1
|
Pierrefiche O. [Epigenetic changes in alcohol addiction and therapeutic perspectives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:13-21. [PMID: 39374866 DOI: 10.1016/j.pharma.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Alcohol consumption is a major public health issue. Patients with Alcohol Use Disorder (AUD) can benefit from five treatments that preferentially target membrane receptors, and whose efficacy is generally modest. However, a large body of experimental evidence points to an important role for epigenetics in the effects of alcohol consumption, and epidrugs that modify the epigenome offer an interesting alternative to current therapeutic options. This article reviews the most striking experimental evidence obtained at different ages in animal models, before comparing it with data obtained in humans and concluding on the relevance of using epidrugs. Finally, a new therapeutic option is suggested between psychedelics, recent molecules of interest, and epigenetic factors in alcohol intake.
Collapse
Affiliation(s)
- Olivier Pierrefiche
- Inserm UMR1247, groupe de recherche sur l'alcool et les pharmacodépendances, centre universitaire de recherche en santé, université Picardie Jules-Verne, chemin du Thil, Amiens, France.
| |
Collapse
|
2
|
Bellia F, Piccinini A, Annunzi E, Cannito L, Lionetti F, Dell’Osso B, Adriani W, Dainese E, Di Domenico A, Pucci M, Palumbo R, D’Addario C. Dopamine and Serotonin Transporter Genes Regulation in Highly Sensitive Individuals during Stressful Conditions: A Focus on Genetics and Epigenetics. Biomedicines 2024; 12:2149. [PMID: 39335662 PMCID: PMC11429336 DOI: 10.3390/biomedicines12092149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Coping with stress is essential for mental well-being and can be critical for highly sensitive individuals, characterized by a deeper perception and processing of stimuli. So far, the molecular bases characterizing high-sensitivity traits have not been completely investigated and gene × environment interactions might play a key role in making some people more susceptible than others. Methods: In this study, 104 young adult university students, subjects that might face overwhelming experiences more than others, were evaluated for the genetics and epigenetics of dopamine (DAT1) and serotonin (SERT) transporter genes, in addition to the expression of miR-132, miR-491, miR-16, and miR-135. Results: We found an increase in DNA methylation at one specific CpG site at DAT1 5'UTR in highly sensitive students reporting high levels of perceived stress when compared to those less sensitive and/or less stressed. Moreover, considering DAT1 VNTR at 3'UTR, we observed that this effect was even more pronounced in university students having the 9/9 genotype when compared to those with the 9/10 genotype. These data are corroborated by the higher levels of miR-491, targeting DAT1, in highly sensitive subjects with high levels of perceived stress. SERT gene DNA methylation at one specific CpG site was reported to instead be higher in subjects reporting lower perceived stress when compared to more stressed subjects. Consistently, miR-135 expression, regulating SERT, was lower in subjects with higher perceived stress. Conclusions: We here suggest that the correlation of DAT1 and SERT genetic and epigenetic data with the analysis of stress and sensitivity might be useful to suggest possible biomarkers to monitor mental health wellness in vulnerable subjects.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Alessandro Piccinini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Eugenia Annunzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Loreta Cannito
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Social Sciences, University of Foggia, 71122 Foggia, Italy
| | - Francesca Lionetti
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20019 Milan, Italy;
- “Aldo Ravelli” Center for Nanotechnology and Neurostimulation, University of Milan, 20122 Milan, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G.D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Claudio D’Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Clinical Neuroscience, Karolinska Institute, 10316 Stockholm, Sweden
| |
Collapse
|
3
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Annunzi E, Cannito L, Bellia F, Mercante F, Vismara M, Benatti B, Di Domenico A, Palumbo R, Adriani W, Dell'Osso B, D'Addario C. Mild internet use is associated with epigenetic alterations of key neurotransmission genes in salivary DNA of young university students. Sci Rep 2023; 13:22192. [PMID: 38092954 PMCID: PMC10719329 DOI: 10.1038/s41598-023-49492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
The potentially problematic use of the Internet is a growing concern worldwide, which causes and consequences are not completely understood yet. The neurobiology of Internet addiction (IA) has attracted much attention in scientific research, which is now focusing on identifying measurable biological markers. Aim of this study was to investigate epigenetic and genetic regulation of oxytocin receptor (OXTR), dopamine transporter (DAT1) and serotonin transporter (SERT) genes using DNA obtained from saliva samples of young university students: the Internet Addiction Test (IAT) was administered to evaluate the potential existence and intensity of IA. Significant changes in DNA methylation levels at OXTR, DAT1 and SERT genes were observed in the 30 < IAT < 49 group (mild-risk internet users) compared to the IAT < 29 subjects (complete control of internet use) and IAT > 50 subjects (considered as moderately addicted). Moreover, epigenetic markers were significantly correlated, either directly (for OXTR and DAT1) or inversely (OXTR and DAT1 versus SERT), to the psychometric properties. Our data confirmed the association of OXTR, DAT1 and SERT genes in processes related to behavioural addictions and might be of relevance to suggest possible biological predictors of altered behaviours and the eventual vulnerability to develop an IA. Different other genetic pathways have been suggested to play a role in IA and research is ongoing to better define them, in order to help in the early diagnosis as well as in the development of new potential treatments.
Collapse
Affiliation(s)
- Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Loreta Cannito
- Department of Humanities, University of Foggia, Foggia, Italy
- Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Matteo Vismara
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institute, 10316, Stockholm, Sweden.
| |
Collapse
|
5
|
Wu T, Cai W, Chen X. Epigenetic regulation of neurotransmitter signaling in neurological disorders. Neurobiol Dis 2023; 184:106232. [PMID: 37479091 DOI: 10.1016/j.nbd.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
Neurotransmission signaling is a highly conserved system attributed to various regulatory events. The excitatory and inhibitory neurotransmitter systems have been extensively studied, and their role in neuronal cell proliferation, synaptogenesis and dendrite formation in the adult brain is well established. Recent research has shown that epigenetic regulation plays a crucial role in mediating the expression of key genes associated with neurotransmitter pathways, including neurotransmitter receptor and transporter genes. The dysregulation of these genes has been linked to a range of neurological disorders such as attention-deficit/hyperactivity disorder, Parkinson's disease and schizophrenia. This article focuses on epigenetic regulatory mechanisms that control the expression of genes associated with four major chemical carriers in the brain: dopamine (DA), Gamma-aminobutyric acid (GABA), glutamate and serotonin. Additionally, we explore how aberrant epigenetic regulation of these genes can contribute to the pathogenesis of relevant neurological disorders. By targeting the epigenetic mechanisms that control neurotransmitter gene expression, there is a promising opportunity to advance the development of more effective treatments for neurological disorders with the potential to significantly improve the quality of life of individuals impacted by these conditions.
Collapse
Affiliation(s)
- Tingyan Wu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Weili Cai
- School of Medical Technology, Jiangsu College of Nursing, Huai'an 22305, China.
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
6
|
Santiago NA, He B, Howard SL, Beaudin S, Strupp BJ, Smith DR. Developmental Manganese Exposure Causes Lasting Attention Deficits Accompanied by Dysregulation of mTOR Signaling and Catecholaminergic Gene Expression in Brain Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549215. [PMID: 37503220 PMCID: PMC10370122 DOI: 10.1101/2023.07.16.549215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Elevated manganese (Mn) exposure is associated with attentional deficits in children, and is an environmental risk factor for attention deficit hyperactivity disorder (ADHD). We have shown that developmental Mn exposure causes lasting attention and sensorimotor deficits in a rat model of early childhood Mn exposure, and that these deficits are associated with a hypofunctioning catecholaminergic system in the prefrontal cortex (PFC), though the mechanistic basis for these deficits is not well understood. To address this, male Long-Evans rats were exposed orally to Mn (50 mg/kg/d) over PND 1-21 and attentional function was assessed in adulthood using the 5-Choice Serial Reaction Time Task. Targeted catecholaminergic system and epigenetic gene expression, followed by unbiased differential DNA methylation and gene regulation expression transcriptomics in the PFC, were performed in young adult littermates. Results show that developmental Mn exposure causes lasting focused attention deficits that are associated with reduced gene expression of tyrosine hydroxylase, dopamine transporter, and DNA methyltransferase 3a. Further, developmental Mn exposure causes broader lasting methylation and gene expression dysregulation associated with epigenetic regulation, inflammation, cell development, and hypofunctioning catecholaminergic neuronal systems. Pathway enrichment analyses uncovered mTOR and Wnt signaling pathway genes as significant transcriptomic regulators of the Mn altered transcriptome, and Western blot of total, C1 and C2 phospho-mTOR confirmed mTOR pathway dysregulation. Our findings deepen our understanding of the mechanistic basis of how developmental Mn exposure leads to lasting catecholaminergic dysfunction and attention deficits, which may aid future therapeutic interventions of environmental exposure associated disorders. Significance Statement Attention deficit hyperactivity disorder (ADHD) is associated with environmental risk factors, including exposure to neurotoxic agents. Here we used a rodent model of developmental manganese (Mn) exposure producing lasting attention deficits to show broad epigenetic and gene expression changes in the prefrontal cortex, and to identify disrupted mTOR and Wnt signaling pathways as a novel mechanism for how developmental Mn exposure may induce lasting attention and catecholaminergic system impairments. Importantly, our findings establish early development as a critical period of susceptibility to lasting deficits in attentional function caused by elevated environmental toxicant exposure. Given that environmental health threats disproportionately impact communities of color and low socioeconomic status, our findings can aid future studies to assess therapeutic interventions for vulnerable populations.
