1
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
2
|
Li L, Lu X, Dai P, Ma H. DIA-Based Quantitative Proteomics in the Flower Buds of Two Malus sieversii (Ledeb.) M. Roem Subtypes at Different Overwintering Stages. Int J Mol Sci 2024; 25:2964. [PMID: 38474210 DOI: 10.3390/ijms25052964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Malus sieversii is considered the ancestor of the modern cultivated apple, with a high value for apple tolerance breeding. Despite studies on the temperature adaptability of M. sieversii carried out at a physiological response and the genome level, information on the proteome changes of M. sieversii during dormancy is limited, especially about the M. sieversii subtypes. In this study, a DIA-based approach was employed to screen and identify differential proteins involved in three overwintering periods of flower buds in two M. sieversii subtypes (Malus sieversii f. luteolus, GL; Malus sieversii f. aromaticus, HC) with different overwintering adaptabilities. The proteomic analysis revealed that the number of the down-regulated differential expression proteins (DEPs) was obviously higher than that of the up-regulated DEPs in the HC vs. GL groups, especially at the dormancy stage and dormancy-release stage. Through functional classification of those DEPs, the majority of the DEPs in the HC vs. GL groups were associated with protein processing in the endoplasmic reticulum, oxidative phosphorylation, starch and sucrose metabolism and ribosomes. Through WGCNA analysis, tricarboxylic acid cycle and pyruvate metabolism were highly correlated with the overwintering stages; oxidative phosphorylation and starch and sucrose metabolism were highly correlated with the Malus sieversii subtypes. This result suggests that the down-regulation of DEPs, which are predominantly enriched in these pathways, could potentially contribute to the lower cold tolerance observed in HC during overwintering stage.
Collapse
Affiliation(s)
- Lijie Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaochen Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Huaiyu Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Abu Bakar N, Lau BYC, González-Aravena M, Smykla J, Krzewicka B, Karsani SA, Alias SA. Geographical Diversity of Proteomic Responses to Cold Stress in the Fungal Genus Pseudogymnoascus. MICROBIAL ECOLOGY 2023; 87:11. [PMID: 38060022 DOI: 10.1007/s00248-023-02311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Benjamin Yii Chung Lau
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | - Jerzy Smykla
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Krakow, Poland
| | - Beata Krzewicka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Xu L, Liu H, Zhu S, Meng Y, Wang Y, Li J, Zhang F, Huang L. VmPacC-mediated pH regulation of Valsa mali confers to host acidification identified by comparative proteomics analysis. STRESS BIOLOGY 2023; 3:18. [PMID: 37676527 PMCID: PMC10441875 DOI: 10.1007/s44154-023-00097-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/24/2023] [Indexed: 09/06/2023]
Abstract
Apple valsa canker caused by the Ascomycete fungus Valsa mali is one of the most serious diseases of apple, resulting in huge economic losses in the apple-growing area of China. Previous study found that the pathogen could acidify the infected tissues to make lower ambient pH (from 6.0 to 3.5) for their successfully colonization. The pH signaling transcription factor VmPacC is required for acidification of its environment and for full virulence in V. mali. It is known that the functional cooperation of proteins secreted by V. mali plays pivotal role in its successful colonization of host plants. In this study, we used tandem mass tag (TMT) labeling coupled with LC-MS/MS-based quantitative proteomics to analyze the VmPacC-mediated pH regulation in V. mali, focusing on differentially expressed proteins (DEPs). We identified 222 DEPs specific to VmPacC deletion, and 921 DEPs specific to different pH conditions (pH 6.0 and 3.4). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEPs were mainly involved in pathways associated with carbon metabolism, biosynthesis of antibiotics, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, ribosomes, and pentose phosphate pathways. Additionally, we identified 119 DEPs that were shared among the VmPacC deletion mutant and different pH conditions, which were mainly related to energy metabolism pathways, providing the energy required for the hyphal growth and responses to environmental stresses. A protein-protein interaction (PPI) network analysis indicated that most of the shared proteins were mapped to an interaction network with a medium confidence score of 0.4. Notably, one uncharacterized protein (KUI69106.1), and two known proteins (heat shock protein 60 (KUI73579.1), aspartate aminotransferase (KUI73864.1)) located in the core of the network were highly connected (with ≥ 38 directed edges) with the other shared DEPs. Our results suggest that VmPacC participates in the pathogen's regulation to ambient pH through the regulation of energy metabolism pathways such as the glycolysis/gluconeogenesis pathway and TCA cycle. Finally, we proposed a sophisticated molecular regulatory network to explain pH decrease in V. mali. Our study, by providing insights into V. mali regulating pH, helps to elucidate the mechanisms of host acidification during pathogen infection.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hailong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shan Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Yadav BG, Aakanksha, Kumar R, Yadava SK, Kumar A, Ramchiary N. Understanding the Proteomes of Plant Development and Stress Responses in Brassica Crops. J Proteome Res 2023; 22:660-680. [PMID: 36786770 DOI: 10.1021/acs.jproteome.2c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.
Collapse
Affiliation(s)
- Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| |
Collapse
|
6
|
New insights into the persistent effect of transient cinnamaldehyde vapor treatment on the growth and aflatoxin synthesis of Aspergillus flavus. Food Res Int 2023; 163:112300. [PMID: 36596201 DOI: 10.1016/j.foodres.2022.112300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The antimicrobial effects of continuous treatment with essential oils (EOs) in both liquid and gaseous phases have been intensively studied. Due to their rapid volatility, the effects of EOs on microorganisms after transient treatment are also worth exploring. In this work, the persistent effects of cinnamaldehyde (CA) vapor on Aspergillus flavus were detected by a series of biochemical analyses. Transcriptome analysis was also conducted to study the gene expression changes between recovered and normal A. flavus. When CA vapor was removed, biochemical analyses showed that the oxidative stress induced by the antimicrobial atmosphere was alleviated, and almost all the damaged functions were restored apart from mitochondrial function. Remarkably, the suppressed aflatoxin production intensified, which was confirmed by the up-regulation of most genes in the aflatoxin synthetic gene cluster, the velvet-related gene FluG and the aflatoxin precursor acetyl-CoA. Transcriptomic analysis also demonstrated significant changes in secondary metabolism, energy metabolism, oxidative stress, and amino acid metabolism in the recovery group. Taken together, these findings provide new insights into the mechanisms underlying the response of A. flavus to CA vapor treatment and will guide the rational application of EOs.
Collapse
|
7
|
Liu X, Suo R, Wang H, Liu Y, Ma Q, Mu J, Wang J, Wang W. Differential proteomic analysis using a tandem-mass-tag-based strategy to identify proteins associated with the quality indicators of Penaeus vannamei after high-pressure treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Effects of High Temperature-Triggered Transcriptomics on the Physiological Adaptability of Cenococcum geophilum, an Ectomycorrhizal Fungus. Microorganisms 2022; 10:microorganisms10102039. [PMID: 36296315 PMCID: PMC9607556 DOI: 10.3390/microorganisms10102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
High temperature stress caused by global warming presents a challenge to the healthy development of forestry. Cenococcum geophilum is a common ectomycorrhizal fungus (ECMF) in the forest system and has become an important fungus resource with application potential in forest vegetation restoration. In this study, three sensitive isolates of C. geophilum (ChCg01, JaCg144 and JaCg202) and three tolerant isolates of C. geophilum (ACg07, ChCg28 and ChCg100) were used to analyze the physiological and molecular responses to high temperature. The results showed that high temperature had a significant negative effect on the growth of sensitive isolates while promoting the growth of tolerant isolates. The antioxidative enzymes activity of C. geophilum isolates increased under high temperature stress, and the SOD activity of tolerant isolates (A07Cg and ChCg100) was higher than that of sensitive isolates (ChCg01 and JaCg202) significantly. The tolerant isolates secreted more succinate, while the sensitive isolates secreted more oxalic acid under high temperature stress. Comparative transcriptomic analysis showed that differentially expressed genes (DEGs) of six C. geophilum isolates were significantly enriched in "antioxidant" GO entry in the molecular. In addition, the "ABC transporters" pathway and the "glyoxylate and dicarboxylic acid metabolic" were shared in the three tolerant isolates and the three sensitive isolates, respectively. These results were further verified by RT-qPCR analysis. In conclusion, our findings suggest that C. geophilum can affect the organic acid secretion and increase antioxidant enzyme activity in response to high temperature by upregulating related genes.
