1
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
2
|
Wang PC, Liu ZK, Li JR, Zhao ZH, Chang QW, Guo XM, Jin L, Hu YT, Yang Z. Tryptophan regulates the expression of IGFBP1 in bovine endometrial epithelial cells in vitro via the TDO2-AHR pathway. BMC Vet Res 2024; 20:390. [PMID: 39227948 PMCID: PMC11373120 DOI: 10.1186/s12917-024-04191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND This study aimed to identify the roles of L-tryptophan (Trp) and its rate-limiting enzymes on the receptivity of bovine endometrial epithelial cells. Real-time PCR was conducted to analyze the differential expression of genes between different groups of bovine endometrial epithelial cells. Western blot was performed to detect Cyclooxygenase-2 (COX2) expression after treatment with Trp or kynurenine (the main metabolites of Trp). The kynurenine assay was used to examine if Trp or prostaglandin E2 (PGE2) can increase the production of kynurenine in the bovine endometrial epithelial cells. RESULTS Trp significantly stimulates insulin growth factor binding protein 1 (IGFBP1) expression, a common endometrial marker of conceptus elongation and uterus receptivity for ruminants. When bovine endometrial epithelial cells are treated with Trp, tryptophan hydroxylase-1 remains unchanged, but tryptophan 2,3-dioxygenase 2 (TDO2) is significantly increased, suggesting tryptophan is mainly metabolized through the kynurenine pathway. Kynurenine significantly stimulates IGFBP1 expression. Furthermore, Trp and kynurenine significantly increase the expression of aryl hydrocarbon receptor (AHR). CH223191, an AHR inhibitor, abrogates the induction of Trp and kynurenine on IGFBP1. PGE2 significantly induces the expression of TDO2, AHR, and IGFBP1. CONCLUSIONS The regulation between Trp / kynurenine and PGE2 may be crucial for the receptivity of the bovine uterus.
Collapse
Affiliation(s)
- Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| | - Ze-Kun Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Jia-Rong Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Zi-Hui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Qian-Wen Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiao-Min Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Lin Jin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Yong-Ting Hu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| | - Zhenshan Yang
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, 22381, Sweden.
| |
Collapse
|
3
|
Li Y, Yu X, Shi J, Zhao J, Li L. The role of aryl hydrocarbon receptors in nutrient metabolism and immune regulation at the maternal-fetal interface. Placenta 2024; 154:9-17. [PMID: 38830294 DOI: 10.1016/j.placenta.2024.05.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
The maternal-fetal interface is composed of the placenta, which is affiliated with the fetus, and the maternal decidua. During pregnancy, the placenta is mainly responsible for nutrient transport and immune tolerance maintenance, which plays a key role in fetal growth and development and pregnancy maintenance. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exists in various cell types at the maternal-fetal interface and is involved in multiple cellular processes. Recent studies have highlighted the role of AhR in regulating various physiological processes, including glucose and lipid metabolism, as well as tryptophan metabolism and immune responses, within non-pregnant tissues. This review shifts focus towards understanding how AhR modulation impacts metabolism and immune regulation at the maternal-fetal interface. This may implicate the development of pregnancy-related complications and the potential target of the AhR pathway for therapeutic strategies against poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, Shandong, 250021, China
| | - Xiaojun Yu
- School of Public Health Kunming Medical University, Kunming, 650500, China
| | - Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100083, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100083, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100083, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100083, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Sha Q, Escobar Galvis ML, Madaj ZB, Keaton SA, Smart L, Edgerly YM, Anis E, Leach R, Osborne LM, Achtyes E, Brundin L. Dysregulated placental expression of kynurenine pathway enzymes is associated with inflammation and depression in pregnancy. Brain Behav Immun 2024; 119:146-153. [PMID: 38555986 PMCID: PMC11210184 DOI: 10.1016/j.bbi.