramatically down-regulated the glycation of brown goat milk protein, possibly due to the aggregation behavior induced by MF treatment, which consumed additional glycation sites as well as altered their accessibility and preference. Integrated datasets uncovered that the energy metabolism-related biological events including carbohydrate metabolism, glycerophospholipid metabolism, TCA cycle may mainly account for the browning abatement mechanism of MF. In addition, MF treatment enhanced both the quality and flavor of brown goat milk. This study suggests the feasibility of MF treatment to reduce glycation in brown goat milk for producing high-quality dairy ingredients and products.
Collapse
|
24
|
Hentschel A, Meyer N, Kohlschmidt N, Groß C, Sickmann A, Schara-Schmidt U, Förster F, Töpf A, Christiansen J, Horvath R, Vorgerd M, Thompson R, Polavarapu K, Lochmüller H, Preusse C, Hannappel L, Schänzer A, Grüneboom A, Gangfuß A, Roos A. A Homozygous PPP1R21 Splice Variant Associated with Severe Developmental Delay, Absence of Speech, and Muscle Weakness Leads to Activated Proteasome Function. Mol Neurobiol 2023; 60:2602-2618. [PMID: 36692708 PMCID: PMC10039818 DOI: 10.1007/s12035-023-03219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism. To decipher further the pathophysiological processes leading to the clinical manifestation of NEDHFBA, we investigated the proteomic signature of fibroblasts derived from the first NEDHFBA patient harboring a splice-site mutation in PPP1R21 and presenting with a milder phenotype. Proteomic findings and further functional studies demonstrate a profound activation of the ubiquitin-proteasome system with presence of protein aggregates and impact on cellular fitness and moreover suggest a cross-link between activation of the proteolytic system and cytoskeletal architecture (including filopodia) as exemplified on paradigmatic proteins including actin, thus extending the pathophysiological spectrum of the disease. In addition, the proteomic signature of PPP1R21-mutant fibroblasts displayed a dysregulation of a variety of proteins of neurological relevance. This includes increase proteins which might act toward antagonization of cellular stress burden in terms of pro-survival, a molecular finding which might accord with the presentation of a milder phenotype of our NEDHFBA patient.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Nancy Meyer
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | | | - Claudia Groß
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Fabian Förster
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Jon Christiansen
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luis Hannappel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Gießen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
25
|
Vincent D, Bui A, Ezernieks V, Shahinfar S, Luke T, Ram D, Rigas N, Panozzo J, Rochfort S, Daetwyler H, Hayden M. A community resource to mass explore the wheat grain proteome and its application to the late-maturity alpha-amylase (LMA) problem. Gigascience 2022; 12:giad084. [PMID: 37919977 PMCID: PMC10627334 DOI: 10.1093/gigascience/giad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities. Using an array of statistical analyses to select LMA-responsive biomarkers, we have mined them using a suite of tools applicable to wheat proteins. RESULTS We observed that LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis; TCA cycle, along with DNA- and RNA- binding mechanisms; and protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via dimerisation and complexing. The secondary metabolism was also mobilized with the upregulation of phytohormones and chemical and defence responses. LMA further invoked cellular structures, including ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain storage proteins, as well as starch and other carbohydrates, with the upregulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose, and UDP-glucose were downregulated. CONCLUSIONS To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - AnhDuyen Bui
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Vilnis Ezernieks
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Saleh Shahinfar
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Timothy Luke
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Doris Ram
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Nicholas Rigas
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
| | - Joe Panozzo
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
- Centre for Agricultural Innovation, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Hans Daetwyler
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
26
|
Le-Trilling VTK, Mennerich D, Schuler C, Sakson R, Lill JK, Kasarla SS, Kopczynski D, Loroch S, Flores-Martinez Y, Katschinski B, Wohlgemuth K, Gunzer M, Meyer F, Phapale P, Dittmer U, Sickmann A, Trilling M. Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro. BMC Biol 2022; 20:264. [PMID: 36447206 PMCID: PMC9708519 DOI: 10.1186/s12915-022-01468-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. RESULTS Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-β and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. CONCLUSIONS In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology.
Collapse
Affiliation(s)
- Vu Thuy Khanh Le-Trilling
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Denise Mennerich
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Corinna Schuler
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Roman Sakson
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany
| | - Julia K. Lill
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany
| | - Siva Swapna Kasarla
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany
| | - Dominik Kopczynski
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany
| | - Stefan Loroch
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany
| | - Yulia Flores-Martinez
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Benjamin Katschinski
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kerstin Wohlgemuth
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Matthias Gunzer
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany ,grid.5718.b0000 0001 2187 5445Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Folker Meyer
- grid.5718.b0000 0001 2187 5445Institute for AI in Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Prasad Phapale
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany
| | - Ulf Dittmer
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Albert Sickmann
- grid.419243.90000 0004 0492 9407Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Dortmund, Germany ,grid.5570.70000 0004 0490 981XMedizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany ,grid.7107.10000 0004 1936 7291Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mirko Trilling
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| |
Collapse
|
27
|
Millet A, Pescarmona R, Belot A, Machon C, Jamilloux Y, Guitton J. Quantification of canakinumab in human plasma by liquid chromatography-high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123475. [PMID: 36179539 DOI: 10.1016/j.jchromb.2022.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
Canakinumab is a fully-human monoclonal immunoglobulin gamma 1 kappa. This interleukin-1β blocker is used for the treatment of autoinflammatory diseases. Various studies have demonstrated the value of therapeutic drug monitoring of monoclonal antibodies in the management of inflammatory diseases. The purpose of this study was to develop a method to quantify canakinumab plasmatic concentration using liquid chromatography-high-resolution (Orbitrap®) mass spectrometry. The quantification was based on a bottom-up approach with the analysis of one surrogate peptide after an immunopurification of IgG followed by tryptic proteolysis. Rituximab and cetuximab, both IgG1, were tested as internal standards. Chromatographic separation was performed on a bioZenTM Peptide PS-C18 column. Mass detection was conducted in positive ionization mode with Parallel Reaction Monitoring at a resolution of 70,000. The method was fully validated in terms of linearity, sensitivity, selectivity, accuracy and matrix effect. Standards ranged from 2.5 to 75 µg/mL. Intra- and inter-day coefficients of variation ranged from 3.7 to 14.7 %, and accuracy from 97.4 to 104.1 %. This method allowed the determination of canakinumab plasmatic concentrations from eight treated patients. This method is efficient and suitable for routine use in therapeutic drug monitoring or pharmacokinetic studies.
