1
|
Jonnalagadda SK, Duan L, Dow LF, Boligala GP, Kosmacek E, McCoy K, Oberley-Deegan R, Chhonker YS, Murry DJ, Reynolds CP, Maurer BJ, Penning TM, Trippier PC. Coumarin-Based Aldo-Keto Reductase Family 1C (AKR1C) 2 and 3 Inhibitors. ChemMedChem 2024; 19:e202400081. [PMID: 38976686 PMCID: PMC11537819 DOI: 10.1002/cmdc.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition. Coumarin amide 3 a possessed IC50 values of 50 nM and 90 nM for AKR1C3 and AKR1C2, respectively, and exhibits 'drug-like' metabolic stability and half-life in human and mouse liver microsomes and plasma. Compound 3 a was employed as a chemical tool to determine pan-AKR1C2/3 inhibition effects both as a radiation sensitizer and as a potentiator of chemotherapy cytotoxicity. In contrast to previously reported pan-AKR1C inhibitors, 3 a demonstrated no radiation sensitization effect in a radiation-resistant prostate cancer cell line model. Pan-AKR1C inhibition also did not potentiate the in vitro cytotoxicity of ABT-737, daunorubicin or dexamethasone, in two patient-derived T-cell ALL and pre-B-cell ALL cell lines. In contrast, a highly selective AKR1C3 inhibitor, compound K90, enhanced the cytotoxicity of both ABT-737 and daunorubicin in the T-cell ALL cell line model. Thus, the inhibitory profile required to enhance chemotherapeutic cytotoxicity in leukemia may be AKR1C isoform and drug specific.
Collapse
Affiliation(s)
- Sravan K. Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Louise F. Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Geetha P Boligala
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Elizabeth Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Kristyn McCoy
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Rebecca Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Darryl J. Murry
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - C. Patrick Reynolds
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Barry J. Maurer
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
2
|
Andress Huacachino A, Joo J, Narayanan N, Tehim A, Himes BE, Penning TM. Aldo-keto reductase (AKR) superfamily website and database: An update. Chem Biol Interact 2024; 398:111111. [PMID: 38878851 PMCID: PMC11232437 DOI: 10.1016/j.cbi.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared features of the family include 1) structural similarities such as an (α/β)8-barrel structure, disordered loop structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family membership is that the protein must have a measured function, and thus, genomic sequences suggesting the transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the member to be communicated easily. Specifically, protein names include the root "AKR", followed by the family represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we present an updated version of the website and database that were released in 2023. The database contains genetic, functional, and structural data drawn from various sources, while the website provides alignment information and family tree structure derived from bioinformatics analyses.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Nisha Narayanan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Anisha Tehim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA.
| |
Collapse
|
3
|
Carmona AV, Jonnalagadda S, Case AM, Maddeboina K, Jonnalagadda SK, Dow LF, Duan L, Penning TM, Trippier PC. Discovery of an Aldo-Keto reductase 1C3 (AKR1C3) degrader. Commun Chem 2024; 7:95. [PMID: 38684887 PMCID: PMC11059152 DOI: 10.1038/s42004-024-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a protein upregulated in prostate cancer, hematological malignancies, and other cancers where it contributes to proliferation and chemotherapeutic resistance. Androgen receptor splice variant 7 (ARv7) is the most common mutation of the AR receptor that confers resistance to clinical androgen receptor signalling inhibitors in castration-resistant prostate cancer. AKR1C3 interacts with ARv7 promoting stabilization. Herein we report the discovery of the first-in-class AKR1C3 Proteolysis-Targeting Chimera (PROTAC) degrader. This first-generation degrader potently reduced AKR1C3 expression in 22Rv1 prostate cancer cells with a half-maximal degradation concentration (DC50) of 52 nM. Gratifyingly, concomitant degradation of ARv7 was observed with a DC50 = 70 nM, along with degradation of the AKR1C3 isoforms AKR1C1 and AKR1C2 to a lesser extent. This compound represents a highly useful chemical tool and a promising strategy for prostate cancer intervention.
Collapse
Affiliation(s)
- Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
| |
Collapse
|
4
|
Schumacher S, Klose L, Lambertz J, Lütjohann D, Biemann R, Kuerten S, Fester L. The mitochondrial protease PARL is required for spermatogenesis. Commun Biol 2024; 7:44. [PMID: 38182793 PMCID: PMC10770312 DOI: 10.1038/s42003-023-05703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Mitochondrial function plays an important role in the maintenance of male fertility. However, the mechanisms underlying mitochondrial defect-related infertility remain mostly unclear. Here we show that a deficiency of PARL (Parl-/-), a mitochondrial protease, causes complete arrest of spermatogenesis during meiosis I. PARL deficiency led to severe downregulation of proteins of respiratory chain complex IV in testes that did not occur in other tested organs, causing a deficit in complex IV activity and ATP production. Furthermore, Parl-/- testes showed an almost complete loss of HSD17B3, a protein of the sER responsible for the last step in testosterone synthesis. While testosterone production appeared to be restored by overexpression of HSD17B12, loss of the canonical testosterone synthesis led to an upregulation of luteinizing hormone (LH) and of LH-regulated responses. These results suggest an important impact of the downstream regulation of mitochondrial defects that manifest in a cell-type-specific manner and extend beyond mitochondria.
Collapse
Affiliation(s)
- Sarah Schumacher
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115, Bonn, Germany.
| | - Laura Klose
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Jessica Lambertz
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, 04103, Leipzig, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Lars Fester
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
5
|
Detlefsen AJ, Mesaros CA, Duan L, Penning TM. AKR1C3 Converts Castrate and Post-Abiraterone DHEA-S into Testosterone to Stimulate Growth of Prostate Cancer Cells via 5-Androstene-3β,17β-Diol. CANCER RESEARCH COMMUNICATIONS 2023; 3:1888-1898. [PMID: 37772993 PMCID: PMC10508215 DOI: 10.1158/2767-9764.crc-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Androgen receptor signaling inhibitors (ARSI) are used to treat castration-resistant prostate cancer (CRPC) to stop a resurgence of androgen receptor (AR) signaling. Despite early success, patients on ARSIs eventually relapse, develop drug resistance, and succumb to the disease. Resistance may occur through intratumoral steroidogenesis mediated by upregulation of aldo-keto reductase family 1C member 3 (AKR1C3). Patients treated with leuprolide (castrate) and those treated with leuprolide plus abiraterone (post-Abi) harbor a reservoir of DHEA-S which could fuel testosterone (T) biosynthesis via AKR1C3 to cause a resurgence of prostate cancer cell growth. We demonstrate that concentrations of DHEA-S found in castrate and post-Abi patients are (i) converted to T in an AKR1C3-dependent manner in prostate cancer cells, and (ii) in amounts sufficient to stimulate AKR1C3-dependent cell growth. We observed this in primary and metastatic prostate cancer cell lines, CWR22PC and DuCaP, respectively. Androgen measurements were made by stable isotope dilution LC-MS/MS. We demonstrate AKR1C3 dependence using stable short hairpin RNA knockdown and pharmacologic inhibitors. We also demonstrate that free DHEA is reduced to 5-androstene-3β,17β-diol (5-Adiol) by AKR1C3 and that this is a major metabolite, suggesting that in our cell lines 5-Adiol is a predominant precursor of T. We have identified a mechanism of ARSI resistance common to both primary and metastatic cell lines that is dependent on the conversion of DHEA to 5-Adiol on route to T catalyzed by AKR1C3. SIGNIFICANCE We show that reservoirs of DHEA-S that remain after ARSI treatment are converted into T in primary and metastatic prostate cancer cells in amounts sufficient to stimulate cell growth. Pharmacologic and genetic approaches demonstrate that AKR1C3 is required for these effects. Furthermore, the route to T proceeds through 5-Adiol. We propose that this is a mechanism of ARSI drug resistance.
Collapse
Affiliation(s)
- Andrea J. Detlefsen
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clementina A. Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ling Duan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Trevor M. Penning
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
7
|
Gashaw I, Reif S, Wiesinger H, Kaiser A, Zollmann FS, Scheerans C, Grevel J, Piraino P, Seidel H, Peters M, Rottmann A, Rohde B, Arlt W, Hilpert J. Novel aldo-keto reductase 1C3 inhibitor affects androgen metabolism but not ovarian function in healthy women: a phase 1 study. Eur J Endocrinol 2023; 188:578-591. [PMID: 37306288 PMCID: PMC10376460 DOI: 10.1093/ejendo/lvad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Aldo-keto reductase 1C3 (AKR1C3) has been postulated to be involved in androgen, progesterone, and estrogen metabolism. Aldo-keto reductase 1C3 inhibition has been proposed for treatment of endometriosis and polycystic ovary syndrome. Clinical biomarkers of target engagement, which can greatly facilitate drug development, have not yet been described for AKR1C3 inhibitors. Here, we analyzed pharmacodynamic data from a phase 1 study with a new selective AKR1C3 inhibitor, BAY1128688, to identify response biomarkers and assess effects on ovarian function. DESIGN In a multiple-ascending-dose placebo-controlled study, 33 postmenopausal women received BAY1128688 (3, 30, or 90 mg once daily or 60 mg twice daily) or placebo for 14 days. Eighteen premenopausal women received 60 mg BAY1128688 once or twice daily for 28 days. METHODS We measured 17 serum steroids by liquid chromatography-tandem mass spectrometry, alongside analysis of pharmacokinetics, menstrual cyclicity, and safety parameters. RESULTS In both study populations, we observed substantial, dose-dependent increases in circulating concentrations of the inactive androgen metabolite androsterone and minor increases in circulating etiocholanolone and dihydrotestosterone concentrations. In premenopausal women, androsterone concentrations increased 2.95-fold on average (95% confidence interval: 0.35-3.55) during once- or twice-daily treatment. Note, no concomitant changes in serum 17β-estradiol and progesterone were observed, and menstrual cyclicity and ovarian function were not altered by the treatment. CONCLUSIONS Serum androsterone was identified as a robust response biomarker for AKR1C3 inhibitor treatment in women. Aldo-keto reductase 1C3 inhibitor administration for 4 weeks did not affect ovarian function.ClinicalTrials.gov Identifier: NCT02434640; EudraCT Number: 2014-005298-36.
