1
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
2
|
Zhao J, Feng C, Wang W, Su L, Jiao J. Human SERPINA3 induces neocortical folding and improves cognitive ability in mice. Cell Discov 2022; 8:124. [DOI: 10.1038/s41421-022-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
AbstractNeocortex expansion and folding are related to human intelligence and cognition, but the molecular and cellular mechanisms underlying cortical folding remain poorly understood. Here, we report that the human gene SERPINA3 is linked to gyrification. Specifically, the overexpression of SERPINA3 induced neocortical folding, increased the abundance of neurons, and improved cognitive abilities. Further, SERPINA3 promoted proliferation of the outer radial glia (oRG, also referred to as the basal radial glia) and increased the number of upper-layer neurons. The downstream target Glo1 was determined to be involved in SERPINA3-induced gyrification. Moreover, SERPINA3 increased the proliferation of oRG by binding to the Glo1 promoter. Assessment of behavior performance showed enhanced cognitive abilities in SERPINA3 knock-in mice. Our findings will enrich the understanding of neocortical expansion and gyrification and provide insights into possible treatments for intellectual disability and lissencephaly syndrome.
Collapse
|
3
|
Toriumi K, Miyashita M, Suzuki K, Tabata K, Horiuchi Y, Ishida H, Itokawa M, Arai M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox Biol 2021; 49:102222. [PMID: 34953453 PMCID: PMC8718652 DOI: 10.1016/j.redox.2021.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive α-ketoaldehyde formed endogenously as a byproduct of the glycolytic pathway. To remove MG, various detoxification systems work together in vivo, including the glyoxalase system, which enzymatically degrades MG using glyoxalase 1 (GLO1) and GLO2. Recently, numerous reports have shown that GLO1 expression and MG accumulation in the brain are involved in the pathogenesis of psychiatric disorders, such as anxiety disorder, depression, autism, and schizophrenia. Furthermore, it has been reported that GLO1 inhibitors may be promising drugs for the treatment of psychiatric disorders. In this review, we discuss the recent findings of the effects of altered GLO1 function on mental behavior, especially focusing on results obtained from animal models.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan; Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, 192-0005, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroaki Ishida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
4
|
Yin J, Ma G, Luo S, Luo X, He B, Liang C, Zuo X, Xu X, Chen Q, Xiong S, Tan Z, Fu J, Lv D, Dai Z, Wen X, Zhu D, Ye X, Lin Z, Lin J, Li Y, Chen W, Luo Z, Li K, Wang Y. Glyoxalase 1 Confers Susceptibility to Schizophrenia: From Genetic Variants to Phenotypes of Neural Function. Front Mol Neurosci 2021; 14:739526. [PMID: 34790095 PMCID: PMC8592033 DOI: 10.3389/fnmol.2021.739526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
This research aimed to investigate the role of glyoxalase 1 (Glo-1) polymorphisms in the susceptibility of schizophrenia. Using the real-time polymerase chain reaction (PCR) and spectrophotometric assays technology, significant differences in Glo-1 messenger ribonucleic acid (mRNA) expression (P = 3.98 × 10-5) and enzymatic activity (P = 1.40 × 10-6) were found in peripheral blood of first-onset antipsychotic-naïve patients with schizophrenia and controls. The following receiver operating characteristic (ROC) curves analysis showed that Glo-1 could predict the schizophrenia risk (P = 4.75 × 10-6 in mRNA, P = 1.43 × 10-7 in enzymatic activity, respectively). To identify the genetic source of Glo-1 risk in schizophrenia, Glo-1 polymorphisms (rs1781735, rs1130534, rs4746, and rs9470916) were genotyped with SNaPshot technology in 1,069 patients with schizophrenia and 1,023 healthy individuals. Then, the impact of risk polymorphism on the promoter activity, mRNA expression, and enzymatic activity was analyzed. The results revealed