Collapse
Affiliation(s)
- Aurélien Millet
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495 Pierre Bénite, France
| | - Rémi Pescarmona
- Immunology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495 Pierre Bénite, France
| | - Alexandre Belot
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France; Lyon Immunopathology FEderation (LIFE), Lyon, France
| | - Christelle Machon
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495 Pierre Bénite, France; Analytical Chemistry Laboratory, Faculty of Pharmacy ISPBL, University Lyon 1, F-69373 Lyon, France
| | - Yvan Jamilloux
- Lyon Immunopathology FEderation (LIFE), Lyon, France; Internal Medicine, Hôpital de La Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Guitton
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495 Pierre Bénite, France; Toxicology Laboratory, Faculty of Pharmacy ISPBL, University of Lyon 1, F-69373 Lyon, France.
| |
Collapse
|
28
|
Skeletal muscle provides the immunological micro-milieu for specific plasma cells in anti-synthetase syndrome-associated myositis. Acta Neuropathol 2022; 144:353-372. [PMID: 35612662 PMCID: PMC9288384 DOI: 10.1007/s00401-022-02438-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Anti-synthetase syndrome (ASyS)-associated myositis is a major subgroup of the idiopathic inflammatory myopathies (IIM) and is characterized by disease chronicity with musculoskeletal, dermatological and pulmonary manifestations. One of eight autoantibodies against the aminoacyl-transferase RNA synthetases (ARS) is detectable in the serum of affected patients. However, disease-specific therapeutic approaches have not yet been established.To obtain a deeper understanding of the underlying pathogenesis and to identify putative therapeutic targets, we comparatively investigated the most common forms of ASyS associated with anti-PL-7, anti-PL-12 and anti-Jo-1. Our cohort consisted of 80 ASyS patients as well as healthy controls (n = 40), diseased controls (n = 40) and non-diseased controls (n = 20). We detected a reduced extent of necrosis and regeneration in muscle biopsies from PL-12+ patients compared to Jo-1+ patients, while PL-7+ patients had higher capillary dropout in biopsies of skeletal muscle. Aside from these subtle alterations, no significant differences between ASyS subgroups were observed. Interestingly, a tissue-specific subpopulation of CD138+ plasma cells and CXCL12+/CXCL13+CD20+ B cells common to ASyS myositis were identified. These cells were localized in the endomysium associated with alkaline phosphatase+ activated mesenchymal fibroblasts and CD68+MHC-II+CD169+ macrophages. An MHC-I+ and MHC-II+ MxA negative type II interferon-driven milieu of myofiber activation, topographically restricted to the perifascicular area and the adjacent perimysium, as well as perimysial clusters of T follicular helper cells defined an extra-medullary immunological niche for plasma cells and activated B cells. Consistent with this, proteomic analyses of muscle tissues from ASyS patients demonstrated alterations in antigen processing and presentation. In-depth immunological analyses of peripheral blood supported a B-cell/plasma-cell-driven pathology with a shift towards immature B cells, an increase of B-cell-related cytokines and chemokines, and activation of the complement system. We hypothesize that a B-cell-driven pathology with the presence and persistence of a specific subtype of plasma cells in the skeletal muscle is crucially involved in the self-perpetuating chronicity of ASyS myositis. This work provides the conceptual framework for the application of plasma-cell-targeting therapies in ASyS myositis.
Collapse
|
29
|
Zhang Y, Dreyer B, Govorukhina N, Heberle AM, Končarević S, Krisp C, Opitz CA, Pfänder P, Bischoff R, Schlüter H, Kwiatkowski M, Thedieck K, Horvatovich PL. Comparative Assessment of Quantification Methods for Tumor Tissue Phosphoproteomics. Anal Chem 2022; 94:10893-10906. [PMID: 35880733 PMCID: PMC9366746 DOI: 10.1021/acs.analchem.2c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
With increasing sensitivity and accuracy in mass spectrometry,
the tumor phosphoproteome is getting into reach. However, the selection
of quantitation techniques best-suited to the biomedical question
and diagnostic requirements remains a trial and error decision as
no study has directly compared their performance for tumor tissue
phosphoproteomics. We compared label-free quantification (LFQ), spike-in-SILAC
(stable isotope labeling by amino acids in cell culture), and tandem
mass tag (TMT) isobaric tandem mass tags technology for quantitative
phosphosite profiling in tumor tissue. Compared to the classic SILAC
method, spike-in-SILAC is not limited to cell culture analysis, making
it suitable for quantitative analysis of tumor tissue samples. TMT
offered the lowest accuracy and the highest precision and robustness
toward different phosphosite abundances and matrices. Spike-in-SILAC
offered the best compromise between these features but suffered from
a low phosphosite coverage. LFQ offered the lowest precision but the
highest number of identifications. Both spike-in-SILAC and LFQ presented
susceptibility to matrix effects. Match between run (MBR)-based analysis
enhanced the phosphosite coverage across technical replicates in LFQ
and spike-in-SILAC but further reduced the precision and robustness
of quantification. The choice of quantitative methodology is critical
for both study design such as sample size in sample groups and quantified
phosphosites and comparison of published cancer phosphoproteomes.