Collapse
Affiliation(s)
- Isabella Gashaw
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Stefanie Reif
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Herbert Wiesinger
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Andreas Kaiser
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | | | | | - Joachim Grevel
- Clinical Development, Bast GmbH, 69115 Heidelberg, Germany
| | - Paolo Piraino
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Henrik Seidel
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Michaele Peters
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Antje Rottmann
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Beate Rohde
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Wiebke Arlt
- Medical Research Council London Institute of Medical Sciences, W12 0NN London, United Kingdom
- Department of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN London, United Kingdom
| | - Jan Hilpert
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| |
Collapse
|
8
|
Ota A, Kawai M, Kudo Y, Segawa J, Hoshi M, Kawano S, Yoshino Y, Ichihara K, Shiota M, Fujimoto N, Matsunaga T, Endo S, Ikari A. Artepillin C overcomes apalutamide resistance through blocking androgen signaling in prostate cancer cells. Arch Biochem Biophys 2023; 735:109519. [PMID: 36642262 DOI: 10.1016/j.abb.2023.109519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Prostate cancer has a relatively good prognosis, but most cases develop resistance to hormone therapy, leading to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) antagonists and a cytochrome P450 17A1 inhibitor have been used to treat CRPC, but cancer cells readily develop resistance to these drugs. In this study, to improve the therapy of CRPC, we searched for natural compounds which block androgen signaling. Among cinnamic acid derivatives contained in Brazilian green propolis, artepillin C (ArtC) suppressed expressions of androgen-induced prostate-specific antigen and transmembrane protease serine 2 in a dose-dependent manner. Reporter assays revealed that ArtC displayed AR antagonist activity, albeit weaker than an AR antagonist flutamide. In general, aberrant activation of the androgen signaling is involved in the resistance of prostate cancer cells to hormone therapy. Recently, apalutamide, a novel AR antagonist, has been in clinical use, but its drug-resistant cases have been already reported. To search for compounds which overcome the resistance to apalutamide, we established apalutamide-resistant prostate cancer 22Rv1 cells (22Rv1/APA). The 22Rv1/APA cells showed higher AR expression and androgen sensitivity than parental 22Rv1 cells. ArtC inhibited androgen-induced proliferation of 22Rv1/APA cells by suppressing the enhanced androgen signaling through blocking the nuclear translocation of AR. In addition, ArtC potently sensitized the resistant cells to apalutamide by inducing apoptotic cell death due to mitochondrial dysfunction. These results suggest that the intake of Brazilian green propolis containing ArtC improves prostate cancer therapy.
Collapse
Affiliation(s)
- Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Manami Hoshi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu, 502-0071, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| |
Collapse
|
9
|
SUN TINGTING, SUN XUE, WANG XIN, GUO RUI, YU YUANHUA, GAO LE. Analysis of the mechanism of aldo-keto reductase dependent cis-platin resistance in HepG2 cells based on transcriptomic and NADH metabolic state. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Lawrence BM, O’Donnell L, Smith LB, Rebourcet D. New Insights into Testosterone Biosynthesis: Novel Observations from HSD17B3 Deficient Mice. Int J Mol Sci 2022; 23:ijms232415555. [PMID: 36555196 PMCID: PMC9779265 DOI: 10.3390/ijms232415555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Androgens such as testosterone and dihydrotestosterone (DHT) are essential for male sexual development, masculinisation, and fertility. Testosterone is produced via the canonical androgen production pathway and is essential for normal masculinisation and testis function. Disruption to androgen production can result in disorders of sexual development (DSD). In the canonical pathway, 17β-hydroxysteroid dehydrogenase type 3 (HSD17B3) is viewed as a critical enzyme in the production of testosterone, performing the final conversion required. HSD17B3 deficiency in humans is associated with DSD due to low testosterone concentration during development. Individuals with HSD17B3 mutations have poorly masculinised external genitalia that can appear as ambiguous or female, whilst having internal Wolffian structures and testes. Recent studies in mice deficient in HSD17B3 have made the surprising finding that testosterone production is maintained, male mice are masculinised and remain fertile, suggesting differences between mice and human testosterone production exist. We discuss the phenotypic differences observed and the possible other pathways and enzymes that could be contributing to testosterone production and male development. The identification of alternative testosterone synthesising enzymes could inform the development of novel therapies to endogenously regulate testosterone production in individuals with testosterone deficiency.
Collapse
Affiliation(s)
- Ben M. Lawrence
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Correspondence: (B.M.L.); (D.R.)
| | - Liza O’Donnell
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lee B. Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Office for Research, Griffith University, Southport, QLD 4222, Australia
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Correspondence: (B.M.L.); (D.R.)
| |
Collapse
|
11
|
Liu M, Shi H, Yan J, Zhang Y, Ma Y, Le K, Li Z, Xing N, Li G. Gene polymorphism-related differences in the outcomes of abiraterone for prostate cancer: a systematic overview. Am J Cancer Res 2021; 11:1873-1894. [PMID: 34094659 PMCID: PMC8167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023] Open
Abstract
Numerous prostate cancer (PC) associated genes have been reported in previous genome-wide association studies. Elucidation of prostate cancer pharmacogenomics have enhanced studies into the impact of germline genetic changes on treatment, in addition to evaluating related genomic alterations and biomarkers in prostate tumor tissues. Currently, Abiraterone (Abi) is used as one of the therapeutic options for PC. In this article, germline variants that have been associated with responses to Abi in patients with advanced PC are summarized. These include biomarker genes such as CYP17A1, AR-V7, HSD3B1, SLCO2B1, SULT1E1, and SRD5A2 that are involved in homologous recombination, as well as in gene expression mutations in important signaling pathways, such as WNT and Abi metabolic pathways.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Hongzhe Shi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yinglin Ma
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Kaidi Le
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Zhongdong Li
- Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical UniversityBeijing 100073, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
12
|
Pan D, Yang W, Zeng Y, Li W, Wang K, Zhao L, Li J, Ye Y, Guo Q. AKR1C3 decreased CML sensitivity to Imatinib in bone marrow microenvironment via dysregulation of miR-379-5p. Cell Signal 2021; 84:110038. [PMID: 33984486 DOI: 10.1016/j.cellsig.2021.110038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Drug resistance is an important cause of death for most patients with chronic myeloid leukemia (CML). The bone marrow microenvironment is believed to be mainly responsible for resistance to BCR-ABL tyrosine kinase inhibitors. The mechanism involved, however, is still unclear. METHODS Bioinformatic analysis from GEO database of AKR1C3 was utilized to identify the AKR1C3 expression in CML cells under bone marrow microenvironment. Western blot and qPCR were performed to detect the AKR1C3 expression in two CML cell lines K562 and KU812 cultured +/- bone microenvironment derived stromal cells. CCK-8, soft agar colony assay, and Annexin V/PI assay were performed to detect the sensitivity of CML cells (K562 and KU812) to Imatinib under a gain of or loss of function of AKR1C3 treatment. The CML murine model intravenous inoculated with K562-OE-vector and K562-OE-AKR1C3 cells were established to estimate the effect of AKR1C3 inhibitor Indomethacin on Imatinib resistance. The bioinformatic analysis of miRNA databases was used to predict the potential miRNAs targeting AKR1C3. And the luciferase assay was utilized to validate the target relationship between miR-379-5p and AKR1C3. And, the soft agar colony assay and Annexin V/PI were used to validate the effect of miR-379-5p in AKR1C3 induced Imatinib resistance. RESULTS In present study, we investigated AKR1C3 was highly expressed in CML under bone marrow microenvironment. AKR1C3 decreased Imatinib activity in K562 and KU812 cells, while inhibition of AKR1C3 could enhance Imatinib sensitivity in vitro study. Furthermore, murine model results showed combination use of AKR1C3 inhibitor Indomethacin effectively prolong mice survival, indicating that AKR1C3 is a promising target to enhance Imatinib treatment. Mechanically, AKR1C3 was found to be suppressed by miR-379-5p, which was down-expression in bone marrow microenvironment. Besides, we found miR-379-5p could bind AKR1C3 3'UTR but not degrade its mRNA level. Further, gain of miR-379-5p rescued the imatinib resistance induced by AKR1C3 overexpression in CML cells. CONCLUSIONS Altogether, our study identifies a novel signaling regulation of miR-379-5p/AKR1C3/EKR axis in regulating IM resistance in CML cell, and provides a scientific base for exploring AKR1C3 as a biomarker in impeding IM resistance in CML.