significant differences in the distributions of genotype (P = 0.020, false discovery rate (FDR) correction) and allele (P = 0.020, FDR correction) in rs1781735, in which G > T mutation significantly showed reduction in the promoter activity (P = 0.016), mRNA expression, and enzymatic activity (P = 0.001 and P = 0.015, respectively, GG vs. TT, in peripheral blood of patients with schizophrenia) of Glo-1. The expression quantitative trait locus (eQTL) findings were followed up with the resting-state functional magnetic resonance imaging (fMRI) analysis. The TT genotype of rs1781735, associated with lower RNA expression in the brain (P < 0.05), showed decreased neuronal activation in the left middle frontal gyrus in schizophrenia (P < 0.001). In aggregate, this study for the first time demonstrates how the genetic and biochemical basis of Glo-1 polymorphism culminates in the brain function changes associated with increased schizophrenia risk. Thus, establishing a combination of multiple levels of changes ranging from genetic variants, transcription, protein function, and brain function changes is a better predictor of schizophrenia risk.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao SAR, China.,Department of Psychology, Faculty of Social Sciences, University of Macau, Macao SAR, China
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xiang Zuo
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Qing Chen
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
5
|
Bauer R, Clowry GJ, Kaiser M. Creative Destruction: A Basic Computational Model of Cortical Layer Formation. Cereb Cortex 2021; 31:3237-3253. [PMID: 33625496 PMCID: PMC8196252 DOI: 10.1093/cercor/bhab003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most characteristic properties of many vertebrate neural systems is the layered organization of different cell types. This cytoarchitecture exists in the cortex, the retina, the hippocampus, and many other parts of the central nervous system. The developmental mechanisms of neural layer formation have been subject to substantial experimental efforts. Here, we provide a general computational model for cortical layer formation in 3D physical space. We show that this multiscale, agent-based model, comprising two distinct stages of apoptosis, can account for the wide range of neuronal numbers encountered in different cortical areas and species. Our results demonstrate the phenotypic richness of a basic state diagram structure. Importantly, apoptosis allows for changing the thickness of one layer without automatically affecting other layers. Therefore, apoptosis increases the flexibility for evolutionary change in layer architecture. Notably, slightly changed gene regulatory dynamics recapitulate the characteristic properties observed in neurodevelopmental diseases. Overall, we propose a novel computational model using gene-type rules, exhibiting many characteristics of normal and pathological cortical development.
Collapse
Affiliation(s)
- Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marcus Kaiser
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
6
|
Hara T, Toyoshima M, Hisano Y, Balan S, Iwayama Y, Aono H, Futamura Y, Osada H, Owada Y, Yoshikawa T. Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived neurons. Transl Psychiatry 2021; 11:275. [PMID: 33966051 PMCID: PMC8106684 DOI: 10.1038/s41398-021-01392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.
Collapse
Affiliation(s)
- Tomonori Hara
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Manabu Toyoshima
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Yasuko Hisano
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shabeesh Balan
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,Neuroscience Research Laboratory, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode, Kerala 673008 India
| | - Yoshimi Iwayama
- grid.474690.8Support Unit for Bio-Material Analysis, Research Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Harumi Aono
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yushi Futamura