Using ovarian cancer tissue as an example, our study builds a resource
for the design and analysis of quantitative phosphoproteomic studies
in cancer research and diagnostics.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.,Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Benjamin Dreyer
- Section/Core Facility Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Alexander M Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Saša Končarević
- Proteome Sciences R&D GmbH & Co. KG, Altenhöferallee 3, 60438 Frankfurt/Main, Germany
| | - Christoph Krisp
- Section/Core Facility Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christiane A Opitz
- Metabolic Crosstalk in Cancer, German Consortium of Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neurology, National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Pauline Pfänder
- Metabolic Crosstalk in Cancer, German Consortium of Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, 69117 Heidelberg, Germany
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, Groningen 9700 AD, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands.,Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Peter L Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
30
|
Li X, Rawal B, Rivera S, Letarte S, Richardson DD. Improvements on sample preparation and peptide separation for reduced peptide mapping based multi-attribute method analysis of therapeutic monoclonal antibodies using lysyl endopeptidase digestion. J Chromatogr A 2022; 1675:463161. [DOI: 10.1016/j.chroma.2022.463161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
|
31
|
Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev 2022; 42:1704-1734. [PMID: 35638460 DOI: 10.1002/med.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Many drugs can bind directly to proteins or be bioactivated by metabolizing enzymes to form reactive metabolites (RMs) that rapidly bind to proteins to form drug-protein conjugates or metabolite-protein conjugates (DMPCs). The close relationship between DMPCs and idiosyncratic adverse drug reactions (IADRs) has been recognized; drug discovery teams tend to avoid covalent interactions in drug discovery projects. Covalent interactions in DMPCs can provide high potency and long action duration and conquer the intractable targets, inspiring drug design, and development. This forms the dual role feature of DMPCs. Understanding the functional implications of DMPCs in IADR control and therapeutic applications requires precise identification of these conjugates from complex biological samples. While classical biochemical methods have contributed significantly to DMPC detection in the past decades, the low abundance and low coverage of DMPCs have become a bottleneck in this field. An emerging transformation toward shotgun proteomics is on the rise. The evolving shotgun proteomics techniques offer improved reproducibility, throughput, specificity, operability, and standardization. Here, we review recent progress in the systematic discovery of DMPCs using shotgun proteomics. Furthermore, the applications of shotgun proteomics supporting drug development, toxicity mechanism investigation, and drug repurposing processes are also reviewed and prospected.
Collapse
Affiliation(s)
- Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
32
|
Gangfuß A, Hentschel A, Heil L, Gonzalez M, Schönecker A, Depienne C, Nishimura A, Zengeler D, Kohlschmidt N, Sickmann A, Schara-Schmidt U, Fürst DO, van der Ven PFM, Hahn A, Roos A, Schänzer A. Proteomic and morphological insights and clinical presentation of two young patients with novel mutations of BVES (POPDC1). Mol Genet Metab 2022; 136:226-237. [PMID: 35660068 DOI: 10.1016/j.ymgme.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Popeye domain containing protein 1 (POPDC1) is a highly conserved transmembrane protein essential for striated muscle function and homeostasis. Pathogenic variants in the gene encoding POPDC1 (BVES, Blood vessel epicardial substance) are causative for limb-girdle muscular dystrophy (LGMDR25), associated with cardiac arrhythmia. We report on four affected children (age 7-19 years) from two consanguineous families with two novel pathogenic variants in BVES c.457C>T(p.Q153X) and c.578T>G (p.I193S). Detailed analyses were performed on muscle biopsies from an affected patient of each family including immunofluorescence, electron microscopy and proteomic profiling. Cardiac abnormalities were present in all patients and serum creatine kinase (CK) values were variably elevated despite lack of overt muscle weakness. Detailed histological analysis of skeletal muscle, however indicated a myopathy with reduced sarcolemmal expression of POPDC1 accompanied by altered sarcolemmal and sarcoplasmatic dysferlin and Xin/XIRP1 abundance. At the electron microscopic level, the muscle fiber membrane was focally disrupted. The proteomic signature showed statistically significant dysregulation of 191 proteins of which 173 were increased and 18 were decreased. Gene ontology-term analysis of affected biological processes revealed - among others - perturbation of muscle fibril assembly, myofilament sliding, and contraction as well as transition between fast and slow fibers. In conclusion, these findings demonstrate that the phenotype of LGMDR25 is highly variable and also includes younger children with conduction abnormalities, no apparent muscular problems, and only mildly elevated CK values. Biochemical studies suggest that BVES mutations causing loss of functional POPDC1 can impede striated muscle function by several mechanisms.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany.
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Lorena Heil
- Institute for Cell Biology, Department of Molecular Cell, University of Bonn, 53121 Bonn, Germany
| | - Maria Gonzalez
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Anne Schönecker
- Department of Pediatric Cardiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Anna Nishimura
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Diana Zengeler
- Center for Genomics and Transcriptomics (CeGaT) GmbH, 72076 Tübingen, Germany
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, Department of Molecular Cell, University of Bonn, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Institute for Cell Biology, Department of Molecular Cell, University of Bonn, 53121 Bonn, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany; Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
33
|
Preusse C, Marteau T, Fischer N, Hentschel A, Sickmann A, Lang S, Schneider U, Schara-Schmidt U, Meyer N, Ruck T, Dengler NF, Prudlo J, Dudesek A, Görl N, Allenbach Y, Benveniste O, Goebel HH, Dittmayer C, Stenzel W, Roos A. Endoplasmic reticulum-stress and unfolded protein response-activation in immune-mediated necrotizing myopathy. Brain Pathol 2022; 32:e13084. [PMID: 35703068 DOI: 10.1111/bpa.13084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from immune-mediated necrotizing myopathies (IMNM) harbor, the pathognomonic myositis-specific auto-antibodies anti-SRP54 or -HMGCR, while about one third of them do not. Activation of chaperone-assisted autophagy was described as being part of the molecular etiology of IMNM. Endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR)-stress accompanied by activation of the unfolded protein response (UPR) often precedes activation of the protein clearance machinery and represents a cellular defense mechanism toward restoration of proteostasis. Here, we show that ER/SR-stress may be part of the molecular etiology of IMNM. To address this assumption, ER/SR-stress related key players covering the three known branches (PERK-mediated, IRE1-mediated, and ATF6-mediated) were investigated on both, the transcript and the protein levels utilizing 39 muscle biopsy specimens derived from IMNM-patients. Our results demonstrate an activation of all three UPR-branches in IMNM, which most likely precedes the activation of the protein clearance machinery. In detail, we identified increased phosphorylation of PERK and eIF2a along with increased expression and protein abundance of ATF4, all well-documented characteristics for the activation of the UPR. Further, we identified increased general XBP1-level, and elevated XBP1 protein levels. Additionally, our transcript studies revealed an increased ATF6-expression, which was confirmed by immunostaining studies indicating a myonuclear translocation of the cleaved ATF6-form toward the forced transcription of UPR-related chaperones. In accordance with that, our data demonstrate an increase of downstream factors including ER/SR co-chaperones and chaperones (e.g., SIL1) indicating an UPR-activation on a broader level with no significant differences between seropositive and seronegative patients. Taken together, one might assume that UPR-activation within muscle fibers might not only serve to restore protein homeostasis, but also enhance sarcolemmal presentation of proteins crucial for attracting immune cells. Since modulation of ER-stress and UPR via application of chemical chaperones became a promising therapeutic treatment approach, our findings might represent the starting point for new interventional concepts.