Collapse
|
7
|
Humińska-Lisowska K, Chmielowiec K, Strońska-Pluta A, Chmielowiec J, Suchanecka A, Masiak J, Michałowska-Sawczyn M, Boroń A, Cięszczyk P, Grzywacz A. Epigenetic Analysis of the Dopamine Transporter Gene DAT1 with a Focus on Personality Traits in Athletes. Int J Mol Sci 2023; 24:ijms24108931. [PMID: 37240274 DOI: 10.3390/ijms24108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human phenotypes (traits) are determined by the selective use of a person's unique genotype (DNA sequence), following exposure to environmental stimuli, such as exercise. Inducing profound changes in epigenetics may be an underlying factor of the beneficial effects of exercise. This study aimed to investigate the association between methylation in the promoter region of the DAT1 gene and personality traits measured by the NEO-FFI questionnaire in a group of athletes. The study group included 163 athletes, and the control group consisted of 232 non-athletes. The obtained results show several significant differences between the studied groups of subjects. The Extraversion scale and the Conscientiousness scale results of the NEO-FFI are significantly higher in the group of athletes compared to controls. The total methylation and the number of methylated islands in the promoter region of the DAT1 gene are higher in the study group. Pearson's linear correlation between the total methylation, the number of methylated islands and the NEO-FFI shows significant results for the Extraversion and Agreeability scales. The total methylation and the number of methylated islands in the promoter region of the DAT1 gene are higher in the study group. Pearson's linear correlation between the total methylation, the number of methylated islands and the NEO-FFI shows significant results for the Extraversion and Agreeability scales. Our analysis of the methylation status of individual CpG sites revealed a new direction of research into the biological aspects of regulating dopamine release and personality traits in people practicing sports.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
- Institute of Sports Sciences, The University of Physical Education in Krakow, 31-541 Kraków, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, 1 Głuska St., 20-059 Lublin, Poland
| | - Monika Michałowska-Sawczyn
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
| | - Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Górskiego St. 1, 80-336 Gdansk, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
8
|
Wieting J, Jahn K, Eberlein CK, Bleich S, Frieling H, Deest M. Hypomethylation of the dopamine transporter (DAT) gene promoter is associated with hyperphagia-related behavior in Prader-Willi syndrome: a case-control study. Behav Brain Res 2023; 450:114494. [PMID: 37182741 DOI: 10.1016/j.bbr.2023.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Prader-Willi syndrome (PWS), a neurodevelopmental disorder based on the loss of paternally derived but maternally imprinted genes on chromosome 15q11-13, is typically associated with hyperphagia-related behavior leading to massive obesity. Recently, there has been increasing evidence for dysregulated expression patterns of genes outside the PWS locus that influence the behavioral phenotype and for alterations in the dopaminergic system associated with weight regulation in PWS. In this study, we investigated the epigenetic regulation of the promoter regions of the dopamine transporter (DAT) and dopamine receptor D2 (DRD2) genes and their association with hyperphagia-related behavior in PWS. Methylation of the DAT and DRD2 promoter regions was examined by DNA bisulfite sequencing in 32 individuals with PWS and compared with a control group matched for sex, age, and body mass index (BMI). Hyperphagia-related behavior was assessed using the Hyperphagia Questionnaire for Clinical Trials (HQ-CT). Analysis by linear mixed models revealed a significant effect of factor group on mean DAT promoter methylation rate with decreased mean methylation in PWS (7.3 ± 0.4%) compared to controls (18.8 ± 0.6%), p < 0.001. In the PWS group, we further identified effects of HQ-CT score and BMI on DAT promoter methylation. Although also statistically significantly different (8.4 ± 0.2 in PWS, 10.5 ± 0.3 in controls, p < 0.001), DRD2 promoter methylation visually appeared to be evenly distributed between groups, raising concerns regarding a biological effect. Here, we provide evidence for altered epigenetic regulation of the DAT gene in PWS, which is associated with PWS-typical hyperphagia-related behaviors.
Collapse
Affiliation(s)
- Jelte Wieting
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Kirsten Jahn
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christian K Eberlein
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Bleich
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maximilian Deest
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
9
|
Baltes-Flueckiger L, Steinauer R, Meyer M, Vogel M, Walter M. Effects of cannabis regulation in Switzerland: Study protocol of a randomized controlled trial. Front Psychiatry 2023; 14:1139325. [PMID: 37032954 PMCID: PMC10076568 DOI: 10.3389/fpsyt.2023.1139325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background Cannabis is the most widely used illicit substance. Various countries have legalized cannabis for recreational use. Evidence on the health effects of cannabis regulation remains unclear and is mainly based on observational studies. To date, there is no randomized controlled study evaluating the impact of cannabis regulation for recreational use compared to the illicit market on relevant health indicators. The present study ("Weed Care") is the first to evaluate the impact of regulated cannabis access in pharmacies versus a waiting list control group representing the illicit market on problematic cannabis use as well as on mental and physical health. Methods The study is divided into two parts-a randomized controlled study of 6 months followed by an observational study of 2 years. Participants (N = 374) are randomly assigned to either the experimental group with access to legal cannabis in pharmacies or to the waiting list control group representing the current legal framework in Switzerland, namely the illicit market. After 6 months, all participants will have access to legal cannabis for the following 2 years (observational study). The primary outcome is problematic cannabis use as measured with the Cannabis Use Disorders Identification Test-Revised (CUDIT-R). Secondary outcomes are cannabis use patterns, mental disorders (e.g., depression, anxiety, and psychosis) and physical health (e.g., respiratory symptoms). Primary and secondary outcomes will be assessed online every 6 months. The study is approved by the responsible ethics committee as well as by the Swiss Federal Office of Public Health. Discussion Findings from this study may provide a scientific basis for future discussions about addiction medicine and cannabis policy in Switzerland. Clinical Trial Registration ClinicalTrials.gov (NCT05522205). https://clinicaltrials.gov/ct2/show/NCT05522205.
Collapse
Affiliation(s)
| | | | - Maximilian Meyer
- Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Marc Vogel
- Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Marc Walter
- Psychiatric and Psychotherapeutic Clinic, Psychiatric Services Aargau, Windisch, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Cruise TM, Kotlo K, Malovic E, Pandey SC. Advances in DNA, histone, and RNA methylation mechanisms in the pathophysiology of alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10871. [PMID: 38389820 PMCID: PMC10880780 DOI: 10.3389/adar.2023.10871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2024]
Abstract
Alcohol use disorder (AUD) has a complex, multifactorial etiology involving dysregulation across several brain regions and peripheral organs. Acute and chronic alcohol consumption cause epigenetic modifications in these systems, which underlie changes in gene expression and subsequently, the emergence of pathophysiological phenotypes associated with AUD. One such epigenetic mechanism is methylation, which can occur on DNA, histones, and RNA. Methylation relies on one carbon metabolism to generate methyl groups, which can then be transferred to acceptor substrates. While DNA methylation of particular genes generally represses transcription, methylation of histones and RNA can have bidirectional effects on gene expression. This review summarizes one carbon metabolism and the mechanisms behind methylation of DNA, histones, and RNA. We discuss the field's findings regarding alcohol's global and gene-specific effects on methylation in the brain and liver and the resulting phenotypes characteristic of AUD.
Collapse
Affiliation(s)
- Tara M. Cruise
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Kumar Kotlo
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Emir Malovic
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
11
|
Chronic Voluntary Alcohol Consumption Alters Promoter Methylation and Expression of Fgf-2 and Fgfr1. Int J Mol Sci 2023; 24:ijms24043336. [PMID: 36834747 PMCID: PMC9963845 DOI: 10.3390/ijms24043336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.
Collapse
|
12
|
Zhao R, Shi H, Yin J, Sun Z, Xu Y. Promoter Specific Methylation of SSTR4 is Associated With Alcohol Dependence in Han Chinese Males. Front Genet 2022; 13:915513. [PMID: 35754825 PMCID: PMC9218598 DOI: 10.3389/fgene.2022.915513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol dependence (AD), a disease can be affected by environmental factors with epigenetic modification like DNA methylation changes, is one of the most serious and complex public health problems in China and worldwide. Previous findings from our laboratory using the Illumina Infinium Human Methylation450 BeadChip suggested that methylation at the promoter of SSTR4 was one of the major form of DNA modification in alcohol-dependent populations. To investigate whether DNA methylation levels of the SSTR4 promoter influence alcohol-dependent behaviors, genomic DNA was extracted from the peripheral blood sample of 63 subjects with AD and 65 healthy controls, and pyrosequencing was used to verify the results of BeadChip array. Linear regression was used to analyze the correlation between the methylation levels of SSTR4 promoter and the scores of alcohol dependence scales. Gene expression of SSTR4 in brain tissue was obtained from the Genotype-Tissue Expression (GTEx) project and Human Brain Transcriptome database (HBT). We found the methylation levels of SSTR4 in AD group were significantly lower than healthy controls (two-tailed t-test, t = 14.723, p < 0.001). In addition, only weak to moderate correlations between the methylation levels of the SSTR4 promoter region and scale scores of Alcohol Use Disorders Identification Test (AUDIT), Life Events Scale (LES) and Wheatley Stress Profile (WSS) based on linear regression analyses (AUDIT: R 2 = 0.35, p < 0.001; LES: R 2 = 0.27, p < 0.001; WSS: R 2 = 0.49, p < 0.001). The hypomethylated status of SSTR4 may involve in the development of AD and increase the risk of AD persistence in Han Chinese males.