Collapse
|
9
|
Wu G, Yang C, Bruce HL, Roy BC, Li X, Zhang C. Effects of Alternating Electric Field Assisted Freezing-Thawing-Aging Sequence on Data-Independent Acquisition Quantitative Proteomics of Longissimus dorsi Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12990-13001. [PMID: 36166831 DOI: 10.1021/acs.jafc.2c04207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study was designed to investigate the differences in the proteomes of bovine Longissimus dorsi (LD) muscle during an alternating electric field (AEF)-assisted freezing-thawing-aging sequence based on a data-independent acquisition strategy. When compared to that of the only postmortem aging (OA) group, the meat quality of the freezing-thawing-aging sequence (FA) and AEF-assisted freezing-thawing-aging sequence (EA) groups showed a declining trend. However, the group assisted by AEF was significantly enhanced in color, water-holding capacity, and tenderness. Three hundred fifty-two proteins in LD muscle were differentially abundant proteins (DAPs) among FA, EA, and OA treatments. Furthermore, among the 40 DAPs in the FA versus EA comparison, 5 DAPs with variable importance in projection scores higher than 1 were identified as biochemical markers of beef quality. Bioinformatic analysis revealed that most of these proteins were involved in structural constituents of ribosome and catalytic activity. These results provide a basis for further understanding the quality of beef following a freezing-thawing-aging sequence assisted by AEF.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| |
Collapse
|
10
|
Woo JR, Choi DH, Hamza MT, Doh KO, Lee CY, Choo YS, Lee S, Kim JG, Bunch H, Seu YB. Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon. MYCOBIOLOGY 2022; 50:366-373. [PMID: 36404905 PMCID: PMC9645268 DOI: 10.1080/12298093.2022.2121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.
Collapse
Affiliation(s)
- Ju-Ri Woo
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Doo-Ho Choi
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammed Taofiq Hamza
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang-Yoon Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Yeon-Sik Choo
- Department of Biology, College of National Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sangman Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Guk Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Bae Seu
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Zha L, Chen M, Guo Q, Tong Z, Li Z, Yu C, Yang H, Zhao Y. Comparative Proteomics Study on the Postharvest Senescence of Volvariella volvacea. J Fungi (Basel) 2022; 8:819. [PMID: 36012807 PMCID: PMC9410126 DOI: 10.3390/jof8080819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Volvariella volvacea is difficult to store after harvest, which restricts the production and circulation of V. volvacea fruiting bodies. Low-temperature storage is the traditional storage method used for most edible fungi. However, V. volvacea undergoes autolysis at low temperatures. When fruiting bodies are stored at 15 °C (suitable temperature), V. volvacea achieves the best fresh-keeping effect. However, the molecular mechanism underlying the postharvest senescence of V. volvacea remains unclear. Based on this information, we stored V. volvacea fruiting bodies at 15 °C after harvest and then analyzed the texture and phenotype combined with the results of previous physiological research. Four time points (0, 24, 60, and 96 h) were selected for the comparative proteomics study of V. volvacea during storage at 15 °C. A variety of proteins showed differential expressions in postharvest V. volvacea at 15 °C. Further comparison of the gene ontology (GO) enrichment analysis and KEGG pathways performed at different sampling points revealed proteins that were significantly enriched at several time points. At the same time, we also analyzed differentially expressed proteins (DEPs) related to the RNA transport, fatty acid biosynthesis and metabolism, and amino acid biosynthesis and metabolism pathways, and discussed the molecular functions of the PAB1, RPG1, ACC1, ADH3, ADH2, ALD5, and SDH2 proteins in postharvest V. volvacea senescence. Our results showed that many biological processes of the postharvest senescence of V. volvacea changed. Most importantly, we found that most RNA transport-related proteins were down-regulated, which may lead to a decrease in related gene regulation. Our results also showed that the expression of other important proteins, such as the fatty acid metabolism related proteins increased; and changes in fatty acid composition affected the cell membrane, which may accelerate the ripening and perception of V. volvacea fruiting bodies. Therefore, our research provides a reference for further studies on the aging mechanism of V. volvacea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
12
|
Zhang D, Yang Z, Song X, Zhang F, Liu Y. TMT-based proteomic analysis of liquorice root in response to drought stress. BMC Genomics 2022; 23:524. [PMID: 35854220 PMCID: PMC9297632 DOI: 10.1186/s12864-022-08733-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought stress is a serious threat to land use efficiency and crop yields worldwide. Understanding the mechanisms that plants use to withstand drought stress will help breeders to develop drought-tolerant medicinal crops. Liquorice (Glycyrrhiza uralensis Fisch.) is an important medicinal crop in the legume family and is currently grown mostly in northwest China, it is highly tolerant to drought. Given this, it is considered an ideal crop to study plant stress tolerance and can be used to identify drought-resistant proteins. Therefore, to understand the effects of drought stress on protein levels of liquorice, we undertook a comparative proteomic analysis of liquorice seedlings grown for 10 days in soil with different relative water content (SRWC of 80%, 65%, 50% and 35%, respectively). We used an integrated approach of Tandem Mass Tag labeling in conjunction with LC-MS/MS. RESULTS A total of 7409 proteins were identified in this study, of which 7305 total proteins could be quantified. There were 837 differentially expressed proteins (DEPs) identified after different drought stresses. Compared with CK, 123 DEPs (80 up-regulated and 43 down-regulated) were found in LS; 353 DEPs (254 up-regulated and 99 down-regulated) in MS; and 564 DEPs (312 up-regulated and 252 down-regulated) in SS.The number of differentially expressed proteins increased with increasing water stress, and the number of up-regulated proteins was higher than that of down-regulated proteins in the different drought stress treatments compared with the CK. Used systematic bioinformatics analysis of these data to identify informative proteins we showed that osmolytes such as cottonseed sugars and proline accumulated under light drought stress and improved resistance. Under moderate and severe drought stress, oxidation of unsaturated fatty acids and accumulation of glucose and galactose increased in response to drought stress. Under moderate and severe drought stress synthesis of the terpene precursors, pentacene 2,3-epoxide and β-coumarin, was inhibited and accumulation of triterpenoids (glycyrrhetinic acid) was also affected. CONCLUSIONS These data provide a baseline reference for further study of the downstream liquorice proteome in response to drought stress. Our data show that liquorice roots exhibit specific response mechanisms to different drought stresses.
Collapse
Affiliation(s)
- Dong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Zhongren Yang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China. .,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Xiaoqing Song
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Fenglan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Yan Liu
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
13
|
Qian S, Li X, Liu C, Zhang C, Blecker C. Proteomic changes involved in water holding capacity of frozen bovine longissimus dorsi muscles based on DIA strategy. J Food Biochem 2022; 46:e14330. [PMID: 35848392 DOI: 10.1111/jfbc.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
As freeze/thaw procedure leads to inevitable drip loss, elucidation of mechanism on dynamic changes in water holding capacity (WHC) of muscle is urgently needed. In this study, the proteomic profile by DIA-based strategy, muscle microstructure, water mobility, and WHC indices of bovine longissimus dorsi muscles were investigated under different freezing conditions as well as the correlations among them. Results indicated that slow freezing (SF) sample exhibited significantly higher water mobility, thaw loss, total loss, and shear force value than the samples subjected to fast freezing (FF) and non-frozen control (CON). According to the protein profile, we have identified 272 differential abundance proteins (DAPs), in which more significant proteome changes were found in SF/CON samples as compared with FF/CON. Among the 132 DAPs in FF/SF comparison, correlation analysis revealed that MYL3, DES, SYNE2, EXR, RPL35A, RPS6, and Hsp40 were closely correlated with T23 , thaw loss, and total loss. Accordingly, we considered those seven proteins as potential biomarkers related to WHC of frozen muscle. Our study should give a further understanding on mechanisms behind the various WHC of muscle when subjected to different freezing conditions. PRACTICAL APPLICATIONS: Freezing plays a key role in the preservation method for meat and meat products. However, the drip loss during freezing and subsequent thawing procedure causes considerable economic and nutritional losses. To minimize the losses, elucidation of mechanism on the mechanism of thaw loss formation is urgently needed. DIA-based proteomics is a novel, robust method that provides further understanding on the mechanisms behind the dynamic changes in water holding capacity of muscle. The screened protein biomarkers in frozen muscle would play key roles in the development of WHC, especially for the thaw loss formation. Through this perspective, we can explain the origin of thaw loss and the variation under different freezing conditions, which should provide the meat industries with theoretical basis for reducing losses.
