1
|
Cocetta V, Zorzi M, Bejor S, Cesta MC, De Pizzol M, Theurillat JP, Allegretti M, Alimonti A, Montopoli M, Rugge M. Retrospective Analysis of the Effect of Postmenopausal Women Medications on SARS-CoV-2 Infection Progression. Life (Basel) 2024; 14:1107. [PMID: 39337891 PMCID: PMC11433321 DOI: 10.3390/life14091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, it has been evident that women and young people were less susceptible to severe infections compared to males. In a previous study, we observed a reduced prevalence of SARS-CoV-2 infections in hormonal-driven breast cancer patients undergoing SERM (selective estrogen receptor modulator) therapy with respect to other treatments inhibiting estrogen synthesis. In addition to being used in anticancer therapy, SERMs are also prescribed for postmenopausal osteoporosis prevention and treatment. Therefore, in this study, a retrospective analysis of the clinical outcomes of SARS-CoV-2 infections in a population of women over 50 years who were treated for the management of menopausal symptoms was performed. SARS-CoV-2 infections, hospitalizations, and death rates were evaluated in women residing in the Italian north-eastern Veneto Region who were undergoing treatment with Estrogen Modulators (EMs); Estrogen or Progestin, and their combination (EPs); Bisphosphonates (BIs); or cholecalciferol (vitamin D3) ± calcium supplementation (CC). The final cohort study included 124,393 women, of whom 6412 were found to be SARS-CoV-2 infected (CoV2+ve). The results indicated that only women treated with vitamin D3 alone or in combination with calcium showed a significant reduction in their SARS-CoV-2 infection risk by 26% (OR 0.74; 95%CI 0.60-0.91). On the other hand, an increased risk of hospitalization (OR 2.69; 95%CI 1.77-4.07) was shown for the same treatments. The results highlighted in this work contribute to shedding some light on the widely debated role of vitamin D in the prevention of SARS-CoV-2 infections and the disease's treatment.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Manuel Zorzi
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
| | - Stefano Bejor
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | | | | | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | | | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zurich, Switzerland
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
| | - Massimo Rugge
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
| |
Collapse
|
2
|
Song X, Shen L, Contreras JM, Liu Z, Ma K, Ma B, Liu X, Wang DO. New potential selective estrogen receptor modulators in traditional Chinese medicine for treating menopausal syndrome. Phytother Res 2024; 38:4736-4756. [PMID: 39120263 DOI: 10.1002/ptr.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.
Collapse
Affiliation(s)
- Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Shen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Zhiyuan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Japan
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Yi B, Li Z, Zhao Y, Yan H, Xiao J, Zhou Z, Cui Y, Yang S, Bi J, Yang H, Guo N, Zhao M. Serum metabolomics analyses reveal biomarkers of osteoporosis and the mechanism of Quanduzhong capsules. J Pharm Biomed Anal 2024; 246:116198. [PMID: 38754154 DOI: 10.1016/j.jpba.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
With the aging of the population, the prevalence of osteoporosis (OP) is rising rapidly, making it an important public health concern. Early screening and effective treatment of OP are the primary challenges facing the management of OP today. Quanduzhong capsule (QDZ) is a single preparation composed of Eucommia ulmoides Oliv., which is included in the Pharmacopoeia of the People's Republic of China. It is used to treat OP in clinical practice, but its mechanisms are unclear. This study involved 30 patients with OP, 30 healthy controls (HC), and 28 OP patients treated with QDZ to identify potential biomarkers for the early diagnosis of OP and to investigate the potential mechanism of QDZ in treating OP. The serum samples were analyzed using targeted amino acid metabolomics. Significant differences in amino acid metabolism were identified between the OP cohort and the HC group, as well as between OP patients before and after QDZ treatment. Compared with HC, the serum levels of 14 amino acids in OP patients changed significantly. Kynurenine, arginine, citrulline, methionine, and their combinations are expected to be potential biomarkers for OP diagnosis. Notably, QDZ reversed the changes in levels of 10 amino acids in the serum of OP patients and significantly impacted numerous metabolic pathways during the treatment of OP. This study focuses on screening potential biomarkers for the early detection of OP, which offers a new insight into the mechanism study of QDZ in treating OP.