Collapse
Affiliation(s)
- Rongrong Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huihui Shi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, China
| | - Zhen Sun
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yahui Xu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
13
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
14
|
Schacht JP, Hoffman M, Chen BH, Anton RF. Epigenetic moderators of naltrexone efficacy in reducing heavy drinking in Alcohol Use Disorder: a randomized trial. THE PHARMACOGENOMICS JOURNAL 2022; 22:1-8. [PMID: 34381173 PMCID: PMC8799481 DOI: 10.1038/s41397-021-00250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Polymorphisms in genes associated with opioid signaling and dopamine reuptake and inactivation may moderate naltrexone efficacy in Alcohol Use Disorder (AUD), but the effects of epigenetic modification of these genes on naltrexone response are largely unexplored. This study tested interactions between methylation in the μ-opioid receptor (OPRM1), dopamine transporter (SLC6A3), and catechol-O-methyltransferase (COMT) genes as predictors of naltrexone effects on heavy drinking in a 16-week randomized, placebo-controlled trial among 145 treatment-seeking AUD patients. OPRM1 methylation interacted with both SLC6A3 and COMT methylation to moderate naltrexone efficacy, such that naltrexone-treated individuals with lower methylation of the OPRM1 promoter and the SLC6A3 promoter (p = 0.006), COMT promoter (p = 0.005), or SLC6A3 3' untranslated region (p = 0.004), relative to placebo and to those with higher OPRM1 and SLC6A3 or COMT methylation, had significantly fewer heavy drinking days. Epigenetic modification of opioid- and dopamine-related genes may represent a novel pharmacoepigenetic predictor of naltrexone efficacy in AUD.
Collapse
Affiliation(s)
- Joseph P Schacht
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Michaela Hoffman
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brian H Chen
- FOXO Technologies Inc., Minneapolis, MN, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Raymond F Anton
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism 2021; 125:154909. [PMID: 34627873 DOI: 10.1016/j.metabol.2021.154909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Alcohol consumption prompts detrimental psychological, pathophysiological and health issues, representing one of the major causes of death worldwide. Alcohol use disorder (AUD), which is characterized by compulsive alcohol intake and loss of control over alcohol usage, arises from a complex interplay between genetic and environmental factors. More importantly, long-term abuse of alcohol is often tied with unfavorable cardiac remodeling and contractile alterations, a cadre of cardiac responses collectively known as alcoholic cardiomyopathy (ACM). Recent evidence has denoted a pivotal role for ethanol-triggered epigenetic modifications, the interface between genome and environmental cues, in the organismal and cellular responses to ethanol exposure. To-date, three major epigenetic mechanisms (DNA methylation, histone modifications, and RNA-based mechanisms) have been identified for the onset and development of AUD and ACM. Importantly, these epigenetic changes induced by alcohol may be detectable in the blood, thus offering diagnostic, therapeutic, and prognostic promises of epigenetic markers for AUD and alcoholic complications. In addition, several epigenetic drugs have shown efficacies in the management of alcohol abuse, loss of control for alcohol usage, relapse, drinking-related anxiety and behavior in withdrawal. In this context, medications targeting epigenetic modifications may hold promises for pharmaceutical management of AUD and ACM.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Longley MJ, Lee J, Jung J, Lohoff FW. Epigenetics of alcohol use disorder-A review of recent advances in DNA methylation profiling. Addict Biol 2021; 26:e13006. [PMID: 33538087 PMCID: PMC8596445 DOI: 10.1111/adb.13006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is a major contributor to morbidity and mortality worldwide. Although there is a heritable component, the etiology of AUD is complex and can involve environmental exposures like trauma and can be associated with many different patterns of alcohol consumption. Epigenetic modifications, which can mediate the influence of genetic variants and environmental variables on gene expression, have emerged as an important area of AUD research. Over the past decade, the number of studies investigating AUD and DNA methylation, a form of epigenetic modification, has grown rapidly. Yet we are still far from understanding how DNA methylation contributes to or reflects aspects of AUD. In this paper, we reviewed studies of DNA methylation and AUD and discussed how the field has evolved. We found that global DNA and candidate DNA methylation studies did not produce replicable results. To assess whether findings of epigenome-wide association studies (EWAS) were replicated, we aggregated significant findings across studies and identified 184 genes and 15 gene ontological pathways that were differentially methylated in at least two studies and four genes and three gene ontological pathways that were differentially methylated in three studies. These genes and pathways repeatedly found enrichment of immune processes, which is in line with recent developments suggesting that the immune system may be altered in AUD. Finally, we assess the current limitations of studies of DNA methylation and AUD and make recommendations on how to design future studies to resolve outstanding questions.
Collapse
Affiliation(s)
- Martha J. Longley
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
17
|
Rodriguez FD. Targeting Epigenetic Mechanisms to Treat Alcohol Use Disorders (AUD). Curr Pharm Des 2021; 27:3252-3272. [PMID: 33535943 PMCID: PMC8778698 DOI: 10.2174/1381612827666210203142539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND The impact of abusive alcohol consumption on human health is remarkable. According to the World Health Organization (WHO), approximately 3.3 million people die annually because of harmful alcohol consumption (the figure represents around 5.9% of global deaths). Alcohol Use Disorder (AUD) is a chronic disease where individuals exhibit compulsive alcohol drinking and present negative emotional states when they do not drink. In the most severe manifestations of AUD, the individuals lose control over intake despite a decided will to stop drinking. Given the multiple faces and the specific forms of this disease, the term AUD often appears in the plural (AUDs). Since only a few approved pharmacological treatments are available to treat AUD and they do not apply to all individuals or AUD forms, the search for compounds that may help to eliminate the burden of the disease and complement other therapeutical approaches is necessary. METHODS This work reviews recent research focused on the involvement of epigenetic mechanisms in the pathophysiology of AUD. Excessive drinking leads to chronic and compulsive consumption that eventually damages the organism. The central nervous system is a key target and is the focus of this study. The search for the genetic and epigenetic mechanisms behind the intricated dysregulation induced by ethanol will aid researchers in establishing new therapy approaches. CONCLUSION Recent findings in the field of epigenetics are essential and offer new windows for observation and research. The study of small molecules that inhibit key epienzymes involved in nucleosome architecture dynamics is necessary in order to prove their action and specificity in the laboratory and to test their effectivity and safety in clinical trials with selected patients bearing defined alterations caused by ethanol.
Collapse
Affiliation(s)
- F. David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca and Group GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Lasley SM, Fornal CA, Mandal S, Strupp BJ, Beaudin SA, Smith DR. Early Postnatal Manganese Exposure Reduces Rat Cortical and Striatal Biogenic Amine Activity in Adulthood. Toxicol Sci 2021; 173:144-155. [PMID: 31560393 DOI: 10.1093/toxsci/kfz208] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing evidence from studies with children and animal models suggests that elevated levels of manganese during early development lead to lasting cognitive and fine motor deficits. This study was performed to assess presynaptic biogenic amine function in forebrain of adult Long-Evans rats exposed orally to 0, 25, or 50 mg Mn/kg/day over postnatal day 1-21 or continuously from birth to the end of the study (approximately postnatal day 500). Intracerebral microdialysis in awake rats quantified evoked outflow of biogenic amines in the right medial prefrontal cortex and left striatum. Results indicated that brain manganese levels in the early life exposed groups (postnatal day 24) largely returned to control levels by postnatal day 66, whereas levels in the lifelong exposed groups remained elevated 10%-20% compared with controls at the same ages. Manganese exposure restricted to the early postnatal period caused lasting reductions in cortical potassium-stimulated extracellular norepinephrine, dopamine, and serotonin, and reductions in striatal extracellular dopamine. Lifelong manganese exposure produced similar effects with the addition of significant decreases in cortical dopamine that were not evident in the early postnatal exposed groups. These results indicate that early postnatal manganese exposure produces persistent deficits in cortical and striatal biogenic amine function. Given that these same animals exhibited lasting impairments in attention and fine motor function, these findings suggest that reductions in catecholaminergic activity are a primary factor underlying the behavioral effects caused by manganese, and indicate that children exposed to elevated levels of manganese during early development are at the greatest risk for neuronal deficiencies that persist into adulthood.
Collapse
Affiliation(s)
- Stephen M Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, Illinois 61605
| | - Casimir A Fornal
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, Illinois 61605
| | - Shyamali Mandal
- Business Development, BioVision Inc, Milpitas, California 95035
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, New York 14853
| | - Stephane A Beaudin
- Department of Psychology and Cognitive Science, University of California Merced, Merced, California 95340
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
19
|
Bellia F, Vismara M, Annunzi E, Cifani C, Benatti B, Dell'Osso B, D'Addario C. Genetic and epigenetic architecture of Obsessive-Compulsive Disorder: In search of possible diagnostic and prognostic biomarkers. J Psychiatr Res 2021; 137:554-571. [PMID: 33213890 DOI: 10.1016/j.jpsychires.2020.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a prevalent and severe clinical condition whose hallmarks are excessive, unwanted thoughts (obsessions) and repetitive behaviors (compulsions). The onset of symptoms generally occurs during pre-adult life and typically affects subjects in different aspects of their life's, compromising social and professional relationships. Although robust evidence suggests a genetic component in the etiopathogenesis of OCD, the causes of the disorder are still not completely understood. It is thus of relevance to take into account how genes interact with environmental risk factors, thought to be mediated by epigenetic mechanisms. We here provide an overview of genetic and epigenetic mechanisms of OCD, focusing on the modulation of key central nervous system genes, in the attempt to suggest possible disease biomarkers.
Collapse
Affiliation(s)
- Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy
| | - Eugenia Annunzi
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Epigenetic regulation of DAT gene promoter modulates the risk of externalizing and internalizing behaviors on a normative population: An explorative study. Behav Brain Res 2021; 406:113246. [PMID: 33745985 DOI: 10.1016/j.bbr.2021.113246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
Accumulating research addressed epigenetic modifications and their role on behavioral phenotypes. We recently proposed to study methylation dynamics of two CpG motifs within the 5'-UTR of dopamine transporter (DAT) gene. Starting from a normative population sample of young adults, we selected three sub-groups based on their prevalent symptoms: subjects were assigned to Internalizing, Externalizing and Low-risk sub-groups according to elevated scores in specific phenotypic scales. Using a new approach, we calculated three independent matrixes of cross-correlation between CpG methylation levels, one within each phenotypic sub-group, to determine in which dynamics did the sub-groups differ. We found specific cross-correlation patterns in Externalizing (CpG1, 2 and 3, opposite to the methylation at CpG6) and Internalizing individuals (CpG1 methylation opposite to CpG2, 3 and 6), while Low-risk individuals could follow both trends. The aim of our study was to look for a specific DAT methylation pattern, providing a biomarker that allows early identification of the risk for psycho-pathological deviance.