Collapse
Affiliation(s)
- Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Theodore Marteau
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Norina Fischer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Udo Schneider
- Department of Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Schara-Schmidt
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Nancy Meyer
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Prudlo
- Department of Neurology, Rostock University Medical Center, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany.,Department of Neurology, University of Rostock, Rostock, Germany
| | - Ales Dudesek
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Norman Görl
- Department of Internal Medicine, Klinikum Südstadt Rostock, Rostock, Germany
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, University Hospital Mainz, Mainz, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
New Insights into the Neuromyogenic Spectrum of a Gain of Function Mutation in SPTLC1. Genes (Basel) 2022; 13:genes13050893. [PMID: 35627278 PMCID: PMC9140917 DOI: 10.3390/genes13050893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyltransferase long chain base subunit 1 (SPTLC1) encodes a serine palmitoyltransferase (SPT) resident in the endoplasmic reticulum (ER). Pathological SPTLC1 variants cause a form of hereditary sensory and autonomic neuropathy (HSAN1A), and have recently been linked to unrestrained sphingoid base synthesis, causing a monogenic form of amyotrophic lateral sclerosis (ALS). It was postulated that the phenotypes associated with dominant variants in SPTLC1 may represent a continuum between neuropathy and ALS in some cases, complicated by additional symptoms such as cognitive impairment. A biochemical explanation for this clinical observation does not exist. By performing proteomic profiling on immortalized lymphoblastoid cells derived from one patient harbouring an alanine to serine amino acid substitution at position 20, we identified a subset of dysregulated proteins playing significant roles in neuronal homeostasis and might have a potential impact on the manifestation of symptoms. Notably, the identified p.(A20S)-SPTLC1 variant is associated with decrease of transcript and protein level. Moreover, we describe associated muscle pathology findings, including signs of mild inflammation accompanied by dysregulation of respective markers on both the protein and transcript levels. By performing coherent anti-Stokes Raman scattering microscopy, presence of protein and lipid aggregates could be excluded.
Collapse
|
35
|
Merches K, Breunig L, Fender J, Brand T, Bätz V, Idel S, Kollipara L, Reinders Y, Sickmann A, Mally A, Lorenz K. The potential of remdesivir to affect function, metabolism and proliferation of cardiac and kidney cells in vitro. Arch Toxicol 2022; 96:2341-2360. [PMID: 35579693 PMCID: PMC9110936 DOI: 10.1007/s00204-022-03306-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Remdesivir is a prodrug of a nucleoside analog and the first antiviral therapeutic approved for coronavirus disease. Recent cardiac safety concerns and reports on remdesivir-related acute kidney injury call for a better characterization of remdesivir toxicity and understanding of the underlying mechanisms. Here, we performed an in vitro toxicity assessment of remdesivir around clinically relevant concentrations (Cmax 9 µM) using H9c2 rat cardiomyoblasts, neonatal mouse cardiomyocytes (NMCM), rat NRK-52E and human RPTEC/TERT1 cells as cell models for the assessment of cardiotoxicity or nephrotoxicity, respectively. Due to the known potential of nucleoside analogs for the induction of mitochondrial toxicity, we assessed mitochondrial function in response to remdesivir treatment, early proteomic changes in NMCM and RPTEC/TERT1 cells and the contractile function of NMCM. Short-term treatments (24 h) of H9c2 and NRK-52E cells with remdesivir adversely affected cell viability by inhibition of proliferation as determined by significantly decreased 3H-thymidine uptake. Mitochondrial toxicity of remdesivir (1.6–3.1 µM) in cardiac cells was evident by a significant decrease in oxygen consumption, a collapse of mitochondrial membrane potential and an increase in lactate secretion after a 24–48-h treatment. This was supported by early proteomic changes of respiratory chain proteins and intermediate filaments that are typically involved in mitochondrial reorganization. Functionally, an impedance-based analysis showed that remdesivir (6.25 µM) affected the beat rate and contractility of NMCM. In conclusion, we identified adverse effects of remdesivir in cardiac and kidney cells at clinically relevant concentrations, suggesting a careful evaluation of therapeutic use in patients at risk for cardiovascular or kidney disease.
Collapse
Affiliation(s)
- Katja Merches
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Erlangen, Germany
| | - Leonie Breunig
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Julia Fender
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Vanessa Bätz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Svenja Idel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Angela Mally
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany. .,PGS Toxicology and Environmental Protection, University of Leipzig, Johannisallee 28, Leipzig, Germany.
| |
Collapse
|
36
|
Bujanic L, Shevchuk O, von Kügelgen N, Kalinina A, Ludwik K, Koppstein D, Zerna N, Sickmann A, Chekulaeva M. The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. RNA (NEW YORK, N.Y.) 2022; 28:766-779. [PMID: 35232816 PMCID: PMC9014875 DOI: 10.1261/rna.079086.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in the viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19, and 20) and another within NSP1 (R124), which are required for viral evasion, and thus might present promising drug targets. We target SL1 with the antisense oligo (ASO) to efficiently and specifically down-regulate SARS-CoV-2 mRNA. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of antiviral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing.