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Hiroyuki Osada
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yuji Owada
- grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Maasen K, Hanssen NMJ, van der Kallen CJH, Stehouwer CDA, van Greevenbroek MMJ, Schalkwijk CG. Polymorphisms in Glyoxalase I Gene Are Not Associated with Glyoxalase I Expression in Whole Blood or Markers of Methylglyoxal Stress: The CODAM Study. Antioxidants (Basel) 2021; 10:antiox10020219. [PMID: 33540757 PMCID: PMC7913097 DOI: 10.3390/antiox10020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Glyoxalase 1 (Glo1) is the rate-limiting enzyme in the detoxification of methylglyoxal (MGO) into D-lactate. MGO is a major precursor of advanced glycation endproducts (AGEs), and both are associated with development of age-related diseases. Since genetic variation in GLO1 may alter the expression and/or the activity of Glo1, we examined the association of nine SNPs in GLO1 with Glo1 expression and markers of MGO stress (MGO in fasting plasma and after an oral glucose tolerance test, D-lactate in fasting plasma and urine, and MGO-derived AGEs CEL and MG-H1 in fasting plasma and urine). We used data of the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM, n = 546, 60 ± 7 y, 25% type 2 diabetes). Outcomes were compared across genotypes using linear regression, adjusted for age, sex, and glucose metabolism status. We found that SNP4 (rs13199033) was associated with Glo1 expression (AA as reference, standardized beta AT = −0.29, p = 0.02 and TT = −0.39, p = 0.3). Similarly, SNP13 (rs3799703) was associated with Glo1 expression (GG as reference, standardized beta AG = 0.17, p = 0.14 and AA = 0.36, p = 0.005). After correction for multiple testing these associations were not significant. For the other SNPs, we observed no consistent associations over the different genotypes. Thus, polymorphisms of GLO1 were not associated with Glo1 expression or markers of MGO stress, suggesting that these SNPs are not functional, although activity/expression might be altered in other tissues.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Nordin M. J. Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Carla J. H. van der Kallen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Coen D. A. Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Marleen M. J. van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
- Correspondence: ; Tel.: +31-43-388-2186
| |
Collapse
|
8
|
Wang K, Li N, Xu M, Huang M, Huang F. Glyoxalase 1 Inhibitor Alleviates Autism-like Phenotype in a Prenatal Valproic Acid-Induced Mouse Model. ACS Chem Neurosci 2020; 11:3786-3792. [PMID: 33166134 DOI: 10.1021/acschemneuro.0c00482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a severe neurological and developmental disorder that impairs a person's ability to socialize and communicate and affects behavior. The number of patients diagnosed with ASD has risen rapidly. However, the pathophysiology of ASD is poorly understood, and drugs for ASD treatment are strikingly limited. This study aims to evaluate the roles of glyoxalase 1 (GLO1)-methylglyoxal (MG)-γ-aminobutyric acid (GABA) signaling in ASD using a valproic acid (VPA)-induced animal model of autism. The GLO1 levels were analyzed by RT-qPCR and Western blot assay, and MG levels were measured with a Methylglyoxal Assay Kit. The open-field and sniff duration tests were used to assess the interest and anxiety of VPA mice. The three-chamber, marble-burying, and tail-flick tests were applied to determine the sociability, repetitive behavior, and nociceptive threshold of VPA mice. Our results demonstrated that increased GLO1 and decreased MG were observed in VPA mice. Administration of S-p-bromobenzylglutathione cyclopentyl diester (BrBzGCp2), a GLO1 inhibitor, was beneficial for alleviating anxiety, reducing repetitive behavior, and improving the impaired sociability and nociceptive threshold of VPA mice. BrBzGCp2 treatment may be developed as a promising therapeutic strategy for patients with ASD.