Collapse
Affiliation(s)
- Shuyi Qian
- Chinese Academy of Agricultural Sciences, Institute of Food Science and Technology, Beijing, China.,Unit of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xia Li
- Chinese Academy of Agricultural Sciences, Institute of Food Science and Technology, Beijing, China
| | - Chengjiang Liu
- Institute of Agro-Products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Chunhui Zhang
- Chinese Academy of Agricultural Sciences, Institute of Food Science and Technology, Beijing, China
| | - Christophe Blecker
- Unit of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
14
|
Liu J, Wang T, Weng Y, Liu B, Gao Q, Ji W, Wang Z, Wang Y, Ma X. Identification and Characterization of Regulatory Pathways Controlling Dormancy Under Lower Temperature in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:872839. [PMID: 35720528 PMCID: PMC9201922 DOI: 10.3389/fpls.2022.872839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 06/03/2023]
Abstract
Alfalfa (Medicago sativa L.), a kind of high-quality perennial legume forage, is widely distributed in the northern regions of China. In recent years, low temperatures have frequently occurred and limited alfalfa productivity and survival in early spring and late fall. However, the underlying molecular mechanisms of alfalfa response to cold tolerance are not well-documented. In this study, dormancy and non-dormancy alfalfa standard varieties were characterized under low-temperature stress. Our analysis revealed that plant height of the dormancy genotype was strongly inhibited by low temperature; flavonoids content, and higher expression of flavonoids biosynthesis genes (chalcone synthase, leucoanthocyanidin dioxygenase, and flavonoid 3'-monooxygenase) may play essential roles in response to low-temperature stress in dormancy genotype alfalfa. Further analyses revealed that receptor-like kinase family genes (such as cysteine-rich RLK10, lectin protein kinase, and S-locus glycoprotein like kinase), RNA and protein synthesis genes (RNA polymerases, ribosomal protein, and protein phosphatase 2C family protein), and proteasome degradation pathway genes (such as F-box family protein, RING/U-box superfamily protein, and zinc finger family protein) also highly upregulated and contributed to cold tolerance phenotype in dormancy genotype alfalfa. This will provide new insights into future studies for cold tolerance in alfalfa and offer new target genes for further functional characterization and genetic improvement of alfalfa.
Collapse
Affiliation(s)
- Jingfu Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Tiemei Wang
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yinyin Weng
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Bei Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qiu Gao
- National Animal Husbandry Service, Beijing, China
| | - Wei Ji
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhuanling Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yingwei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiqing Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Chen S, Su H, Xing H, Mao J, Sun P, Li M. Comparative Proteomics Reveals the Difference in Root Cold Resistance between Vitis. riparia × V. labrusca and Cabernet Sauvignon in Response to Freezing Temperature. PLANTS (BASEL, SWITZERLAND) 2022; 11:971. [PMID: 35406951 PMCID: PMC9003149 DOI: 10.3390/plants11070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Grapevines, bearing fruit containing large amounts of bioactive metabolites that offer health benefits, are widely cultivated around the world. However, the cold damage incurred when grown outside in extremely low temperatures during the overwintering stage limits the expansion of production. Although the morphological, biochemical, and molecular levels in different Vitis species exposed to different temperatures have been investigated, differential expression of proteins in roots is still limited. Here, the roots of cold-resistant (Vitis. riparia × V. labrusca, T1) and cold-sensitive varieties (Cabernet Sauvignon, T3) at -4 °C, and also at -15 °C for the former (T2), were measured by iTRAQ-based proteomic analysis. Expression levels of genes encoding candidate proteins were validated by qRT-PCR, and the root activities during different treatments were determined using a triphenyl tetrazolium chloride method. The results show that the root activity of the cold-resistant variety was greater than that of the cold-sensitive variety, and it declined with the decrease in temperature. A total of 25 proteins were differentially co-expressed in T2 vs. T1 and T1 vs. T3, and these proteins were involved in stress response, bio-signaling, metabolism, energy, and translation. The relative expression levels of the 13 selected genes were consistent with their fold-change values of proteins. The signature translation patterns for the roots during spatio-temporal treatments of different varieties at different temperatures provide insight into the differential mechanisms of cold resistance of grapevine.
Collapse
Affiliation(s)
- Sijin Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Hua Xing
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ping Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.C.); (H.S.); (H.X.)
| |
Collapse
|
16
|
iTRAQ-based quantitative proteome analysis insights into cold stress of Winter Rapeseed (Brassica rapa L.) grown in the field. Sci Rep 2021; 11:23434. [PMID: 34873178 PMCID: PMC8648733 DOI: 10.1038/s41598-021-02707-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Winter rapeseed (Brassica rapa L.) is a major oilseed crop in Northern China, where its production was severely affected by chilling and freezing stress. However, not much is known about the role of differentially accumulated proteins (DAPs) during the chilling and freezing stress. In this study, isobaric tag for relative and absolute quantification (iTRAQ) technology was performed to identify DAPs under freezing stress. To explore the molecular mechanisms of cold stress tolerance at the cellular and protein levels, the morphological and physiological differences in the shoot apical meristem (SAM) of two winter rapeseed varieties, Longyou 7 (cold-tolerant) and Lenox (cold-sensitive), were explored in field-grown plants. Compared to Lenox, Longyou 7 had a lower SAM height and higher collar diameter. The level of malondialdehyde (MDA) and indole-3-acetic acid (IAA) content was also decreased. Simultaneously, the soluble sugars (SS) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, soluble protein (SP) content, and collar diameter were increased in Longyou 7 as compared to Lenox. A total of 6330 proteins were identified. Among this, 98, 107, 183 and 111 DAPs were expressed in L7 CK/Le CK, L7 d/Le d, Le d/Le CK and L7 d/L7 CK, respectively. Quantitative real-time PCR (RT-qPCR) analysis of the coding genes for seventeen randomly selected DAPs was performed for validation. These DAPs were identified based on gene ontology enrichment analysis, which revealed that glutathione transferase activity, carbohydrate-binding, glutathione binding, metabolic process, and IAA response were closely associated with the cold stress response. In addition, some cold-induced proteins, such as glutathione S-transferase phi 2(GSTF2), might play an essential role during cold acclimation in the SAM of Brassica rapa. The present study provides valuable information on the involvement of DAPs during cold stress responses in Brassica rapa L, and hence could be used for breeding experiments.
Collapse
|
17
|
Lyu X, Jiang S, Wang L, Chou T, Wang Q, Meng L, Mukhtar I, Xie B, Wang W. The Fvclp1 gene regulates mycelial growth and fruiting body development in edible mushroom Flammulina velutipes. Arch Microbiol 2021; 203:5373-5380. [PMID: 34387705 DOI: 10.1007/s00203-021-02514-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/15/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Fruiting body development in Agaricomycetes represents the most complex and unclear process in the fungi. Mating type pathways (A and B) and transcription factors are important regulators in the sexual development of mushrooms. It is known that clampless1 (clp1) is an additional gene that participate under the homeodomain (HD) genes in the matA pathway and clp1 inactivation blocks clamps formation in Coprinopsis cinerea. In this study we identified and analyzed a homologous Fvclp1 gene in the edible mushroom Flammulina velutipes. The coding sequence of the Fvclp1 was 1011 bp without intron interruption, encoding a protein of 336 amino acids. To exhibit the role of Fvclp1 in clamp development and fruiting body formation, knockdown and overexpression mutants were prepared. No significant difference was observed in the monokaryotic hyphal morphology of overexpression and knockdown transformants. In the dikaryotic hyphae from the compatible crossings between the wild-type L22 strain and Fvclp1 knockdown or overexpression mutants, clamp connections developed. However, knockdown mutants could generate fewer fruiting bodies than the wild-type strain. On the contrary, reduced mycelial growth rate but improved fruiting ability was observed in the dikaryotic Fvclp1 overexpression mutants as compared to the wild-type strain. These results indicate that Fvclp1 is necessary and actively involved in fruiting body development in F. velutipes. Overall, these findings suggest that further studies on the function of Fvclp1 would advance our understanding of sexual reproduction and fruiting body development in edible mushrooms.
Collapse
Affiliation(s)
- Xiaomeng Lyu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Siyuan Jiang
- Mycological Research Center, College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Tiansheng Chou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Irum Mukhtar
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
18
|
Yang R, Chen X, Huang Q, Chen C, Rengasamy KRR, Chen J, Wan C(C. Mining RNA-Seq Data to Depict How Penicillium digitatum Shapes Its Transcriptome in Response to Nanoemulsion. Front Nutr 2021; 8:724419. [PMID: 34595200 PMCID: PMC8476847 DOI: 10.3389/fnut.2021.724419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Penicillium digitatum is the most severe pathogen that infects citrus fruits during storage. It can cause fruit rot and bring significant economic losses. The continuous use of fungicides has resulted in the emergence of drug-resistant strains. Consequently, there is a need to develop naturally and efficiently antifungal fungicides. Natural antimicrobial agents such as clove oil, cinnamon oil, and thyme oil can be extracted from different plant parts. They exhibited broad-spectrum antimicrobial properties and have great potential in the food industry. Here, we exploit a novel cinnamaldehyde (CA), eugenol (EUG), or carvacrol (CAR) combination antifungal therapy and formulate it into nanoemulsion form to overcome lower solubility and instability of essential oil. In this study, the antifungal activity evaluation and transcriptional profile of Penicillium digitatum exposed to compound nanoemulsion were evaluated. Results showed that compound nanoemulsion had a striking inhibitory effect on P. digitatum in a dose-dependent manner. According to RNA-seq analysis, there were 2,169 differentially expressed genes (DEGs) between control and nanoemulsion-treated samples, including 1,028 downregulated and 1,141 upregulated genes. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in intracellular organelle parts of cell component: cellular respiration, proton transmembrane transport of biological process, and guanyl nucleotide-binding molecular function. KEGG analysis revealed that metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate and dicarboxylate metabolism were the most highly enriched pathways for these DEGs. Taken together, we can conclude the promising antifungal activity of nanoemulsion with multiple action sites against P. digitatum. These outcomes would deepen our knowledge of the inhibitory mechanism from molecular aspects and exploit naturally, efficiently, and harmlessly antifungal agents in the citrus postharvest industry.