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Perinatal depression (including antenatal-, postnatal-, and depression that spans both timepoints) is a prevalent disorder with high morbidity that affects both mother and child. Even though the full biological blueprints of perinatal depression remain incomplete, multiple studies indicate that, at least for antenatal depression, the disorder has an inflammatory component likely linked to a dysregulation of the enzymatic kynurenine pathway. The production of neuroactive metabolites in this pathway, including quinolinic acid (QUIN), is upregulated in the placenta due to the multiple immunological roles of the metabolites during pregnancy. Since neuroactive metabolites produced by the pathway also may affect mood by directly affecting glutamate neurotransmission, we sought to investigate whether the placental expression of kynurenine pathway enzymes controlling QUIN production was associated with both peripheral inflammation and depressive symptoms during pregnancy. METHODS 68 placentas obtained at birth were analyzed using qPCR to determine the expression of kynurenine pathway enzymes. Cytokines and metabolites were quantified in plasma using high-sensitivity electroluminescence and ultra-performance liquid chromatography, respectively. Maternal depressive symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS) throughout pregnancy and the post-partum. Associations between these factors were assessed using robust linear regression with ranked enzymes. RESULTS Low placental quinolinate phosphoribosyl transferase (QPRT), the enzyme responsible for degrading QUIN, was associated with higher IL-6 and higher QUIN/kynurenic acid ratios at the 3rd trimester. Moreover, women with severe depressive symptoms in the 3rd trimester had significantly lower placental expression of both QPRT and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD); impaired activity of these two enzymes leads to QUIN accumulation. CONCLUSION Overall, our data support that a compromised placental environment, featuring low expression of critical kynurenine pathway enzymes is associated with increased levels of plasma cytokines and the dysregulated kynurenine metabolite pattern observed in depressed women during pregnancy.
Collapse
Affiliation(s)
- Qiong Sha
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Sarah A Keaton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - LeAnn Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | | | - Ehraz Anis
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Richard Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Lauren M Osborne
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Achtyes
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Lena Brundin
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
5
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Silvano A, Niccolai E, Baldi S, Seravalli V, Strambi N, Nannini G, Pallecchi M, Bartolucci G, Parenti A, Amedei A, Di Tommaso M. Exploring Plasma-Level Gut Microbiota Mediators and Pro-Inflammatory Markers in Pregnant Women with Short Cervix and Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:13653. [PMID: 37686463 PMCID: PMC10487736 DOI: 10.3390/ijms241713653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The composition of the gut microbiota (GM) undergoes significant changes during pregnancy, influenced by metabolic status, energy homeostasis, fat storage, and hormonal and immunological modifications. Moreover, dysbiosis during pregnancy has been associated with preterm birth, which is influenced by factors such as cervical shortening, infection, inflammation, and oxidative stress. However, dysbiosis also affects the levels of lipopolysaccharide-binding protein (LBP), short-chain fatty acids (SCFAs), and free fatty acids (FFA) in other tissues and the bloodstream. In this study, we investigated the plasmatic levels of some pro-inflammatory cytokines, such as matrix metalloproteinases-8 (MMP-8), interleukin-8 (IL-8), heat shock protein 70 (Hsp70), and microbial markers in pregnant women with a short cervix (≤25 mm) compared to those with normal cervical length (>25 mm). We examined the differences in the concentration of these markers between the two groups, also assessing the impact of gestational diabetes mellitus. Understanding the relationship between GM dysbiosis, inflammatory mediators, and cervical changes during pregnancy may contribute to the identification of potential biomarkers and therapeutic targets for the prevention and management of adverse pregnancy outcomes, including preterm birth.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50019 Sesto Fiorentino, Italy; (M.P.); (G.B.)
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50019 Sesto Fiorentino, Italy; (M.P.); (G.B.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (S.B.); (G.N.); (A.A.)
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50139 Florence, Italy; (A.S.); (V.S.); (N.S.)
