1
|
Tarahi M, Aghababaei F, McClements DJ, Pignitter M, Hadidi M. Bioactive peptides derived from insect proteins: Preparation, biological activities, potential applications, and safety issues. Food Chem 2025; 465:142113. [PMID: 39581148 DOI: 10.1016/j.foodchem.2024.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Bioactive peptides are polypeptides with specific amino acid sequences that exhibit biological activities and health benefits. Insects have emerged as a sustainable source of proteins in human food and animal feed due to their efficient resource utilization, low environmental footprint, and good nutritional profile. Moreover, insect-derived bioactive peptides (IBPs) offer potential applications in functional foods and pharmaceuticals due to their antioxidant, antimicrobial, antihypertensive, anti-inflammatory, antidiabetic, and anti-obesity activities. In this article, the isolation, purification, and properties of IBPs are reviewed, as well as their potential health benefits, commercial applications, and safety. Despite the growing interest in incorporating IBPs into food products, challenges regarding consumer acceptance, safety, and regulations still persist. Thus, there is a pressing need for further research in this area, as well as clarification of the regulatory framework, before the full potential of insects as a sustainable source of bioactive peptides for human consumption can be realized.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | | | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
2
|
Psarianos M, Aghababaei F, Schlüter OK. Bioactive compounds in edible insects: Aspects of cultivation, processing and nutrition. Food Res Int 2025; 203:115802. [PMID: 40022332 DOI: 10.1016/j.foodres.2025.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
The increasing interest in edible insects, driven by projected global population growth and environmental concerns, has led to the exploration of their potential in the food sector. Edible insects are abundant in macronutrients, such as proteins, lipids and chitin, as well as micronutrients, such as minerals, vitamins and phenolic compounds. Considering their content of bioactive compounds, they offer a sustainable solution to meet future food demands while providing potential health benefits. This review identifies bioactive peptides, phenolic compounds, chitosan, and vitamins as major bioactive ingredients derived from insects. It discusses their presence in various edible insect species, their primary bioactive properties, and methods for production and isolation. Bioactive compounds sourced from edible insects exhibit antioxidant, antimicrobial, and disease-preventing properties. Insects also serve as rich sources of vitamins A, B2, B6, B12, D, and E, albeit with variations in content among species and life stages. However, the consumption of insects poses risks related to their biological and chemical contaminants, as well as their allergenicity. Managed diets in farm-bred insects ensure controlled nutrient levels, highlighting their potential as sustainable sources of bioactive compounds for human health. Adequate processing and labeling of insect-derived products can reduce the risk of insect consumption. In conclusion, the bioactive compound profile of edible insects complements their nutritional richness and highlights their potential to address future nutrition and food security.
Collapse
Affiliation(s)
- Marios Psarianos
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Department de Ciència Animal i dels Aliments, UAB-Campus, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Oliver K Schlüter
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Bologna, Department of Agricultural and Food Sciences, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
3
|
Jiang S, Mo F, Li W, Yang S, Li C, Jiang L. Deep Learning-Driven Optimization of Antihypertensive Properties from Whey Protein Hydrolysates: A Multienzyme Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1373-1388. [PMID: 39721995 DOI: 10.1021/acs.jafc.4c10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study utilized deep learning to optimize antihypertensive peptides from whey protein hydrolysate. Using the Large Language Models (LLMs), we identified an optimal multienzyme combination (MC5) with an ACE inhibition rate of 89.08% at a concentration of 1 mg/mL, significantly higher than single-enzyme hydrolysis. MC5 (1 mg/mL) exhibited excellent biological stability, with the ACE inhibition decreasing by only 6.87% after simulated digestion. In in vivo experiments, MC5 reduced the systolic and diastolic blood pressure of hypertensive rats to 125.00 and 89.00 mmHg, respectively. MC5 significantly lowered inflammatory markers (TNF-α and IL-6) and increased antioxidant enzyme activity (SOD, GSH-Px, GR, and CAT). Compared to the MC group, the MC5 group showed significantly reduced serum renin and ET-1 levels by 1.25-fold and 1.04-fold, respectively, while serum NO content increased by 3.15-fold. Furthermore, molecular docking revealed four potent peptides (LPEW, LKPTPEGDL, LNYW, and LLL) with high ACE binding affinity. This approach demonstrated the potential of combining computational methods with traditional hydrolysis processes to develop effective dietary interventions for hypertension.
Collapse
Affiliation(s)
- Shuai Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fan Mo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenhan Li
- Department of Pharmacy, Yixing Hospital of Traditional Chinese Medicine, Yixing 214200, China
| | - Sirui Yang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chunbao Li
- Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Yang C, Xie T, Cai M, Xu X, Li M, Liu P, Lan X. Investigation of the Interaction Between Angiotensin-Converting Enzyme (ACE) and ACE-Inhibitory Tripeptide from Casein. Int J Mol Sci 2024; 25:13021. [PMID: 39684732 DOI: 10.3390/ijms252313021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitory peptides exhibit antihypertensive effects by inhibiting ACE activity, and the study of the interaction between ACEs and inhibitory peptides is important for exploring new therapeutic strategies. In this study, the ACE-inhibitory peptide isolated from casein hydrolysate with the amino acid sequence Leu-Leu-Tyr (LLY) exhibited high ACE-inhibitory activity and stability, which holds significant implications for biochemistry and pharmaceutical applications. Furthermore, systematic investigations were conducted on the interaction between ACE and LLY through various approaches. The Lineweaver-Burk plot indicated the non-competitive inhibition pattern of LLY, suggesting that it binds to the enzyme at the non-active site, and the results were further validated by a molecular docking study. Additionally, multispectral experiments and atomic force microscopy were conducted to further elucidate the underlying mechanism of peptide activity. The findings indicated that LLY could induce a conformational change in ACE, thereby inhibiting its activity. This study contributes to a deeper understanding of the mechanism of action of ACE-inhibitory peptides and bears important significance for drug development in hypertension.
Collapse
Affiliation(s)
- Cuicui Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Tianzhao Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Mengmeng Cai
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiaoting Xu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Muzijun Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Pengru Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
5
|
Cao WJ, Liu R, Zhao WX, Li J, Wang Y, Yuan XJ, Wang HL, Zhang YZ, Chen XL, Zhang YQ. Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties. Mar Drugs 2024; 22:305. [PMID: 39057414 PMCID: PMC11277839 DOI: 10.3390/md22070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Marine bacterial proteases have rarely been used to produce bioactive peptides, although many have been reported. This study aims to evaluate the potential of the marine bacterial metalloprotease A69 from recombinant Bacillus subtilis in the preparation of peanut peptides (PPs) with antioxidant activity and angiotensin-converting enzyme (ACE)-inhibitory activity. Based on the optimization of the hydrolysis parameters of protease A69, a process for PPs preparation was set up in which the peanut protein was hydrolyzed by A69 at 3000 U g-1 and 60 °C, pH 7.0 for 4 h. The prepared PPs exhibited a high content of peptides with molecular weights lower than 1000 Da (>80%) and 3000 Da (>95%) and contained 17 kinds of amino acids. Moreover, the PPs displayed elevated scavenging of hydroxyl radical and 1,1-diphenyl-2-picryl-hydrazyl radical, with IC50 values of 1.50 mg mL-1 and 1.66 mg mL-1, respectively, indicating the good antioxidant activity of the PPs. The PPs also showed remarkable ACE-inhibitory activity, with an IC50 value of 0.71 mg mL-1. By liquid chromatography mass spectrometry analysis, the sequences of 19 ACE inhibitory peptides and 15 antioxidant peptides were identified from the PPs. These results indicate that the prepared PPs have a good nutritional value, as well as good antioxidant and antihypertensive effects, and that the marine bacterial metalloprotease A69 has promising potential in relation to the preparation of bioactive peptides from peanut protein.