Collapse
|
21
|
The neurobiology of human aggressive behavior: Neuroimaging, genetic, and neurochemical aspects. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110059. [PMID: 32822763 DOI: 10.1016/j.pnpbp.2020.110059] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
In modern societies, there is a strive to improve the quality of life related to risk of crimes which inevitably requires a better understanding of brain determinants and mediators of aggression. Neurobiology provides powerful tools to achieve this end. Pre-clinical and clinical studies show that changes in regional volumes, metabolism-function and connectivity within specific neural networks are related to aggression. Subregions of prefrontal cortex, insula, amygdala, basal ganglia and hippocampus play a major role within these circuits and have been consistently implicated in biology of aggression. Genetic variations in proteins regulating the synthesis, degradation, and transport of serotonin and dopamine as well as their signal transduction have been found to mediate behavioral variability observed in aggression. Gene-gene and gene-environment interactions represent additional important risk factors for aggressiveness. Considering the social burden of pathological forms of aggression, more basic and translational studies should be conducted to accelerate applications to clinical practice, justice courts, and policy making.
Collapse
|
22
|
Grover T, Gupta R, Arora G, Bal CS, Ambekar A, Basu Ray S, Vaswani M, Sharma A. Dopamine transporter availability in alcohol and opioid dependent subjects - a 99mTc-TRODAT-1SPECT imaging and genetic association study. Psychiatry Res Neuroimaging 2020; 305:111187. [PMID: 32947183 DOI: 10.1016/j.pscychresns.2020.111187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
Drug dependence associated with increased dopamine neurotransmission and neuroplastic changes is influenced by Dopamine transporters (DAT) which are modulated by genetic and epigenetic factors. This study assesses DAT availability in relation to the 40bp DAT1 VNTR (genetic) and DAT1 promoter methylation (epigenetic) changes in patients with alcohol dependence (AD) and opioid dependence (OD). A total of 60 subjects (n=20 each of AD, OD and controls) were recruited. SPECT/CT imaging using 99mTc-TRODAT-1 was performed for measuring striatal DAT availability and DNA screened to check DAT1promoter methylation and 40bp VNTR polymorphism. SPECT/CT imaging revealed significant decrease in DAT availability in the striatum and putamen and significant increase in DAT1 promoter methylation in AD compared to control and OD. The 40bp VNTR distribution was similar in all three groups with 10repeat and 9repeat alleles being the most common. The AD individuals with DAT1promoter methylation showed significantly lower TRODAT-1 uptake compared to the ones with no methylation. AD individuals homozygous for the 10repeat VNTR also showed reduced DAT availability. This is the first imaging study using 99mTc-TRODAT-1 from India documenting significantly reduced striatal DAT availability, increased DAT methylation and frequency of 10repeat individuals associated with decreased DAT availability in AD.
Collapse
Affiliation(s)
- Tripti Grover
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India
| | - Ranjan Gupta
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India
| | | | | | - Atul Ambekar
- National Drug Dependence Treatment Center, Department of Psychiatry, AIIMS, New Delhi 110029, India
| | - Subrata Basu Ray
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India
| | - Meera Vaswani
- National Drug Dependence Treatment Center, Department of Psychiatry, AIIMS, New Delhi 110029, India; University of Minnesota, USA
| | - Arundhati Sharma
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India.
| |
Collapse
|
23
|
Contribution of Dopamine Transporter Gene Methylation Status to Cannabis Dependency. Brain Sci 2020; 10:brainsci10060400. [PMID: 32586035 PMCID: PMC7348832 DOI: 10.3390/brainsci10060400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The susceptibility to cannabis dependency results from the influence of numerous factors such as social, genetic, as well as epigenetic factors. Many studies have attempted to discover a molecular basis for this disease. However, our study aimed at evaluating the connection between altered methylation of the dopamine transporter gene (DAT1) promoter CpG sites and cannabis dependency. In the cases of some DNA sequences, including the DAT1 gene region, their methylation status in blood cells may reflect a systemic modulation in the whole organism. Consequently, we isolated the DNA from the peripheral blood cells from a group of 201 cannabis-dependent patients and 285 controls who were healthy volunteers and who were matched for age and sex. The DNA was subjected to bisulfite conversion and sequencing. Our analysis revealed no statistical differences in the general methylation status of the DAT1 gene promoter CpG island between the patients and controls. Yet, the analysis of individual CpG sites where methylation occurred indicated significant differences. These sites are known to be bound by transcription factors (e.g., SP1, p53, PAX5, or GR), which, apart from other functions, were shown to play a role in the development of the nervous system. Therefore, DAT1 gene promoter methylation studies may provide important insight into the mechanism of cannabis dependency.
Collapse
|
24
|
Conley TE, Beaudin SA, Lasley SM, Fornal CA, Hartman J, Uribe W, Khan T, Strupp BJ, Smith DR. Early postnatal manganese exposure causes arousal dysregulation and lasting hypofunctioning of the prefrontal cortex catecholaminergic systems. J Neurochem 2020; 153:631-649. [PMID: 31811785 PMCID: PMC7261255 DOI: 10.1111/jnc.14934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Studies have reported associations between environmental manganese (Mn) exposure and impaired cognition, attention, impulse control, and fine motor function in children. Our recent rodent studies established that elevated Mn exposure causes these impairments. Here, rats were exposed orally to 0, 25, or 50 mg Mn kg-1 day-1 during early postnatal life (PND 1-21) or lifelong to determine whether early life Mn exposure causes heightened behavioral reactivity in the open field, lasting changes in the catecholaminergic systems in the medial prefrontal cortex (mPFC), altered dendritic spine density, and whether lifelong exposure exacerbates these effects. We also assessed astrocyte reactivity (glial fibrillary acidic protein, GFAP), and astrocyte complement C3 and S100A10 protein levels as markers of A1 proinflammatory or A2 anti-inflammatory reactive astrocytes. Postnatal Mn exposure caused heightened behavioral reactivity during the first 5-10 min intervals of daily open field test sessions, consistent with impairments in arousal regulation. Mn exposure reduced the evoked release of norepinephrine (NE) and caused decreased protein levels of tyrosine hydroxylase (TH), dopamine (DA) and NE transporters, and DA D1 receptors, along with increased DA D2 receptors. Mn also caused a lasting increase in reactive astrocytes (GFAP) exhibiting increased A1 and A2 phenotypes, with a greater induction of the A1 proinflammatory phenotype. These results demonstrate that early life Mn exposure causes broad lasting hypofunctioning of the mPFC catecholaminergic systems, consistent with the impaired arousal regulation, attention, impulse control, and fine motor function reported in these animals, suggesting that mPFC catecholaminergic dysfunction may underlie similar impairments reported in Mn-exposed children.
Collapse
Affiliation(s)
- Travis E. Conley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Stephane A. Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Stephen M. Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61605, USA
| | - Casimir A. Fornal
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61605, USA
| | - Jasenia Hartman
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Walter Uribe
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Tooba Khan
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Barbara J. Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
25
|
Maier HB, Neyazi M, Neyazi A, Hillemacher T, Pathak H, Rhein M, Bleich S, Goltseker K, Sadot-Sogrin Y, Even-Chen O, Frieling H, Barak S. Alcohol consumption alters Gdnf promoter methylation and expression in rats. J Psychiatr Res 2020; 121:1-9. [PMID: 31710958 DOI: 10.1016/j.jpsychires.2019.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Alcohol use disorder is one of the most disabling diseases worldwide. Glial-cell derived neurotrophic factor (Gdnf) shows promising results concerning the inhibition of alcohol consumption in rodent models. We investigated the epigenetic regulation of Gdnf following ethanol consumption and withdrawal in a rat model. 32 Wistar rats underwent 7 weeks of intermittent access to alcohol in a 2-bottle choice (IA2BC). Whole blood, Nucleus Accumbens (NAc) and Ventral Tegmental Area (VTA) were collected immediately after the last 24 h of an alcohol-drinking session (alcohol group, AG) or 24 h after withdrawal (withdrawal group, WG). MRNA levels were measured using real-time quantitative PCR. Bisulfite-conversion of DNA and capillary sequencing was used to determine methylation levels of the core promoter (CP) and the negative regulatory element (NRE). The CP of the AG in the NAc was significantly less methylated compared to controls (p < 0.05). In the NAc, mRNA expression was significantly higher in the WG (p < 0.05). In the WG, mRNA expression levels in the VTA were significantly lower (p < 0.05) and showed significantly less methylation in the NRE in the VTA (p < 0.001) and the NAc (p < 0.01) compared to controls. Changes in the cerebral mRNA expression correspond to alterations in DNA methylation of the Gdnf promoter in a rodent model. Our results hold clinical relevance since differences in Gdnf mRNA expression and DNA methylation could be a target for pharmacological interventions.