| |
Collapse
|
7
|
Prescott S, Mutka T, Baumgartel K, Yoo JY, Morgan H, Postolache TT, Seyfang A, Gostner JM, Fuchs D, Kim K, Groer ME. Tryptophan metabolism and immune alterations in pregnant Hispanic women with chronic Toxoplasma gondii infection. Am J Reprod Immunol 2023; 90:e13768. [PMID: 37641377 PMCID: PMC10538252 DOI: 10.1111/aji.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Pregnancy markedly modifies women's metabolism and immune functions. We hypothesized that pregnancy might alter the immune and metabolic responses to chronic Toxoplasma gondii infection in pregnancy. METHOD OF STUDY A population of 690 pregnant Hispanic women were screened for antibodies to T. gondii and 158 women were positive (23% positivity) with 83% showing high avidity indices. These seropositive women were followed through their pregnancies with four data collection time points and a postpartum collection at two clinics in Tampa, Florida. A T. gondii seronegative group (N = 128) was randomly selected to serve as a control group and measured along pregnancy in the same way. Serum levels of tryptophan, kynurenine, and their ratio, phenylalanine, tyrosine and their ratio, neopterin, and nitrite were measured through pregnancy and the postpartum. A plasma cytokine panel (IFN-γ, TNFα, IL-2, IL-10, IL-12, IL-6, IL-17) was analyzed in parallel. RESULTS The major findings suggest that indoleamine 2,3-dioxygenase (IDO-1) was less activated in T. gondii seropositive pregnant Hispanic women with chronic infection. Evidence for IDO-1 suppression was that tryptophan catabolism was less pronounced and there were lower levels of multiple inflammatory cytokines including IFN-γ, which is the major inducer of IDO-1, and higher nitrite concentration, a surrogate marker for nitric oxide, an inhibitor of IDO. CONCLUSIONS Latent T. gondii infection was associated with higher plasma tryptophan levels, and lower inflammatory cytokines across pregnancy, suggesting suppression of the IDO-1 enzyme, and possible T cell exhaustion during pregnancy.
Collapse
Affiliation(s)
- Stephanie Prescott
- University of South Florida, College of Nursing, Tampa, Florida, USA
- University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Tina Mutka
- University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Kelley Baumgartel
- University of South Florida, College of Nursing, Tampa, Florida, USA
| | - Ji Youn Yoo
- University of Tennessee, College of Nursing, Knoxville, Tennessee, USA
| | - Hailey Morgan
- University of South Florida, College of Nursing, Tampa, Florida, USA
| | - Teodor T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Rocky Mountain MIRECC for Suicide Prevention, Aurora, Colorado, USA
- VISN 5 MIRECC, Baltimore, Maryland, USA
| | - Andreas Seyfang
- University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Medical University of Innsbruck, Austria
| | - Kami Kim
- University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Maureen E Groer
- University of Tennessee, College of Nursing, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Pedraz-Petrozzi B, Marszalek-Grabska M, Kozub A, Szalaj K, Trzpil A, Stachniuk A, Lamadé EK, Gilles M, Deuschle M, Turski WA, Fornal E. LC-MS/MS-based quantification of tryptophan, kynurenine, and kynurenic acid in human placental, fetal membranes, and umbilical cord samples. Sci Rep 2023; 13:12554. [PMID: 37532780 PMCID: PMC10397233 DOI: 10.1038/s41598-023-39774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Tryptophan breakdown metabolites formed along the kynurenine pathway play a significant role in pregnancy and fetal development. To understand their involvement, it is crucial to quantify the levels of tryptophan (TRP), kynurenine (KYN), and kynurenic acid (KYNA) in relevant biological samples such as the placenta, fetal membranes, and umbilical cord. This study used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine TRP, KYN, and KYNA levels. The LC-MS/MS method was optimized for high sensitivity and specificity, demonstrating good reproducibility with a precision of < 10% CV and an accuracy of 85-115%. The lower limit of quantification for both TRP and KYN was 0.5 µg/ml, while for KYNA, it was 0.5 ng/mL. The method exhibited linearity within the examined range of concentrations in the homogenate, ranging from 0.5 to 30 µg/ml for TRP and KYN and from 0.5 to 25 ng/ml for KYNA. Using this method, we found significant differences in the concentrations of these substances in investigated maternal-fetal compartments. Placenta samples exhibited higher KYN and lower KYNA concentrations than the umbilical cord and fetal membrane, indicating a potentially important role for kynurenines in late pregnancy. Collectively, this finding may facilitate further research and provide inside into the involvement of the kynurenine pathway of TRP metabolism in fetal development.