Collapse
Affiliation(s)
- Lucija Bujanic
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Nicolai von Kügelgen
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Anna Kalinina
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Katarzyna Ludwik
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - David Koppstein
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nadja Zerna
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
37
|
Loroch S, Kopczynski D, Schneider AC, Schumbrutzki C, Feldmann I, Panagiotidis E, Reinders Y, Sakson R, Solari FA, Vening A, Swieringa F, Heemskerk JWM, Grandoch M, Dandekar T, Sickmann A. Toward Zero Variance in Proteomics Sample Preparation: Positive-Pressure FASP in 96-Well Format (PF96) Enables Highly Reproducible, Time- and Cost-Efficient Analysis of Sample Cohorts. J Proteome Res 2022; 21:1181-1188. [PMID: 35316605 PMCID: PMC8981309 DOI: 10.1021/acs.jproteome.1c00706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
As novel liquid chromatography–mass
spectrometry (LC-MS)
technologies for proteomics offer a substantial increase in LC-MS
runs per day, robust and reproducible sample preparation emerges as
a new bottleneck for throughput. We introduce a novel strategy for
positive-pressure 96-well filter-aided sample preparation (PF96) on
a commercial positive-pressure solid-phase extraction device. PF96
allows for a five-fold increase in throughput in conjunction with
extraordinary reproducibility with Pearson product-moment correlations
on the protein level of r = 0.9993, as demonstrated
for mouse heart tissue lysate in 40 technical replicates. The targeted
quantification of 16 peptides in the presence of stable-isotope-labeled
reference peptides confirms that PF96 variance is barely assessable
against technical variation from nanoLC-MS instrumentation. We further
demonstrate that protein loads of 36–60 μg result in
optimal peptide recovery, but lower amounts ≥3 μg can
also be processed reproducibly. In summary, the reproducibility, simplicity,
and economy of time provide PF96 a promising future in biomedical
and clinical research.
Collapse
Affiliation(s)
- Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Adriana C Schneider
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany.,Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227 Dortmund, Germany
| | - Cornelia Schumbrutzki
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | | | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Roman Sakson
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Alicia Vening
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Maria Grandoch
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany.,Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, AB24 3FX Aberdeen, United Kingdom
| |
Collapse
|
38
|
Khanal N, Chen Z, Alelyunas YW, Szapacs ME, Wrona MD, Sikorski TW. Systematic optimization of targeted and multiplexed MS-based screening workflows for protein biomarkers. Bioanalysis 2022; 14:341-356. [PMID: 35255714 DOI: 10.4155/bio-2021-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The capability of targeted MS-based methods to simultaneously measure multiple analytes with high selectivity and sensitivity greatly facilitates the discovery and quantitation of novel biomarkers. However, the complexity of biological samples is a major bottleneck that requires extensive sample preparation. Results: This paper reports a generic workflow to optimize surrogate peptide-based protein biomarker screening for seven human proteins in a multiplexed manner without the need for any specific affinity reagents. Each step of the sample processing and LC-MS methods is systematically assessed and optimized for better analytical performance. Conclusion: The established method is used for the screening of multiple myeloma patient samples to determine which proteins could be robustly measured and serve as potential biomarkers of the disease.
Collapse
Affiliation(s)
- Neelam Khanal
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
- Scientific Operations, Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Zhuo Chen
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
| | - Yun W Alelyunas
- Scientific Operations, Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Matthew E Szapacs
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
| | - Mark D Wrona
- Scientific Operations, Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Timothy W Sikorski
- Bioanalysis, Immunogenicity & Biomarkers, In-vitro/In-vivo Translation, Research, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, PA 19426, USA
| |
Collapse
|
39
|
Arlt A, Kohlschmidt N, Hentschel A, Bartels E, Groß C, Töpf A, Edem P, Szabo N, Sickmann A, Meyer N, Schara-Schmidt U, Lau J, Lochmüller H, Horvath R, Oktay Y, Roos A, Hiz S. Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet J Rare Dis 2022; 17:29. [PMID: 35101074 PMCID: PMC8802438 DOI: 10.1186/s13023-021-02068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Goltz syndrome (GS) is a X-linked disorder defined by defects of mesodermal- and ectodermal-derived structures and caused by PORCN mutations. Features include striated skin-pigmentation, ocular and skeletal malformations and supernumerary or hypoplastic nipples. Generally, GS is associated with in utero lethality in males and most of the reported male patients show mosaicism (only three non-mosaic surviving males have been described so far). Also, precise descriptions of neurological deficits in GS are rare and less severe phenotypes might not only be caused by mosaicism but also by less pathogenic mutations suggesting the need of a molecular genetics and functional work-up of these rare variants. RESULTS We report two cases: one girl suffering from typical skin and skeletal abnormalities, developmental delay, microcephaly, thin corpus callosum, periventricular gliosis and drug-resistant epilepsy caused by a PORCN nonsense-mutation (c.283C > T, p.Arg95Ter). Presence of these combined neurological features indicates that CNS-vulnerability might be a guiding symptom in the diagnosis of GS patients. The other patient is a boy with a supernumerary nipple and skeletal anomalies but also, developmental delay, microcephaly, cerebral atrophy with delayed myelination and drug-resistant epilepsy as predominant features. Skin abnormalities were not observed. Genotyping revealed a novel PORCN missense-mutation (c.847G > C, p.Asp283His) absent in the Genome Aggregation Database (gnomAD) but also identified in his asymptomatic mother. Given that non-random X-chromosome inactivation was excluded in the mother, fibroblasts of the index had been analyzed for PORCN protein-abundance and -distribution, vulnerability against additional ER-stress burden as well as for protein secretion revealing changes. CONCLUSIONS Our combined findings may suggest incomplete penetrance for the p.Asp283His variant and provide novel insights into the molecular etiology of GS by adding impaired ER-function and altered protein secretion to the list of pathophysiological processes resulting in the clinical manifestation of GS.
Collapse
Affiliation(s)
- Annabelle Arlt
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | | | | | - Enrika Bartels
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Claudia Groß
- Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pınar Edem
- Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nora Szabo
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Albert Sickmann
- Leibniz Institute for Analytical Sciences (ISAS), Dortmund, Germany
| | - Nancy Meyer
- Pediatric Neurology, Faculty of Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Ulrike Schara-Schmidt
- Pediatric Neurology, Faculty of Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Jarred Lau
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Yavuz Oktay
- Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Andreas Roos
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| |
Collapse
|
40
|
Schanbacher C, Bieber M, Reinders Y, Cherpokova D, Teichert C, Nieswandt B, Sickmann A, Kleinschnitz C, Langhauser F, Lorenz K. ERK1/2 Activity Is Critical for the Outcome of Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23020706. [PMID: 35054890 PMCID: PMC8776221 DOI: 10.3390/ijms23020706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2wt) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood–brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIPwt) and its phosphorylation-deficient mutant RKIPS153A, known inhibitors of the ERK1/2 signaling cascade. RKIPwt and RKIPS153A attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.