Collapse
Affiliation(s)
- Di Pan
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Wanwan Yang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Yao Zeng
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Wenjun Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Kaizhen Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Li Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jia Li
- Pathology and PDX efficacy center, China Pharmaceutical University, Nanjing 211100, China
| | - Yuting Ye
- Pathology and PDX efficacy center, China Pharmaceutical University, Nanjing 211100, China
| | - Qinglong Guo
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
| |
Collapse
|
13
|
The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Anal Biochem 2020; 644:114083. [PMID: 33352190 DOI: 10.1016/j.ab.2020.114083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
In rapidly dividing cells, including many cancer cells, l-glutamine is a major energy source. Utilization of glutamine is usually depicted as: l-glutamine → l-glutamate (catalyzed by glutaminase isozymes; GLS1 and GLS2), followed by l-glutamate → α-ketoglutarate [catalyzed by glutamate-linked aminotransferases or by glutamate dehydrogenase (GDH)]. α-Ketoglutarate is a major anaplerotic component of the tricarboxylic acid (TCA) cycle. However, the glutaminase II pathway also converts l-glutamine to α-ketoglutarate. This pathway consists of a glutamine transaminase coupled to ω-amidase [Net reaction: l-Glutamine + α-keto acid + H2O → α-ketoglutarate + l-amino acid + NH4+]. This review focuses on the biological importance of the glutaminase II pathway, especially in relation to metabolism of cancer cells. Our studies suggest a component enzyme of the glutaminase II pathway, ω-amidase, is utilized by tumor cells to provide anaplerotic carbon. Inhibitors of GLS1 are currently in clinical trials as anti-cancer agents. However, this treatment will not prevent the glutaminase II pathway from providing anaplerotic carbon derived from glutamine. Specific inhibitors of ω-amidase, perhaps in combination with a GLS1 inhibitor, may provide greater therapeutic efficacy.
Collapse
|
14
|
Zhou M, Wang X, Xia J, Cheng Y, Xiao L, Bei Y, Tang J, Huang Y, Xiang Q, Huang S. A Mansonone Derivative Coupled with Monoclonal Antibody 4D5-Modified Chitosan Inhibit AKR1C3 to Treat Castration-Resistant Prostate Cancer. Int J Nanomedicine 2020; 15:3087-3098. [PMID: 32431503 PMCID: PMC7200237 DOI: 10.2147/ijn.s241324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Aldo-ketoreductase (AKR) 1C3 is crucial for testosterone synthesis. Abnormally high expression/activity of AKR1C3 can promote castration-resistant prostate cancer (CRPC). A mansonone derivative and AKR1C3 inhibitor, 6e, was combined with 4D5 (extracellular fragment of the monoclonal antibody of human epidermal growth factor receptor-2)-modified chitosan to achieve a nanodrug-delivery system (CS-4D5/6e) to treat CRPC. Materials and Methods Morphologies/properties of CS-4D5/6e were characterized by atomic force microscopy, zeta-potential analysis, and Fourier transform-infrared spectroscopy. CS-4D5/6e uptake was measured by immunofluorescence under confocal laser scanning microscopy. Testosterone in LNCaP cells overexpressing human AKR1C3 (LNCaP-AKR1C3) and cell lysates was measured to reflect AKR1C3 activity. Androgen receptor (AR) and prostate-specific antigen (PSA) expression was measured by Western blotting. CS-4D5/6e-based inhibition of AKR1C3 was evaluated in tumor-xenografted mice. Results CS-4D5/6e was oblate, with a particle size of 200-300 nm and thickness of 1-5 nm. Zeta potential was 1.39±0.248 mV. 6e content in CS-4D5/6e was 7.3±1.4% and was 18±3.6% for 4D5. 6e and CS-4D5/6e inhibited testosterone production significantly in a concentration-dependent manner in LNCaP-AKR1C3 cells, and a decrease in expression of AKR1C3, PSA, and AR was noted. Half-maximal inhibitory concentration of CS-4D5/6e on LNCaP-AKR1C3 cells was significantly lower than that in LNCaP cells (P<0.05). CS-4D5/6e significantly reduced growth of 22Rv1 tumor xenografts by 57.00% compared with that in the vehicle group (P<0.01). Conclusion We demonstrated the antineoplastic activity of a potent AKR1C3 inhibitor (6e) and its nanodrug-delivery system (CS-4D5/6e). First, CS-4D5/6e targeted HER2-positive CRPC cells. Second, it transferred 6e (an AKR1C3 inhibitor) to achieve a reduction in intratumoral testosterone production. Compared with 6e, CS-4D5/6e showed lower systemic toxicity. CS-4D5/6e inhibited tumor growth effectively in mice implanted with tumor xenografts by downregulating testosterone production mediated by intratumoral AKR1C3. These results showed a promising strategy for treatment of the CRPC that develops invariably in prostate-cancer patients.
Collapse
Affiliation(s)
- Meng Zhou
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoyu Wang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Xia
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lichun Xiao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yu Bei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jianzhong Tang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Shiliang Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
15
|
Morsy A, Trippier PC. Reversal of Apalutamide and Darolutamide Aldo-Keto Reductase 1C3-Mediated Resistance by a Small Molecule Inhibitor. ACS Chem Biol 2020; 15:646-650. [PMID: 32125151 DOI: 10.1021/acschembio.0c00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The antiandrogen therapeutics apalutamide and darolutamide entered the clinic in 2018 and 2019, respectively, for the treatment of castration-resistant prostate cancer (CRPC). Increased expression of the enzyme aldo-keto reductase 1C3 (AKR1C3) is phenotypic of CRPC. The enzyme acts to circumvent castration by producing potent androgens that drive proliferation. Furthermore, AKR1C3 mediates chemotherapeutic resistance to the standard of care, enzalutamide, a structural analogue of apalutamide. Resistance develops in almost all CRPC patients within three months of beginning treatment. Herein, we report that both apalutamide and the structurally distinct darolutamide induce AKR1C3 expression in in vitro models of prostate cancer and are susceptible to AKR1C3-mediated resistance. This effect is countered by pretreatment with a potent and highly selective AKR1C3 inhibitor, sensitizing high AKR1C3 expressing prostate cancer cell lines to the action of both chemotherapeutics with a concomitant reduction in expression of AKR1C3 and the biomarker prostate-specific antigen.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
16
|
Penning TM, Detlefsen AJ. Intracrinology-revisited and prostate cancer. J Steroid Biochem Mol Biol 2020; 196:105499. [PMID: 31614208 PMCID: PMC6954292 DOI: 10.1016/j.jsbmb.2019.105499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
The formation of steroid hormones in peripheral target tissues is referred to as their intracrine formation. This process occurs in hormone dependent malignancies such as prostate and breast cancer in which the disease can be either castrate resistant or occur post-menopausally, respectively. In these instances, the major precursor steroid of androgens and estrogens is dehydroepiandrosterone (DHEA) and DHEA-SO4. This article reviews the major pathways by which adrenal steroids are converted to the potent male sex hormones, testosterone (T) and 5α-dihydrotestosterone (5α-DHT) and the discrete enzyme isoforms involved in castration resistant prostate cancer. Previous studies have mainly utilized radiotracers to investigate these pathways but have not used prevailing concentrations of precursors found in castrate male human serum. In addition, the full power of stable-isotope dilution liquid chromatography tandem mass spectrometry has not been applied routinely. Furthermore, it is clear that adaptive responses occur in the transporters and enzyme isoforms involved in response to androgen deprivation therapy that need to be considered.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, 421 Curie Blvd, 1350 BRBII/IIII, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6084, United States.