Collapse
Affiliation(s)
- Wen-Jie Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Rui Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Wen-Xiao Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Xiao-Jie Yuan
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Hui-Lin Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology of Shandong University and Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology of Shandong University and Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology of Shandong University and Ocean University of China, Qingdao 266237, China
| |
Collapse
|
6
|
Sutopo CCY, Hung WT, Hsu JL. A simple tandem bioassay-guided SCX-RP SPE fractionation for efficient active peptide screening from Inca nut cake protein hydrolysate. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124061. [PMID: 38430604 DOI: 10.1016/j.jchromb.2024.124061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Typically, bioactive peptides were uncovered from complex hydrolysates using sequential bioassay-guided fractionation. To increase the efficiency of bioactive peptide screening, a simple and convenient tandem bioassay-guided fractionation based on solid-phase extraction (SPE) was conducted to screen the angiotensin-I-converting enzyme (ACE) inhibitory peptides from the hydrolysate of Inca nut cake protein (INCP). The so-called SCX-RP SPE system was constructed by assembling SCX (strong cation exchange) and RP (reversed phase) SPE cartridges. Using this tandem SCX-RP SPE, the INCP digested with combined gastrointestinal protease (INCP GP) was fractionated into 30 fractions. The fraction F11 exhibited the highest ACE inhibitory activity among 30 fractions. The ACE IC50 of fraction F11 was calculated to be 6.6 ± 0.5 µg/mL. The ACEI activity of fraction F11 was stronger than the INCP GP hydrolysate (ACE IC50 of 12.7 ± 0.4 µg/mL). The tandem SCX-RP SPE fractionation reduced the number of ACE inhibitory (ACEI) peptide candidates from 127 peptides in the INCP GP hydrolysate to only ten peptides in fraction F11. Subsequently, WALPTQSW (WW-8) and WLPTKSW (WW-7) from fraction F11 were synthesized, and their ACE IC50 was determined to be 4.7 ± 0.1 and 7.9 ± 0.1 µM, respectively. The dipeptidyl peptidase-4 (DPP4) inhibitory and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities of WALPTQSW (WW-8) were also explored to give IC50 values of 131.7 ± 5.2 and 191.8 ± 7.0 µM, respectively. The molecular docking and inhibition mechanism studies indicated that WW-8 inhibited ACE and DPP4 as competitive and non-competitive inhibitors, respectively. The pre-incubation experiment of WW-8 toward ACE and DPP4 demonstrated that WW-8 was a true-inhibitor type. Additionally, the amount of WW-8 was quantified to be 5.8 ± 0.2 and 35 ± 0.4 µg per milligram hydrolysate and fraction F11, respectively. This study demonstrated tandem bioassay-guided SCX-RP SPE fractionation efficiently screened ACEI peptide derived from INCP GP hydrolysate, adding more value to Inca nut cake (a leftover of the oil industry) as a bioactive peptide precursor.
Collapse
Affiliation(s)
- Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Wei-Ting Hung
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Tropical Agriculture Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
7
|
Hung WT, Sutopo CCY, Wu ML, Hsu JL. Discovery and Characterization of a Dual-Function Peptide Derived from Bitter Gourd Seed Protein Using Two Orthogonal Bioassay-Guided Fractionations Coupled with In Silico Analysis. Pharmaceuticals (Basel) 2023; 16:1629. [PMID: 38004494 PMCID: PMC10674851 DOI: 10.3390/ph16111629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The hydrolysate of bitter gourd seed protein, digested by the combined gastrointestinal proteases (BGSP-GPs), exhibited the most potent inhibition on angiotensin-I-converting enzyme (ACE) with an IC50 value of 48.1 ± 2.0 µg/mL. Using two independent bioassay-guided fractionations, fraction F5 from reversed-phase chromatography and fraction S1 from strong cation exchange chromatography exhibited the highest ACE inhibitory (ACEI) activity. Three identical peptides were simultaneously detected from both fractions and, based on the in silico appraisal, APLVSW (AW6) was predicted as a promising ACEI peptide. Their dipeptidyl peptidase-IV (DPP4) inhibitory (DPP4I) activity was also explored. The IC50 values of AW6 against ACE and DPP4 were calculated to be 9.6 ± 0.3 and 145.4 ± 4.4 µM, respectively. The inhibitory kinetics and intermolecular interaction studies suggested that AW6 is an ACE competitive inhibitor and a DPP4 non-competitive inhibitor. The quantities of AW6 in BGSP-GP hydrolysate, fractions F5 and S1, were also analyzed using liquid chromatography-tandem mass spectrometry. Notably, AW6 could resist hydrolysis in the human gastrointestinal tract according to the result of the simulated gastrointestinal digestion. To the best of our knowledge, this is the first discovery and characterization of a dual-function (ACEI and DPP4I activities) peptide derived from bitter gourd seed protein.
Collapse
Affiliation(s)
- Wei-Ting Hung
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (W.-T.H.); (M.-L.W.)
| | - Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Mei-Li Wu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (W.-T.H.); (M.-L.W.)
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
8
|
Wang J, Shao B, Li J, Wang Z, Zhang M, Jia L, Yu P, Ma C. Identification and In Silico Analysis of ACE-Inhibitory Peptides Derived from Milk Fermented by Lacticaseibacillus paracasei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12462-12473. [PMID: 37578765 DOI: 10.1021/acs.jafc.2c09148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Inhibition of angiotensin I-converting enzyme (ACE) activity is an effective way to treat hypertension. In the present study, the ability to produce ACE-inhibitory peptides during fermentation of skimmed milk by the Lacticaseibacillus paracasei M3 strain was evaluated, and the inhibitory mechanism and stability were studied by bioinformatics analysis. The results showed that the ACE inhibition activity of fermented milk was 71.94 ± 1.39%. After digestion with gastric juice and pancreatic juice, the ACE inhibitory activities of the fermented milk were 78.40 ± 1.93 and 74.96 ± 1.73%, respectively. After the fermented milk was purified using ultrafiltration and gel chromatography, 11 peptides from milk proteins were identified and sequenced by Nano LC-MS/MS. Molecular docking displayed that peptide PWIQPK had a high affinity, with ACE showing a binding energy of -6.10 kcal/mol. Hydrogen bonds were formed between PWIQPK and Glu384 in the S1 active pocket of ACE and Asp358. In addition, van der Waals forces were observed. In silico proteolysis suggested that PWIQPK could resist the digestion of pepsin and trypsin, indicating that it is relatively stable in the digestive tract. All results indicate that milk fermented by L. paracasei M3 has the potential to be used as a functional food having antihypertensive effects.
Collapse
Affiliation(s)
- Jiaxu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyue Shao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhimin Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mixia Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Jia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Ko SC, Kim JY, Lee JM, Yim MJ, Kim HS, Oh GW, Kim CH, Kang N, Heo SJ, Baek K, Lee DS. Angiotensin I-Converting Enzyme (ACE) Inhibition and Molecular Docking Study of Meroterpenoids Isolated from Brown Alga, Sargassum macrocarpum. Int J Mol Sci 2023; 24:11065. [PMID: 37446242 PMCID: PMC10341620 DOI: 10.3390/ijms241311065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Angiotensin I-converting enzyme (ACE) is an important blood pressure regulator. In this study, we aimed to investigate the ACE-inhibitory effects of meroterpenoids isolated from the brown alga, Sargassum macrocarpum, and the molecular mechanisms underlying ACE inhibition. Four fractions of S. macrocarpum were prepared using hexane, chloroform, ethyl acetate, and water as solvents and analyzed for their potential ACE-inhibitory effects. The chloroform fraction showed the strongest ACE-inhibitory effect, with an IC50 value of 0.18 mg/mL. Three meroterpenoids, sargachromenol, 7-methyl sargachromenol, and sargaquinoic acid, were isolated from the chloroform fraction. Meroterpenoids isolated from S. macrocarpum had IC50 values of 0.44, 0.37, and 0.14 mM. The molecular docking study revealed that the ACE-inhibitory effect of the isolated meroterpenoids was mainly attributed to Zn-ion, hydrogen bonds, pi-anion, and pi-alkyl interactions between the meroterpenoids and ACE. These results suggest that S. macrocarpum could be a potential raw material for manufacturing antihypertensive nutraceutical ingredients.