Collapse
Affiliation(s)
- Kui Wang
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao University, No 299 Nanjing Road, Qingdao, 266034 Shandong, China
| | - Na Li
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao University, No 299 Nanjing Road, Qingdao, 266034 Shandong, China
| | - Min Xu
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao University, No 299 Nanjing Road, Qingdao, 266034 Shandong, China
| | - Meng Huang
- Department of Laboratory Medicine, Lao-shan Disease Area, the Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong, China
| | - Fei Huang
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao University, No 299 Nanjing Road, Qingdao, 266034 Shandong, China
| |
Collapse
|
9
|
Xin Y, Hertle E, van der Kallen CJH, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Associations of dicarbonyl stress with complement activation: the CODAM study. Diabetologia 2020; 63:1032-1042. [PMID: 31993713 PMCID: PMC7145776 DOI: 10.1007/s00125-020-05098-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Reactive α-dicarbonyl compounds are major precursors of AGEs and may lead to glycation of circulating and/or cell-associated complement regulators. Glycation of complement regulatory proteins can influence their capacity to inhibit complement activation. We investigated, in a human cohort, whether greater dicarbonyl stress was associated with more complement activation. METHODS Circulating concentrations of dicarbonyl stress markers, i.e. α-dicarbonyls (methylglyoxal [MGO], glyoxal [GO] and 3-deoxyglucosone [3-DG]), and free AGEs (Nε-(carboxymethyl)lysine [CML], Nε-(carboxyethyl)lysine [CEL] and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine [MG-H1]), and protein-bound AGEs (CML, CEL, pentosidine), as well as the complement activation products C3a and soluble C5b-9 (sC5b-9), were measured in 530 participants (59.5 ± 7.0 years [mean ± SD], 61% men) of the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study. Multiple linear regression analyses were used to investigate the associations between dicarbonyl stress (standardised) and complement activation (standardised) with adjustment of potential confounders, including age, sex, lifestyle, use of medication and markers of obesity. In addition, the associations of two potentially functional polymorphisms (rs1049346, rs2736654) in the gene encoding glyoxalase 1 (GLO1), the rate-limiting detoxifying enzyme for MGO, with C3a and sC5b-9 (all standardized) were evaluated. RESULTS After adjustment for potential confounders, plasma concentration of the dicarbonyl GO was inversely associated with sC5b-9 (β -0.12 [95% CI -0.21, -0.02]) and the protein-bound AGE CEL was inversely associated with C3a (-0.17 [-0.25, -0.08]). In contrast, the protein-bound AGE pentosidine was positively associated with sC5b-9 (0.15 [0.05, 0.24]). No associations were observed for other α-dicarbonyls and other free or protein-bound AGEs with C3a or sC5b-9. Individuals with the AG and AA genotype of rs1049346 had, on average, 0.32 and 0.40 SD lower plasma concentrations of sC5b-9 than those with the GG genotype, while concentrations of C3a did not differ significantly between rs1049346 genotypes. GLO1 rs2736654 was not associated with either C3a or sC5b-9. CONCLUSIONS/INTERPRETATION Plasma concentrations of dicarbonyl stress markers showed distinct associations with complement activation products: some of them were inversely associated with either C3a or sC5b-9, while protein-bound pentosidine was consistently and positively associated with sC5b-9. This suggests different biological relationships of individual dicarbonyl stress markers with complement activation.
Collapse
Affiliation(s)
- Ying Xin
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Elisabeth Hertle
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Centre, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Tian X, Wang Y, Ding X, Cheng W. High expression of GLO1 indicates unfavorable clinical outcomes in glioma patients. J Neurosurg Sci 2019; 66:228-233. [PMID: 31738028 DOI: 10.23736/s0390-5616.19.04805-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUNDS Glyoxalase I (GLO1), a ubiquitous enzyme involved in the process of detoxification of methylglyoxal in the cellular glycolysis pathway, was reported to be highly expressed in human tumor. It has also been found that GLO1 is associated with tumor cell survival and proliferation in some types of cancer, such as pancreatic cancer, hepatocellular carcinoma and gastric cancer. However, the role of GLO1 in glioma has not been clarified. The purpose of present study is to explore the expression pattern of GLO1 and whether the expression level of GLO1 is associated with the unfavorable clinical outcomes of patients with glioma. METHODS Quantitative RT-PCR and immunohistochemistry staining were used to investigate the mRNA and protein level of GLO1 in glioma tissues together with normal brain tissues. The prognostic role of GLO1 in glioma patients was assessed using univariate and multivariate analyses. Clinical outcomes were estimated by using the Kaplan-Meier analysis and the log-rank test. The function of GLO1 in glioma cell lines were investigated by in vitro experiments. RESULTS Expression level of GLO1 was higher in glioma tissues than that in normal brain tissues. High GLO1 expression was significantly correlated with WHO grade and the poor overall survival time in glioma patients. Moreover, GLO1 was also defined as an unfavorable prognosis factor. Overexpression of GLO1 in the glioma cell line U87 can enhance the tumor cell proliferation, migration and invasion. Whereas, knockdown of GLO1 can suppress those abilities. CONCLUSIONS Our studies demonstrated that GLO1 was highly expressed in glioma tissues and significantly correlated with the poor prognosis of glioma patients. It indicated that GLO1 might serve as a new prognostic predictor and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Xiaomin Tian
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Yu Wang
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Xue Ding
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Wei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China -
| |
Collapse
|
11
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
12
|
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018; 14:465-473. [PMID: 29080525 PMCID: PMC5680520 DOI: 10.1016/j.redox.2017.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases - including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder - are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway.