| | - Andrea J Detlefsen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania School Philadelphia, PA, United States
| |
Collapse
|
17
|
Neuwirt H, Bouchal J, Kharaishvili G, Ploner C, Jöhrer K, Pitterl F, Weber A, Klocker H, Eder IE. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Commun Signal 2020; 18:11. [PMID: 31980029 PMCID: PMC6979368 DOI: 10.1186/s12964-019-0505-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Androgen receptor targeted therapies have emerged as an effective tool to manage advanced prostate cancer (PCa). Nevertheless, frequent occurrence of therapy resistance represents a major challenge in the clinical management of patients, also because the molecular mechanisms behind therapy resistance are not yet fully understood. In the present study, we therefore aimed to identify novel targets to intervene with therapy resistance using gene expression analysis of PCa co-culture spheroids where PCa cells are grown in the presence of cancer-associated fibroblasts (CAFs) and which have been previously shown to be a reliable model for antiandrogen resistance. Methods Gene expression changes of co-culture spheroids (LNCaP and DuCaP seeded together with CAFs) were identified by Illumina microarray profiling. Real-time PCR, Western blotting, immunohistochemistry and cell viability assays in 2D and 3D culture were performed to validate the expression of selected targets in vitro and in vivo. Cytokine profiling was conducted to analyze CAF-conditioned medium. Results Gene expression analysis of co-culture spheroids revealed that CAFs induced a significant upregulation of cholesterol and steroid biosynthesis pathways in PCa cells. Cytokine profiling revealed high amounts of pro-inflammatory, pro-migratory and pro-angiogenic factors in the CAF supernatant. In particular, two genes, 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (HMGCS2) and aldo-keto reductase family 1 member C3 (AKR1C3), were significantly upregulated in PCa cells upon co-culture with CAFs. Both enzymes were also significantly increased in human PCa compared to benign tissue with AKR1C3 expression even being associated with Gleason score and metastatic status. Inhibiting HMGCS2 and AKR1C3 resulted in significant growth retardation of co-culture spheroids as well as of various castration and enzalutamide resistant cell lines in 2D and 3D culture, underscoring their putative role in PCa. Importantly, dual targeting of cholesterol and steroid biosynthesis with simvastatin, a commonly prescribed cholesterol synthesis inhibitor, and an inhibitor against AKR1C3 had the strongest growth inhibitory effect. Conclusions From our results we conclude that CAFs induce an upregulation of cholesterol and steroid biosynthesis in PCa cells, driving them into AR targeted therapy resistance. Blocking both pathways with simvastatin and an AKR1C3 inhibitor may therefore be a promising approach to overcome resistances to AR targeted therapies in PCa. Video abstract
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Salzburg Cancer Research Institute, Laboratory for Immunological and Molecular Cancer Research, Salzburg, Austria
| | - Florian Pitterl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja Weber
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
18
|
Wangtrakuldee P, Adeniji AO, Zang T, Duan L, Khatri B, Twenter BM, Estrada MA, Higgins TF, Winkler JD, Penning TM. A 3-(4-nitronaphthen-1-yl) amino-benzoate analog as a bifunctional AKR1C3 inhibitor and AR antagonist: Head to head comparison with other advanced AKR1C3 targeted therapeutics. J Steroid Biochem Mol Biol 2019; 192:105283. [PMID: 30641225 PMCID: PMC6625945 DOI: 10.1016/j.jsbmb.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/23/2023]
Abstract
Drugs used for the treatment of castration resistant prostate cancer (CRPC) include Abiraterone acetate (Zytiga®) and Enzalutamide (XTANDI®). However, these drugs provide clinical benefit in metastatic disease for only a brief period before drug resistance emerges. One mechanism of drug resistance involves the overexpression of type 5 17-β-hydroxysteroid dehydrogenase (aldo-keto reductase 1C3 or AKR1C3), a major enzyme responsible for the formation of intratumoral androgens that activate the androgen receptor (AR). 3-((4-Nitronaphthalen-1-yl)amino)benzoic acid 1 is a "first-in-class" AKR1C3 competitive inhibitor and AR antagonist. Compound 1 was compared in a battery of in vitro studies with structurally related N-naphthyl-aminobenzoates, and AKR1C3 targeted therapeutics e.g. GTx-560 and ASP9521, as well as with R-bicalutamide, enzalutamide and abiraterone acetate. Compound 1 was the only naphthyl derivative that was a selective AKR1C3 inhibitor and AR antagonist in direct competitive binding assays and in AR driven reporter gene assays. GTx-560 displayed weak activity as a direct AR antagonist but had high potency in the AR reporter gene assay consistent with its ability to inhibit the co-activator function of AKR1C3. By contrast ASP9521 did not act as either an AR antagonist or block AR reporter gene activity. Compound 1 was the only compound that showed comparable potency to inhibit AKR1C3 and act as a direct AR antagonist. Compound 1 blocked the formation of testosterone in LNCaP-AKR1C3 cells, and the expression of PSA driven by the AKR1C3 substrate (4-androstene-3,17-dione) and by an AR agonist, 5α-dihydrotestosterone consistent with its bifunctional role. Compound 1 blocked the nuclear translocation of the AR at similar concentrations to enzalutamide and caused disappearance of the AR from cell lysates. R-biaclutamide and enzalutamide inhibited AKR1C3 at concentrations 200x greater than compound 1, suggesting that its bifunctionality can be explained by a shared pharmacophore that can be optimized.
Collapse
Affiliation(s)
- Phumvadee Wangtrakuldee
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Adegoke O Adeniji
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Tianzhu Zang
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Ling Duan
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Buddha Khatri
- Department of Chemistry, University of Pennsylvania, 231 S. 34thStreet, Philadelphia, PA 19104-6323, USA
| | - Barry M Twenter
- Department of Chemistry, University of Pennsylvania, 231 S. 34thStreet, Philadelphia, PA 19104-6323, USA
| | - Michelle A Estrada
- Department of Chemistry, University of Pennsylvania, 231 S. 34thStreet, Philadelphia, PA 19104-6323, USA
| | - Tyler F Higgins
- Department of Chemistry, University of Pennsylvania, 231 S. 34thStreet, Philadelphia, PA 19104-6323, USA
| | - Jeffrey D Winkler
- Department of Chemistry, University of Pennsylvania, 231 S. 34thStreet, Philadelphia, PA 19104-6323, USA
| | - Trevor M Penning
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
19
|
Penning TM. AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol Cell Endocrinol 2019; 489:82-91. [PMID: 30012349 PMCID: PMC6422768 DOI: 10.1016/j.mce.2018.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/12/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Aldo-Keto-Reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase (HSD)/prostaglandin (PG) F2α synthase) is the only 17β-HSD that is not a short-chain dehydrogenase/reductase. By acting as a 17-ketosteroid reductase, AKR1C3 produces potent androgens in peripheral tissues which activate the androgen receptor (AR) or act as substrates for aromatase. AKR1C3 is implicated in the production of androgens in castration-resistant prostate cancer (CRPC) and polycystic ovarian syndrome; and is implicated in the production of aromatase substrates in breast cancer. By acting as an 11-ketoprostaglandin reductase, AKR1C3 generates 11β-PGF2α to activate the FP receptor and deprives peroxisome proliferator activator receptorγ of its putative PGJ2 ligands. These growth stimulatory signals implicate AKR1C3 in non-hormonal dependent malignancies e.g. acute myeloid leukemia (AML). AKR1C3 moonlights by acting as a co-activator of the AR and stabilizes ubiquitin ligases. AKR1C3 inhibitors have been used clinically for CRPC and AML and can be used to probe its pluripotency.
Collapse
Affiliation(s)
- Trevor M Penning
- Department of Systems Pharmacology and Translational Therapeutics and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III 421 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Karunasinghe N, Symes E, Gamage A, Wang A, Murray P, Zhu S, Goudie M, Masters J, Ferguson LR. Interaction between leukocyte aldo-keto reductase 1C3 activity, genotypes, biological, lifestyle and clinical features in a prostate cancer cohort from New Zealand. PLoS One 2019; 14:e0217373. [PMID: 31125365 PMCID: PMC6534310 DOI: 10.1371/journal.pone.0217373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction Aldo-keto reductase 1C3 (AKR1C3) is known for multiple functions including its catalytic activity towards producing extra-testicular androgen. The present study is towards understanding interaction between biological, lifestyle and genetic impacts of AKR1C3 and their influence on clinical factors in a prostate cancer (PC) cohort from New Zealand (NZ). Method Characteristics of 516 PC patients were collected from the Auckland Regional Urology Facility, NZ. These men were genotyped for the AKR1C3 rs12529 single nucleotide polymorphism (SNP). The leukocyte AKR1C3 activity was measured in a sub-cohort. Variability of leukocyte AKR1C3 activity between biological, lifestyle and clinical features as well as correlation between biological and clinical features were assessed with and without genetic stratification. Results The leukocyte AKR1C3 activity was associated with age at diagnosis (0.51 vs 0.34 μM coumberol units for >69y vs ≤69y, P = 0.03); and with anatomic stage/prognostic grouping among the AKR1C3 rs12529 CC genotype carriers (0.50 vs 28 μM coumberol units among low- and high-risk groups respectively, P = 0.02). Significant correlation between leukocyte AKR1C3 activity and age at PC diagnosis was also observed (correlation coefficient 0.20 and P = 0.02). Ever- smoking impacted both age and PSA at PC diagnosis among AKR1C3 rs12529 GG and CG genotype carriers respectively. Age at diagnosis significantly correlated with PSA at diagnosis in the main (correlation coefficient 0.29, and P<0.001) and sub-cohorts (correlation coefficient 0.24, and P = 0.01); and those carrying the AKR1C3 rs12529 CG and GG genotypes in both the main (correlation coefficient 0.30, and P<0.001 and correlation coefficient 0.35, and P<0.001 respectively) and sub-cohorts (correlation coefficient 0.43, and P<0.001 and correlation coefficient 0.39, and P = 0.06 respectively); but not with those carrying the CC genotype. Conclusions Age dependent PSA thresholds in PC screening could have been valid only in men carrying the AKR1C3 rs12529 CG and GG genotypes in this NZ cohort.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Eva Symes
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Amy Gamage
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Alice Wang
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Pam Murray
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Shuotun Zhu
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Megan Goudie
- Urology Department, Auckland City Hospital, Auckland, New Zealand
| | - Jonathan Masters
- Urology Department, Auckland City Hospital, Auckland, New Zealand
| | | |
Collapse
|
21
|
Knuuttila M, Hämäläinen E, Poutanen M. Applying mass spectrometric methods to study androgen biosynthesis and metabolism in prostate cancer. J Mol Endocrinol 2019; 62:R255-R267. [PMID: 30917337 DOI: 10.1530/jme-18-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Recent development of gas chromatography and liquid chromatography-tandem mass spectrometry (GC-MS/MS, LC-MS/MS) has provided novel tools to define sex steroid concentrations. These new methods overcome several of the problems associated with immunoassays for sex steroids. With the novel MS-based applications we are now able to measure small concentrations of the steroid hormones reliably and with high accuracy in both body fluids and tissue homogenates. The sensitivity of the tandem mass spectrometry assays allows us also for the first time to reliably measure picomolar or even femtomolar concentrations of estrogens and androgens. Furthermore, due to a high sensitivity and specificity of MS technology, we are also able to measure low concentrations of steroid hormones of interest in the presence of pharmacological concentration of other steroids and structurally closely related compounds. Both of these features are essential for multiple preclinical models for prostate cancer. The MS assays are also valuable for the simultaneous measurement of multiple steroids and their metabolites in small sample volumes in serum and tissue biopsies of prostate cancer patients before and after drug interventions. As a result, novel information about steroid hormone synthesis and metabolic pathways in prostate cancer has been obtained. In our recent studies, we have extensively applied a GC-MS/MS method to study androgen biosynthesis and metabolism in VCaP prostate cancer xenografts in mice. In the present review, we shortly summarize some of the benefits of the GC-MS/MS and novel LC-MS/MS assays, and provide examples of their use in defining novel mechanisms of androgen action in prostate cancer.