Collapse
Affiliation(s)
- Seok-Chun Ko
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Chul Hwan Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Nalae Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (S.-J.H.)
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (S.-J.H.)
| | - Kyunghwa Baek
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| |
Collapse
|
10
|
Watts NR, Eren E, Palmer I, Huang PL, Huang PL, Shoemaker RH, Lee-Huang S, Wingfield PT. The ribosome-inactivating proteins MAP30 and Momordin inhibit SARS-CoV-2. PLoS One 2023; 18:e0286370. [PMID: 37384752 PMCID: PMC10310010 DOI: 10.1371/journal.pone.0286370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The continuing emergence of SARS-CoV-2 variants has highlighted the need to identify additional points for viral inhibition. Ribosome inactivating proteins (RIPs), such as MAP30 and Momordin which are derived from bitter melon (Momordica charantia), have been found to inhibit a broad range of viruses. MAP30 has been shown to potently inhibit HIV-1 with minimal cytotoxicity. Here we show that MAP30 and Momordin potently inhibit SARS-CoV-2 replication in A549 human lung cells (IC50 ~ 0.2 μM) with little concomitant cytotoxicity (CC50 ~ 2 μM). Both viral inhibition and cytotoxicity remain unaltered by appending a C-terminal Tat cell-penetration peptide to either protein. Mutation of tyrosine 70, a key residue in the active site of MAP30, to alanine completely abrogates both viral inhibition and cytotoxicity, indicating the involvement of its RNA N-glycosylase activity. Mutation of lysine 171 and lysine 215, residues corresponding to those in Ricin which when mutated prevented ribosome binding and inactivation, to alanine in MAP30 decreased cytotoxicity (CC50 ~ 10 μM) but also the viral inhibition (IC50 ~ 1 μM). Unlike with HIV-1, neither Dexamethasone nor Indomethacin exhibited synergy with MAP30 in the inhibition of SARS-CoV-2. From a structural comparison of the two proteins, one can explain their similar activities despite differences in both their active-sites and ribosome-binding regions. We also note points on the viral genome for potential inhibition by these proteins.
Collapse
Affiliation(s)
- Norman R. Watts
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| | - Elif Eren
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| | - Ira Palmer
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| | - Paul L. Huang
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Philip Lin Huang
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, NIH, Bethesda, Maryland, United States of America
| | - Sylvia Lee-Huang
- Department of Biochemistry and Molecular Pharmacology, New York University, Grossman School of Medicine, New York, New York, United States of America
| | - Paul T. Wingfield
- Protein Expression Laboratory, NIAMS, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Liao W, Yan S, Cao X, Xia H, Wang S, Sun G, Cai K. A Novel LSTM-Based Machine Learning Model for Predicting the Activity of Food Protein-Derived Antihypertensive Peptides. Molecules 2023; 28:4901. [PMID: 37446561 DOI: 10.3390/molecules28134901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Food protein-derived antihypertensive peptides are a representative type of bioactive peptides. Several models based on partial least squares regression have been constructed to delineate the relationship between the structure and activity of the peptides. Machine-learning-based models have been applied in broad areas, which also indicates their potential to be incorporated into the field of bioactive peptides. In this study, a long short-term memory (LSTM) algorithm-based deep learning model was constructed, which could predict the IC50 value of the peptide in inhibiting ACE activity. In addition to the test dataset, the model was also validated using randomly synthesized peptides. The LSTM-based model constructed in this study provides an efficient and simplified method for screening antihypertensive peptides from food proteins.
Collapse
Affiliation(s)
- Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Siyuan Yan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Kaida Cai
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Statistics and Actuarial Sciences, School of Mathematics, Southeast University, Nanjing 210009, China
| |
Collapse
|
12
|
Yudho Sutopo CC, Aznam N, Arianingrum R, Hsu JL. Screening potential hypertensive peptides using two consecutive bioassay-guided SPE fractionations and identification of an ACE inhibitory peptide, DHSTAVW (DW7), derived from pearl garlic protein hydrolysate. Peptides 2023; 167:171046. [PMID: 37330111 DOI: 10.1016/j.peptides.2023.171046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The pearl garlic (Allium sativum L.) protein (PGP) was digested using pepsin, trypsin, α-chymotrypsin, thermolysin, and simulated gastrointestinal digestion. The α-chymotrypsin hydrolysate showed the highest angiotensin-I-converting enzyme inhibitory (ACEI) activity, with an IC50 value of 190.9 ± 11µg/mL. A reversed-phase C18 solid-phase extraction (RP-SPE) cartridge was used for the first fractionation, and the S4 fraction from RP-SPE showed the most potent ACEI activity (IC50 = 124.1 ± 11 3µg/mL). The S4 fraction was further fractionated using a hydrophilic interaction liquid chromatography SPE (HILIC-SPE). The H4 fraction from HILIC-SPE showed the highest ACEI activity (IC50 = 57.7 ± 3µg/mL). Four ACEI peptides (DHSTAVW, KLAKVF, KLSTAASF, and KETPEAHVF) were identified from the H4 fraction using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and their biological activities were appraised in silico. Among the identified α-chymotryptic peptides, DHSTAVW (DW7), derived from I lectin partial protein, exhibited the most potent ACEI activity (IC50 value of 2.8 ± 0.1µM). DW7 was resistant to simulated gastrointestinal digestion, and it was classified as a prodrug-type inhibitor according to the preincubation experiment. The inhibition kinetics indicated that DW7 was a competitive inhibitor, which was rationalized by the molecular docking simulation. The quantities of DW7 in 1mg of hydrolysate, S4 fraction, and H4 fraction were quantified using LC-MS/MS to give 3.1 ± 0.1, 4.2 ± 0.1, and 13.2 ± 0.1µg, respectively. The amount of DW7 was significantly increased by 4.2-fold compared with the hydrolysate, which suggested that this method is efficient for active peptide screening.
Collapse
Affiliation(s)
- Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Nurfina Aznam
- Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Sleman 55281, Indonesia
| | - Retno Arianingrum
- Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Sleman 55281, Indonesia
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Institute of Food Safety Management, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
13
|
Novel antihypertensive peptides from lupin protein hydrolysate: An in-silico identification and molecular docking studies. Food Chem 2023; 407:135082. [PMID: 36493485 DOI: 10.1016/j.foodchem.2022.135082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Application of non-thermal treatment to proteins prior to enzymatic hydrolysis can facilitate the release of novel bioactive peptides (BPs) with unique biological activities. In this study, lupin protein isolate was pre-treated with ultrasound and hydrolysed using alcalase and flavourzyme to produce alcalase hydrolysate (ACT) and flavourzyme hydrolysate(FCT). These hydrolysates were fractionated into 1, 5, and 10 kDa molecular weight fractions using a membrane ultrafiltration technique. The in vitro angiotensin-converting enzyme (ACE) studies revealed that unfractionated ACT (IC50 = 3.21 mg mL-1) and FCT (IC50 = 3.32 mg mL-1) were more active inhibitors of ACE in comparison to their ultrafiltrated fractions with IC50 values ranging from 6.09 to 7.45 mg mL-1. Molecular docking analysis predicted three unique peptides from ACT (AIPPGIPY, SVPGCT, and QGAGG) and FCT (AIPINNPGKL, SGNQGP, and PPGIP) as potential ACE inhibitors. Thus, unique BPs with ACE inhibitory effects might be generated from ultrasonicated lupin protein.