Collapse
Affiliation(s)
- Ruopeng Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Xiu Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
19
|
Krah F, Hess J, Hennicke F, Kar R, Bässler C. Transcriptional response of mushrooms to artificial sun exposure. Ecol Evol 2021; 11:10538-10546. [PMID: 34367595 PMCID: PMC8328440 DOI: 10.1002/ece3.7862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Climate change causes increased tree mortality leading to canopy loss and thus sun-exposed forest floors. Sun exposure creates extreme temperatures and radiation, with potentially more drastic effects on forest organisms than the current increase in mean temperature. Such conditions might potentially negatively affect the maturation of mushrooms of forest fungi. A failure of reaching maturation would mean no sexual spore release and, thus, entail a loss of genetic diversity. However, we currently have a limited understanding of the quality and quantity of mushroom-specific molecular responses caused by sun exposure. Thus, to understand the short-term responses toward enhanced sun exposure, we exposed mushrooms of the wood-inhabiting forest species Lentinula edodes, while still attached to their mycelium and substrate, to artificial solar light (ca. 30°C and 100,000 lux) for 5, 30, and 60 min. We found significant differentially expressed genes at 30 and 60 min. Eukaryotic Orthologous Groups (KOG) class enrichment pointed to defense mechanisms. The 20 most significant differentially expressed genes showed the expression of heat-shock proteins, an important family of proteins under heat stress. Although preliminary, our results suggest mushroom-specific molecular responses to tolerate enhanced sun exposure as expected under climate change. Whether mushroom-specific molecular responses are able to maintain fungal fitness under opening forest canopies remains to be tested.
Collapse
Affiliation(s)
- Franz‐Sebastian Krah
- Conservation BiologyInstitute for Ecology, Evolution and DiversityFaculty of Biological SciencesGoethe University FrankfurtFrankfurt am MainGermany
| | - Jaqueline Hess
- Department of Soil EcologyUFZ Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| | - Florian Hennicke
- Conservation BiologyInstitute for Ecology, Evolution and DiversityFaculty of Biological SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Project Group Genetics and Genomics of FungiChair Evolution of Plants and FungiRuhr‐University Bochum (RUB)BochumGermany
| | - Ritwika Kar
- Centre for Plant Molecular Biology, Developmental GeneticsUniversity of TübingenTübingenGermany
| | - Claus Bässler
- Conservation BiologyInstitute for Ecology, Evolution and DiversityFaculty of Biological SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Bavarian Forest National ParkGrafenauGermany
| |
Collapse
|
20
|
Li N, Zhou J, Wang H, Mu C, Wang C. The iTRAQ-based quantitative proteomics reveals metabolic changes in Scylla paramamosain under different light intensities during indoor overwintering. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111384. [PMID: 33011457 DOI: 10.1016/j.ecoenv.2020.111384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Light intensity is one of the ecological factors that appreciably affects the metabolism of Scylla paramamosain during overwintering. This study adopted the isobaric tag for relative and absolute quantitation (iTRAQ) method to investigate metabolic changes of S. paramamosain under three illumination levels (0, 1.43 and 40.31 μmol m-2·s-1) for four months during indoor overwintering. The iTRAQ identified 3282 proteins, among which 267 exhibited significant differential expression (122 upregulated and 145 downregulated) in the low light group, and 299 with significant differential expression (252 upregulated and 47 downregulated) in the high light group. Analysis of these results showed that there were different metabolic regulatory patterns under different light intensities. Low light is more conducive to the survival of S. paramamosain, which needs to produce and consume relatively less energy to sustain physiological activities. Thus, the essential proteins associated with physiological activities were significantly upregulated, while those related to energy production were significantly downregulated. In contrast, high light exerts a certain stress on the survival of S. paramamosain and required more energy to cope with this stress, which forced a significant upregulation of proteins related to stress response and energy production. The findings of this study highlighted the metabolic regulatory mechanisms of S. paramamosain under different light intensities.
Collapse
Affiliation(s)
- Na Li
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Junming Zhou
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
21
|
Abu Bakar N, Karsani SA, Alias SA. Fungal survival under temperature stress: a proteomic perspective. PeerJ 2020; 8:e10423. [PMID: 33362961 PMCID: PMC7747687 DOI: 10.7717/peerj.10423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increases in knowledge of climate change generally, and its impact on agricultural industries specifically, have led to a greater research effort aimed at improving understanding of the role of fungi in various fields. Fungi play a key role in soil ecosystems as the primary agent of decomposition, recycling of organic nutrients. Fungi also include important pathogens of plants, insects, bacteria, domestic animals and humans, thus highlighting their importance in many contexts. Temperature directly affects fungal growth and protein dynamics, which ultimately will cascade through to affect crop performance. To study changes in the global protein complement of fungi, proteomic approaches have been used to examine links between temperature stress and fungal proteomic profiles. SURVEY METHODOLOGY AND OBJECTIVES A traditional rather than a systematic review approach was taken to focus on fungal responses to temperature stress elucidated using proteomic approaches. The effects of temperature stress on fungal metabolic pathways and, in particular, heat shock proteins (HSPs) are discussed. The objective of this review is to provide an overview of the effects of temperature stress on fungal proteomes. CONCLUDING REMARKS Elucidating fungal proteomic response under temperature stress is useful in the context of increasing understanding of fungal sensitivity and resilience to the challenges posed by contemporary climate change processes. Although useful, a more thorough work is needed such as combining data from multiple -omics platforms in order to develop deeper understanding of the factor influencing and controlling cell physiology. This information can be beneficial to identify potential biomarkers for monitoring environmental changes in soil, including the agricultural ecosystems vital to human society and economy.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Lin SH, Luo P, Yuan E, Zhu X, Zhang B, Wu X. Physiological and Proteomic Analysis of Penicillium digitatum in Response to X33 Antifungal Extract Treatment. Front Microbiol 2020; 11:584331. [PMID: 33240238 PMCID: PMC7677231 DOI: 10.3389/fmicb.2020.584331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Penicillium digitatum is a widespread pathogen among Rutaceae species that causes severe fruit decay symptoms on infected citrus fruit (known as citrus green mold). The employment of fungicides can effectively control the citrus green mold, significantly reducing agricultural economic loss. In this study, we found that the X33 antifungal extract produced by Streptomyces lavendulae strain X33 inhibited the hyphae polarization of P. digitatum. Additionally, physiological and proteomic analysis strategies were applied to explore the inhibitory mechanism of the X33 antifungal extract of the S. lavendulae strain X33 on the mycelial growth of P. digitatum. A total of 277 differentially expressed proteins, consisting of 207 upregulated and 70 downregulated, were identified from the comparative proteomics analysis. The results indicated that the X33 antifungal extract induced mitochondrial membrane dysfunction and cellular integrity impairment, which can affect energy metabolism, oxidative stress, and transmembrane transport. The improved alkaline phosphatase activity and extracellular conductivity, increased H2O2 and malondialdehyde contents, and inhibition of energy, amino acid, and sugar metabolism indicated that the oxidative stress of P. digitatum is induced by the X33 antifungal extract. These findings provided insight into the antifungal mechanism of the X33 antifungal extract against P. digitatum by suggesting that it may be an effective fungicide for controlling citrus postharvest green mold.