Collapse
Affiliation(s)
- Constanze Schanbacher
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany;
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Michael Bieber
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Deya Cherpokova
- Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (D.C.); (B.N.)
- Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Christina Teichert
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (D.C.); (B.N.)
- Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany;
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany;
- Correspondence: (F.L.); (K.L.)
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany;
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
- Correspondence: (F.L.); (K.L.)
| |
Collapse
|
41
|
Zheng W, Yang P, Sun C, Zhang Y. Comprehensive comparison of sample preparation workflows for proteomics. Mol Omics 2022; 18:555-567. [DOI: 10.1039/d2mo00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based proteomics experiments can be subject to a large variability, which forms an obstacle to obtaining deep and accurate protein identification. Here, to obtain an optimal sample preparation workflow...
Collapse
|
42
|
Acid sphingomyelinase deactivation post-ischemia promotes brain angiogenesis and remodeling by small extracellular vesicles. Basic Res Cardiol 2022; 117:43. [PMID: 36038749 PMCID: PMC9424180 DOI: 10.1007/s00395-022-00950-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 01/31/2023]
Abstract
Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.
Collapse
|
43
|
Li T, Hentschel A, Ahrends R. Analytical comparison of absolute quantification strategies to investigate the Insulin signaling pathway in fat cells. Proteomics 2021; 22:e2100136. [PMID: 34964541 DOI: 10.1002/pmic.202100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022]
Abstract
So far, mass spectrometry based targeted proteomics is the most sensitive approach to answer and address specific biological questions in an accurate and quantitative fashion. However, the data analysis design used for such quantification varies in the field leading to discrepancies in the reported values. In this study, different quantification strategies based on calibration curves were evaluated and compared. The best accuracy and coefficient of variation was achieved by ratio to ratio calibration curves. We applied the ratio to ratio quantification approach to analyze very low abundant insulin signaling proteins such as PIK3RA (0.10-0.93 fmol/μg), AKT1 (0.1-0.39 fmol/μg) and the Insulin receptor (0.22 -2.62 fmol/μg) in a fat cell model and demonstrated the adaptation of this pathway at different states of insulin sensitivity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tingting Li
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V., Otto-Hahn-Straße 6b, Dortmund, 44227, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V., Otto-Hahn-Straße 6b, Dortmund, 44227, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V., Otto-Hahn-Straße 6b, Dortmund, 44227, Germany.,Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| |
Collapse
|
44
|
Gaspar VP, Ibrahim S, Zahedi RP, Borchers CH. Utility, promise, and limitations of liquid chromatography-mass spectrometry-based therapeutic drug monitoring in precision medicine. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4788. [PMID: 34738286 PMCID: PMC8597589 DOI: 10.1002/jms.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/03/2023]
Abstract
Therapeutic drug monitoring (TDM) is typically referred to as the measurement of the concentration of drugs in patient blood. Although in the past, TDM was restricted to drugs with a narrow therapeutic range in order to avoid drug toxicity, TDM has recently become a major tool for precision medicine being applied to many more drugs. Through compensating for interindividual differences in a drug's pharmacokinetics, improved dosing of individual patients based on TDM ensures maximum drug effectiveness while minimizing side effects. This is especially relevant for individuals that present a particularly high intervariability in pharmacokinetics, such as newborns, or for critically/severely ill patients. In this article, we will review the applications for and limitations of TDM, discuss for which patients TDM is most beneficial and why, examine which techniques are being used for TDM, and demonstrate how mass spectrometry is increasingly becoming a reliable and convenient alternative for the TDM of different classes of drugs. We will also highlight the advances, challenges, and limitations of the existing repertoire of TDM methods and discuss future opportunities for TDM-based precision medicine.
Collapse
Affiliation(s)
- Vanessa P. Gaspar
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
| | - Sahar Ibrahim
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
- Clinical Pathology DepartmentMenoufia UniversityShibin el KomEgypt
| | - René P. Zahedi
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Center for Computational and Data‐Intensive Science and EngineeringSkolkovo Institute of Science and TechnologyMoscowRussia
| | - Christoph H. Borchers
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
- Center for Computational and Data‐Intensive Science and EngineeringSkolkovo Institute of Science and TechnologyMoscowRussia
| |
Collapse
|
45
|
Hoene M, Kappler L, Kollipara L, Hu C, Irmler M, Bleher D, Hoffmann C, Beckers J, Hrabě de Angelis M, Häring HU, Birkenfeld AL, Peter A, Sickmann A, Xu G, Lehmann R, Weigert C. Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability. Mol Metab 2021; 54:101359. [PMID: 34695608 PMCID: PMC8671118 DOI: 10.1016/j.molmet.2021.101359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Liver mitochondria adapt to high-calorie intake. We investigated how exercise alters the early compensatory response of mitochondria, thus preventing fatty liver disease as a long-term consequence of overnutrition. Methods We compared the effects of a steatogenic high-energy diet (HED) for six weeks on mitochondrial metabolism of sedentary and treadmill-trained C57BL/6N mice. We applied multi-OMICs analyses to study the alterations in the proteome, transcriptome, and lipids in isolated mitochondria of liver and skeletal muscle as well as in whole tissue and examined the functional consequences by high-resolution respirometry. Results HED increased the respiratory capacity of isolated liver mitochondria, both in sedentary and in trained mice. However, proteomics analysis of the mitochondria and transcriptomics indicated that training modified the adaptation of the hepatic metabolism to HED on the level of respiratory complex I, glucose oxidation, pyruvate and acetyl-CoA metabolism, and lipogenesis. Training also counteracted the HED-induced glucose intolerance, the increase in fasting insulin, and in liver fat by lowering diacylglycerol species and c-Jun N-terminal kinase (JNK) phosphorylation in the livers of trained HED-fed mice, two mechanisms that can reverse hepatic insulin resistance. In skeletal muscle, the combination of HED and training improved the oxidative capacity to a greater extent than training alone by increasing respiration of isolated mitochondria and total mitochondrial protein content. Conclusion We provide a comprehensive insight into the early adaptations of mitochondria in the liver and skeletal muscle to HED and endurance training. Our results suggest that exercise disconnects the HED-induced increase in mitochondrial substrate oxidation from pyruvate and acetyl-CoA-driven lipid synthesis. This could contribute to the prevention of deleterious long-term effects of high fat and sugar intake on hepatic mitochondrial function and insulin sensitivity. High-energy diet promotes mitochondrial respiration in liver independent of training. High-energy diet combined with training disconnects substrate oxidation from lipid synthesis. High-energy diet combined with training reduces complex I formation in the liver. Trained skeletal muscle unburdens the liver from substrate overload. Comprehensive resource of mitochondrial adaptations to high-energy diet and training.