Collapse
|
14
|
Mudgil P, Gan CY, Affan Baig M, Hamdi M, Mohteshamuddin K, Aguilar-Toalá JE, Vidal-Limon AM, Liceaga AM, Maqsood S. In-depth peptidomic profile and molecular simulation studies on ACE-inhibitory peptides derived from probiotic fermented milk of different farm animals. Food Res Int 2023; 168:112706. [PMID: 37120189 DOI: 10.1016/j.foodres.2023.112706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Investigations into ACE inhibitory properties of probiotic fermented bovine, camel, goat, and sheep milk were performed and studied for two weeks of refrigerated storage. Results from the degree of proteolysis suggested higher susceptibility of goat milk proteins, followed by sheep and camel milk proteins, to the probiotic-mediated proteolysis. ACE-inhibitory properties displayed continuous decline in ACE-IC50 values for two weeks of refrigerated storage. Overall, goat milk fermented with Pediococcus pentosaceus caused maximum ACE inhibition (IC50: 262.7 µg/mL protein equivalent), followed by camel milk (IC50: 290.9 µg/mL protein equivalent). Studies related to peptide identification and in silico analysis using HPEPDOCK score revealed presence of 11, 13, 9 and 9 peptides in fermented bovine, goat, sheep, and camel milk, respectively, with potent antihypertensive potential. The results obtained suggest that the goat and camel milk proteins demonstrated higher potential for generating antihypertensive peptides via fermentation when compared to bovine and sheep milk.
Collapse
Affiliation(s)
- Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Mohd Affan Baig
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Marwa Hamdi
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Khaja Mohteshamuddin
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Av. de las Garzas 10, Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Abraham M Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
15
|
Windarto S, Lee MC, Nursyam H, Hsu JL. First Report of Screening of Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Derived from the Red Alga Acrochaetium sp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:882-894. [PMID: 36074309 DOI: 10.1007/s10126-022-10152-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
ACE inhibitors generated from food proteins have recently become the most well-known subclass of bioactive peptides, and their bio-functionality can be a potential alternative to natural bioactive food components and synthetic drugs. The bioactivities of Acrochaetium sp., the red alga used in this investigation, have never been reported before. Screening of bioactive peptides from Acrochaetium sp. as ACE inhibitors were hydrolyzed with various proteolytic enzymes. Protein hydrolysates were fractionated separately using reversed phased (RP) and strong cation exchange (SCX) chromatography and identified as VGGSDLQAL (VL-9) using α-chymotrypsin. It comes from Phycoerythrin (PE), an abundant protein in a primarily red alga. The peptide VL-9 shows the ACE inhibitory activity with IC50 value 433.1 ± 1.08 µM. The inhibition pattern showed VL-9 as a non-competitive inhibitor. Molecular docking simulation proved that VL-9 was non-competitive inhibition due to the interaction peptide and ACE was not in the catalytic site. Moreover, VL-9 derived from Acrochaetium sp. is a natural bioactive peptide that is safer and available for food protein; also, the ACE inhibitory peptide derived from Acrochaetium sp. could be the one alternative resource to develop functional food for combating hypertension.
Collapse
Affiliation(s)
- Seto Windarto
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, 50275, Indonesia.
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, 65145, Indonesia.
| | - Meng-Chou Lee
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Happy Nursyam
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Research Center for Austronesian Medicine and Agriculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Research Center for Tropic Agriculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| |
Collapse
|
16
|
Feng L, Wang Y, Yang J, Sun YF, Li YW, Ye ZH, Lin HB, Yang K. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed Pharmacother 2022; 153:113493. [DOI: 10.1016/j.biopha.2022.113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
|
17
|
Zeng L, Chen M, Ahmad H, Zheng X, Ouyang Y, Yang P, Yang Z, Gao D, Tian Z. Momordica charantia Extract Confers Protection Against Hypertension in Dahl Salt-Sensitive Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:373-382. [PMID: 35705768 DOI: 10.1007/s11130-022-00971-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Hypertension is one of the main factors of cardiovascular disease worldwide and is strongly related to the overall mortality. High salt intake is a major risk factors for hypertension. Identifying functional foods that can help prevent mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable nutraceutical and scientific interest. Dietary Momordica charantia may be an alternative approach to avoid salt-induced hypertension. Dahl salt-sensitive (DSS) rats were used to determine whether Momordica charantia water extracts (ME) exerts anti-hypertensive effects in the present study. ME gavage could significantly prevented the increase of blood pressure, blood urea nitrogen, creatinine, and urine protein-to-creatinine ratio of DSS rats. Metabolomics analysis indicated that high-salt diet induced abnormal amino acid metabolism was related to nitric oxide (NO) deficiency, but ME gavage could upregulate the activities of nitric oxide synthase, aspartate aminotransferase, argininosuccinate lyase, argininosuccinate synthase and restore endogenous synthesis of arginine and NO. Meanwhile, renal function was improved after ME gavage. Citrulline, as one of the important component in ME, could attenuate salt-induced hypertension by increasing endogenous synthesis of arginine and NO. Antioxidants in ME, such as phenolic compound, may avoid high-salt induced oxidative stress in DSS rats, which may be another mechanism by which ME prevented blood pressure increase. Thus, the present study indicated that feeding Momordica charantia could avoid high-salt-induced hypertension in DSS rats.
Collapse
Affiliation(s)
- Li Zeng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hussain Ahmad
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
18
|
Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022; 11:1823. [PMID: 35804638 PMCID: PMC9265340 DOI: 10.3390/foods11131823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Bioactive peptides (BPs) derived from animal and plant proteins are important food functional ingredients with many promising health-promoting properties. In the food industry, enzymatic hydrolysis is the most common technique employed for the liberation of BPs from proteins in which conventional heat treatment is used as pre-treatment to enhance hydrolytic action. In recent years, application of non-thermal food processing technologies such as ultrasound (US), high-pressure processing (HPP), and pulsed electric field (PEF) as pre-treatment methods has gained considerable research attention owing to the enhancement in yield and bioactivity of resulting peptides. This review provides an overview of bioactivities of peptides obtained from animal and plant proteins and an insight into the impact of US, HPP, and PEF as non-thermal treatment prior to enzymolysis on the generation of food-derived BPs and resulting bioactivities. US, HPP, and PEF were reported to improve antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, and antidiabetic properties of the food-derived BPs. The primary modes of action are due to conformational changes of food proteins caused by US, HPP, and PEF, improving the susceptibility of proteins to protease cleavage and subsequent proteolysis. However, the use of other non-thermal techniques such as cold plasma, radiofrequency electric field, dense phase carbon dioxide, and oscillating magnetic fields has not been examined in the generation of BPs from food proteins.
Collapse
Affiliation(s)
- Gbemisola J. Fadimu
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Thao T. Le
- Department of Food and Microbiology, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tuyen Truong
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| |
Collapse
|
19
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractBitter gourd is a tropical wine grown mainly in India, China and South East Asia. The plant is cultivated mainly for its fruit part which is edible. Bitter gourd is unaccepted widely due to its bitter taste. Nevertheless, the fruit is a source of several key nutrients. The plant, as a whole contains, more than 60 phyto-medicines that are active against more than 30 diseases, including cancer and diabetes. Currently, the incorporation of the bioactive compounds isolated from bitter gourd into functional foods and beverages finds a new horizon. Nanoencapsulation and novel green extraction methods can be employed to improve the yield and quality of extracted compounds and their stability while incorporation into food products. The present review is an attempt to throw light to nutritional aspects, various bioactive compounds present and important nutraceutical properties of the bitter gourd plant in detail.
Graphical Abstract
Collapse
|
21
|
Exploration of ACE-Inhibiting Peptides Encrypted in Artemisia annua Using In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5367125. [PMID: 35655475 PMCID: PMC9152397 DOI: 10.1155/2022/5367125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
The renin-angiotensin system (RAS) is involved in body fluid regulation, but one of its enzymes, angiotensin-converting enzyme (ACE), indirectly causes hypertension by constricting blood vessels. Autoimmune illness is linked to the increased risk of hypertension and cardiovascular disease. In this study, ACE-inhibiting peptides were studied from Artemisia annua proteins. In silico hydrolysis of proteins was performed by BIOPEP-UWM using proteolytic enzymes from plant, microbial, and digestive sources. The physicochemical properties of 1160 peptides were determined using the peptide package of R studio. Di- and tripeptides were mostly released with a molecular weight of 170 to 350 Da. PeptideRanker was used to select 16 peptides from a pool of 1160 peptides based on their likelihood of being bioactive. Molecular docking was performed by DS 2020 and AutoDock Vina, which revealed that the stability of the ligand-receptor complex is due to hydrogen bonding and electrostatic and hydrophobic interactions. Their binding energies ranged from -31.81 to -20.09 kJ/mol. For drug-likeness evaluation, an online tool SwissADME was used that follows the ADME rule (absorption, distribution, metabolism, and excretion) to check the pharmacokinetics and drug-likeness of the compound. In the future, the released peptides can be used to make functional nutraceutical foods against hypertension.