Collapse
Affiliation(s)
- Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Meraj Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Hansi Pathak
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Koral Goltseker
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Sadot-Sogrin
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oren Even-Chen
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Hillemacher T, Rhein M, Burkert A, Heberlein A, Wilhelm J, Glahn A, Muschler MAN, Kahl KG, Kornhuber J, Bleich S, Frieling H. DNA-methylation of the dopamin receptor 2 gene is altered during alcohol withdrawal. Eur Neuropsychopharmacol 2019; 29:1250-1257. [PMID: 31530416 DOI: 10.1016/j.euroneuro.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/03/2023]
Abstract
The dopaminergic neurotransmission is known to be of crucial importance in addictive behavior. Epigenetic regulation like methylation of DNA influences the function of dopaminergic transmission. The present study investigated alterations of DNA methylation in the dopamine D2 receptor (DRD2)-gene in patients suffering from alcohol dependence. The study sample consists of 99 alcohol dependent males admitted for alcohol withdrawal treatment and a control group of 33 healthy participants. Blood samples underwent bisulfite sequencing to determine levels of DNA-methylation of the promoter region of the DRD2 gene. Mixed linear modeling was used to test differences between patients and controls, course of methylation during detoxification. While DRD2-gene methylation did not differ significantly between patients and controls, we found a significant increase of DRD2-gene methylation during alcohol withdrawal/early abstinence. Craving, measured with the Obsessive Compulsive Drinking Scale (OCDS), was significantly associated with DRD2-gene methylation. Furthermore, smoking significantly influenced DRD2-gene methylation in both, patients and controls. As in other types of addictive disorders, DRD2-gene methylation is altered during alcohol withdrawal/early abstinence. The findings regarding an association with alcohol craving and tobacco consumption point towards a crucial role of DRD2-gene methylation in the neurobiology of addictive behavior.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, Germany
| | - Mathias Rhein
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Alexandra Burkert
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Annemarie Heberlein
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia Wilhelm
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexander Glahn
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marc Andre Nicolas Muschler
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Kai G Kahl
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Helge Frieling
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany.
| |
Collapse
|
27
|
Koller G, Zill P, Soyka M, Adorjan K, Weiss C, Kern A, Nguyen-Thien ML, Kamp F, Proebstl L, Krause D, Ruhdorfer S, Bergmann W, Preuss UW. Short-term changes in global methylation and hydroxymethylation during alcohol detoxification. Eur Neuropsychopharmacol 2019; 29:897-903. [PMID: 31133368 DOI: 10.1016/j.euroneuro.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022]
Abstract
Alcohol dependence is a common public health problem and epigenetics may offer new aspects in understanding the biological and genetic underpinnings and improve treatment of this complex disease. Supposedly, methylation and hydroxymethylation are altered in brain tissues and in synapse-related genes due to chronic alcohol intake and during withdrawal. To assess potential epigenetic changes after cessation of chronic alcohol intake, we compared 23 alcohol-dependent individuals during inpatient alcohol detoxification with 13 carefully matched controls. Blood samples were taken on the day of admission, after one and after two weeks at the end of inpatient treatment. Genome-wide global methylation and global DNA hydroxymethylation were compared across groups. There were significant differences in global methylation across time from admission to one and two weeks of inpatient withdrawal (p < 0.001). These findings were paralleled to changes in global DNA hydroxymethylation across time when age was employed as a cofactor (p < 0.001). Several potentially influencing variables like severity of withdrawal, dose of withdrawal medication and alcohol intake before admission did not yield significant influence on epigenetic changes. The results confirm previous findings of significant alterations of epigenetic patterns during alcohol intoxication and present for the first time hydroxymethylation changes in these individuals.
Collapse
Affiliation(s)
- Gabriele Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany.
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Michael Soyka
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany; Medical Park Chiemseeblick, Bernau am Chiemsee, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Claudia Weiss
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Antonia Kern
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Mai-Ly Nguyen-Thien
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Felicia Kamp
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Lisa Proebstl
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Daniela Krause
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Sarah Ruhdorfer
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Wilhelm Bergmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Ulrich W Preuss
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Vitos-Klinik Psychiatrie und Psychotherapie Herborn, Herborn, Germany
| |
Collapse
|
28
|
Bidwell LC, Karoly HC, Thayer RE, Claus ED, Bryan AD, Weiland BJ, YorkWilliams S, Hutchison KE. DRD2 promoter methylation and measures of alcohol reward: functional activation of reward circuits and clinical severity. Addict Biol 2019; 24:539-548. [PMID: 29464814 DOI: 10.1111/adb.12614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Studies have identified strong associations between D2 receptor binding potential and neural responses to rewarding stimuli and substance use. Thus, D2 receptor perturbations are central to theoretical models of the pathophysiology of substance dependence, and epigenetic changes may represent one of the fundamental molecular mechanisms impacting the effects of alcohol exposure on the brain. We hypothesized that epigenetic alterations in the promoter region of the dopamine D2 receptor (DRD2) gene would be associated with cue-elicited activation of neural reward regions, as well as severity of alcohol use behavior. The current study leveraged functional neuroimaging (fMRI) during an alcohol reward paradigm (n = 383) to test associations among DRD2 promoter methylation in peripheral tissue, signal change in the striatum during the presentation of alcohol cues, and severity of alcohol use disorder (AUD). Controlling for age, DRD2 promoter methylation was positively associated with responses to alcohol cues in the right accumbens (partial r = 0.144, P = 0.005), left putamen (partial r = 0.133, P = 0.009), right putamen (partial r = 0.106, P = 0.039), left caudate (partial r = 0.117, P = 0.022), and right caudate (partial r = 0.133, P = 0.009), suggesting that DRD2 methylation was positively associated with robust activation in the striatum in response to reward cues. DRD2 methylation was also positively associated with clinical metrics of AUD severity. Specifically, controlling for age, DRD2 methylation was associated with Alcohol Use Disorders Identification Test total (partial r = 0.140, P = 0.002); Impaired Control Scale total (partial r = 0.097, P = 0.044) and Alcohol Dependence Scale total (partial r = 0.152, P = 0.001). Thus, DRD2 methylation may be a critical mechanism linking D2 receptors with functional striatal brain changes and clinical severity among alcohol users.
Collapse
Affiliation(s)
| | - Hollis C. Karoly
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | - Rachel E. Thayer
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | | | - Angela D. Bryan
- Institute of Cognitive ScienceUniversity of Colorado Boulder Boulder CO USA
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | - Barbara J. Weiland
- Institute of Cognitive ScienceUniversity of Colorado Boulder Boulder CO USA
| | - Sophie YorkWilliams
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| | - Kent E. Hutchison
- Institute of Cognitive ScienceUniversity of Colorado Boulder Boulder CO USA
- Department of Psychology & NeuroscienceUniversity of Colorado Boulder Boulder CO USA
| |
Collapse
|
29
|
Proskynitopoulos PJ, Rhein M, Jäckel E, Manns MP, Frieling H, Bleich S, Thum T, Hillemacher T, Glahn A. Leptin Expression and Gene Methylation Patterns in Alcohol-Dependent Patients with Ethyltoxic Cirrhosis—Normalization After Liver Transplantation and Implications for Future Research. Alcohol Alcohol 2018; 53:511-517. [DOI: 10.1093/alcalc/agy038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/12/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- P J Proskynitopoulos
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
| | - M Rhein
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - E Jäckel
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
- Department of Gastroenterology, Hepatology, and Endocrinology, Hanover Medical School, Hanover, Germany
| | - M P Manns
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
- Department of Gastroenterology, Hepatology, and Endocrinology, Hanover Medical School, Hanover, Germany
| | - H Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - S Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
| | - T Thum
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Hanover, Germany
| | - T Hillemacher
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, Nuremberg, Germany
| | - A Glahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hanover Medical School, Hanover, Germany
| |
Collapse
|
30
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
31
|
Comasco E, Rangmar J, Eriksson UJ, Oreland L. Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure. Acta Physiol (Oxf) 2018; 222. [PMID: 28470828 DOI: 10.1111/apha.12892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023]
Abstract
Several explanations for the diverse results in research on foetal alcohol spectrum disorders or alcohol-related neurodevelopmental disorder might be at hand: timing, amount and patterns of alcohol exposure, as well as complex epigenetic responses. The genetic background of the offspring and its interaction with other prenatal and post-natal environmental cues are likely also of importance. In the present report, key findings about the possible effects of low and moderate doses of maternal alcohol intake on the neuropsychological development of the offspring are reviewed and plausible mechanisms discussed. Special focus is put on the serotonergic system within developmental and gene-environment frameworks. The review also suggests guidelines for future studies and also summarizes some of to-be-answered questions of relevance to clinical practice. Contradictory findings and paucity of studies on the effects of exposure to low alcohol levels during foetal life for the offspring's neuropsychological development call for large prospective studies, as well as for studies including neuroimaging and multi-omics analyses to dissect the neurobiological underpinnings of alcohol exposure-related phenotypes and to identify biomarkers. Finally, it remains to be investigated whether any safe threshold of alcohol drinking during pregnancy can be identified.