Collapse
Affiliation(s)
- Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Martin Irmler
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Daniel Bleher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Hoffmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Johannes Beckers
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany; Technische Universität München, Chair of Experimental Genetics, 85354, Freising, Germany; German Center for Diabetes Research (DZD), Germany
| | - Martin Hrabě de Angelis
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany; Technische Universität München, Chair of Experimental Genetics, 85354, Freising, Germany; German Center for Diabetes Research (DZD), Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany; Department of Internal Medicine IV, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
46
|
Jennings MJ, Hathazi D, Nguyen CDL, Munro B, Münchberg U, Ahrends R, Schenck A, Eidhof I, Freier E, Synofzik M, Horvath R, Roos A. Intracellular Lipid Accumulation and Mitochondrial Dysfunction Accompanies Endoplasmic Reticulum Stress Caused by Loss of the Co-chaperone DNAJC3. Front Cell Dev Biol 2021; 9:710247. [PMID: 34692675 PMCID: PMC8526738 DOI: 10.3389/fcell.2021.710247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Recessive mutations in DNAJC3, an endoplasmic reticulum (ER)-resident BiP co-chaperone, have been identified in patients with multisystemic neurodegeneration and diabetes mellitus. To further unravel these pathomechanisms, we employed a non-biased proteomic approach and identified dysregulation of several key cellular pathways, suggesting a pathophysiological interplay of perturbed lipid metabolism, mitochondrial bioenergetics, ER-Golgi function, and amyloid-beta processing. Further functional investigations in fibroblasts of patients with DNAJC3 mutations detected cellular accumulation of lipids and an increased sensitivity to cholesterol stress, which led to activation of the unfolded protein response (UPR), alterations of the ER-Golgi machinery, and a defect of amyloid precursor protein. In line with the results of previous studies, we describe here alterations in mitochondrial morphology and function, as a major contributor to the DNAJC3 pathophysiology. Hence, we propose that the loss of DNAJC3 affects lipid/cholesterol homeostasis, leading to UPR activation, β-amyloid accumulation, and impairment of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Matthew J. Jennings
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Denisa Hathazi
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Chi D. L. Nguyen
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Benjamin Munro
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ute Münchberg
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rita Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children’s Hospital University of Essen, Essen, Germany
| |
Collapse
|
47
|
Sitasuwan P, Powers TW, Medwid T, Huang Y, Bare B, Lee LA. Enhancing the multi-attribute method through an automated and high-throughput sample preparation. MAbs 2021; 13:1978131. [PMID: 34586946 PMCID: PMC8489909 DOI: 10.1080/19420862.2021.1978131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The multi-attribute method (MAM), a recent advance in the application of liquid chromatography-mass spectrometry within the pharmaceutical industry, enables the simultaneous monitoring of multiple product quality attributes in a single analytical method. While MAM is coupled with automated data processing and reporting, the sample preparation, based on proteolytic peptide mapping, remains cumbersome and low throughput. The standard sample preparation for MAM relies on protein denaturation, reduction, and alkylation prior to proteolytic digestion, but often a desalting step is required to maintain enzymatic activity. While most of the sample preparation can be automated on a standard robotic liquid handling system, a streamlined approach for protein desalting and temperature modulation is required for a viable, fully automated digestion. In this work, for the first time, a complete tip-based MAM sample preparation is automated on a single robotic liquid handling system, leveraging a deck layout that integrates both heating and cooling functionalities. The fully automated method documented herein achieves a high-throughput sample preparation for MAM, while maintaining superior method performance. Abbreviations: MAM: multi-attribute method; PQAs: product quality attributes; CE: capillary electrophoresis; IEX: ion-exchange chromatography; HILIC-FLR: hydrophilic interaction liquid chromatography coupled to a fluorescence detector; RP-LC/UV: reversed-phase liquid chromatography coupled to a UV detector; MS: mass spectrometry; NPD: new peak detection; GdnHCl: guanidine hydrochloride; TIC: total ion current; pAb: polyclonal antibody; IgG: immunoglobulin G; DTT: dithiothreitol; IAA: iodoacetic acid; TFA: trifluoroacetic acid; A280: absorbance at 280 nm wavelength; 96MPH: 96-channel multi-probe head; CPAC: Cold Plate Air Cooled; HHS: Hamilton Heater Shaker; DWP: Deep-Well Plate; PCR: Polymerase Chain Reaction; NTR: Nested Tip Rack; Met: methionine; Trp: tryptophan; N-term pQ: N-terminal glutamine cyclization; Lys: lysine; PAM: peptidylglycine α-amidating monooxygenase; G0F: asialo-, agalacto-, bi-antennary, core substituted with fucose; G1F: asialo-, mono-galactosylated bi-antennary, core substituted with fucose; G2F: asialo-, bi-galactosylated bi-antennary, core substituted with fucose; G0: asialo-, agalacto-, bi-antennary; Man5: oligomannose 5; Man8: oligomannose 8; TriF: asialo-, tri-galactosylated tri-antennary, core substituted with fucose.