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Anna Kozub
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Klaudia Szalaj
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
9
|
Taibl KR, Dunlop AL, Barr DB, Li YY, Eick SM, Kannan K, Ryan PB, Schroder M, Rushing B, Fennell T, Chang CJ, Tan Y, Marsit CJ, Jones DP, Liang D. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun 2023; 14:3120. [PMID: 37253729 PMCID: PMC10229585 DOI: 10.1038/s41467-023-38710-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Marginalized populations experience disproportionate rates of preterm birth and early term birth. Exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to reduce length of gestation, but the underlying mechanisms are unknown. In the present study, we characterized the molecular signatures of prenatal PFAS exposure and gestational age at birth outcomes in the newborn dried blood spot metabolome among 267 African American dyads in Atlanta, Georgia between 2016 and 2020. Pregnant people with higher serum perfluorooctanoic acid and perfluorohexane sulfonic acid concentrations had increased odds of an early birth. After false discovery rate correction, the effect of prenatal PFAS exposure on reduced length of gestation was associated with 8 metabolomic pathways and 52 metabolites in newborn dried blood spots, which suggested perturbed tissue neogenesis, neuroendocrine function, and redox homeostasis. These mechanisms explain how prenatal PFAS exposure gives rise to the leading cause of infant death in the United States.
Collapse
Grants
- R01 NR014800 NINR NIH HHS
- U2C ES026542 NIEHS NIH HHS
- P50 ES026071 NIEHS NIH HHS
- R01 MD009064 NIMHD NIH HHS
- UH3 OD023318 NIH HHS
- R01 MD009746 NIMHD NIH HHS
- R21 ES032117 NIEHS NIH HHS
- U2C ES026560 NIEHS NIH HHS
- P30 ES019776 NIEHS NIH HHS
- R24 ES029490 NIEHS NIH HHS
- U24 ES029490 NIEHS NIH HHS
- UG3 OD023318 NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U.S. Department of Health & Human Services | NIH | National Institute of Nursing Research (NINR)
- U.S. Department of Health & Human Services | NIH | National Institute on Minority Health and Health Disparities (NIMHD)
- Research reported in this publication was supported by the Environmental Influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health, under Award Numbers 5U2COD023375-05/A03-3824, the National Institute of Health (NIH) research grants [R21ES032117, R01NR014800, R01MD009064, R24ES029490, R01MD009746], NIH Center Grants [P50ES02607, P30ES019776, UH3OD023318, U2CES026560, U2CES026542], and Environmental Protection Agency (USEPA) center grant [83615301].
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuan-Yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Madison Schroder
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Blake Rushing
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Fennell
- Analytical Chemistry and Pharmaceuticals, RTI International, Research Triangle Park, Durham, NC, USA
| | - Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Liu Z, Liu H, Wang C, Pei J, Chu N, Peng T, Li X, Gu W, Tang Y. Identification of LncRNA-miRNA-mRNA ceRNA network in hypoxia-induced HTR-8/SVneo cells for preeclampsia. Medicine (Baltimore) 2023; 102:e33649. [PMID: 37115060 PMCID: PMC10145823 DOI: 10.1097/md.0000000000033649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Preeclampsia (PE) is a common pregnancy complication, and placental hypoxia is one of its causes. We aimed to identify the transcriptional profile and construct a long non-coding RNAs (lncRNA)-centered competing endogenous RNAs (ceRNA) network in hypoxia-induced HTR8/SVneo cells. We used datasets from the GEO database to identify important pathways in PE. We performed microarray profiling and functional analysis to identify differentially expressed long non-coding RNAs (lncRNAs), differentially expressed profiles of microRNA (miRNAs), and differentially expressed profiles of messenger RNA (mRNAs) in hypoxia-induced HTR8/SVneo cells. The candidates were validated using quantitative reverse transcription polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses were performed to understand the functional significance of differentially expressed genes. Finally, we constructed an lncRNA-centered ceRNA network. Several hub genes were validated both in placentas from PE and normal pregnancy, and in hypoxia-induced HTR8/SVneo cells. The hypoxic response pathway was involved in the pathophysiology of PE. Subsequently, we identified 536 differentially expressed profiles of lncRNAs (183 upregulated and 353 downregulated), 46 differentially expressed profiles of miRNAs (35 upregulated and 11 downregulated), and 2782 differentially expressed profiles of mRNAs (DEmRNAs) (1031 upregulated and 1751 downregulated) in hypoxia-induced HTR8/SVneo cells. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed potential pathways affected by these genes, such as angiogenesis, the HIF-1 signaling pathway, and the PI3K-Akt signaling pathway. The ceRNA network comprised 35 lncRNAs, 11 miRNAs, 27 mRNAs, and 2 hub lncRNAs, which might play a vital role in placental functions and PE. Our results revealed the transcriptome profile and constructed an lncRNA-centered ceRNA network in hypoxia-induced HTR8/SVneo cells, thereby providing potential therapeutic targets for PE.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiyan Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chengjie Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jiangnan Pei