Collapse
Affiliation(s)
- Joel R Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
13
|
Yang G, Cancino G, Zahr S, Guskjolen A, Voronova A, Gallagher D, Frankland P, Kaplan D, Miller F. A Glo1-Methylglyoxal Pathway that Is Perturbed in Maternal Diabetes Regulates Embryonic and Adult Neural Stem Cell Pools in Murine Offspring. Cell Rep 2016; 17:1022-1036. [DOI: 10.1016/j.celrep.2016.09.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 01/03/2023] Open
|
14
|
Jurnak F. The Pivotal Role of Aldehyde Toxicity in Autism Spectrum Disorder: The Therapeutic Potential of Micronutrient Supplementation. Nutr Metab Insights 2016; 8:57-77. [PMID: 27330305 PMCID: PMC4910734 DOI: 10.4137/nmi.s29531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social and communication impairments as well as by restricted, repetitive patterns of behavior and interests. Genomic studies have not revealed dominant genetic errors common to all forms of ASD. So ASD is assumed to be a complex disorder due to mutations in hundreds of common variants. Other theories argue that spontaneous DNA mutations and/or environmental factors contribute to as much as 50% of ASD. In reviewing potential genetic linkages between autism and alcoholism, it became apparent that all theories of ASD are consistent with aldehyde toxicity, in which endogenous and exogenous aldehydes accumulate as a consequence of mutations in key enzymes. Aldehyde toxicity is characterized by cell-localized, micronutrient deficiencies in sulfur-containing antioxidants, thiamine (B1), pyridoxine (B6), folate, Zn2+, possibly Mg2+, and retinoic acid, causing oxidative stress and a cascade of metabolic disturbances. Aldehydes also react with selective cytosolic and membrane proteins in the cell of origin; then some types migrate to damage neighboring cells. Reactive aldehydes also form adducts with DNA, selectively mutating bases and inducing strand breakage. This article reviews the relevant genomic, biochemical, and nutritional literature, which supports the central hypothesis that most ASD symptoms are consistent with symptoms of aldehyde toxicity. The hypothesis represents a paradigm shift in thinking and has profound implications for clinical detection, treatment, and even prevention of ASD. Insight is offered as to which neurologically afflicted children might successfully be treated with micronutrients and which children are unlikely to be helped. The aldehyde toxicity hypothesis likely applies to other neurological disorders.