Collapse
|
22
|
Toldrá F, Mora L. Peptidomics as a useful tool in the follow-up of food bioactive peptides. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:1-47. [PMID: 35659349 DOI: 10.1016/bs.afnr.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is an intense research activity on bioactive peptides derived from food proteins in view of their health benefits for consumers. However, their identification is quite challenging as a consequence of their small size and low abundance in complex matrices such as foods or hydrolyzates. Recent advances in peptidomics and bioinformatics are getting improved sensitivity and accuracy and therefore such tools are contributing to the development of sophisticated methodologies for the identification and quantification of peptides. These developments are very useful for the follow-up of peptides released through proteolysis either in the food itself through the action of endogenous peptidases during processing stages like fermentation, drying or ripening, or from food proteins hydrolyzed by commercial peptidases or microorganisms with proteolytic activity. This chapter is presenting the latest advances in peptidomics and its use for the identification and quantification of peptides, and as a useful tool for controlling the proteolysis phenomena in foods and protein hydrolyzates.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain.
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| |
Collapse
|
23
|
Liu D, Chen M, Zhu J, Tian W, Guo Y, Ma H. A Two-Stage Enzymolysis Method and Its Application in Exerting Antioxidant Activity of Walnut Protein. Front Nutr 2022; 9:889434. [PMID: 35495928 PMCID: PMC9046995 DOI: 10.3389/fnut.2022.889434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
Traditional enzymolysis method for producing bioactive peptides does not consider the utilization of digestive enzymes in the human gastrointestinal tract, leading to the possibility of excessive hydrolysis and higher production cost. Therefore, a two-stage enzymolysis method was established in this study based on in vitro limited enzymolysis and gastrointestinal digestion, and applied it to the research of walnut protein (WP) in exerting antioxidant activity. Results showed that WP could be well-digested by pepsin and pancreatin. WP with limited enzymolysis degree of 0% could achieve high antioxidant activity after the simulated gastrointestinal digestion, and the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and reducing power were 66.53% and 8.55 μmoL TE/mL, respectively. In vivo experimental results also exhibited that both WP and WP hydrolysate (WPH) could alleviate the oxidative damage induced by D-galactose in SD rats to some extent. Considering the digestive function of human body, in vitro limited enzymolysis, in vitro simulated gastrointestinal digestion and in vivo validation are necessary processes for the production of bioactive peptides.
Collapse
Affiliation(s)
- Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Min Chen
- Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Junsong Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Weijie Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
- *Correspondence: Haile Ma
| |
Collapse
|
24
|
Aires R, Gobbi Amorim F, Côco LZ, da Conceição AP, Zanardo TÉC, Taufner GH, Nogueira BV, Vasquez EC, Melo Costa Pereira T, Campagnaro BP, Dos Santos Meyrelles S. Use of kefir peptide (Kef-1) as an emerging approach for the treatment of oxidative stress and inflammation in 2K1C mice. Food Funct 2022; 13:1965-1974. [PMID: 35088783 DOI: 10.1039/d1fo01798e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The benefits of kefir consumption are partially due to the rich composition of bioactive molecules released from its fermentation. Angiotensin-converting enzyme (ACE) inhibitors are bioactive molecules with potential use in the treatment or prevention of hypertension, heart failure, and myocardial infarction. Here, the in vivo actions of the Kef-1 peptide, an ACE inhibitor derived from kefir, were evaluated in an angiotensin II-dependent hypertension model. The Kef-1 peptide showed a potential anti-hypertensive effect. Additionally, Kef-1 exhibited systemic antioxidant and anti-inflammatory activities. In smooth muscle cells (SMCs), the Kef-1 peptide decreased ROS production through the reduced participation of NADPH oxidase and mitochondria. The aorta of 2K1C mice treated with Kef-1 showed lesser wall-thickening and partial restoration of the endothelial structure. In conclusion, these novel findings highlight the in vivo biological potential of this peptide demonstrating that Kef-1 may be a relevant nutraceutical treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Rafaela Aires
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Amanda Pompermayer da Conceição
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Tadeu Ériton Caliman Zanardo
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Gabriel Henrique Taufner
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Breno Valentim Nogueira
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Silvana Dos Santos Meyrelles
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| |
Collapse
|
25
|
Ningrum S, Sutrisno A, Hsu JL. An exploration of ACE inhibitory peptides derived from gastrointestinal protease hydrolysate of milk using a modified bioassay-guided fractionation approach coupled with in silico analysis. J Dairy Sci 2022; 105:1913-1928. [PMID: 35086704 DOI: 10.3168/jds.2021-21112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
An improved bioassay-guided fractionation was performed to effectively screen angiotensin-I converting enzyme inhibitory (ACEI) peptides from milk protein hydrolysate. The aqueous normal phase liquid chromatography, namely hydrophilic interaction liquid chromatography (HILIC), was used as a format of solid-phase extraction (SPE) short column for the first fractionation, then the HILIC-SPE fraction with the best ACEI activity (IC50 = 61.75 ± 5.74 µg/mL; IC50 = half-maximal inhibitory concentration) was obtained when eluted by 95% acetonitrile + 0.1% formic acid (fraction F1). The best HILIC-SPE fraction was further fractionated using reversed-phase (RP)-SPE short column. The best RP-SPE fraction was obtained when eluted by 20% acetonitrile + 0.1% formic acid (fraction P3) with an ACEI activity of IC50 36.22 ± 1.18 µg/mL. After the 2-step fractionation, the IC50 value of fraction P3 significantly decreased by 8.92-fold when compared with the crude hydrolysate. Several peptides were identified from fraction P3 using liquid chromatography-tandem mass spectrometry. The in silico analysis of these identified sequences based on the BIOPEP database predicted that HLPLPLL (HL-7) was the most active peptide against angiotensin-converting enzyme (ACE). The HL-7 derived from β-casein showed a potent ACEI activity (IC50 value is 16.87 ± 0.3 µM). The contents of HL-7 in the gastrointestinal protease hydrolysate and RP-SPE fraction originated from 1 mg of milk proteins were quantified using a multiple reaction monitoring mode upon liquid chromatography-tandem mass spectrometry analysis to give 19.86 ± 1.14 pg and 14,545.8 ± 572.9 pg, respectively. Besides, the kinetic study indicated that HL-7 was a competitive inhibitor and the result was rationalized using the docking simulation. The study demonstrated an efficient screening of ACEI peptides from commercially available milk powders using a simple SPE process instead of a sophisticated instrument such as HPLC. Moreover, the potent ACEI peptide HL-7 uncovered by this method could be a natural ACE inhibitor.
Collapse
Affiliation(s)
- Sugiyati Ningrum
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan 912; Department of Agricultural Product Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia 65145
| | - Aji Sutrisno
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia 65145.