Collapse
Affiliation(s)
- Matias Knuuttila
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Esa Hämäläinen
- Department of Clinical Chemistry and HUSLAB, Helsinki University and Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Penning TM, Wangtrakuldee P, Auchus RJ. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr Rev 2019; 40:447-475. [PMID: 30137266 PMCID: PMC6405412 DOI: 10.1210/er.2018-00089] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Aldo-keto reductases (AKRs) are monomeric NAD(P)(H)-dependent oxidoreductases that play pivotal roles in the biosynthesis and metabolism of steroids in humans. AKR1C enzymes acting as 3-ketosteroid, 17-ketosteroid, and 20-ketosteroid reductases are involved in the prereceptor regulation of ligands for the androgen, estrogen, and progesterone receptors and are considered drug targets to treat steroid hormone-dependent malignancies and endocrine disorders. In contrast, AKR1D1 is the only known steroid 5β-reductase and is essential for bile-acid biosynthesis, the generation of ligands for the farnesoid X receptor, and the 5β-dihydrosteroids that have their own biological activity. In this review we discuss the crystal structures of these AKRs, their kinetic and catalytic mechanisms, AKR genomics (gene expression, splice variants, polymorphic variants, and inherited genetic deficiencies), distribution in steroid target tissues, roles in steroid hormone action and disease, and inhibitor design.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phumvadee Wangtrakuldee
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine and Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
23
|
Barnard M, Quanson JL, Mostaghel E, Pretorius E, Snoep JL, Storbeck KH. 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer. J Steroid Biochem Mol Biol 2018; 183:192-201. [PMID: 29936123 PMCID: PMC6283102 DOI: 10.1016/j.jsbmb.2018.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023]
Abstract
The progression of castration resistant prostate cancer (CRPC) is driven by the intratumoral conversion of adrenal androgen precursors to potent androgens. The expression of aldo-keto reductase 1C3 (AKR1C3), which catalyses the reduction of weak androgens to more potent androgens, is significantly increased in CRPC tumours. The oxidation of androgens to their inactive form is catalysed by 17β-hydroxysteroid dehydrogenase type 2 (17βHSD2), but little attention is given to the expression levels of this enzyme. In this study, we show that the 11-oxygenated androgen precursors of adrenal origin are the preferred substrate for AKR1C3. In particular we show that the enzymatic efficiency of AKR1C3 is 8- and 24-fold greater for 11-ketoandrostenedione than for the classic substrates androstenedione and 5α-androstanedione, respectively. Using three independent experimental systems and a computational model we subsequently show that increased ratios of AKR1C3:17βHSD2 significantly favours the flux through the 11-oxygenated androgen pathway as compared to the classical or 5α-androstanedione pathways. Our findings reveal that the flux through the classical and 5α-androstanedione pathways are limited by the low catalytic efficiently of AKR1C3 towards classical androgens combined with the high catalytic efficiency of 17βHSD2, and that the expression of the oxidative enzyme therefore plays a vital role in determining the steady state concentration of active androgens. Using microarray data from prostate tissue we confirm that the AKR1C3:17βHSD2 ratio is significantly increased in patients undergoing androgen deprivation therapy as compared to benign tissue, and further increased in patients with CRPC. Taken together this study therefore demonstrates that the ratio of AKR1C3:17βHSD2 is more important than AKR1C3 expression alone in determining intratumoral androgen levels and that 11-oxygenated androgens may play a bigger role in CRPC than previously anticipated.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jonathan L Quanson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Elzette Pretorius
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; MIB, University of Manchester, Manchester, UK
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
24
|
Verma K, Gupta N, Zang T, Wangtrakluldee P, Srivastava SK, Penning TM, Trippier PC. AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells. Mol Cancer Ther 2018; 17:1833-1845. [PMID: 29891491 DOI: 10.1158/1535-7163.mct-17-1023] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/01/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17 β-hydroxysteroid dehydrogenase, is responsible for intratumoral androgen biosynthesis, contributing to the development of castration-resistant prostate cancer (CRPC) and eventual chemotherapeutic failure. Significant upregulation of AKR1C3 is observed in CRPC patient samples and derived CRPC cell lines. As AKR1C3 is a downstream steroidogenic enzyme synthesizing intratumoral testosterone (T) and 5α-dihydrotestosterone (DHT), the enzyme represents a promising therapeutic target to manage CRPC and combat the emergence of resistance to clinically employed androgen deprivation therapy. Herein, we demonstrate the antineoplastic activity of a potent, isoform-selective and hydrolytically stable AKR1C3 inhibitor (E)-3-(4-(3-methylbut-2-en-1-yl)-3-(3-phenylpropanamido)phenyl)acrylic acid (KV-37), which reduces prostate cancer cell growth in vitro and in vivo and sensitizes CRPC cell lines (22Rv1 and LNCaP1C3) toward the antitumor effects of enzalutamide. Crucially, KV-37 does not induce toxicity in nonmalignant WPMY-1 prostate cells nor does it induce weight loss in mouse xenografts. Moreover, KV-37 reduces androgen receptor (AR) transactivation and prostate-specific antigen expression levels in CRPC cell lines indicative of a therapeutic effect in prostate cancer. Combination studies of KV-37 with enzalutamide reveal a very high degree of synergistic drug interaction that induces significant reduction in prostate cancer cell viability via apoptosis, resulting in >200-fold potentiation of enzalutamide action in drug-resistant 22Rv1 cells. These results demonstrate a promising therapeutic strategy for the treatment of drug-resistant CRPC that invariably develops in prostate cancer patients following initial treatment with AR antagonists such as enzalutamide. Mol Cancer Ther; 17(9); 1833-45. ©2018 AACR.