Collapse
Affiliation(s)
- Shu-Hua Lin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Pan Luo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| |
Collapse
|
23
|
Chen J, Li JM, Tang YJ, Ma K, Li B, Zeng X, Liu XB, Li Y, Yang ZL, Xu WN, Xie BG, Liu HW, Guo SX. Genome-wide analysis and prediction of genes involved in the biosynthesis of polysaccharides and bioactive secondary metabolites in high-temperature-tolerant wild Flammulina filiformis. BMC Genomics 2020; 21:719. [PMID: 33069230 PMCID: PMC7568368 DOI: 10.1186/s12864-020-07108-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
Background Flammulina filiformis (previously known as Asian F. velutipes) is a popular commercial edible mushroom. Many bioactive compounds with medicinal effects, such as polysaccharides and sesquiterpenoids, have been isolated and identified from F. filiformis, but their biosynthesis and regulation at the molecular level remains unclear. In this study, we sequenced the genome of the wild strain F. filiformis Liu355, predicted its biosynthetic gene clusters (BGCs) and profiled the expression of these genes in wild and cultivar strains and in different developmental stages of the wild F. filiformis strain by a comparative transcriptomic analysis. Results We found that the genome of the F. filiformis was 35.01 Mb in length and harbored 10,396 gene models. Thirteen putative terpenoid gene clusters were predicted and 12 sesquiterpene synthase genes belonging to four different groups and two type I polyketide synthase gene clusters were identified in the F. filiformis genome. The number of genes related to terpenoid biosynthesis was higher in the wild strain (119 genes) than in the cultivar strain (81 genes). Most terpenoid biosynthesis genes were upregulated in the primordium and fruiting body of the wild strain, while the polyketide synthase genes were generally upregulated in the mycelium of the wild strain. Moreover, genes encoding UDP-glucose pyrophosphorylase and UDP-glucose dehydrogenase, which are involved in polysaccharide biosynthesis, had relatively high transcript levels both in the mycelium and fruiting body of the wild F. filiformis strain. Conclusions F. filiformis is enriched in a number of gene clusters involved in the biosynthesis of polysaccharides and terpenoid bioactive compounds and these genes usually display differential expression between wild and cultivar strains, even in different developmental stages. This study expands our knowledge of the biology of F. filiformis and provides valuable data for elucidating the regulation of secondary metabolites in this unique F. filiformis strain.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Jia-Mei Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yan-Jing Tang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ke Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bing Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xu Zeng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiao-Bin Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Yang Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Wei-Nan Xu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shun-Xing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
24
|
Li J, Cui J, Cheng D, Dai C, Liu T, Wang C, Luo C. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots. BMC PLANT BIOLOGY 2020; 20:347. [PMID: 32698773 PMCID: PMC7376716 DOI: 10.1186/s12870-020-02552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism. RESULTS Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H+-transporting ATPase. The expression pattern of ten DAPs encoding genes was consistent with the iTRAQ data. CONCLUSIONS During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.
Collapse
Affiliation(s)
- Junliang Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cuihong Dai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianjiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Congyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengfei Luo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
25
|
Zhang B, Mao JL, Yao H, Aubourg SP. Label-free based proteomics analysis of protein changes in frozen whiteleg shrimp (Litopenaeus vannamei) pre-soaked with sodium trimetaphosphate. Food Res Int 2020; 137:109455. [PMID: 33233131 DOI: 10.1016/j.foodres.2020.109455] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Muscle proteins in peeled shrimp (Litopenaeus vannamei) are known to be unstable and prone to denaturation affected by freezing and frozen storage. In this study, label-free proteomics were performed to explore the stabilization of frozen (30 days at -18 °C) shrimp muscle proteins when a pre-soaking treatment with distilled water (DW)- or sodium trimetaphosphate (ST) was applied; comparison to fresh samples (FS) was carried out. In total, 163 differentially abundant proteins (DAPs) were down-regulated in DW batch when compared to FS, these including ribosomal proteins, actins, myosin, paramyosin, myosin heavy chains, and tropomyosin; interestingly, most of these DAPs (181 proteins) were up-regulated in ST batch when compared to DW shrimp, mainly due to the incorporation of ST into muscle tissues. The results revealed the decreased protein degradation resulting from the reduced damage from ice-crystal growth. Gene ontology (GO) analysis suggested that these DAPs were mainly involved in catalytic activity, binding, and metabolic processes. Kyoto encyclopedia of genes and genomes (KEGG) results indicated that many pathways, including phototransduction, metabolic, and ribosomal pathways that interacted with phosphoglycerate mutase, actins, and ribosomal proteins were altered. Additionally, Eukaryotic clusters of orthologous group (KOG) results confirmed that incorporated ST maintained the stability of these DAPs in shrimp muscle, especially for cytoskeleton proteins, and retarded the degradation of muscle proteins during frozen storage.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China.
| | - Jun-Long Mao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Hui Yao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Santiago P Aubourg
- Consejo Superior de Investigaciones Cientificas (CSIC), Inst Invest Marinas, Spain.
| |
Collapse
|
26
|
Fan L, Hou F, Idris Muhammad A, Bilyaminu Ismail B, Lv R, Ding T, Liu D. Proteomic responses of spores of Bacillus subtilis to thermosonication involve large-scale alterations in metabolic pathways. ULTRASONICS SONOCHEMISTRY 2020; 64:104992. [PMID: 32018137 DOI: 10.1016/j.ultsonch.2020.104992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Thermosonication (TS) impacts numerous characteristics of spores, such as morphology, cell metabolism, and stress resistance. However, relevant mechanisms need to be clarified. In the present study, the effect of TS treatment on Bacillus subtilis spores was investigated at phenotypic and proteomic levels. The results showed that TS treatment induced significant changes to spores in growth kinetics and morphology. A total of 167 differentially expressed proteins (DEPs) were obtained after TS treatment at 6.67 W/mL and 80 °C. Among these proteins, 80 were up-regulated, whereas 87 were down-regulated. These DEPs were classed into 20 functional categories. Enrichment analysis of the proteome revealed that the major categories were associated with metabolic functions, including energy metabolic processes, amino acids biosynthesis and metabolism, translation and ribosomal protein. In summary, B. subtilis spores showed alteration primarily in the proteins that were associated with metabolism under TS treatment. These findings could be applied to the development and optimization of TS-based sporicidal treatment.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Furong Hou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruiling Lv
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Zhang Z, Zhang W, Bi Y, Han Y, Zong Y, Prusky D. Cuminal Inhibits Trichothecium roseum Growth by Triggering Cell Starvation: Transcriptome and Proteome Analysis. Microorganisms 2020; 8:E256. [PMID: 32075192 PMCID: PMC7074788 DOI: 10.3390/microorganisms8020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Trichothecium roseum is a harmful postharvest fungus causing serious damage, together with the secretion of insidious mycotoxins, on apples, melons, and other important fruits. Cuminal, a predominant component of Cuminum cyminum essential oil has proven to successfully inhibit the growth of T. roseum in vitro and in vivo. Electron microscopic observations revealed cuminal exposure impaired the fungal morphology and ultrastructure, particularly the plasmalemma. Transcriptome and proteome analysis was used to investigate the responses of T. roseum to exposure of cuminal. In total, 2825 differentially expressed transcripts (1516 up and 1309 down) and 225 differentially expressed proteins (90 up and 135 down) were determined. Overall, notable parts of these differentially expressed genes functionally belong to subcellular localities of the membrane system and cytosol, along with ribosomes, mitochondria and peroxisomes. According to the localization analysis and the biological annotation of these genes, carbohydrate and lipids metabolism, redox homeostasis, and asexual reproduction were among the most enriched gene ontology (GO) terms. Biological pathway enrichment analysis showed that lipids and amino acid degradation, ATP-binding cassette transporters, membrane reconstitution, mRNA surveillance pathway and peroxisome were elevated, whereas secondary metabolite biosynthesis, cell cycle, and glycolysis/gluconeogenesis were down regulated. Further integrated omics analysis showed that cuminal exposure first impaired the polarity of the cytoplasmic membrane and then triggered the reconstitution and dysfunction of fungal plasmalemma, resulting in handicapped nutrient procurement of the cells. Consequently, fungal cells showed starvation stress with limited carbohydrate metabolism, resulting a metabolic shift to catabolism of the cell's own components in response to the stress. Additionally, these predicaments brought about oxidative stress, which, in collaboration with the starvation, damaged certain critical organelles such as mitochondria. Such degeneration, accompanied by energy deficiency, suppressed the biosynthesis of essential proteins and inhibited fungal growth.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenting Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
28
|
Zhao G, Liu C, Li S, Wang X, Yao Y. Exploring the flavor formation mechanism under osmotic conditions during soy sauce fermentation in Aspergillus oryzae by proteomic analysis. Food Funct 2020; 11:640-648. [PMID: 31895399 DOI: 10.1039/c9fo02314c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Aspergillus oryzae is a common starter in the soy sauce industry and struggles to grow under complex fermentation conditions. However, little is known about the flavor formation mechanism under osmotic conditions (low-temperature and high-salt) in A. oryzae. This work investigated the flavors and the relative protein expression patterns by gas chromatography-mass spectrometry (GC-MS) and proteomic analysis. Low-temperature and a high-salt content are unfavorable to the secretion of hydrolases and the formation of fragrant aldehydes. The aldehyde contents under osmotic conditions were reduced to 1.4-3.7 times lower than that of the control. Besides, copper amine oxidases which decreased under low-temperature stress and salt stress were shown to be important in catalyzing the oxidative deamination of several amine substrates to fragrant aldehydes. Furthermore, alcohol dehydrogenase and polyketide synthase are beneficial to the formation of alcohols and aromatic flavors under low-temperature stress and salt stress. Particularly, the ethanol content under 16 °C stress was 3.5 times higher than that under 28 °C.