Collapse
Affiliation(s)
- E. Comasco
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - J. Rangmar
- Department of Psychology; University of Gothenburg; Gothenburg Sweden
| | - U. J. Eriksson
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - L. Oreland
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
32
|
Muench C, Wiers CE, Cortes CR, Momenan R, Lohoff FW. Dopamine Transporter Gene Methylation is Associated with Nucleus Accumbens Activation During Reward Processing in Healthy but not Alcohol-Dependent Individuals. Alcohol Clin Exp Res 2018; 42:21-31. [PMID: 29030974 PMCID: PMC6010188 DOI: 10.1111/acer.13526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alcohol's reinforcement is mediated by dopamine signaling in the ventral striatum, which is modulated by the dopamine transporter (DAT). We hypothesized that methylomic variation in the DAT gene (DAT1/SLC6A3) affects DAT expression, thus contributing to differences in brain reward circuitry in individuals with alcohol dependence (ALC). METHODS Blood from 45 recently detoxified ALC and 45 healthy control (HC) individuals was used to assess DNA methylation across 5 functional regions of SLC6A3. Participants completed the monetary incentive delay task in a 3-Tesla magnetic resonance imaging (MRI) scanner. Employing regression models, we examined effects of SLC6A3 methylation on nucleus accumbens (NAc) blood-oxygen-level dependent (BOLD) responses during anticipation of high/low reward/loss. RESULTS Results showed that decreased methylation of the promoter region of SLC6A3 predicted NAc activation during high loss anticipation (p = 0.028) and low loss anticipation (at trend-level; p = 0.057) in HC but not in individuals with ALC. Specifically, percentage of methylation at 2 CpG sites, located -1,001 and -993 base pairs from the transcription start site, accounted for significant variability in NAc activation in the HC group during high (ps ≤ 0.010) and low (ps ≤ 0.006) loss anticipation. There was no effect on reward anticipation. Furthermore, promoter methylation was positively associated with age, which replicates previous findings. CONCLUSIONS Our data suggest that methylation in the promoter region of SLC6A3 predicts NAc activation during the anticipation of monetary loss in HCs. However, this effect was not present in the ALC group, suggesting that epigenetic regulation of striatal DAT expression might be disrupted in ALC, which may contribute to previously reported differences in sensitivity to reward and punishment in this population. Alternatively, it is possible that a similar relationship in the ALC group remained undetected possibly due to methodological limitations inherent in functional MRI (e.g., poor spatial resolution, low signal-to-noise ratio) that generally restrict interpretations regarding mechanisms of epigenetic factors involved in group differences in BOLD responses. Future neuroimaging studies are needed to further elucidate the relationship between SLC6A3 methylation and NAc activation in ALC.
Collapse
Affiliation(s)
- Christine Muench
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Carlos R. Cortes
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Chen J, Hutchison KE, Bryan AD, Filbey FM, Calhoun VD, Claus ED, Lin D, Sui J, Du Y, Liu J. Opposite Epigenetic Associations With Alcohol Use and Exercise Intervention. Front Psychiatry 2018; 9:594. [PMID: 30498460 PMCID: PMC6249510 DOI: 10.3389/fpsyt.2018.00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Alcohol use disorder (AUD) is a devastating public health problem in which both genetic and environmental factors play a role. Growing evidence supports that epigenetic regulation is one major mechanism in neuroadaptation that contributes to development of AUD. Meanwhile, epigenetic patterns can be modified by various stimuli including exercise. Thus, it is an intriguing question whether exercise can lead to methylation changes that are opposite to those related to drinking. We herein conducted a comparative study to explore this issue. Three cohorts were profiled for DNA methylation (DNAm), including a longitudinal exercise intervention cohort (53 healthy participants profiled at baseline and after a 12-months exercise intervention), a cross-sectional case-control cohort (81 hazardous drinkers and 81 healthy controls matched in age and sex), and a cross-sectional binge drinking cohort (281 drinkers). We identified 906 methylation sites showing significant DNAm differences between drinkers and controls in the case-control cohort, as well as, associations with drinking behavior in the drinking cohort. In parallel, 341 sites were identified for significant DNAm alterations between baseline and follow-up in the exercise cohort. Thirty-two sites overlapped between these two set of findings, of which 15 sites showed opposite directions of DNAm associations between exercise and drinking. Annotated genes of these 15 sites were enriched in signaling pathways related to synaptic plasticity. In addition, the identified methylation sites significantly associated with impaired control over drinking, suggesting relevance to neural function. Collectively, the current findings provide preliminary evidence that exercise has the potential to partially reverse DNAm differences associated with drinking at some CpG sites, motivating rigorously designed longitudinal studies to better characterize epigenetic effects with respect to prevention and intervention of AUD.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research Network, Albuquerque, NM, United States
| | - Kent E Hutchison
- The Mind Research Network, Albuquerque, NM, United States.,Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Eric D Claus
- The Mind Research Network, Albuquerque, NM, United States
| | - Dongdong Lin
- The Mind Research Network, Albuquerque, NM, United States
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM, United States.,Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Du
- The Mind Research Network, Albuquerque, NM, United States.,School of Computer & Information Technology, Shanxi University, Taiyuan, China
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
34
|
Abstract
Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
35
|
The correlation between DNA methylation and transcriptional expression of human dopamine transporter in cell lines. Neurosci Lett 2017; 662:91-97. [PMID: 29030220 DOI: 10.1016/j.neulet.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
This study aims to investigate the relationship between DNA methylation and expression of human dopamine transporter (hDAT). We examined methylation status of hDAT in cells with various hDAT expression levels, including two dopaminergic neural cell lines (SK-N-AS and SH-SY-5Y) and one non-dopaminergic cell line (HEK293) by bisulfite sequencing PCR(BSP). The effects of DNA methyltransferase inhibitor 5-aza-dC or/and histone deacetylase inhibitor (HDACi, sodium butyrate, NaB) on the DNA methylation status and mRNA expression levels of hDAT were examined. The results revealed marked hypomethylation of the two promoter regions (-1214 to -856bp and -48 to 439bp, the first base of exon 1 was taken as +1 bp)of hDAT in SK-N-AS (4.7%±2.0mC and 3.5%±1.0mC, respectively) compared with SH-SY-5Y (88.0%±4.4%mC and 81.1%±8.8%mC) and HEK293 (90.7%±2.4mC and 84.4%±8.6% mC) cell lines, indicating a cell-specific methylation regulation of hDAT. 5-aza-dC and NaB decreased hypermethylation,while increase hDAT expression in SH-SY-5Y cells and recovered hDAT mRNA expression in HEK293 cells. DNA methylation enabled the cell-specific differential expression of the hDAT gene. hDAT silencing was reversed by the introduction of DNA hypomethylation via 5-aza-dC or/and NaB.
Collapse
|
36
|
Philibert R, Glatt SJ. Optimizing the chances of success in the search for epigenetic biomarkers: Embracing genetic variation. Am J Med Genet B Neuropsychiatr Genet 2017; 174:589-594. [PMID: 28696057 PMCID: PMC5562041 DOI: 10.1002/ajmg.b.32569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/21/2023]
Abstract
The emphasis on clinical translation in biomedical research continues to grow. This focus has been particularly notable in those investigators using epigenetic approaches to decipher the biology of complex behavioral disorders. As a result of these efforts, reproducible findings for several disorders, such as smoking, have been generated, giving rise to hopes that biomarkers for other behavioral illnesses would be forthcoming. Unfortunately, that biomedical cornucopia has not yet materialized. In this editorial, we review progress to date and discuss barriers to generating epigenetic biomarkers for complex behavioral disorders. We highlight the need to incorporate information on genetic variation and develop more powerful bioinformatics tools in order to optimize the likelihood of success. We emphasize that searches should focus on clearly defined, readily distinguishable behavioral constructs and suggest that some well-intentioned methods, such as correction for cellular heterogeneity, may actually impede the identification of clinically relevant biomarkers in peripheral blood. Finally, we describe how the understanding created by the development of these biomarkers may lead to more valid animal models of neuropsychiatric illness. We conclude that the prospects for epigenetic biomarkers for complex disorders are bright, but emphasize that the journey to the clinical implementation of these findings will be a slow, iterative process.
Collapse
Affiliation(s)
- Robert Philibert
- Behavioral Diagnostics, Coralville, Iowa
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology and Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
37
|
Marie-Claire C, Jourdaine C, Lépine JP, Bellivier F, Bloch V, Vorspan F. Pharmacoepigenomics of opiates and methadone maintenance treatment: current data and perspectives. Pharmacogenomics 2017; 18:1359-1372. [DOI: 10.2217/pgs-2017-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current treatments of opioid addiction include primarily maintenance medications such as methadone. Chronic exposure to opiate and/or long-lasting maintenance treatment induce modulations of gene expression in brain and peripheral tissues. There is increasing evidence that epigenetic modifications underlie these modulations. This review summarizes published results on opioid-induced epigenetic changes in animal models and in patients. The epigenetic modifications observed with other drugs of abuse often used by opiate abusers are also outlined. Specific methadone maintenance treatment induced epigenetic modifications at different treatment stages may be combined with the ones resulting from patients’ substance use history. Therefore, research comparing groups of addicts with similar history and substances use disorders but contrasting for well-characterized treatment phenotypes should be encouraged.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Clément Jourdaine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Jean-Pierre Lépine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Frank Bellivier
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Vanessa Bloch
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Florence Vorspan
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| |
Collapse
|
38
|
Tulisiak CT, Harris RA, Ponomarev I. DNA modifications in models of alcohol use disorders. Alcohol 2017; 60:19-30. [PMID: 27865607 DOI: 10.1016/j.alcohol.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023]
Abstract
Chronic alcohol use and abuse result in widespread changes to gene expression, some of which contribute to the development of alcohol-use disorders (AUD). Gene expression is controlled, in part, by a group of regulatory systems often referred to as epigenetic factors, which includes, among other mechanisms, chemical marks made on the histone proteins around which genomic DNA is wound to form chromatin, and on nucleotides of the DNA itself. In particular, alcohol has been shown to perturb the epigenetic machinery, leading to changes in gene expression and cellular functions characteristic of AUD and, ultimately, to altered behavior. DNA modifications in particular are seeing increasing research in the context of alcohol use and abuse. To date, studies of DNA modifications in AUD have primarily looked at global methylation profiles in human brain and blood, gene-specific methylation profiles in animal models, methylation changes associated with prenatal ethanol exposure, and the potential therapeutic abilities of DNA methyltransferase inhibitors. Future studies may be aimed at identifying changes to more recently discovered DNA modifications, utilizing new methods to discriminate methylation profiles between cell types, thus clarifying how alcohol influences the methylomes of cell-type populations and how this may affect downstream processes. These studies and more in-depth probing of DNA methylation will be key to determining whether DNA-level epigenetic regulation plays a causative role in AUD and can thus be targeted for treatment of the disorder.