Collapse
Affiliation(s)
- Frances Jurnak
- Emerita Professor, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Chen MH, Lan WH, Hsu JW, Huang KL, Su TP, Li CT, Lin WC, Tsai CF, Tsai SJ, Lee YC, Chen YS, Pan TL, Chang WH, Chen TJ, Bai YM. Risk of Developing Type 2 Diabetes in Adolescents and Young Adults With Autism Spectrum Disorder: A Nationwide Longitudinal Study. Diabetes Care 2016; 39:788-93. [PMID: 27006513 DOI: 10.2337/dc15-1807] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/01/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Studies have suggested the association between autism spectrum disorder (ASD) and type 2 diabetes mellitus (DM)-related risk factors, such as obesity and dyslipidemia. However, the association between ASD and type 2 DM remains unknown. RESEARCH DESIGN AND METHODS We used the Taiwan National Health Insurance Research Database for enrolling 6,122 adolescents and young adults with ASD and 24,488 age- and sex-matched control subjects between 2002 and 2009 and monitored them until the end of 2011. Participants who developed type 2 DM during the follow-up period were identified. RESULTS Adolescents (hazard ratio [HR] 2.71 [95% CI 1.64-4.48]) and young adults (HR 5.31 [95% CI 2.85-9.90]) with ASD had a higher risk of developing type 2 DM than those without ASD, after adjustment for demographic data, atypical antipsychotics use, and medical comorbidities. Sensitivity analyses after excluding first year (HR 3.03 [95% CI 2.03-4.51]) and first 3-year (HR 2.62 [95% CI 1.62-4.23]) observation periods were consistent. Short-term (HR 1.97 [95% CI 1.20-3.23]) and long-term (HR 1.64 [95% CI 1.02-2.63]) use of atypical antipsychotics were associated with a higher likelihood of subsequent type 2 DM. CONCLUSIONS Adolescents and young adults with ASD were more likely to develop type 2 DM during the follow-up. In addition, those with ASD using atypical antipsychotics exhibited a high risk. Therefore, further research is necessary to investigate the common pathophysiology of ASD and type 2 DM.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Hsuan Lan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Fen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Chiao Lee
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Sheue Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Han Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
16
|
Tao H, Si L, Zhou X, Liu Z, Ma Z, Zhou H, Zhong W, Cui L, Zhang S, Li Y, Ma G, Zhao J, Huang W, Yao L, Xu Z, Zhao B, Li K. Role of glyoxalase I gene polymorphisms in late-onset epilepsy and drug-resistant epilepsy. J Neurol Sci 2016; 363:200-6. [PMID: 27000251 DOI: 10.1016/j.jns.2016.01.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies indicate that increased expression of glyoxalase I (GLO1) could result in epileptic seizures; thus, this study further explored the association of GLO1 with epilepsy from the perspective of molecular genetics. MATERIAL AND METHODS GLO1 single nucleotide polymorphisms (SNPs; rs1130534, rs4746 and rs1049346) were investigated in cohort I (the initial samples: 249 cases and 289 controls). A replication study designed to confirm the positive findings in cohort I was performed in cohorts II (the additional samples: 130 cases and 191 controls) and I+II. RESULTS In cohorts I, II and I+II, the CC genotype at rs1049346 T>C exerts a protective effect against both late-onset epilepsy (odds ratio [OR]=2.437, p=0.013; OR=2.844, p=0.008; OR=2.645, p=0.000, q=0.003, respectively) and drug-resistant epilepsy (DRE) (OR=2.985, p=0.020; OR=2.943, p=0.014; OR=3.049, p=0.001, q=0.006, respectively). Further analyses in cohort I+II indicate that the presence of the TAC/AAT haplotypes (rs1130534-rs4746-rs1049346) may be used as a marker of predisposition to/protection against DRE (p=0.002, q=0.010; p=0.000, q=0.002, respectively). CONCLUSIONS This study is the first to demonstrate that the GLO1 SNPs are significantly associated with epilepsy. In particular, the rs1049346 T>C SNPs are potentially useful for risk assessment of late-onset epilepsy and DRE.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ligang Si
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xu Zhou
- Clinical Research Center, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhou Liu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhonghua Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lili Cui
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shuyan Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Wenhui Huang
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lifen Yao
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhien Xu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Bin Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
17
|
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has a strong genetic basis, and is heterogeneous in its etiopathogenesis and clinical presentation. Neuroimaging studies, in concert with neuropathological and clinical research, have been instrumental in delineating trajectories of development in children with ASD. Structural neuroimaging has revealed ASD to be a disorder with general and regional brain enlargement, especially in the frontotemporal cortices, while functional neuroimaging studies have highlighted diminished connectivity, especially between frontal-posterior regions. The diverse and specific neuroimaging findings may represent potential neuroendophenotypes, and may offer opportunities to further understand the etiopathogenesis of ASD, predict treatment response, and lead to the development of new therapies.
Collapse
Affiliation(s)
- Rajneesh Mahajan
- Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond) 2015; 128:839-61. [PMID: 25818485 DOI: 10.1042/cs20140683] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.
Collapse
|