Collapse
Affiliation(s)
- Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
29
|
Zhang B, Yao H, Qi H, Zhang XL. Trehalose and alginate oligosaccharides increase the stability of muscle proteins in frozen shrimp (Litopenaeus vannamei). Food Funct 2020; 11:1270-1278. [DOI: 10.1039/c9fo02016k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability of muscle proteins improved during frozen storage.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Hui Yao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - He Qi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Xiao-li Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| |
Collapse
|
30
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
31
|
Liu KA, Gai Y, Fayyaz A, Zhang G, Liu M, Wang Z. Genomic and morphological characteristics of the cold-adapted bacteria Mycetocola saprophilus provide insights into the pathogenesis of soft rot in Flammulina velutipes. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1808068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Kun-ang Liu
- Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, P. R. China
- Department of Edible Fungi, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, P. R. China
| | - Yunpeng Gai
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Amna Fayyaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Genwei Zhang
- Department of Edible Fungi, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, P. R. China
| | - Meng Liu
- Department of Edible Fungi, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, P. R. China
| | - Zhenzhong Wang
- Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
32
|
Wang R, Ma P, Li C, Xiao L, Liang Z, Dong J. Combining transcriptomics and metabolomics to reveal the underlying molecular mechanism of ergosterol biosynthesis during the fruiting process of Flammulina velutipes. BMC Genomics 2019; 20:999. [PMID: 31856715 PMCID: PMC6924009 DOI: 10.1186/s12864-019-6370-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
Background Flammulina velutipes has been recognized as a useful basidiomycete with nutritional and medicinal values. Ergosterol, one of the main sterols of F. velutipes is an important precursor of novel anticancer and anti-HIV drugs. Therefore, many studies have focused on the biosynthesis of ergosterol and have attempted to upregulate its content in multiple organisms. Great progress has been made in understanding the regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. However, this molecular mechanism in F. velutipes remains largely uncharacterized. Results In this study, nine cDNA libraries, prepared from mycelia, young fruiting bodies and mature fruiting bodies of F. velutipes (three replicate sets for each stage), were sequenced using the Illumina HiSeq™ 4000 platform, resulting in at least 6.63 Gb of clean reads from each library. We studied the changes in genes and metabolites in the ergosterol biosynthesis pathway of F. velutipes during the development of fruiting bodies. A total of 13 genes (6 upregulated and 7 downregulated) were differentially expressed during the development from mycelia to young fruiting bodies (T1), while only 1 gene (1 downregulated) was differentially expressed during the development from young fruiting bodies to mature fruiting bodies (T2). A total of 7 metabolites (3 increased and 4 reduced) were found to have changed in content during T1, and 4 metabolites (4 increased) were found to be different during T2. A conjoint analysis of the genome-wide connection network revealed that the metabolites that were more likely to be regulated were primarily in the post-squalene pathway. Conclusions This study provides useful information for understanding the regulation of ergosterol biosynthesis and the regulatory relationship between metabolites and genes in the ergosterol biosynthesis pathway during the development of fruiting bodies in F. velutipes.
Collapse
Affiliation(s)
- Ruihong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chen Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lingang Xiao
- Shaanxi Zhongxing Gaoke Biological Technology Co., Ltd, Yangling, 712100, China
| | - Zongsuo Liang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.,College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
33
|
Yan JJ, Tong ZJ, Liu YY, Li YN, Zhao C, Mukhtar I, Tao YX, Chen BZ, Deng YJ, Xie BG. Comparative Transcriptomics of Flammulina filiformis Suggests a High CO 2 Concentration Inhibits Early Pileus Expansion by Decreasing Cell Division Control Pathways. Int J Mol Sci 2019; 20:ijms20235923. [PMID: 31775357 PMCID: PMC6929049 DOI: 10.3390/ijms20235923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
Carbon dioxide is commonly used as one of the significant environmental factors to control pileus expansion during mushroom cultivation. However, the pileus expansion mechanism related to CO2 is still unknown. In this study, the young fruiting bodies of a popular commercial mushroom Flammulina filiformis were cultivated under different CO2 concentrations. In comparison to the low CO2 concentration (0.05%), the pileus expansion rates were significantly lower under a high CO2 concentration (5%). Transcriptome data showed that the up-regulated genes enriched in high CO2 concentration treatments mainly associated with metabolism processes indicated that the cell metabolism processes were active under high CO2 conditions. However, the gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with cell division processes contained down-regulated genes at both 12 h and 36 h under a high concentration of CO2. Transcriptome and qRT-PCR analyses demonstrated that a high CO2 concentration had an adverse effect on gene expression of the ubiquitin–proteasome system and cell cycle–yeast pathway, which may decrease the cell division ability and exhibit an inhibitory effect on early pileus expansion. Our research reveals the molecular mechanism of inhibition effects on early pileus expansion by elevated CO2, which could provide a theoretical basis for a CO2 management strategy in mushroom cultivation.
Collapse
Affiliation(s)
- Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Zong-Jun Tong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuan-Yuan Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Yi-Ning Li
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Chen Zhao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Irum Mukhtar
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yong-Xin Tao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Bing-Zhi Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - You-Jin Deng
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| |
Collapse
|
34
|
Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Transcriptome Profile Analysis of Winter Rapeseed ( Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Int J Mol Sci 2019; 20:ijms20112771. [PMID: 31195741 PMCID: PMC6600501 DOI: 10.3390/ijms20112771] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Winter rapeseed is not only an important oilseed crop, but also a winter cover crop in Northern China, where its production was severely limited by freezing stress. As an overwinter crop, the production is severely limited by freezing stress. Therefore, understanding the physiological and molecular mechanism of winter rapeseed (Brassica napus L.) in freezing stress responses becomes essential for the improvement and development of freezing-tolerant varieties of Brassica napus. In this study, morphological, physiological, ultrastructure and transcriptome changes in the Brassica napus line "2016TS(G)10" (freezing-tolerance line) that was exposed to -2 °C for 0 h, 1 h, 3 h and 24 h were characterized. The results showed that freezing stress caused seedling dehydration, and chloroplast dilation and degradation. The content of malondialdehyde (MDA), proline, soluble protein and soluble sugars were increased, as well as the relative electrolyte leakage (REL) which was significantly increased at frozen 24 h. Subsequently, RNA-seq analysis revealed a total of 98,672 UniGenes that were annotated in Brassica napus and 3905 UniGenes were identified as differentially expressed genes after being exposed to freezing stress. Among these genes, 2312 (59.21%) were up-regulated and 1593 (40.79%) were down-regulated. Most of these DEGs were significantly annotated in the carbohydrates and energy metabolism, signal transduction, amino acid metabolism and translation. Most of the up-regulated DEGs were especially enriched in plant hormone signal transduction, starch and sucrose metabolism pathways. Transcription factor enrichment analysis showed that the AP2/ERF, WRKY and MYB families were also significantly changed. Furthermore, 20 DEGs were selected to validate the transcriptome profiles via quantitative real-time PCR (qRT-PCR). In conclusion, the results provide an overall view of the dynamic changes in physiology and insights into the molecular regulation mechanisms of winter Brassica napus in response to freezing treatment, expanding our understanding on the complex molecular mechanism in plant response to freezing stress.