Collapse
Affiliation(s)
- Christopher T Tulisiak
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA; The College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1900, Austin, TX 78712, USA
| | - Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA; The College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1900, Austin, TX 78712, USA.
| |
Collapse
|
39
|
Mahnke AH, Miranda RC, Homanics GE. Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol 2017; 60:1-6. [PMID: 28395929 PMCID: PMC5439216 DOI: 10.1016/j.alcohol.2017.02.357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
40
|
Schartner C, Ziegler C, Schiele MA, Kollert L, Weber H, Zwanzger P, Arolt V, Pauli P, Deckert J, Reif A, Domschke K. CRHR1 promoter hypomethylation: An epigenetic readout of panic disorder? Eur Neuropsychopharmacol 2017; 27:360-371. [PMID: 28233670 DOI: 10.1016/j.euroneuro.2017.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
The corticotropin releasing hormone receptor 1 (CRHR1) is crucially involved in the hypothalamic-pituitary-adrenal axis and thus a major regulator of the stress response. CRHR1 gene variation is associated with several mental disorders including anxiety disorders. Studies in rodents have demonstrated epigenetic regulation of CRHR1 gene expression to moderate response to stressful environment. In the present study, we investigated CRHR1 promoter methylation for the first time regarding its role in panic disorder applying a case-control approach (N=131 patients, N=131 controls). In an independent sample of healthy volunteers (N=255), CRHR1 methylation was additionally analyzed for association with the Beck Anxiety Inventory (BAI) score as a dimensional panic-related intermediate phenotype. The functional relevance of altered CRHR1 promoter methylation was investigated by means of luciferase-based reporter gene assays. In panic disorder patients, a significantly decreased CRHR1 methylation was discerned (p<0.001). Accordingly, healthy controls with high BAI scores showed significantly decreased CRHR1 methylation. Functional analyses revealed an increased gene expression in presence of unmethylated as compared to methylated pCpGl_CRHR1 reporter gene vectors. The present study identified a potential role of CRHR1 hypomethylation - conferring increased CRHR1 expression - in panic disorder and a related dimensional intermediate phenotype. This up-regulation of CRHR1 gene expression driven by de-methylation might constitute a link between the stress response and panic disorder risk.
Collapse
Affiliation(s)
- Christoph Schartner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Leonie Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany; kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt, Germany
| | - Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Berkel TDM, Pandey SC. Emerging Role of Epigenetic Mechanisms in Alcohol Addiction. Alcohol Clin Exp Res 2017; 41:666-680. [PMID: 28111764 DOI: 10.1111/acer.13338] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
Alcohol use disorder (AUD) is a complex brain disorder with an array of persistent behavioral and neurochemical manifestations. Both genetic and environmental factors are known to contribute to the development of AUD, and recent studies on alcohol exposure and subsequent changes in gene expression suggest the importance of epigenetic mechanisms. In particular, histone modifications and DNA methylation have emerged as important regulators of gene expression and associated phenotypes of AUD. Given the therapeutic potential of epigenetic targets, this review aims to summarize the role of epigenetic regulation in our current understanding of AUD by evaluating known epigenetic signatures of brain regions critical to addictive behaviors in both animal and human studies throughout various stages of AUD. More specifically, the effects of acute and chronic alcohol exposure, tolerance, and postexposure withdrawal on epigenetically induced changes to gene expression and synaptic plasticity within key brain regions and the associated behavioral phenotypes have been discussed. Understanding the contribution of epigenetic regulation to crucial signaling pathways may prove vital for future development of novel biomarkers and treatment agents in ameliorating or preventing AUD.
Collapse
Affiliation(s)
- Tiffani D M Berkel
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Drug Addiction and DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:105-125. [DOI: 10.1007/978-3-319-53889-1_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Zhang H, Gelernter J. Review: DNA methylation and alcohol use disorders: Progress and challenges. Am J Addict 2016; 26:502-515. [PMID: 27759945 DOI: 10.1111/ajad.12465] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/17/2016] [Accepted: 10/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Risk for alcohol use disorders (AUDs) is influenced by gene-environment interactions. Environmental factors can affect gene expression through epigenetic mechanisms such as DNA methylation. This review outlines the findings regarding the association of DNA methylation and AUDs. METHODS We searched PubMed (by April 2016) and identified 29 studies that examined the association of DNA methylation and AUDs. We also evaluated the methods used in these studies. RESULTS Two studies demonstrated elevated global (repetitive element) DNA methylation levels in AUD subjects. Fifteen candidate gene studies showed hypermethylation of promoter regions of six genes (AVP, DNMT3B, HERP, HTR3A, OPRM1, and SNCA) or hypomethylation of the GDAP1 promoter region in AUD subjects. Five genome-wide DNA methylation studies demonstrated widespread DNA methylation changes across the genome in AUD subjects. Six studies showed significant correlations of DNA methylation with gene expression in AUD subjects. Three studies revealed interactive effects of genetic variation and DNA methylation on susceptibility to AUDs. Most studies analyzed AUD-associated DNA methylation changes in the peripheral blood; a few studies examined DNA methylation changes in postmortem brains of AUD subjects. DISCUSSION AND CONCLUSIONS Chronic alcohol consumption may result in DNA methylation changes, leading to neuroadaptations that may underlie some of the mechanisms of AUD risk and persistence. Future studies are needed to confirm the few existing results, and then to elucidate whether DNA methylation changes are the cause or consequence of AUDs. SCIENTIFIC SIGNIFICANCE DNA methylation profiles may be used to assess AUD status or monitor AUD treatment response. (Am J Addict 2017;26:502-515).
Collapse
Affiliation(s)
- Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare System, West Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
44
|
Yue W, Cheng W, Liu Z, Tang Y, Lu T, Zhang D, Tang M, Huang Y. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients. Sci Rep 2016; 6:31333. [PMID: 27527274 PMCID: PMC4985637 DOI: 10.1038/srep31333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/18/2016] [Indexed: 11/09/2022] Open
Abstract
Literatures have suggested that not only genetic but also environmental factors, interactively accounted for susceptibility of obsessive-compulsive disorder (OCD). DNA methylation may regulate expression of genes as the heritable epigenetic modification. The examination for genome-wide DNA methylation was performed on blood samples from 65 patients with OCD, as well as 96 healthy control subjects. The DNA methylation was examined at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 BeadChip. As a result, 8,417 probes corresponding to 2,190 unique genes were found to be differentially methylated between OCD and healthy control subjects. Of those genes, 4,013 loci were located in CpG islands and 2,478 were in promoter regions. These included BCYRN1, BCOR, FGF13, HLA-DRB1, ARX, etc., which have previously been reported to be associated with OCD. Pathway analyses indicated that regulation of actin cytoskeleton, cell adhesion molecules (CAMs), actin binding, transcription regulator activity, and other pathways might be further associated with risk of OCD. Unsupervised clustering analysis of the top 3,000 most variable probes revealed two distinct groups with significantly more people with OCD in cluster one compared with controls (67.74% of cases v.s. 27.13% of controls, Chi-square = 26.011, df = 1, P = 3.41E-07). These results strongly suggested that differential DNA methylation might play an important role in etiology of OCD.
Collapse
Affiliation(s)
- Weihua Yue
- Peking University Sixth Hospital &Institute of Mental Health, Beijing 100191, China.,National Clinical Research Center for Mental Disorders &Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Weiqiu Cheng
- Peking University Sixth Hospital &Institute of Mental Health, Beijing 100191, China.,National Clinical Research Center for Mental Disorders &Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Zhaorui Liu
- Peking University Sixth Hospital &Institute of Mental Health, Beijing 100191, China.,National Clinical Research Center for Mental Disorders &Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Yi Tang
- Peking University Sixth Hospital &Institute of Mental Health, Beijing 100191, China.,National Clinical Research Center for Mental Disorders &Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,Department of Mental Health, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Tianlan Lu
- Peking University Sixth Hospital &Institute of Mental Health, Beijing 100191, China.,National Clinical Research Center for Mental Disorders &Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital &Institute of Mental Health, Beijing 100191, China.,National Clinical Research Center for Mental Disorders &Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Muni Tang
- Guangzhou Psychiatry Hospital, Guangzhou, 510080, China
| | - Yueqin Huang
- Peking University Sixth Hospital &Institute of Mental Health, Beijing 100191, China.,National Clinical Research Center for Mental Disorders &Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| |
Collapse
|
45
|
Hagerty SL, Bidwell LC, Harlaar N, Hutchison KE. An Exploratory Association Study of Alcohol Use Disorder and DNA Methylation. Alcohol Clin Exp Res 2016; 40:1633-40. [PMID: 27388583 DOI: 10.1111/acer.13138] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/20/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Epigenetic factors, including DNA methylation, play an important role in the etiology of alcohol use disorders (AUDs). Noncandidate-based methylome-wide studies leveraging multiple tissue types are needed in order to identify a set of CpG targets that reliably differentiate AUD patients from controls and strongly correlate across brain tissue and more commonly collected tissue types (e.g., buccal cells). METHODS Postmortem precuneus brain tissue samples were collected from 49 alcohol-dependent (AD) cases and 47 controls (sample I), and DNA was extracted from precuneus and putamen brain tissue and buccal cells in 24 postmortem subjects (sample II). Methylation levels were analyzed at over 450,000 CpG sites in both samples. CpGs that demonstrated significant methylation differences between cases and controls were advanced for further analysis with the goal of identifying CpGs that also demonstrated consistent methylation correlations across tissue type. RESULTS In the primary analysis, 244 hypomethylated and 188 hypermethylated CpGs met a priori criteria for both significant methylation differences between cases and controls as well as significant correlation across brain and buccal cell tissue types, employing stringent Bonferroni p-value correction. Many of these CpGs were involved in gene networks related to lipid metabolism, immune response, inflammatory response/disease, and gastro-intestinal disease. CONCLUSIONS More than 400 CpGs demonstrated differences in methylation between AD cases and controls and showed significant correlation across tissue types. Several genes and pathways (e.g., inflammation and immune functioning) that have been previously associated with AUD were identified in the current analyses.