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Nan Chu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaotian Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weirong Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Silvano A, Seravalli V, Strambi N, Vallario A, Tofani L, Parenti A, Di Tommaso M. Tryptophan degradation enzymes expression in the placenta and the Kynurenine/Tryptophan ratio in maternal plasma after elective cesarean section. J Reprod Immunol 2023; 156:103823. [PMID: 36739732 DOI: 10.1016/j.jri.2023.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) metabolize tryptophan in the kynurenine pathway. We evaluated these enzymes' mRNA expression in maternal and fetal sides of the placenta of uncomplicated, unlabored full-term pregnancies after elective cesarean section and compared it with that of placentas obtained from vaginal delivery. Tryptophan and kynurenine plasmatic levels after cesarean section were measured, to investigate their possible correlation with IDO1 and TDO mRNA (TDO2) expression. The results suggested that IDO1 and TDO2 expression was higher in the maternal side of the placenta and that labor significantly affects TDO2 expression and the plasma Kynurenine/Tryptophan ratio.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Arianna Vallario
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Lorenzo Tofani
- Department of Statistics, Computer Science, Applications, University of Florence, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy.
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Wang S, Sun M, Ning Z, Chen Y, Zhou H, Mu W. The effects of sustained and diel-cycling hypoxia on high-latitude fish Phoxinus lagowskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101059. [PMID: 36706598 DOI: 10.1016/j.cbd.2023.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
High-latitude fish are subjected to sustained and diel-cycling hypoxia. Oxygen deficiency could pose a serious threat to fish, but little information is available regarding the response mechanisms employed by high-latitude fish to sustained and diel-cycling hypoxia. In this study, a combination of transcriptomics and metabolomics were used to examine the molecular response mechanisms actioned by sustained and diel-cycling hypoxia in the high-latitude fish, Phoxinus lagowskii. P. lagowskii was divided into normoxic control (6.0-7.0 mg/L dissolved oxygen), sustained (1.5 mg/L dissolved oxygen), and diel-cycling hypoxic treatment (6.0-7.0 mg/L between 07:00-21:00, and 3.0-4.0 mg/L between 21:00-07:00) tanks for 28 days. Differentially expressed genes (DEGs) and significantly different metabolites (DMs) related to digestive proteases, lipid metabolism, estrogen signaling pathway, steroid hormone biosynthesis, glutathione metabolism, and tryptophan metabolism were identified from comparative metabolomic and transcriptomic data expression profiles within the liver. The current study found that P. lagowskii had significantly different responses between sustained and diel-cycling hypoxia. P. lagowskii faced with sustained hypoxia may enhance their tolerance capacity through phospholipid and glutathione metabolism. Our data provide new insights into the high latitude fish coping with changes in hypoxia and warrants further investigation into these potentially important genes and metabolites.
Collapse
Affiliation(s)
- Sihan Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhaoyang Ning
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Haishui Zhou
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
13
|
Roles of Interleukin-6-mediated immunometabolic reprogramming in COVID-19 and other viral infection-associated diseases. Int Immunopharmacol 2022; 110:109005. [PMID: 35780641 PMCID: PMC9236983 DOI: 10.1016/j.intimp.2022.109005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/08/2023]
Abstract
Interleukin-6 (IL-6) is a highly pleiotropic glycoprotein factor that can modulate innate and adaptive immunity as well as various aspects of metabolism, including glycolysis, fatty acid oxidation and oxidative phosphorylation. Recently, the expression and release of IL-6 is shown to be significantly increased in numerous diseases related to virus infection, and this increase is positively correlated with the disease severity. Immunity and metabolism are two highly integrated and interdependent systems, the balance between them plays a pivotal role in maintaining body homeostasis. IL-6-elicited inflammatory response is found to be closely associated with metabolic disorder in patients with viral infection. This brief review summarizes the regulatory role of IL-6 in immunometabolic reprogramming among seven viral infection-associated diseases.