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan 912; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan 912; International Master's Degree Program in Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan 912.
| |
Collapse
|
26
|
Nattagh-Eshtivani E, Barghchi H, Pahlavani N, Barati M, Amiri Y, Fadel A, Khosravi M, Talebi S, Arzhang P, Ziaei R, Ghavami A. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother Res 2021; 36:299-322. [PMID: 34729825 DOI: 10.1002/ptr.7312] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Phytosterols (PSs), classified into plant sterols and stanols, are bioactive compounds found in foods of plant origin. PSs have been proposed to exert a wide number of pharmacological properties, including the potential to reduce total and low-density lipoprotein (LDL) cholesterol levels and thereby decreasing the risk of cardiovascular diseases. Other health-promoting effects of PSs include anti-obesity, anti-diabetic, anti-microbial, anti-inflammatory, and immunomodulatory effects. Also, anticancer effects have been strongly suggested, as phytosterol-rich diets may reduce the risk of cancer by 20%. The aim of this review is to provide a general overview of the available evidence regarding the beneficial physiological and pharmacological activities of PSs, with special emphasis on their therapeutic potential for human health and safety. Also, we will explore the factors that influence the physiologic response to PSs.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naseh Pahlavani
- Nutrition and Biochemistry Department, School of Medicine, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.,Department of Clinical Biochemistry and Nutrition, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Amiri
- Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdulmannan Fadel
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Maryam Khosravi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Talebi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pishva Arzhang
- Department of Biochemistry and Diet Therapy, Faculty of Nutritional Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abed Ghavami
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Wu Q, Luo F, Wang XL, Lin Q, Liu GQ. Angiotensin I-converting enzyme inhibitory peptide: an emerging candidate for vascular dysfunction therapy. Crit Rev Biotechnol 2021; 42:736-755. [PMID: 34634988 DOI: 10.1080/07388551.2021.1948816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abnormal vasoconstriction, inflammation, and vascular remodeling can be promoted by angiotensin II (Ang II) in the renin-angiotensin system (RAS), leading to vascular dysfunction diseases such as hypertension and atherosclerosis. Researchers have recently focused on angiotensin I-converting enzyme inhibitory peptides (ACEIPs), that have desirable efficacy in vascular dysfunction therapy due to Ang II reduction by inhibiting ACE activity. Promising methods for the large-scale preparation of ACEIPs include selective enzymatic hydrolysis and microbial fermentation. Thus far, ACEIPs have been widely reported to be hydrolyzed from protein-rich sources, including animals, plants, and marine organisms, while many emerging microorganism-derived ACEIPs are theoretically biosynthesized through the nonribosomal peptide synthase (NRPS) pathway. Notably, vasodilatation, anti-inflammation, and vascular reconstruction reversal of ACEIPs are strongly correlated. However, the related molecular mechanisms underlying signal transduction regulation in vivo remain unclear. We provide a comprehensive update of the ACE-Ang II-G protein-coupled type 1 angiotensin receptor (AT1R) axis signaling and its functional significance for potential translation into therapeutic strategies, particularly targeting AT1R by ACEIPs, as well as specific related signaling pathways. Future studies are expected to verify the biosynthetic regulatory mechanism of ACEIPs via the NRPS pathway, the effect of gut microbiota metabolism on vascular dysfunction and rigorous studies of ACE-Ang II-AT1R signaling pathways mediated by ACEIPs in large animals and humans.
Collapse
Affiliation(s)
- Qiang Wu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Feijun Luo
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiao-Ling Wang
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Gao-Qiang Liu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
28
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
29
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|
30
|
Shobako N. Hypotensive peptides derived from plant proteins. Peptides 2021; 142:170573. [PMID: 34023396 DOI: 10.1016/j.peptides.2021.170573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
Hypertension is a risk factor for arteriosclerosis development and is recognized as a silent killer. Certain processed food materials, digested by protease or through the use of fermentation, have shown exertion of hypotensive effects in human clinical or animal studies, and hypotensive peptides were isolated from them. This review discusses the hypotensive peptides derived from plant proteins, such as grain, soy, vegetables, and seaweeds, and their hypotensive mechanisms. Although angiotensin I-converting enzyme (ACE) inhibition is often noted as one of the mechanisms that may exert antihypertensive effects, ACE inhibitory activity measured by in vitro studies is not associated with the actual hypotensive effect. Thus, this review only highlights the peptide hypotensive effect determined by in vivo studies. This review also discusses the tendency of the amino acid sequence of ACE-inhibitory hypotensive peptides and the possible additional effects of hypotensive peptides independent of ACE inhibition.
Collapse
Affiliation(s)
- Naohisa Shobako
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
31
|
Zhang Y, Pan D, Yang Z, Gao X, Dang Y. Angiotensin I-Converting enzyme (ACE) inhibitory and dipeptidyl Peptidase-4 (DPP-Ⅳ) inhibitory activity of umami peptides from Ruditapes philippinarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Liu D, Guo Y, Zhu J, Tian W, Chen M, Ma H. The necessity of enzymatically hydrolyzing walnut protein to exert antihypertensive activity based on in vitro simulated digestion and in vivo verification. Food Funct 2021; 12:3647-3656. [PMID: 33900341 DOI: 10.1039/d1fo00427a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since not all proteins are suitable for preparing bioactive peptides by enzymatic degradation, the purpose of this study is to evaluate the necessity of walnut protein (WP) enzymolysis to exert its potential antihypertensive activity. Five proteases were used to hydrolyze WP to produce WP hydrolysate (WPH) enzymatically. The angiotensin-I-converting enzyme (ACE) inhibitory activity of WP and WPH before and after simulated digestion in vitro was measured, and the antihypertensive effect was evaluated in vivo. The results showed that after simulated digestion in vitro, the ACE inhibitory activity of WP digests (44.85%) was not significantly different from that of WPH digests (p > 0.05). In vivo experimental results showed that both WP and WPH had significant blood pressure lowering effects in the acute and long-term administrative experiments. The mechanism of its antihypertensive activities was regulating the balance of the renin-angiotensin-aldosterone system and the kallikrein-kinin system by inhibiting ACE activities in tissues and regulating the level of endothelium-derived vasoconstrictor factors and relaxing factors in serum. It seems unnecessary to carry out enzymatic hydrolysis to produce walnut peptides with antihypertensive activity.
Collapse
Affiliation(s)
- Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Junsong Zhu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Weijie Tian
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Min Chen
- Laboratory Animal Research Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
33
|
Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem 2021; 476:2345-2364. [PMID: 33587232 PMCID: PMC7882868 DOI: 10.1007/s11010-021-04084-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
The pandemic of Serious Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) that produces corona virus disease (COVID-19) has challenged the entire mankind by rapidly spreading globally in 210 countries affecting over 25 million people and about 1 million deaths worldwide. It continues to spread, afflicting the health system globally. So far there is no remedy for the ailment and the available antiviral regimens have been unsatisfactory for the clinical outcomes and the mode of treatment has been mainly supportive for the prevention of COVID-19-induced morbidity and mortality. From the time immortal the traditional plant-based ethno-medicines have provided the leads for the treatment of infectious diseases. Phytopharmaceuticals have provided potential and less toxic antiviral drugs as compared to conventional modern therapeutics which are associated with severe toxicities. The ethnopharmacological knowledge about plants has provided food supplements and nutraceuticals as a promise for prevention and treatment of the current pandemic. In this review article, we have attempted to comprehend the information about the edible medicinal plant materials with potential antiviral activity specifically against RNA virus which additionally possess property to improve immunity along with external and internal respiration and exhibit anti-inflammatory properties for the prevention and treatment of the disease. This will open an arena for the development of novel nutraceutical herbal formulations as an alternative therapy that can be used for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Bhoomika Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Supriya Sharma
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Nisha Nair
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Jaseela Majeed
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
35
|
Lu X, Sun Q, Zhang L, Wang R, Gao J, Jia C, Huang J. Dual-enzyme hydrolysis for preparation of ACE-inhibitory peptides from sesame seed protein: Optimization, separation, and identification. J Food Biochem 2021; 45:e13638. [PMID: 33543791 DOI: 10.1111/jfbc.13638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
To prepare and identify ACE-inhibitory peptides originated from sesame seed protein, peptides with strong ACE-inhibitory activities were obtained via the optimization of protease and hydrolysis conditions, and these peptides were purified and identified by membrane separation, gel filtration, and liquid chromatography-mass spectrometry. Results showed that the dual-enzyme comprised alcalase and trypsin with the enzyme activity ratio of 3:7 was suitable to produce ACE-inhibitory peptides. The highest ACE-inhibitory activity of 98.10 ± 0.26% was obtained at the following parameters, pH 8.35, E/S ratio of 6,145 U/g, and hydrolysis time of 4.4 hr. ISGAQPSLR and VVISAPSK ranked the first and second ACE-inhibitory activity among 15 identified ACE-inhibitory peptides. Both peptides influenced ACE via binding with the S1 pocket, S2 pocket, and Zn2+ ion. ISGAQPSLR even impacted the S1' pocket. ISGAQPSLR and VVISAPSK acted as a competitive and noncompetitive inhibitor, respectively. ACE-inhibitory peptides derivated from sesame seed protein have potential applications in functional food. PRACTICAL APPLICATIONS: Although sesame seed protein is proven as the precursor of ACE-inhibitory peptide, preparing ACE-inhibitory peptide from sesame seed protein is still suffering from insufficient information on hydrolysis condition and the peptide sequence. Therefore, the performance of the typical protease on preparing ACE-inhibitory peptide from sesame seed protein has been evaluated, the effect of the amino acid composition of sesame seed protein and cleavage specificity of protease on the generation of ACE-inhibitory peptide has been investigated, hydrolysis conditions have been optimized, the peptide sequence has been identified to illuminate the effect of sesame seed protein fraction on the formation of ACE-inhibitory peptide and discuss the structural characteristics. ACE-inhibitory peptides originating from sesame seed protein could apply in functional food. It is promising for dual-enzyme hydrolysis to utilize in preparation of high-value bioactive peptides.