Collapse
Affiliation(s)
- Kshitij Verma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas
| | - Nehal Gupta
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phumvadee Wangtrakluldee
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sanjay K Srivastava
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas.,Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas. .,Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
25
|
Penning TM. Dehydroepiandrosterone (DHEA)-SO 4 Depot and Castration-Resistant Prostate Cancer. VITAMINS AND HORMONES 2018; 108:309-331. [PMID: 30029732 DOI: 10.1016/bs.vh.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dehydroepiandrosterone (DHEA)-SO4 of adrenal origin is the major C19 steroid in the serum. It is a precursor of intratumoral androgen biosynthesis in patients with advanced prostate cancer following chemical or surgical castration. DHEA is a product of the P450c17 (17α-hydroxylase-17,20-lyase) enzyme. Despite inhibition of P450c17 with new agents, e.g., Abiraterone acetate, Orterenol, and Galeterone, the level of enzyme inhibition rarely exceeds 90% leaving behind a significant depot for androgen biosynthesis within the tumor. For DHEA-SO4 to be utilized there is uptake by organic anion transporter polypeptides, deconjugation catalyzed by steroid sulfatase, and adaptive upregulation of prostate steroidogenic enzymes that will convert DHEA into either testosterone or dihydrotestosterone. The depot of DHEA-SO4 that remains after P450c17 inhibition and the adaptive responses that occur within the tumor to promote DHEA utilization contribute to mechanisms of drug resistance observed with P450c17 inhibitors. Knowledge of these mechanisms identify new targets for therapeutics that could be used to surmount drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Abstract
INTRODUCTION AKR1C3 is a drug target in hormonal and hormonal independent malignancies and acts as a major peripheral 17β-hydroxysteroid dehydrogenase to yield the potent androgens testosterone and dihydrotestosterone, and as a prostaglandin (PG) F synthase to produce proliferative ligands for the PG FP receptor. AKR1C3 inhibitors may have distinct advantages over existing therapeutics for the treatment of castration resistant prostate cancer, breast cancer and acute myeloid leukemia. Area covered: This article reviews the patent literature on AKR1C3 inhibitors using SciFinder which identified inhibitors in the following chemical classes: N-phenylsulfonyl-indoles, N-(benzimidazoylylcarbonyl)- N-(indoylylcarbonyl)- and N-(pyridinepyrrolyl)- piperidines, N-benzimidazoles and N-benzindoles, repurposed nonsteroidal antiinflammatory drugs (indole acetic acids, N-phenylanthranilates and aryl propionic acids), isoquinolines, and nitrogen and sulfur substituted estrenes. The article evaluates inhibitor AKR potency, specificity, efficacy in cell-based and xenograft models and clinical utility. The advantage of bifunctional compounds that either competitively inhibit AKR1C3 and block its androgen receptor (AR) coactivator function or act as AKR1C3 inhibitors and direct acting AR antagonists are discussed. Expert opinion: A large number of potent and selective inhibitors of AKR1C3 have been described however, preclinical optimization, is required before their benefit in human disease can be assessed.
Collapse
Affiliation(s)
- Trevor M Penning
- a Center of Excellence in Environmental Toxicology & Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
27
|
Tian Y, Zhao L, Wang Y, Zhang H, Xu D, Zhao X, Li Y, Li J. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells. Asian J Androl 2017; 18:607-12. [PMID: 26698234 PMCID: PMC4955188 DOI: 10.4103/1008-682x.169997] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aldo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aldo-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rv1 cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family 1 member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form p-p interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family 1 member C3 enzyme activity and the inhibition of 22Rv1 prostate cancer cell growth by decreasing the intracellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKR1C3 inhibitors using berberine as the lead compound.
Collapse
Affiliation(s)
- Yuantong Tian
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021; Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Lijing Zhao
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Ye Wang
- School of Life Science, Jilin University, Changchun 130012, China
| | - Haitao Zhang
- Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, LA 70112, USA
| | - Duo Xu
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xuejian Zhao
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yi Li
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
28
|
Synthesis of 17β-N-arylcarbamoylandrost-4-en-3-one derivatives and their anti-proliferative effect on human androgen-sensitive LNCaP cell line. Eur J Med Chem 2016; 121:737-746. [DOI: 10.1016/j.ejmech.2016.05.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022]
|
29
|
Adeniji A, Uddin MJ, Zang T, Tamae D, Wangtrakuldee P, Marnett LJ, Penning TM. Discovery of (R)-2-(6-Methoxynaphthalen-2-yl)butanoic Acid as a Potent and Selective Aldo-keto Reductase 1C3 Inhibitor. J Med Chem 2016; 59:7431-44. [PMID: 27486833 PMCID: PMC5149398 DOI: 10.1021/acs.jmedchem.6b00160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 5 17β-hydroxysteroid dehydrogenase, aldo-keto reductase 1C3 (AKR1C3) converts Δ(4)-androstene-3,17-dione and 5α-androstane-3,17-dione to testosterone (T) and 5α-dihydrotestosterone, respectively, in castration resistant prostate cancer (CRPC). In CRPC, AKR1C3 is implicated in drug resistance, and enzalutamide drug resistance can be surmounted by indomethacin a potent inhibitor of AKR1C3. We examined a series of naproxen analogues and find that (R)-2-(6-methoxynaphthalen-2-yl)butanoic acid (in which the methyl group of R-naproxen was replaced by an ethyl group) acts as a potent AKR1C3 inhibitor that displays selectivity for AKR1C3 over other AKR1C enzymes. This compound was devoid of inhibitory activity on COX isozymes and blocked AKR1C3 mediated production of T and induction of PSA in LNCaP-AKR1C3 cells as a model of a CRPC cell line. R-Profens are substrate selective COX-2 inhibitors and block the oxygenation of endocannabinoids and in the context of advanced prostate cancer R-profens could inhibit intratumoral androgen synthesis and act as analgesics for metastatic disease.
Collapse
Affiliation(s)
- Adegoke Adeniji
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, United States
| | - Md. Jashim Uddin
- Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Tianzhu Zang
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, United States
| | - Daniel Tamae
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, United States
| | - Phumvadee Wangtrakuldee
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, United States
| | - Lawrence J. Marnett
- Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Trevor M. Penning
- Department of Systems Pharmacology and Translational Therapeutics and the Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, United States
| |
Collapse
|
30
|
Li C, Zhao Y, Zheng X, Zhang H, Zhang L, Chen Y, Li Q, Hu X. In vitro CAPE inhibitory activity towards human AKR1C3 and the molecular basis. Chem Biol Interact 2016; 253:60-5. [DOI: 10.1016/j.cbi.2016.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
31
|
Frycz BA, Murawa D, Borejsza-Wysocki M, Wichtowski M, Spychała A, Marciniak R, Murawa P, Drews M, Jagodziński PP. Transcript level of AKR1C3 is down-regulated in gastric cancer. Biochem Cell Biol 2015; 94:138-46. [PMID: 27019068 DOI: 10.1139/bcb-2015-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Steroid hormones have been shown to play a role in gastric carcinogenesis. Large amounts of steroid hormones are locally produced in the peripheral tissues of both genders. Type 5 of 17β-hydroxysteroid dehydrogenase, encoded by the AKR1C3 gene, plays a pivotal role in both androgen and estrogen metabolism, and its expression was found to be deregulated in different cancers. In this study we measured AKR1C3 transcript and protein levels in nontumoral and primary tumoral gastric tissues, and evaluated their association with some clinicopathological features of gastric cancer (GC). We found decreased levels of AKR1C3 transcript (p < 0.0001) and protein (p = 0.0021) in GC tissues compared with the adjacent, apparently histopathologically normal, mucosa. Lower levels of AKR1C3 transcript were observed in diffuse and intestinal types of GC, whereas AKR1C3 protein levels were decreased in tumors with multisite localization, in diffuse histological type, T3, T4, and G3 grades. We also determined the effect of the histone deacetylase inhibitor sodium butyrate (NaBu) on AKR1C3 expression in EPG 85-257 and HGC-27 GC cell lines. We found that NaBu elevates the levels of both AKR1C3 transcript and protein in the cell lines we investigated. Together, our results suggest that decreased expression of AKR1C3 may be involved in development of GC and can be restored by NaBu.
Collapse
Affiliation(s)
- Bartosz Adam Frycz
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| | - Dawid Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland.,c Regional Specialist Hospital, Research and Development Centre, Wrocław, Poland
| | - Maciej Borejsza-Wysocki
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Mateusz Wichtowski
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Arkadiusz Spychała
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Ryszard Marciniak
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Michał Drews
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Piotr Jagodziński
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
32
|
Penning TM, Chen M, Jin Y. Promiscuity and diversity in 3-ketosteroid reductases. J Steroid Biochem Mol Biol 2015; 151:93-101. [PMID: 25500069 PMCID: PMC4458445 DOI: 10.1016/j.jsbmb.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 12/16/2022]
Abstract
Many steroid hormones contain a Δ(4)-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1-AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1-AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| | - Mo Chen
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Yi Jin
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
33
|
Penning TM. The aldo-keto reductases (AKRs): Overview. Chem Biol Interact 2015; 234:236-46. [PMID: 25304492 PMCID: PMC4388799 DOI: 10.1016/j.cbi.2014.09.024] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/12/2014] [Accepted: 09/24/2014] [Indexed: 12/23/2022]
Abstract
The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using modern genomic and informatics approaches to determine their association with human health and disease.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Ming DS, Pham S, Deb S, Chin MY, Kharmate G, Adomat H, Beheshti EH, Locke J, Guns ET. Pomegranate extracts impact the androgen biosynthesis pathways in prostate cancer models in vitro and in vivo. J Steroid Biochem Mol Biol 2014; 143:19-28. [PMID: 24565566 DOI: 10.1016/j.jsbmb.2014.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 01/25/2023]
Abstract
Castration-resistant prostate cancer (CRPC) remains largely dependent on androgen receptor (AR). Residual tissue androgens are consistently detected within CRPC tumors and play a critical role in facilitating AR-mediated signaling pathways which lead to disease progression. Testosterone and dihydrotestosterone (DHT) are the major androgens detected in tumors. They are produced through three biosynthesis pathways: Δ(4), Δ(5), and backdoor pathways. Both androgens bind to and stimulate AR activation. The current study investigates the effects of pomegranate extracts (POM) and their ability to inhibit androgen biosynthesis using PCa cell lines (22RV1 and LNCaP) in vitro as well as the PTEN knockout mouse model representing prostate cancer. Steroids were extracted using ethyl acetate or solid phase extraction, and then analyzed by UPLC/MS/MS. The results showed that POM (0-12μg/mL) reduced the production of testosterone, DHT, DHEA, androstenedione, androsterone, and pregnenolone in both cell lines. In addition our in vivo data supports this observation with a reduction in serum steroids determined after 20 weeks of POM treatment (0.17 g/L in drinking water). In accordance with these results, Western blotting of cell lysates and tPSA analysis determined that PSA was significantly decreased by the treatment of POM. Interestingly, AKR1C3 and AR levels were shown to be increased in both cell lines, perhaps as a negative feedback effect in response to steroid inhibition. Overall, these results provide mechanistic evidence to support the rationale for recent clinical reports describing efficacy of POM in CRPC patients.