Collapse
Affiliation(s)
- Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Lijun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuhong Zhao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jing Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jinli Yue
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jiaojiao Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Zaoxia Niu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Yan Fang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
35
|
Yao L, Yu Q, Huang M, Hung W, Grosser J, Chen S, Wang Y, Gmitter FG. Proteomic and metabolomic analyses provide insight into the off-flavour of fruits from citrus trees infected with ' Candidatus Liberibacter asiaticus'. HORTICULTURE RESEARCH 2019; 6:31. [PMID: 30792870 PMCID: PMC6375920 DOI: 10.1038/s41438-018-0109-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 05/18/2023]
Abstract
Orange fruit from trees infected by 'Candidatus Liberibacter asiaticus' (CaLas) often do not look fully mature and exhibit off-flavours described as bitter, harsh, and metallic rather than juicy and fruity. Although previous studies have been carried out to understand the effect of CaLas on the flavour of orange juice using metabolomic methods, the mechanisms leading to the off-flavour that occurs in Huanglongbing (HLB)-symptomatic fruit are not well understood. In this study, fruits were collected from symptomatic and healthy Valencia sweet orange (Citrus sinensis) trees grafted on Swingle (C. paradisi X Poncirus trifoliata) rootstock. Isobaric tags for relative and absolute quantification (iTRAQ) and gas chromatography-mass spectrometry (GC-MS) were used to measure the proteins, sugars, organic acids, amino acids, and volatile terpenoids. The results showed that most of the differentially expressed proteins involved in glycolysis, the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis were degraded, and terpenoid metabolism was significantly downregulated in the symptomatic fruit. Valencene, limonene, 3-carene, linalool, myrcene, and α-terpineol levels were significantly lower in fruit from CaLas-infected trees than from healthy trees. Similar phenomena were observed for sucrose and glucose. Our study indicated that off-flavour of symptomatic fruit was associated with a reduction in the levels of terpenoid products and the downregulation of proteins in glycolysis, the TCA cycle, and the terpenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Weilun Hung
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| |
Collapse
|
36
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. iTRAQ-Based Comparative Proteomic Analysis of the Roots of TWO Winter Turnip Rapes ( Brassica rapa L.) with Different Freezing-Tolerance. Int J Mol Sci 2018; 19:E4077. [PMID: 30562938 PMCID: PMC6321220 DOI: 10.3390/ijms19124077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The freezing tolerance of roots is crucial for winter turnip rape (Brassica rapa L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two Brassica rapa genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (-4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of "Longyou7" (freezing-tolerant) and "Tianyou4" (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in "Longyou7", respectively, and 46 and 50 proteins were up- and down-accumulated in "Tianyou4", respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Yaozhao Xu
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Fenqin Zhang
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
37
|
Song XQ, Zhao Y, Weng QY, Yuan JC, Dong ZP, Zhao ZH, Liu YH, Zhao M. Proteomic analysis of Zhangzagu3 ( Setaria italica) and its parents based on iTRAQ technique. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1528179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Xiao-Qing Song
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, PR China
| | - Yan Zhao
- Department of Plant Protection, College of Agriculture and Forestry, Hebei North University, Zhangjiakou, PR China
| | - Qiao-yun Weng
- Department of Plant Protection, College of Agriculture and Forestry, Hebei North University, Zhangjiakou, PR China
| | - Jin-Cheng Yuan
- Department of Plant Protection, College of Agriculture and Forestry, Hebei North University, Zhangjiakou, PR China
| | - Zhi-Ping Dong
- Department of Millet Research Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, PR China
| | - Zhi-Hai Zhao
- Department of Millet Research Center, Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, PR China
| | - Ying-Hui Liu
- Department of Plant Protection, College of Agriculture and Forestry, Hebei North University, Zhangjiakou, PR China
| | - Ming Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
38
|
iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Brassica rapa L.) under Cold Stress. Int J Mol Sci 2018; 19:ijms19113346. [PMID: 30373160 PMCID: PMC6274765 DOI: 10.3390/ijms19113346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Winter turnip rape (Brassica rapa L.) is a large-scale winter-only oil crop cultivated in Northwest China. However, its cold-resistant molecular mechanism remains inadequate. Studying the cold adaptation mechanisms of winter turnip rape based on the proteomic technique of isobaric tags for relative and absolute quantification (iTRAQ) offers a solution to this problem. Under cold stress (−4 °C for eight hours), 51 and 94 differently accumulated proteins (DAPs) in Longyou 7 (cold-tolerant) and Tianyou 4 (cold-sensitive) were identified, respectively. These DAPs were classified into 38 gene ontology (GO) term categories, such as metabolic process, cellular process, catalytic activity, and binding. The 142 DAPs identified between the two cold-stressed cultivars were classified into 40 GO terms, including cellular process, metabolic process, cell, catalytic activity, and binding. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DAPs participated in 10 pathways. The abundance of most protein functions in ribosomes, carbon metabolism, photosynthesis, and energy metabolism including the citrate cycle, pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism decreased, and the proteins that participate in photosynthesis–antenna and isoflavonoid biosynthesis increased in cold-stressed Longyou 7 compared with those in cold-stressed Tianyou 4. The expression pattern of genes encoding the 10 significant DAPs was consistent with the iTRAQ data. This study provides new information on the proteomic differences between the leaves of Longyou 7 and Tianyou 4 plants and explains the possible molecular mechanisms of cold-stress adaptation in B. rapa.
Collapse
|
39
|
Zou Y, Zhang M, Qu J, Zhang J. iTRAQ-Based Quantitative Proteomic Analysis Reveals Proteomic Changes in Mycelium of Pleurotus ostreatus in Response to Heat Stress and Subsequent Recovery. Front Microbiol 2018; 9:2368. [PMID: 30356767 PMCID: PMC6189471 DOI: 10.3389/fmicb.2018.02368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
High temperature is a key limiting factor for mycelium growth and development in Pleurotus ostreatus. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of thermotolerance in P. ostreatus, we used morphological and physiological analysis combined with an iTRAQ-based proteomics analysis of P. ostreatus subjected to 40°C for 48 h followed by recovery at 25°C for 3 days. High temperature increased the concentrations of thiobarbituric acid reactive substances (TBARS) indicating that the mycelium of P. ostreatus were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. In comparison to unstressed controls, a total of 204 proteins were changed during heat stress and/or the recovery phase. Wherein, there were 47 proteins that responded to both stress and recovery conditions, whereas 84 and 73 proteins were responsive to only heat stress or recovery conditions, respectively. Furthermore, quantitative real-time PCR (qRT-PCR) confirmed differential expression of nine candidate genes revealed that some of the proteins, such as a mitogen-activated protein kinase (MAPK), phenylalanine ammonia-lyase (PAL), and heat shock protein (HSP), were also regulated by heat stress at the level of transcription. These differentially expressed proteins (DEPs) in mycelium of P. ostreatus under heat stress were from 13 biological processes. Moreover, protein-protein interaction analysis revealed that proteins involved in carbohydrate and energy metabolism, signal transduction, and proteins metabolism could be assigned to three heat stress response networks. On the basis of these findings, we proposed that effective regulatory protein expression related to MAPK-pathway, antioxidant enzymes, HSPs, and other stress response proteins, and glycolysis play important roles in enhancing P. ostreatus adaptation to and recovery from heat stress. Of note, this study provides useful information for understanding the thermotolerance mechanism for basidiomycetes.
Collapse
Affiliation(s)
- Yajie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijing Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Shi J, Zhang L, Lei Y, Shen H, Yu X, Luo Y. Differential proteomic analysis to identify proteins associated with quality traits of frozen mud shrimp ( Solenocera melantho ) using an iTRAQ-based strategy. Food Chem 2018; 251:25-32. [DOI: 10.1016/j.foodchem.2018.01.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/28/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
|
42
|
Liu JY, Chang MC, Meng JL, Feng CP, Wang Y. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3716-3725. [PMID: 29584419 DOI: 10.1021/acs.jafc.8b00383] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In some industrial processes, cold and light stresses are recognized as two important environmental triggers for the transformation of mycelia into fruit-bodies via intermediate primordia in Flammulina velutipes cultivation. To gain insights into the mechanism of regulation of F. velutipes mycelia in response to cold and light stress, proteins expressed abundantly and characteristically at particular stress states were investigated by using the isobaric tags for the relative and absolute quantitation labeling technique. Among the 1046 nonredundant proteins identified with a high degree of confidence, 264 proteins, which were detected as differentially expressed proteins, were associated with 176 specific KEGG pathways. In-depth data analysis revealed that the regulatory network underlying the cold and light response mechanisms of F. velutipes mycelia was complex and multifaceted, as it included varied functions such as rapid energy supply, the biosynthesis of lysine, phenylalanine, tyrosine, and γ-aminobutyric acid, the calcium signal transduction process, dynein-dependent actin and microtubule cytoskeleton formation, autolysis, oxidative stress adaptation, pigment secretion, tissue and organ morphogenesis, and other interesting stress-related processes. Insights into the proteins might shed light on an intuitive understanding of the cold and light stress response mechanism underlying the fruiting processes of F. velutipes. Furthermore, the data might also provide further insights into the stress response mechanism of macro-fungi and valuable information for scientific improvement of some mushroom cultivation techniques in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Ming-Chang Chang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Jun-Long Meng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Cui-Ping Feng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Yu Wang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
| |
Collapse
|
43
|
Wang Z, Zhou Q, Li Y, Qiao L, Pang Q, Huang B. iTRAQ-based quantitative proteomic analysis of conidia and mycelium in the filamentous fungus Metarhizium robertsii. Fungal Biol 2018; 122:651-658. [PMID: 29880200 DOI: 10.1016/j.funbio.2018.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/10/2023]
Abstract
Metarhizium robertsii is widely applied in biological control via conidia application. To clarify the proteomic differences between conidia and mycelia and explore the underlying mechanisms of conidia as a unit responsible for dispersal and environmental stress, we carried out an iTRAQ (isobaric tags for relative and absolute quantitation)-based quantitative proteomic analysis for two developmental stages from M. robertsii. A total of 2052 proteins were detected, and 90 showed differential protein abundance between the conidia and mycelia. These 90 proteins were primarily associated with stress resistance, amino acid and protein metabolism, and energy metabolism. Further bioinformatics analysis showed that these proteins could be mapped to 52 pathways, five of which were significantly enriched after mapping to KEGG pathways. Interestingly, many proteins involved in the significantly enriched pathway of peroxisome, biosynthesis of secondary metabolites and glyoxylate and dicarboxylate metabolism, including catalase, peroxisomal membrane anchor protein, formate dehydrogenase and isocitrate lyase, were identified with higher abundance in conidia. The results deepened our understanding of the conidia proteome in M. robertsii and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents.