Collapse
|
14
|
Liu ZF, Sylivris A, Gordon M, Sundram S. The association between tryptophan levels and postpartum mood disorders: a systematic review and meta-analysis. BMC Psychiatry 2022; 22:539. [PMID: 35941560 PMCID: PMC9361669 DOI: 10.1186/s12888-022-04178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Over 50% of women experience mood disturbance in the postpartum period, with significant implications for maternal and infant health but identifying those at risk is not easily possible. The essential amino acid, tryptophan (TRP) through its neuroactive metabolites, has been implicated in the pathology of mood disorders. Thus, TRP levels tested in the peripartum period have been proposed as a potential biomarker for subsequent development of postpartum mood disturbances, in particular postpartum depression (PPD). A systematic review and meta-analysis following PROSPERO guidelines [CRD42021252462] was conducted on peer-reviewed, English language studies that measured blood levels of TRP during the postpartum period in women who were also evaluated for postpartum "blues" or PPD. Thirteen studies met the inclusion criteria, of which five studies contained sufficient data to conduct a meta-analysis. Low total TRP levels in postpartum days 1 to 5 were significantly associated with PPD (SMD: -5.39, 95%CI [-7.72, -3.05]). No significant association was found between free TRP levels in the postpartum period and PPD (SMD: -3.43, 95%CI [-7.76, 0.89]). Our findings confirm the necessity for more replicable designed studies regarding TRP and its relationship to postpartum depression. If there were greater clarity regarding TRP metabolism during pregnancy, then the next step would be to consider measuring total plasma TRP levels on postpartum days 1 to 5 to identify women at greater risk of developing PPD.
Collapse
Affiliation(s)
- Zhao Feng Liu
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Amy Sylivris
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Michael Gordon
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.,Mental Health Program, Monash Health, Melbourne, VIC, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia. .,Mental Health Program, Monash Health, Melbourne, VIC, Australia. .,Monash Medical Centre, Block P, Level 3, 246 Clayton Rd, Melbourne, 3168, VIC, Australia.
| |
Collapse
|
15
|
Silvano A, Seravalli V, Strambi N, Tartarotti E, Tofani L, Calosi L, Parenti A, Di Tommaso M. Tryptophan degradation enzymes and Angiotensin (1-7) expression in human placenta. J Reprod Immunol 2022; 153:103692. [DOI: 10.1016/j.jri.2022.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
|
16
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|
17
|
Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, Thomas PJ, Holloway AC. An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. Int J Mol Sci 2022; 23:6300. [PMID: 35682980 PMCID: PMC9181223 DOI: 10.3390/ijms23116300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Amrita Debnath
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Jade V. Wish
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Jason C. Raine
- Quesnel River Research Centre, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Gregg T. Tomy
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| |
Collapse
|
18
|
Wang LL, Li ZH, Wang H, Kwak-Kim J, Liao AH. Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy. J Reprod Immunol 2022; 151:103627. [DOI: 10.1016/j.jri.2022.103627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
|
19
|
Zhang T, Shen HH, Qin XY, Li MQ. The metabolic characteristic of decidual immune cells and their unique properties in pregnancy loss. Immunol Rev 2022; 308:168-186. [PMID: 35582842 DOI: 10.1111/imr.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Maternal tolerance to semi- or fully allograft conceptus is a prerequisite for the maintenance of pregnancy. Once this homeostasis is disrupted, it may result in pregnancy loss. As a potential approach to prevent pregnancy loss, targeting decidual immune cells (DICs) at the maternal-fetal interface has been suggested. Although the phenotypic features and functions of DIC have been extensively profiled, the regulatory pathways for this unique immunological adaption have yet to be elucidated. In recent years, a pivotal mechanism has been highlighted in the area of immunometabolism, by which the changes in intracellular metabolic pathways in DIC and interaction with the adjacent metabolites in the microenvironment can alter their phenotypes and function. More inspiringly, the manipulation of metabolic profiling in DIC provides a novel avenue for the prevention and treatment of pregnancy loss. Herein, this review highlights the major metabolic programs (specifically, glycolysis, ATP-adenosine metabolism, lysophosphatidic acid metabolism, and amino acid metabolism) in multiple immune cells (including decidual NK cells, macrophages, and T cells) and their integrations with the metabolic microenvironment in normal pregnancy. Importantly, this perspective may help to provide a potential therapeutic strategy for reducing pregnancy loss via targeting this interplay.