Collapse
Affiliation(s)
- Dong-Sheng Ming
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Steven Pham
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Subrata Deb
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mei Yieng Chin
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Geetanjali Kharmate
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elham Hosseini Beheshti
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Locke
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emma Tomlinson Guns
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
35
|
Abstract
Prostate cancer is the second leading cause of death in adult males in the USA. Recent advances have revealed that the fatal form of this cancer, known as castration-resistant prostate cancer (CRPC), remains hormonally driven despite castrate levels of circulating androgens. CRPC arises as the tumor undergoes adaptation to low levels of androgens by either synthesizing its own androgens (intratumoral androgens) or altering the androgen receptor (AR). This article reviews the major routes to testosterone and dihydrotestosterone synthesis in CRPC cells and examines the enzyme targets and progress in the development of isoform-specific inhibitors that could block intratumoral androgen biosynthesis. Because redundancy exists in these pathways, it is likely that inhibition of a single pathway will lead to upregulation of another so that drug resistance would be anticipated. Drugs that target multiple pathways or bifunctional agents that block intratumoral androgen biosynthesis and antagonize the AR offer the most promise. Optimal use of enzyme inhibitors or AR antagonists to ensure maximal benefits to CRPC patients will also require application of precision molecular medicine to determine whether a tumor in a particular patient will be responsive to these treatments either alone or in combination.
Collapse
Affiliation(s)
- Trevor M Penning
- Perelman School of MedicineCenter of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| |
Collapse
|
36
|
Kikuchi A, Furutani T, Azami H, Watanabe K, Niimi T, Kamiyama Y, Kuromitsu S, Baskin-Bey E, Heeringa M, Ouatas T, Enjo K. In vitro and in vivo characterisation of ASP9521: a novel, selective, orally bioavailable inhibitor of 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; AKR1C3). Invest New Drugs 2014; 32:860-70. [DOI: 10.1007/s10637-014-0130-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/17/2014] [Indexed: 01/12/2023]
|
37
|
Tian Y, Zhao L, Zhang H, Liu X, Zhao L, Zhao X, Li Y, Li J. AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression. Diagn Pathol 2014; 9:42. [PMID: 24571686 PMCID: PMC3939640 DOI: 10.1186/1746-1596-9-42] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/21/2014] [Indexed: 12/19/2022] Open
Abstract
Background Aldo-keto reductase family 1 member C3 (AKR1C3) is a key steroidogenic enzyme that is overexpressed in prostate cancer (PCa) and is associated with the development of castration-resistant prostate cancer (CRPC). The aim of this study was to investigate the correlation between the expression level of AKR1C3 and the progression of PCa. Methods Sixty human prostate needle biopsy tissue specimens and ten LNCaP xenografts from intact or castrated male mice were included in the study. The relationship between the level of AKR1C3 expression by immunohistochemistry and evaluation factors for PCa progression, including prostate-specific antigen (PSA), Gleason score (GS) and age, were analyzed. Results Low immunoreactivity of AKR1C3 was detected in normal prostate epithelium, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN). Positive staining was gradually increased with an elevated GS in PCa epithelium and LNCaP xenografts in mice after castration. The Spearman’s r values (rs) of AKR1C3 to GS and PSA levels were 0.396 (P = 0.025) and -0.377 (P = 0.036), respectively, in PCa biopsies. The rs of AKR1C3 to age was 0.76 (P = 0.011). No statistically significant difference was found with other variables. Conclusion Our study suggests that the level of AKR. 1C3 expression is positively correlated with an elevated GS, indicating that AKR1C3 can serve as a promising biomarker for the progression of PCa. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7748245591110149.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Li
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin, China.
| | | |
Collapse
|
38
|
Selective AKR1C3 inhibitors do not recapitulate the anti-leukaemic activities of the pan-AKR1C inhibitor medroxyprogesterone acetate. Br J Cancer 2014; 110:1506-16. [PMID: 24569460 PMCID: PMC3960632 DOI: 10.1038/bjc.2014.83] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/03/2014] [Accepted: 01/13/2014] [Indexed: 01/06/2023] Open
Abstract
Background: We and others have identified the aldo-keto reductase AKR1C3 as a potential drug target in prostate cancer, breast cancer and leukaemia. As a consequence, significant effort is being invested in the development of AKR1C3-selective inhibitors. Methods: We report the screening of an in-house drug library to identify known drugs that selectively inhibit AKR1C3 over the closely related isoforms AKR1C1, 1C2 and 1C4. This screen initially identified tetracycline as a potential AKR1C3-selective inhibitor. However, mass spectrometry and nuclear magnetic resonance studies identified that the active agent was a novel breakdown product (4-methyl(de-dimethylamine)-tetracycline (4-MDDT)). Results: We demonstrate that, although 4-MDDT enters AML cells and inhibits their AKR1C3 activity, it does not recapitulate the anti-leukaemic actions of the pan-AKR1C inhibitor medroxyprogesterone acetate (MPA). Screens of the NCI diversity set and an independently curated small-molecule library identified several additional AKR1C3-selective inhibitors, none of which had the expected anti-leukaemic activity. However, a pan AKR1C, also identified in the NCI diversity set faithfully recapitulated the actions of MPA. Conclusions: In summary, we have identified a novel tetracycline-derived product that provides an excellent lead structure with proven drug-like qualities for the development of AKR1C3 inhibitors. However, our findings suggest that, at least in leukaemia, selective inhibition of AKR1C3 is insufficient to elicit an anticancer effect and that multiple AKR1C inhibition may be required.
Collapse
|
39
|
Rižner TL, Penning TM. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 2014; 79:49-63. [PMID: 24189185 PMCID: PMC3870468 DOI: 10.1016/j.steroids.2013.10.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 12/30/2022]
Abstract
Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia.
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Finasteride inhibits human prostate cancer cell invasion through MMP2 and MMP9 downregulation. PLoS One 2013; 8:e84757. [PMID: 24386413 PMCID: PMC3875555 DOI: 10.1371/journal.pone.0084757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 11/27/2013] [Indexed: 01/10/2023] Open
Abstract
Introduction The use of the 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride for prostate cancer prevention is still under debate. The FDA recently concluded that the increased prevalence of high-grade tumors among 5-ARI-treated patients must not be neglected, and they decided to disallow the use of 5-ARIs for prostate cancer prevention. This study was conducted to verify the effects of finasteride on prostate cell migration and invasion and the related enzymes/proteins in normal human and tumoral prostatic cell lines. Materials and Methods RWPE-1, LNCaP, PC3 and DU145 cells were cultivated to 60% confluence and exposed for different periods to either 10 µM or 50 µM finasteride that was diluted in culture medium. The conditioned media were collected and concentrated, and MMP2 and MMP9 activities and TIMP-1 and TIMP-2 protein expression were determined. Cell viability, migration and invasion were analyzed, and the remaining cell extracts were submitted to androgen receptor (AR) detection by western blotting techniques. Experiments were carried out in triplicate. Results Cell viability was not significantly affected by finasteride exposure. Finasteride significantly downregulated MMP2 and MMP9 activities in RWPE-1 and PC3 cells and MMP2 in DU145 cells. TIMP-2 expression in RWPE-1 cells was upregulated after exposure. The cell invasion of all four tested cell lines was inhibited by exposure to 50 µM of finasteride, and migration inhibition only occurred for RWPE-1 and LNCaP cells. AR was expressed by LNCaP, RWPE-1 and PC3 cells. Conclusions Although the debate on the higher incidence of high-grade prostate cancer among 5-ARI-treated patients remains, our findings indicate that finasteride may attenuate tumor aggressiveness and invasion, which could vary depending on the androgen responsiveness of a patient’s prostate cells.
Collapse
|
41
|
Kumagai J, Hofland J, Erkens-Schulze S, Dits NFJ, Steenbergen J, Jenster G, Homma Y, de Jong FH, van Weerden WM. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis. Prostate 2013; 73:1636-50. [PMID: 23996639 DOI: 10.1002/pros.22655] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 01/23/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. METHODS The relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. RESULTS In PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. CONCLUSIONS Our data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth.