Collapse
Affiliation(s)
- Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Qiang Sun
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Lixia Zhang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Ruidan Wang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Jinhong Gao
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Cong Jia
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| | - Jinian Huang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P.R. China
| |
Collapse
|
36
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Kaur A, Kehinde BA, Sharma P, Sharma D, Kaur S. Recently isolated food-derived antihypertensive hydrolysates and peptides: A review. Food Chem 2020; 346:128719. [PMID: 33339686 DOI: 10.1016/j.foodchem.2020.128719] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Hypertension is a non-communicable disease characterized by elevated blood pressure, and a prominent metabolic syndrome of modern age. Food-borne bioactive peptides have shown considerable potencies as suitable therapeutic agents for hypertension. The peptide inhibition of the angiotensin I-converting enzyme (ACE) from its default biochemical conversion of Ang I to Ang II has been studied and more relatively adopted in several studies. This review offers an examination of the isolation of concomitant proteins in foods, their hydrolysis into peptides and the biofunctionality checks of those peptides based on their anti-hypertensive potentialities. Furthermore, critical but concise details about methodologies and analytical techniques used in the purification of such peptides are discussed. This review is a beneficial literature supplement for scholars and provides functional awareness material for the food-aligned alternative therapy for hypertension. In addition, it points researchers in the direction of adopting food materials and associated by-products as natural sources for the isolation biologically active peptides.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| | | | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India.
| | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| |
Collapse
|
38
|
Wang YT, Russo DP, Liu C, Zhou Q, Zhu H, Zhang YH. Predictive Modeling of Angiotensin I-Converting Enzyme Inhibitory Peptides Using Various Machine Learning Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12132-12140. [PMID: 32915574 DOI: 10.1021/acs.jafc.0c04624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food-derived angiotensin I-converting enzyme (ACE) inhibitory peptides could potentially be used as safe supportive therapeutic products for high blood pressure. Theoretical approaches are promising methods with the advantage through exploring the relationships between peptide structures and their bioactivities. In this study, peptides with ACE inhibitory activity were collected and curated. Quantitative structure-activity relationship (QSAR) models were developed by using the combination of various machine learning approaches and chemical descriptors. The resultant models have revealed several structure features accounting for the ACE inhibitions. 14 new dipeptides predicted to lower blood pressure by inhibiting ACE were selected. Molecular docking indicated that these dipeptides formed hydrogen bonds with ACE. Five of these dipeptides were synthesized for experimental testing. The QSAR models developed were proofed to design and propose novel ACE inhibitory peptides. Machine learning algorithms and properly selected chemical descriptors can be promising modeling approaches for rational design of natural functional food components.
Collapse
Affiliation(s)
- Yu-Tang Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, New Jersey 08102, United States
| | - Chang Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian Zhou
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, New Jersey 08102, United States
- Department of Chemistry, Rutgers University, Camden, New Jersey 08102, United States
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
39
|
Jandari S, Ghavami A, Ziaei R, Nattagh-Eshtivani E, Rezaei Kelishadi M, Sharifi S, Khorvash F, Pahlavani N, Mohammadi H. Effects of Momordica charantia L on blood pressure: a systematic review and meta- analysis of randomized clinical trials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1833916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sajedeh Jandari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abed Ghavami
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Sharifi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naseh Pahlavani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
40
|
Ngamsuk S, Huang TC, Hsu JL. ACE Inhibitory Activity and Molecular Docking of Gac Seed Protein Hydrolysate Purified by HILIC and RP-HPLC. Molecules 2020; 25:E4635. [PMID: 33053699 PMCID: PMC7587174 DOI: 10.3390/molecules25204635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Gac (Momordica cochinchinensis Spreng.) seed proteins (GSPs) hydrolysate was investigated for angiotensin I-converting enzyme (ACE) inhibitory activities. GSPs were hydrolyzed under simulated gastrointestinal digestion using a combination of enzymes, including pepsin, trypsin, and chymotrypsin. The screening of ACE inhibitory peptides from GSPs hydrolysate was performed using two sequential bioassay-guided fractionations, namely hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC). Then, the peptides in the fraction with the highest ACE inhibitory activity were identified by LC-MS/MS. The flow-through (FT) fraction showed the most potent ACE inhibitory activity when HILIC fractionation was performed. This fraction was further separated using RP-HPLC, and the result indicated that fraction 8 (RP-F8) showed the highest ACE inhibitory activity. In the HILIC-FT/RP-F8 fraction, 14 peptides were identified using LC-MS/MS analysis coupled with de novo sequencing. These amino acid chains had not been recorded previously and their ACE inhibitory activities were analyzed in silico using the BIOPEP database. One fragment with the amino acid sequence of ALVY showed a significant ACE inhibitory activity (7.03 ± 0.09 µM). The Lineweaver-Burk plot indicated that ALVY is a competitive inhibitor. The inhibition mechanism of ALVY against ACE was further rationalized through the molecular docking simulation, which revealed that the ACE inhibitory activities of ALVY is due to interaction with the S1 (Ala354, Tyr523) and the S2 (His353, His513) pockets of ACE. Bibliographic survey allowed the identification of similarities between peptides reported as in gac fruit and other proteins. These results suggest that gac seed proteins hydrolysate can be used as a potential nutraceutical with inhibitory activity against ACE.
Collapse
Affiliation(s)
- Samuchaya Ngamsuk
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Tzou-Chi Huang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan;
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan;
- International Master’s Degree Program in Food Science, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Tropic Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
41
|
Sutopo CC, Sutrisno A, Wang LF, Hsu JL. Identification of a potent Angiotensin-I converting enzyme inhibitory peptide from Black cumin seed hydrolysate using orthogonal bioassay-guided fractionations coupled with in silico screening. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Jantzen da Silva Lucas A, Menegon de Oliveira L, da Rocha M, Prentice C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem 2020; 311:126022. [DOI: 10.1016/j.foodchem.2019.126022] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023]
|
43
|
Liu D, Guo Y, Wu P, Wang Y, Kwaku Golly M, Ma H. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Food Chem 2020; 311:125960. [DOI: 10.1016/j.foodchem.2019.125960] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
|
44
|
Yu Z, Wu S, Zhao W, Mi G, Ding L, Li J, Liu J. Identification of novel angiotensin I‐converting enzyme inhibitory peptide from collagen hydrolysates and its molecular inhibitory mechanism. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Sijia Wu
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Wenzhu Zhao
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Geng Mi
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Long Ding
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food Jilin University Changchun 130062 China
| |
Collapse
|
45
|
Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Al Dhaheri Y, Vijayan R. Camel Hemorphins Exhibit a More Potent Angiotensin-I Converting Enzyme Inhibitory Activity than Other Mammalian Hemorphins: An In Silico and In Vitro Study. Biomolecules 2020; 10:E486. [PMID: 32210030 PMCID: PMC7175181 DOI: 10.3390/biom10030486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Angiotensin-I converting enzyme (ACE) is a zinc metallopeptidase that has an important role in regulating the renin-angiotensin-aldosterone system (RAAS). It is also an important drug target for the management of cardiovascular diseases. Hemorphins are endogenous peptides that are produced by proteolytic cleavage of beta hemoglobin. A number of studies have reported various therapeutic activities of hemorphins. Previous reports have shown antihypertensive action of hemorphins via the inhibition of ACE. The sequence of hemorphins is highly conserved among mammals, except in camels, which harbors a unique Q>R variation in the peptide. Here, we studied the ACE inhibitory activity of camel hemorphins (LVVYPWTRRF and YPWTRRF) and non-camel hemorphins (LVVYPWTQRF and YPWTQRF). Computational methods were used to determine the most likely binding pose and binding affinity of both camel and non-camel hemorphins within the active site of ACE. Molecular dynamics simulations showed that the peptides interacted with critical residues in the active site of ACE. Notably, camel hemorphins showed higher binding affinity and sustained interactions with all three subsites of the ACE active site. An in vitro ACE inhibition assay showed that the IC50 of camel hemorphins were significantly lower than the IC50 of non-camel hemorphins.