Collapse
Affiliation(s)
- Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Medical School, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Battaglia DM, Sanchez-Pino MD, Nichols CD, Foster TP. Herpes Simplex Virus-1 Induced Serotonin-Associated Metabolic Pathways Correlate With Severity of Virus- and Inflammation-Associated Ocular Disease. Front Microbiol 2022; 13:859866. [PMID: 35391733 PMCID: PMC8982329 DOI: 10.3389/fmicb.2022.859866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus-associated diseases are a complex interaction between cytolytic viral replication and inflammation. Within the normally avascular and immunoprivileged cornea, HSV ocular infection can result in vision-threatening immune-mediated herpetic keratitis, the leading infectious cause of corneal blindness in the industrialized world. Viral replicative processes are entirely dependent upon numerous cellular biosynthetic and metabolic pathways. Consistent with this premise, HSV infection was shown to profoundly alter gene expression associated with cellular amino acid biosynthetic pathways, including key tryptophan metabolism genes. The essential amino acid tryptophan is crucial for pathogen replication, the generation of host immune responses, and the synthesis of neurotransmitters, such as serotonin. Intriguingly, Tryptophan hydroxylase 2 (TPH2), the neuronal specific rate-limiting enzyme for serotonin synthesis, was the most significantly upregulated gene by HSV in an amino acid metabolism PCR array. Despite the well-defined effects of serotonin in the nervous system, the association of peripheral serotonin in disease-promoting inflammation has only recently begun to be elucidated. Likewise, the impact of serotonin on viral replication and ocular disease is also largely unknown. We therefore examined the effect of HSV-induced serotonin-associated synthesis and transport pathways on HSV-1 replication, as well as the correlation between HSV-induced ocular serotonin levels and disease severity. HSV infection induced expression of the critical serotonin synthesis enzymes TPH-1, TPH-2, and DOPA decarboxylase (DDC), as well as the serotonin transporter, SERT. Concordantly, HSV-infected cells upregulated serotonin synthesis and its intracellular uptake. Increased serotonin synthesis and uptake was shown to influence HSV replication. Exogenous addition of serotonin increased HSV-1 yield, while both TPH-1/2 and SERT pharmacological inhibition reduced viral yield. Congruent with these in vitro findings, rabbits intraocularly infected with HSV-1 exhibited significantly higher aqueous humor serotonin concentrations that positively and strongly correlated with viral load and ocular disease severity. Collectively, our findings indicate that HSV-1 promotes serotonin synthesis and cellular uptake to facilitate viral replication and consequently, serotonin's proinflammatory effects may enhance the development of ocular disease.
Collapse
Affiliation(s)
- Diana Marie Battaglia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Maria D. Sanchez-Pino
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Timothy P. Foster
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Louisiana Vaccine Center, New Orleans, LA, United States
| |
Collapse
|
21
|
Song X, Si Q, Qi R, Liu W, Li M, Guo M, Wei L, Yao Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front Immunol 2022; 12:800630. [PMID: 35003126 PMCID: PMC8733291 DOI: 10.3389/fimmu.2021.800630] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis is a complex multifactorial and multistep process in which tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade host immune attacks. The degradation of tryptophan into immunosuppressive kynurenine is considered an important immunosuppressive mechanism in the tumor microenvironment. There are three enzymes, namely, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1), and indoleamine 2,3-dioxygenase 2 (IDO2), involved in the metabolism of tryptophan. IDO1 has a wider distribution and higher activity in catalyzing tryptophan than the other two; therefore, it has been studied most extensively. IDO1 is a cytosolic monomeric, heme-containing enzyme, which is now considered an authentic immune regulator and represents one of the promising drug targets for tumor immunotherapy. Collectively, this review highlights the regulation of IDO1 gene expression and the ambivalent mechanisms of IDO1 on the antitumoral immune response. Further, new therapeutic targets via the regulation of IDO1 are discussed. A comprehensive analysis of the expression and biological function of IDO1 can help us to understand the therapeutic strategies of the inhibitors targeting IDO1 in malignant tumors.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Qianqian Si
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Rui Qi
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Weidan Liu
- Department of Clinical Laboratory, The People's Hospital, Pingxiang County, Xingtai, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Mengyue Guo
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|