Collapse
Affiliation(s)
- Jinpei Kumagai
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Current World Literature. Curr Opin Urol 2013. [DOI: 10.1097/mou.0b013e3283605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Liedtke AJ, Adeniji A, Chen M, Byrns MC, Jin Y, Christianson DW, Marnett LJ, Penning TM. Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (Type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. J Med Chem 2013; 56:2429-46. [PMID: 23432095 PMCID: PMC3638264 DOI: 10.1021/jm3017656] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Indexed: 12/02/2022]
Abstract
Castrate-resistant prostate cancer (CRPC) is a fatal, metastatic form of prostate cancer. CRPC is characterized by reactivation of the androgen axis due to changes in androgen receptor signaling and/or adaptive intratumoral androgen biosynthesis. AKR1C3 is upregulated in CRPC where it catalyzes the formation of potent androgens. This makes AKR1C3 a target for the treatment of CRPC. AKR1C3 inhibitors should not inhibit AKR1C1/AKR1C2, which inactivate 5α-dihydrotestosterone. Indomethacin, used to inhibit cyclooxygenase, also inhibits AKR1C3 and displays selectivity over AKR1C1/AKR1C2. Parallel synthetic strategies were used to generate libraries of indomethacin analogues, which exhibit reduced cyclooxygenase inhibitory activity but retain AKR1C3 inhibitory potency and selectivity. The lead compounds inhibited AKR1C3 with nanomolar potency, displayed >100-fold selectivity over AKR1C1/AKR1C2, and blocked testosterone formation in LNCaP-AKR1C3 cells. The AKR1C3·NADP(+)·2'-des-methyl-indomethacin crystal structure was determined, and it revealed a unique inhibitor binding mode. The compounds reported are promising agents for the development of therapeutics for CRPC.
Collapse
Affiliation(s)
- Andy J. Liedtke
- Departments of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology,
Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville,
Tennessee 37232-0146, United States
| | - Adegoke
O. Adeniji
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - Mo Chen
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - Michael C. Byrns
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - Yi Jin
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| | - David W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street,
Philadelphia, Pennsylvania 19104-6323, United States
| | - Lawrence J. Marnett
- Departments of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology,
Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville,
Tennessee 37232-0146, United States
| | - Trevor M. Penning
- Department of Pharmacology and
Center of Excellence in Environmental Toxicology, Perelman School
of Medicine, University of Pennsylvania, 1315 BRB II/III, 420 Curie Boulevard, Philadelphia, Pennsylvania
19104-6061, United States
| |
Collapse
|
44
|
Hamid ARAH, Pfeiffer MJ, Verhaegh GW, Schaafsma E, Brandt A, Sweep FCGJ, Sedelaar JPM, Schalken JA. Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer. Mol Med 2013. [PMID: 23196782 DOI: 10.2119/molmed.2012.00296] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current endocrine treatment for advanced prostate cancer does not result in a complete ablation of adrenal androgens. Adrenal androgens can be metabolized by prostate cancer cells, which is one of the mechanisms associated with progression to castration-resistant prostate cancer (CRPC). Aldo-keto reductase family 1 member C3 (AKR1C3) is a steroidogenic enzyme that plays a crucial role in the conversion of adrenal androgen dehydroepiandrosterone (DHEA) into high-affinity ligands for the androgen receptor (testosterone [T] and dihydrotestosterone [DHT]). The aim of this study was to examine whether AKR1C3 could be used as a marker and therapeutic target for CRPC. AKR1C3 mRNA and protein levels were upregulated in CRPC tissue, compared with benign prostate and primary prostate cancer tissue. High AKR1C3 levels were found only in a subset of CRPC patients. AKR1C3 can be used as a biomarker for active intratumoral steroidogenesis and can be measured in biopsy or transurethral resection of the prostate specimens. DuCaP (a CRPC cell line that has high AKR1C3 expression levels) used and converted DHEA under hormone-depleted conditions into T and DHT. The DHEA-induced growth of DuCaP could be antagonized by indomethacine, an inhibitor of AKR1C3. This study indicates that AKR1C3 can be considered a therapeutic target in a subgroup of patients with high AKR1C3 expression.
Collapse
Affiliation(s)
- Agus Rizal A H Hamid
- Department of Urology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsunaga T, El-Kabbani O, Hara A. Aldo-Keto Reductases as New Therapeutic Targets for Colon Cancer Chemoresistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Brožič P, Turk S, Adeniji AO, Konc J, Janežič D, Penning TM, Lanišnik Rižner T, Gobec S. Selective inhibitors of aldo-keto reductases AKR1C1 and AKR1C3 discovered by virtual screening of a fragment library. J Med Chem 2012; 55:7417-24. [PMID: 22881866 DOI: 10.1021/jm300841n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human aldo-keto reductases 1C1-1C4 (AKR1C1-AKR1C4) function in vivo as 3-keto-, 17-keto-, and 20-ketosteroid reductases and regulate the activity of androgens, estrogens, and progesterone and the occupancy and transactivation of their corresponding receptors. Aberrant expression and action of AKR1C enzymes can lead to different pathophysiological conditions. AKR1C enzymes thus represent important targets for development of new drugs. We performed a virtual high-throughput screen of a fragment library that was followed by biochemical evaluation on AKR1C1-AKR1C4 enzymes. Twenty-four structurally diverse compounds were discovered with low μM K(i) values for AKR1C1, AKR1C3, or both. Two structural series included the salicylates and the N-phenylanthranilic acids, and additionally a series of inhibitors with completely novel scaffolds was discovered. Two of the best selective AKR1C3 inhibitors had K(i) values of 0.1 and 2.7 μM, exceeding expected activity for fragments. The compounds identified represent an excellent starting point for further hit-to-lead development.
Collapse
Affiliation(s)
- Petra Brožič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana , Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen M, Adeniji AO, Twenter BM, Winkler JD, Christianson DW, Penning TM. Crystal structures of AKR1C3 containing an N-(aryl)amino-benzoate inhibitor and a bifunctional AKR1C3 inhibitor and androgen receptor antagonist. Therapeutic leads for castrate resistant prostate cancer. Bioorg Med Chem Lett 2012; 22:3492-7. [PMID: 22507964 PMCID: PMC3348334 DOI: 10.1016/j.bmcl.2012.03.085] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 11/23/2022]
Abstract
Castrate resistant prostate cancer (CRPC) is associated with increased androgen receptor (AR) signaling often brought about by elevated intratumoral androgen biosynthesis and AR amplification. Inhibition of androgen biosynthesis and/or AR antagonism should be efficacious in the treatment of CRPC. AKR1C3 catalyzes the formation of potent AR ligands from inactive precursors and is one of the most upregulated genes in CRPC. AKR1C3 inhibitors should not inhibit the related isoforms, AKR1C1 and AKR1C2 that are involved in 5α-dihydrotestosterone inactivation in the prostate. We have previously developed a series of flufenamic acid analogs as potent and selective AKR1C3 inhibitors [Adeniji, A. O. et al., J. Med. Chem.2012, 55, 2311]. Here we report the X-ray crystal structure of one lead compound 3-((4-(trifluoromethyl)phenyl) amino)benzoic acid (1) in complex with AKR1C3. Compound 1 adopts a similar binding orientation as flufenamic acid, however, its phenylamino ring projects deeper into a subpocket and confers selectivity over the other AKR1C isoforms. We exploited the observation that some flufenamic acid analogs also act as AR antagonists and synthesized a second generation inhibitor, 3-((4-nitronaphthalen-1-yl)amino)benzoic acid (2). Compound 2 retained nanomolar potency and selective inhibition of AKR1C3 but also acted as an AR antagonist. It inhibited 5α-dihydrotestosterone stimulated AR reporter gene activity with an IC(50)=4.7 μM and produced a concentration dependent reduction in androgen receptor levels in prostate cancer cells. The in vitro and cell-based effects of compound 2 make it a promising lead for development of dual acting agent for CRPC. To illuminate the structural basis of AKR1C3 inhibition, we also report the crystal structure of the AKR1C3·NADP(+)·2 complex, which shows that compound 2 forms a unique double-decker structure with AKR1C3.
Collapse
Affiliation(s)
- Mo Chen
- Department of Pharmacology, Perelman School of Medicine University of Pennsylvania
| | - Adegoke O. Adeniji
- Department of Pharmacology, Perelman School of Medicine University of Pennsylvania
| | - Barry M. Twenter
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA
| | | | | | - Trevor M. Penning
- Department of Pharmacology, Perelman School of Medicine University of Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania
| |
Collapse
|
48
|
Adeniji AO, Twenter BM, Byrns MC, Jin Y, Chen M, Winkler JD, Penning TM. Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships. J Med Chem 2012; 55:2311-23. [PMID: 22263837 DOI: 10.1021/jm201547v] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castration resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required because compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular, are potent but nonselective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid, as lead compound, five classes of structural analogues were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure-activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads toward new therapeutics for CRPC.
Collapse
Affiliation(s)
- Adegoke O Adeniji
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | | | |
Collapse
|