Collapse
Affiliation(s)
| | | | | | | | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551 Al Ain, Abu Dhabi, UAE
| |
Collapse
|
46
|
Wang R, Lu X, Sun Q, Gao J, Ma L, Huang J. Novel ACE Inhibitory Peptides Derived from Simulated Gastrointestinal Digestion in Vitro of Sesame ( Sesamum indicum L.) Protein and Molecular Docking Study. Int J Mol Sci 2020; 21:E1059. [PMID: 32033479 PMCID: PMC7037947 DOI: 10.3390/ijms21031059] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to isolate and identify angiotensin I-converting enzyme (ACE) inhibitory peptides from sesame protein through simulated gastrointestinal digestion in vitro, and to explore the underlying mechanisms by molecular docking. The sesame protein was enzymatically hydrolyzed by pepsin, trypsin, and α-chymotrypsin. The degree of hydrolysis (DH) and peptide yield increased with the increase of digest time. Moreover, ACE inhibitory activity was enhanced after digestion. The sesame protein digestive solution (SPDS) was purified by ultrafiltration through different molecular weight cut-off (MWCO) membranes and SPDS-VII (< 3 kDa) had the strongest ACE inhibition. SPDS-VII was further purified by NGC Quest™ 10 Plus Chromatography System and finally 11 peptides were identified by Nano UHPLC-ESI-MS/MS (nano ultra-high performance liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry) from peak 4. The peptide GHIITVAR from 11S globulin displayed the strongest ACE inhibitory activity (IC50 = 3.60 ± 0.10 μM). Furthermore, the docking analysis revealed that the ACE inhibition of GHIITVAR was mainly attributed to forming very strong hydrogen bonds with the active sites of ACE. These results identify sesame protein as a rich source of ACE inhibitory peptides and further indicate that GHIITVAR has the potential for development of new functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinian Huang
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (R.W.); (X.L.); (Q.S.); (J.G.); (L.M.)
| |
Collapse
|
47
|
Caballero J. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Molecules 2020; 25:molecules25020295. [PMID: 31940798 PMCID: PMC7024173 DOI: 10.3390/molecules25020295] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
The angiotensin-converting enzyme (ACE) is a two-domain dipeptidylcarboxypeptidase, which has a direct involvement in the control of blood pressure by performing the hydrolysis of angiotensin I to produce angiotensin II. At the same time, ACE hydrolyzes other substrates such as the vasodilator peptide bradykinin and the anti-inflammatory peptide N-acetyl-SDKP. In this sense, ACE inhibitors are bioactive substances with potential use as medicinal products for treatment or prevention of hypertension, heart failures, myocardial infarction, and other important diseases. This review examined the most recent literature reporting ACE inhibitors with the help of molecular modeling. The examples exposed here demonstrate that molecular modeling methods, including docking, molecular dynamics (MD) simulations, quantitative structure-activity relationship (QSAR), etc, are essential for a complete structural picture of the mode of action of ACE inhibitors, where molecular docking has a key role. Examples show that too many works identified ACE inhibitory activities of natural peptides and peptides obtained from hydrolysates. In addition, other works report non-peptide compounds extracted from natural sources and synthetic compounds. In all these cases, molecular docking was used to provide explanation of the chemical interactions between inhibitors and the ACE binding sites. For docking applications, most of the examples exposed here do not consider that: (i) ACE has two domains (nACE and cACE) with available X-ray structures, which are relevant for the design of selective inhibitors, and (ii) nACE and cACE binding sites have large dimensions, which leads to non-reliable solutions during docking calculations. In support of the solution of these problems, the structural information found in Protein Data Bank (PDB) was used to perform an interaction fingerprints (IFPs) analysis applied on both nACE and cACE domains. This analysis provides plots that identify the chemical interactions between ligands and both ACE binding sites, which can be used to guide docking experiments in the search of selective natural components or novel drugs. In addition, the use of hydrogen bond constraints in the S2 and S2′ subsites of nACE and cACE are suggested to guarantee that docking solutions are reliable.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile
| |
Collapse
|
48
|
Mudgil P, Baby B, Ngoh YY, Kamal H, Vijayan R, Gan CY, Maqsood S. Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Shih YH, Chen FA, Wang LF, Hsu JL. Discovery and Study of Novel Antihypertensive Peptides Derived from Cassia obtusifolia Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7810-7820. [PMID: 31264418 DOI: 10.1021/acs.jafc.9b01922] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antihypertensive peptides were screened from thermolysin hydrolysate of Cassia obtusifolia seeds (Jue Ming Zi) using two independent bioassay-guided fractionations, reversed-phase high-performance liquid chromatography (RP-HPLC), and strong cation-exchange (SCX) liquid chromatography coupled with angiotensin I-converting enzyme (ACE) inhibitory assay. The identical peptide in the most active RP-HPLC and SCX fractions was simultaneously de novo sequenced as FHAPWK with high-resolution mass spectrometry. FHAPWK (IC50 = 16.83 ± 0.90 μM) was further identified as a competitive inhibitor and a true inhibitor on ACE by a Lineweaver-Burk plot and preincubation experiment, respectively. The molecular docking simulation indicated that FHAPWK could interact with several key residues of the ACE active site, which is consistent with the result of the inhibitory kinetics study. Moreover, its antihypertensive effect was demonstrated using the animal model of spontaneously hypertensive rats. It is concluded that FHAPWK is the first reported antihypertensive peptide derived from thermolysin hydrolysate of C. obtusifolia seeds.
Collapse
Affiliation(s)
| | - Fu-An Chen
- Department of Pharmacy and Master Program , Tajen University , Pingtung , Taiwan
| | - Li-Fei Wang
- Hospitality and Tourism Research Center , National Kaohsiung University of Hospitality and Tourism , Kaohsiung City 81271 , Taiwan
| | | |
Collapse
|
50
|
Pujiastuti DY, Ghoyatul Amin MN, Alamsjah MA, Hsu JL. Marine Organisms as Potential Sources of Bioactive Peptides that Inhibit the Activity of Angiotensin I-Converting Enzyme: A Review. Molecules 2019; 24:molecules24142541. [PMID: 31336853 PMCID: PMC6680877 DOI: 10.3390/molecules24142541] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a paramount therapeutic target to treat hypertension. ACE inhibitory peptides derived from food protein sources are regarded as safer alternatives to synthetic antihypertensive drugs for treating hypertension. Recently, marine organisms have started being pursued as sources of potential ACE inhibitory peptides. Marine organisms such as fish, shellfish, seaweed, microalgae, molluscs, crustaceans, and cephalopods are rich sources of bioactive compounds because of their high-value metabolites with specific activities and promising health benefits. This review aims to summarize the studies on peptides from different marine organisms and focus on the potential ability of these peptides to inhibit ACE activity.
Collapse
Affiliation(s)
- Dwi Yuli Pujiastuti
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Muhamad Nur Ghoyatul Amin
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Austronesian Medicine and Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|