Collapse
Affiliation(s)
- Zhangxun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Quan Zhou
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yuandong Li
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Lintao Qiao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Qi Pang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
44
|
OuYang Q, Tao N, Zhang M. A Damaged Oxidative Phosphorylation Mechanism Is Involved in the Antifungal Activity of Citral against Penicillium digitatum. Front Microbiol 2018; 9:239. [PMID: 29503638 PMCID: PMC5820319 DOI: 10.3389/fmicb.2018.00239] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
Citral exhibits strong antifungal activity against Penicillium digitatum. In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS.
Collapse
Affiliation(s)
- Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Miaoling Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
45
|
Jin FJ, Han P, Zhuang M, Zhang ZM, Jin L, Koyama Y. Comparative proteomic analysis: SclR is importantly involved in carbohydrate metabolism in Aspergillus oryzae. Appl Microbiol Biotechnol 2017; 102:319-332. [PMID: 29098410 DOI: 10.1007/s00253-017-8588-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
The helix-loop-helix (HLH) family of transcriptional factors is a key player in a wide range of developmental processes in organisms from mammals to microbes. We previously identified the bHLH transcription factor SclR in Aspergillus oryzae and found that the loss of SclR function led to significant phenotypic changes, such as rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. The result implied that SclR is potentially important in both traditional fermentative manufacturing and commercial enzyme production in A. oryzae because of its effect on growth. Therefore, this study presents a comparative assessment at the proteome level of the intracellular differences between an sclR-disrupted strain and a control strain using isobaric tandem mass tag (TMT) labeling for quantification. A total of 5447 proteins were identified, and 568 were differentially expressed proteins (DEPs). Of the DEPs, 251 proteins were increased by 1.5-fold, and 317 proteins were decreased by 1.5-fold in an sclR-disrupted strain compared to the control. The comparison of the quantitative TMT results revealed that SclR was mainly involved in carbon metabolism, especially carbohydrate metabolism. In addition, an enzyme profile by a semi-quantitative method (API-ZYM) indicated that three enzymes (β-galactosidase, α-glucosidase, and α-mannosidase) were significantly less active in the ∆sclR strain than in the control. Moreover, quantitative RT-PCR showed that the expression of certain genes was changed similarly to their corresponding proteins. These results suggested that a possible function of SclR during growth of A. oryzae is its important involvement in carbohydrate metabolism.
Collapse
Affiliation(s)
- Feng-Jie Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| | - Pei Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, 9 Deng Zhuang South Rd, Beijing, 100094, China
| | - Miao Zhuang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zhi-Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Long Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 399 Noda, Noda City, 278-0037, Japan
| |
Collapse
|
46
|
Xu HX, Li XY, Chen JW. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets. JOURNAL OF PLANT RESEARCH 2017; 130:893-907. [PMID: 28447204 DOI: 10.1007/s10265-017-0942-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Loquat (Eriobotrya japonica Lindl.) is an important subtropical, commercial fruit in China. It blossoms during autumn and winter in most areas of China and its fruitlets usually suffer from freezing stress. However, studies about the mechanisms underlying freezing stress in loquat are very limited. The gene expression profiles of loquat fruitlets subjected to freezing (G2 library) versus non-treated ones (G1 library) were investigated using Illumina sequencing technology to elucidate the molecular mechanisms and identify the genes that play vital roles in the freezing stress response. The results showed that approximately 157.63 million reads in total were obtained from freeze-treated and non-treated loquat fruitlets. These reads were assembled into 87,379 unigenes with an average length of 710 bp and an N50 of 1,200 bp. After comparing the profiles obtained from the G1 and G2 libraries, 2,892 differentially expressed genes were identified, of which 1,883 were up-regulated and 1,009 were down-regulated in the treated samples compared to non-treated ones. These unigenes showed significant differences in expression for carbohydrate transport and metabolism, amino acid metabolism, energy metabolism, and lipid metabolism, which are involved in defense against freezing stress. Glycolysis/gluconeogenesis was one of the most significantly regulated pathways. Freezing also significantly damaged the membrane system of loquat fruitlets, and several defense mechanisms were induced. Some selected genes related to low temperature resistance were validated by quantitative real-time PCR (qRT-PCR). The results revealed many genes and pathways that are part of freezing resistance processes and expand our understanding of the complex molecular events involved in freezing stress.
Collapse
Affiliation(s)
- Hong-Xia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Xiao-Ying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Jun-Wei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China.
| |
Collapse
|
47
|
Sun X, Wang Y, Xu L, Li C, Zhang W, Luo X, Jiang H, Liu L. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1192. [PMID: 28769938 PMCID: PMC5509946 DOI: 10.3389/fpls.2017.01192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/23/2017] [Indexed: 05/08/2023]
Abstract
To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.
Collapse
Affiliation(s)
- Xiaochuan Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuai'an, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Chao Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Haiyan Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| |
Collapse
|
48
|
Comprehensive transcriptomics and proteomics analyses of pollinated and parthenocarpic litchi (Litchi chinensis Sonn.) fruits during early development. Sci Rep 2017; 7:5401. [PMID: 28710486 PMCID: PMC5511223 DOI: 10.1038/s41598-017-05724-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
Litchi (Litchi chinensis Sonn.) is an important fruit that is widely cultivated in tropical and subtropical areas. In this study, we used RNA-Seq and iTRAQ technologies to compare the transcriptomes and proteomes of pollinated (polLFs) and parthenocarpic (parLFs) litchi fruits during early development (1 day, 2 days, 4 days and 6 days). We identified 4,864 DEGs in polLFs and 3,672 in parLFs, of which 2,835 were shared and 1,051 were specifically identified in parLFs. Compared to po1LFs, 768 DEGs were identified in parLFs. iTRAQ analysis identified 551 DEPs in polLFs and 1,021 in parLFs, of which 305 were shared and 526 were exclusively identified in parLFs. We found 1,127 DEPs in parLFs compared to polLFs at different stages. Further analysis revealed some DEGs/DEPs associated with abscisic acid, auxin, ethylene, gibberellin, heat shock protein (HSP), histone, ribosomal protein, transcription factor and zinc finger protein (ZFP). WGCNA identified a large set of co-expressed genes/proteins in polLFs and parLFs. In addition, a cross-comparison of transcriptomic and proteomic data identified 357 consistent DEGs/DEPs in polLFs and parLFs. This is the first time that protein/gene changes have been studied in polLFs and parLFs, and the findings improve our understanding of litchi parthenocarpy.
Collapse
|
49
|
Liu JY, Chang MC, Meng JL, Feng CP, Zhao H, Zhang ML. Comparative Proteome Reveals Metabolic Changes during the Fruiting Process in Flammulina velutipes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5091-5100. [PMID: 28570075 DOI: 10.1021/acs.jafc.7b01120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the molecular mechanisms regulating the fruiting process in macro-fungi, especially industrially cultivated mushrooms, has long been a goal in mycological research. To gain insights into the events accompanying the transformation of mycelia into fruit-bodies in Flammulina velutipes, proteins expressed characteristically and abundantly at primordium and fruit-body stages were investigated by using the iTRAQ labeling technique. Among the 171 differentially expressed proteins, a total of 68 displayed up-regulated expression levels that were associated with 84 specific KEGG pathways. Some up-regulated proteins, such as pyruvate carboxylase, aldehyde dehydrogenase, fatty acid synthase, aspartate aminotransferase, 2-cysteine peroxiredoxin, FDS protein, translation elongation factor 1-alpha, mitogen-activated protein kinases (MAPKs), and heat-shock protein 70 that are involved in carbohydrate metabolism, carotenoid formation, the TCA cycle, MAPK signaling pathway, and the biosynthesis of fatty acids and branched-chain amino acids, could serve as potential stage-specific biomarkers to study the fruiting process in F. velutipes. Knowledge of the proteins might provide valuable evidence to better understand the molecular mechanisms of fruit-body initiation and development in basidiomycete fungi. Furthermore, this study also offers valuable evidence for yield improvement and quality control of super golden-needle mushroom in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Jun-Long Meng
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Cui-Ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Hui Zhao
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
| | - Ming-Liang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
| |
Collapse
|