Collapse
Affiliation(s)
| | | | | | | | | | - L Andrew Lee
- Integrated Micro-Chromatography Systems, Inc, Irmo, SC, USA
| |
Collapse
|
48
|
Wang J, Ge M, Sun L, Ahmed I, Li W, Lin H, Lin H, Li Z. Quantification of crustacean tropomyosin in foods using high-performance liquid chromatography-tandem mass spectrometry method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5278-5285. [PMID: 33646570 DOI: 10.1002/jsfa.11177] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Allergic reactions to crustacean products have been increasing owing to the rising consumption. Tropomyosin (TM) is the main crustacean allergen; it has a coiled-coil structure, which shows stability to various food processing methods. Crustacean processed products have been used in several food products, thereby causing greater difficulties in detecting TM in these products. We aimed to develop an assay based on high-performance liquid chromatography-tandem mass spectrometry for the accurate and reproducible quantification of crustacean TM in foods. RESULTS The three peptides IQLLEEDLER, LAEASQAADESER, and IVELEEELR were selected as peptide markers, and the peptide IVELEEELR was selected as the quantitative marker. Extraction conditions and enzymatic digestion conditions were completely optimized. The extraction solution of Tris-hydrochloric acid buffer (50 mmol L-1 , pH 7.4) containing 1 mol L-1 potassium chloride and the enzymatic treatment at 1:15 ratio (enzyme/protein, m/m) for 13 h showed excellent efficiency. The method exhibited a good linear relationship, with the qualified coefficient of determination (R2 = 0.9994) in the wide range of 1 to 1000 μg L-1 . The accuracy was validated based on spiked recovery at three spiking levels (12.5, 25.0, and 50.0 μg kg-1 , TM/matrix) in blank matrices that included chicken sausages, beef balls, and egg-milk biscuits. The recoveries ranged from 91% to 109% with qualified relative standard deviations <15% with the limit of quantification (of 1.6 mg kg-1 , TM/matrix). CONCLUSION This new approach can be used for the qualitative and quantitative detection of crustacean TM in various food matrices. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianhua Wang
- Technical Center, Qingdao Customs, Qingdao, People's Republic of China
| | - Minmin Ge
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Lirui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Wenjie Li
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Hang Lin
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
49
|
Oliveira T, Thaysen-Andersen M, Packer NH, Kolarich D. The Hitchhiker's guide to glycoproteomics. Biochem Soc Trans 2021; 49:1643-1662. [PMID: 34282822 PMCID: PMC8421054 DOI: 10.1042/bst20200879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Protein glycosylation is one of the most common post-translational modifications that are essential for cell function across all domains of life. Changes in glycosylation are considered a hallmark of many diseases, thus making glycoproteins important diagnostic and prognostic biomarker candidates and therapeutic targets. Glycoproteomics, the study of glycans and their carrier proteins in a system-wide context, is becoming a powerful tool in glycobiology that enables the functional analysis of protein glycosylation. This 'Hitchhiker's guide to glycoproteomics' is intended as a starting point for anyone who wants to explore the emerging world of glycoproteomics. The review moves from the techniques that have been developed for the characterisation of single glycoproteins to technologies that may be used for a successful complex glycoproteome characterisation. Examples of the variety of approaches, methodologies, and technologies currently used in the field are given. This review introduces the common strategies to capture glycoprotein-specific and system-wide glycoproteome data from tissues, body fluids, or cells, and a perspective on how integration into a multi-omics workflow enables a deep identification and characterisation of glycoproteins - a class of biomolecules essential in regulating cell function.
Collapse
Affiliation(s)
- Tiago Oliveira
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | | | - Nicolle H. Packer
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| |
Collapse
|
50
|
Beckmann L, Berg V, Dickhut C, Sun C, Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A, Claasen J, Loroch S, Oliverio M, Underbayev C, Vaughn L, Thomalla D, Hülsemann MF, Tausch E, Fischer K, Fink AM, Eichhorst B, Sickmann A, Wendtner CM, Stilgenbauer S, Hallek M, Wiestner A, Zahedi RP, Frenzel LP. MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood 2021; 138:544-556. [PMID: 33735912 PMCID: PMC8377477 DOI: 10.1182/blood.2020009165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/18/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022] Open
Abstract
Bruton tyrosine kinase (BTK) inhibitors are highly active drugs for the treatment of chronic lymphocytic leukemia (CLL). To understand the response to BTK inhibitors on a molecular level, we performed (phospho)proteomic analyses under ibrutinib treatment. We identified 3466 proteins and 9184 phosphopeptides (representing 2854 proteins) in CLL cells exhibiting a physiological ratio of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) (pS:pT:pY). Expression of 83 proteins differed between unmutated immunoglobulin heavy-chain variable region (IGHV) CLL (UM-CLL) and mutated IGHV CLL (M-CLL). Strikingly, UM-CLL cells showed higher basal phosphorylation levels than M-CLL samples. Effects of ibrutinib on protein phosphorylation levels were stronger in UM-CLL, especially on phosphorylated tyrosines. The differentially regulated phosphopeptides and proteins clustered in pathways regulating cell migration, motility, cytoskeleton composition, and survival. One protein, myristoylated alanine-rich C-kinase substrate (MARCKS), showed striking differences in expression and phosphorylation level in UM-CLL vs M-CLL. MARCKS sequesters phosphatidylinositol-4,5-bisphosphate, thereby affecting central signaling pathways and clustering of the B-cell receptor (BCR). Genetically induced loss of MARCKS significantly increased AKT signaling and migratory capacity. CD40L stimulation increased expression of MARCKS. BCR stimulation induced phosphorylation of MARCKS, which was reduced by BTK inhibitors. In line with our in vitro findings, low MARCKS expression is associated with significantly higher treatment-induced leukocytosis and more pronounced decrease of nodal disease in patients with CLL treated with acalabrutinib.
Collapse
Affiliation(s)
- Laura Beckmann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valeska Berg
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Olaf Merkel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Sandra Robrecht
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Julia Claasen
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Matteo Oliverio
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lauren Vaughn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Daniel Thomalla
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte F Hülsemann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Anna Maria Fink
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clemens M Wendtner
- Department I of Internal Medicine and
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Michael Hallek
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute and
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, QC, Canada; and
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lukas P Frenzel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|