Collapse
Affiliation(s)
- Sarah L Hagerty
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Nicole Harlaar
- The Kempe Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
46
|
Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, Barhdadi A, Provost S, Lemieux-Perreault LP, Cynader MS, Chudley AE, Dubé MP, Reynolds JN, Pavlidis P, Kobor MS. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin 2016; 9:25. [PMID: 27358653 PMCID: PMC4926300 DOI: 10.1186/s13072-016-0074-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background Prenatal alcohol exposure is the leading preventable cause of behavioral and cognitive deficits, which may affect between 2 and 5 % of children in North America. While the underlying mechanisms of alcohol’s effects on development remain relatively unknown, emerging evidence implicates epigenetic mechanisms in mediating the range of symptoms observed in children with fetal alcohol spectrum disorder (FASD). Thus, we investigated the effects of prenatal alcohol exposure on genome-wide DNA methylation in the NeuroDevNet FASD cohort, the largest cohort of human FASD samples to date. Methods Genome-wide DNA methylation patterns of buccal epithelial cells (BECs) were analyzed using the Illumina HumanMethylation450 array in a Canadian cohort of 206 children (110 FASD and 96 controls). Genotyping was performed in parallel using the Infinium HumanOmni2.5-Quad v1.0 BeadChip. Results After correcting for the effects of genetic background, we found 658 significantly differentially methylated sites between FASD cases and controls, with 41 displaying differences in percent methylation change >5 %. Furthermore, 101 differentially methylated regions containing two or more CpGs were also identified, overlapping with 95 different genes. The majority of differentially methylated genes were highly expressed at the level of mRNA in brain samples from the Allen Brain Atlas, and independent DNA methylation data from cortical brain samples showed high correlations with BEC DNA methylation patterns. Finally, overrepresentation analysis of genes with up-methylated CpGs revealed a significant enrichment for neurodevelopmental processes and diseases, such as anxiety, epilepsy, and autism spectrum disorders. Conclusions These findings suggested that prenatal alcohol exposure is associated with distinct DNA methylation patterns in children and adolescents, raising the possibility of an epigenetic biomarker of FASD. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0074-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Alexandre A Lussier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Meaghan J Jones
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Rachel D Edgar
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Sarah M Mah
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Amina Barhdadi
- Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC Canada
| | - Sylvie Provost
- Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC Canada
| | | | - Max S Cynader
- Brain Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Albert E Chudley
- Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, MB Canada.,Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Marie-Pierre Dubé
- Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC Canada.,Faculty of Medicine, Université de Montréal, Montreal, QC Canada
| | - James N Reynolds
- Centre for Neuroscience Studies, Queen's University, Kingston, ON Canada
| | - Paul Pavlidis
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada.,Human Early Learning Partnership, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia Canada
| |
Collapse
|
47
|
Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat Res 2016; 789:15-25. [PMID: 27208973 DOI: 10.1016/j.mrfmmm.2016.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/17/2016] [Accepted: 05/01/2016] [Indexed: 12/30/2022]
Abstract
The recent demonstration that massive scale chromosomal shattering or pulverization can occur abruptly due to errors induced by interference with the microtubule machinery of the mitotic spindle followed by haphazard chromosomal annealing, together with sophisticated insights from epigenetics, provide profound mechanistic insights into some of the most perplexing classical observations of addiction medicine, including cancerogenesis, the younger and aggressive onset of addiction-related carcinogenesis, the heritability of addictive neurocircuitry and cancers, and foetal malformations. Tetrahydrocannabinol (THC) and other addictive agents have been shown to inhibit tubulin polymerization which perturbs the formation and function of the microtubules of the mitotic spindle. This disruption of the mitotic machinery perturbs proper chromosomal segregation during anaphase and causes micronucleus formation which is the primary locus and cause of the chromosomal pulverization of chromothripsis and downstream genotoxic events including oncogene induction and tumour suppressor silencing. Moreover the complementation of multiple positive cannabis-cancer epidemiological studies, and replicated dose-response relationships with established mechanisms fulfils causal criteria. This information is also consistent with data showing acceleration of the aging process by drugs of addiction including alcohol, tobacco, cannabis, stimulants and opioids. THC shows a non-linear sigmoidal dose-response relationship in multiple pertinent in vitro and preclinical genotoxicity assays, and in this respect is similar to the serious major human mutagen thalidomide. Rising community exposure, tissue storage of cannabinoids, and increasingly potent phytocannabinoid sources, suggests that the threshold mutagenic dose for cancerogenesis will increasingly be crossed beyond the developing world, and raise transgenerational transmission of teratogenicity as an increasing concern.
Collapse
|
48
|
Sun Y, Zhang Y, Wang F, Sun Y, Shi J, Lu L. From genetic studies to precision medicine in alcohol dependence. Behav Pharmacol 2016; 27:87-99. [PMID: 26580132 DOI: 10.1097/fbp.0000000000000202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genetic factors contribute to more than 50% of the variation in the vulnerability to alcohol dependence (AD). Although significant advances have been made in medications for AD, these medications do not work for all people. Precise tailoring of medicinal strategies for individual alcoholic patients is needed to achieve optimal outcomes. This review updates the most promising information on genetic variants in AD, which may be useful for improving diagnostic, therapeutic, and monitoring strategies. We describe genetic candidates of various neurotransmitter and enzyme systems. In addition to biological and allelic associations with AD, genetic effects on AD-related phenotypes and treatment responses have also been described. Gene-gene and gene-environment interactions have been considered. Potential applications of genomewide and epigenetic approaches for identifying genetic biomarkers of AD have been discussed. Overall, the application of genetic findings in precision medicine for AD will likely involve an integrated approach that distinguishes effect sizes of specific genetic predictors with regard to sex, pharmacotherapy, ethnicity, and AD-related aspects and considers gene-gene and gene-environment interactions. Our work may pave the way toward more precise treatment for AD that could ultimately improve clinical management and interventions.
Collapse
Affiliation(s)
- Yan Sun
- aNational Institute on Drug Dependence, Peking University bInstitute of Mental Health, Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University cPeking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University dBeijing Hui Long Guan Hospital eBeijing Key Laboratory on Drug Dependence Research fThe State Key Laboratory of Natural and Biomimetic Drugs gKey Laboratory for Neuroscience of the Ministry of Education and Ministry of Public Healthy, Beijing, China
| | | | | | | | | | | |
Collapse
|
49
|
Hillemacher T, Frieling H, Buchholz V, Hussein R, Bleich S, Meyer C, John U, Bischof A, Rumpf HJ. Alterations in DNA-methylation of the dopamine-receptor 2 gene are associated with abstinence and health care utilization in individuals with a lifetime history of pathologic gambling. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:30-4. [PMID: 26028496 DOI: 10.1016/j.pnpbp.2015.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Several studies point towards a role for dopaminergic circuits in the pathophysiology of problematic gambling behavior. The aim of the present study was to investigate alterations of DNA methylation in the dopamine D2 receptor (DRD2)-gene in participants with pathologic gambling behavior. RESULTS The study was part of a large epidemiological study on pathologic gambling in Germany. DNA methylation of the DRD2-gene was analyzed from oral mucosa using next generation bisulfite sequencing. The final sample included 77 participants. The study showed significantly lower methylation levels of the DRD2-gene in abstinent patients over the last 12 or 30months compared to non-abstinent participants. Furthermore, participants without any treatment utilization regarding gambling behavior showed higher DRD2-gene methylation levels compared to treatment-seeking participants. CONCLUSIONS DNA-methylation patterns in the DRD2-gene were altered in respect to abstinence over a 12-month or a 30-month period and to treatment utilization with higher methylation levels in non-abstinent and participants without treatment-seeking behavior. These results point towards a pathophysiologic relevance of altered DRD2-expression due to changes of DNA methylation in pathologic gambling behavior.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany.
| | - Helge Frieling
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Vanessa Buchholz
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Rim Hussein
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Christian Meyer
- Institute of Social Medicine and Prevention, University Medicine Greifswald, Germany
| | - Ulrich John
- Institute of Social Medicine and Prevention, University Medicine Greifswald, Germany
| | - Anja Bischof
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Hans-Jürgen Rumpf
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| |
Collapse
|
50
|
Do changes in the BDNF promoter methylation indicate the risk of alcohol relapse? Eur Neuropsychopharmacol 2015; 25:1892-7. [PMID: 26404404 DOI: 10.1016/j.euroneuro.2015.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/27/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Abstract
The neurotrophic growth factor brain derived neurotrophic factor (BDNF) was linked to the risk of alcohol relapse in clinical studies. In this study we investigated alterations in the methylation of the BDNF gene during alcohol withdrawal (day 1, 7 and 14) in 99 male alcohol-dependent patients compared to age matched healthy males (n=33). In particular, we aimed to investigate a possible association between the BDNF promoter methylation and the self-reported duration of alcohol abstinence before relapse. Mean methylation of the BDNF promoter was significantly increased in alcohol-dependent patients compared to the healthy controls (F=10.014, p<0.001) and decreased significantly during alcohol-withdrawal (F=10.014, p<0.001). Moreover, mean methylation was associated with depressive (F=2.014, p<0.001) and anxious symptoms in the alcohol-dependent patients (F=2.228, p<0.001). On day 14 of alcohol-withdrawal we found significantly higher methylation rates in those patients who abstained longer before relapse compared to those patients who abstained shorter (F=9.938, p<0.001). Our results suggest an association between BDNF expression and the symptomatology of alcohol withdrawal and imply that changes in the methylation of the BDNF IV gene may contribute to alcohol consumption.
Collapse
|