Collapse
Affiliation(s)
- Bojiao Yi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zeyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yurou Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junping Xiao
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Zhigang Zhou
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Yu Cui
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Shuyin Yang
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Jingbo Bi
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Harahap IA, Moszak M, Czlapka-Matyasik M, Skrypnik K, Bogdański P, Suliburska J. Effects of daily probiotic supplementation with Lactobacillus acidophilus on calcium status, bone metabolism biomarkers, and bone mineral density in postmenopausal women: a controlled and randomized clinical study. Front Nutr 2024; 11:1401920. [PMID: 39010860 PMCID: PMC11247006 DOI: 10.3389/fnut.2024.1401920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Background Menopause poses significant health risks for women, particularly an increased vulnerability to fractures associated with osteoporosis. Dietary interventions have emerged as promising strategies, focusing on mitigating the risk of osteoporosis rather than solely addressing the established disease. This 12-week randomized controlled trial aimed to analyze the effects of consuming Lactobacillus acidophilus probiotics on calcium levels, biomarkers of bone metabolism, and bone mineral density (BMD) profiles in postmenopausal women. Methods Fifty-five participants were randomly assigned to receive either a placebo (n = 25) or the probiotic L. acidophilus UALa-01™ (n = 30) daily via oral intervention. Throughout the study, evaluations included body composition, blood biochemical parameters, serum calcium levels, and biomarkers of bone metabolism. Additionally, Dual-energy X-ray absorptiometry was used to measure BMD profiles. Results The findings delineated that the probiotic group experienced a decrease in serum calcium levels compared to their initial levels. However, hair calcium levels and biomarkers related to bone metabolism showed no notable changes within this group. Consumption of probiotic L. acidophilus also seemed to prevent fluctuations in bone turnover markers. Moreover, there were no significant alterations in BMD levels at the lumbar spine, left femur, and total body in the probiotic group. Additionally, probiotic intake led to favorable outcomes by significantly reducing both body fat and visceral fat during the intervention period. Conversely, an adverse effect of consuming probiotic L. acidophilus was observed with a significant increase in glucose concentration. Conclusion In conclusion, the consumption of L. acidophilus probiotics daily for 12 weeks among postmenopausal women does not affect the profile of BMD, but it may help in stabilizing bone turnover. It is important to note that most measured parameters were within the normal range for this population. However, it is worth noting that 3 months of probiotic supplementation could potentially disrupt calcium and glucose status in postmenopausal women.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Czlapka-Matyasik
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
5
|
Yang FF, Zhao TT, Milaneh S, Zhang C, Xiang DJ, Wang WL. Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities. RSC Med Chem 2024; 15:1828-1848. [PMID: 38911148 PMCID: PMC11187550 DOI: 10.1039/d4md00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3β, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Yixing People's Hospital Yixing Jiangsu 214200 China
| | - Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
- Department of Pharmaceutical and Chemical Industries, Higher Institute of Applied Science and Technology Damascus Syria
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City Wuxi Jiangsu 214105 China
| | - Wen-Long Wang
- Yixing People's Hospital Yixing Jiangsu 214200 China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
6
|
Williams DR, Taylor L, Miter GA, Sheiman JL, Wallace JM, Allen MR, Kohler R, Medeiros C. Synthesis Studies and the Evaluation of C 6 Raloxifene Derivatives. ACS Med Chem Lett 2024; 15:879-884. [PMID: 38894928 PMCID: PMC11181480 DOI: 10.1021/acsmedchemlett.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Methodology is described for the synthesis of C6 derivatives of raloxifene, a prescribed drug for the treatment and prevention of osteoporosis. Studies have explored the incorporation of electron-withdrawing substituents at C6 of the benzothiophene core. Efficient processes are also examined to introduce hydrogen bond donor and acceptor functionality. Raloxifene derivatives are evaluated with in vitro testing to determine estrogen receptor (ER) binding affinity and gene expression in MC3T3 cells.
Collapse
Affiliation(s)
- David R. Williams
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Levin Taylor
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gabriel A. Miter
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Johnathan L. Sheiman
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph M. Wallace
- Department
of Biomedical Engineering, Indiana University-Purdue
University, Indianapolis, Indiana 46202, United States
| | - Matthew R. Allen
- Department
of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202 United States
| | - Rachel Kohler
- Department
of Biomedical Engineering, Indiana University-Purdue
University, Indianapolis, Indiana 46202, United States
| | - Claudia Medeiros
- Department
of Biomedical Engineering, Indiana University-Purdue
University, Indianapolis, Indiana 46202, United States
| |
Collapse
|
7
|
Kishida K, Furukawa M, Nakashima M, Kubota I, Hayashi Y. Selective estrogen receptor modulators and deep venous thrombosis after an emergent operation in senior women. JA Clin Rep 2023; 9:73. [PMID: 37921988 PMCID: PMC10624775 DOI: 10.1186/s40981-023-00665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Selective estrogen receptor modulators (SERMs), clinically applied to osteoporosis, may have potential risk of deep venous thrombosis (DVT) and discontinuation of SERMs may be required before surgery. However, we cannot discontinue SERMs for a certain duration, when patients undergo an emergent operation. CASE PRESENTATION We reported two aged patients undergoing an emergent orthopedic surgery for lower extremities while taking SERMs for osteoporosis before the operation. DVT was newly developed in one patient and worsened in the other patient after the operation. We found eight aged patients underwent the same operation while taking SERMs for recent 3 years, including the two cases and DVT did not occur in the other six patients. Thus, the incidence of DVT in our patient population was 25%. CONCLUSION We showed that DVT developed or worsened after operation in two patients taking SERMs before operation. Ultrasound examination after operation may be recommended in these population. (149 words).
Collapse
Affiliation(s)
- Keiko Kishida
- Phamaceutics, Yoka Municipal Hospital, Yabu, Hyogo, 667-8555, Japan
| | | | - Masayuki Nakashima
- Clinical Llaborateory, Yoka Municipal Hospital, Yabu, Hyogo, 667-8555, Japan
| | - Idumi Kubota
- Quality Mmanagament, Yoka Municipal Hospital, Yabu, Hyogo, 667-8555, Japan
| | - Yukio Hayashi
- Anesthesiology Service, Yoka Municipal Hospital, Yabu, 1878-1, Yoka, Yoka-cho, Hyogo, 667-5555, Japan.
| |
Collapse
|
8
|
Davis SR, Pinkerton J, Santoro N, Simoncini T. Menopause-Biology, consequences, supportive care, and therapeutic options. Cell 2023; 186:4038-4058. [PMID: 37678251 DOI: 10.1016/j.cell.2023.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
Menopause is the cessation of ovarian function, with loss of reproductive hormone production and irreversible loss of fertility. It is a natural part of reproductive aging. The physiology of the menopause is complex and incompletely understood. Globally, menopause occurs around the age of 49 years, with geographic and ethnic variation. The hormonal changes of the menopause transition may result in both symptoms and long-term systemic effects, predominantly adverse effects on cardiometabolic and musculoskeletal health. The most effective treatment for bothersome menopausal symptoms is evidence-based, menopausal hormone therapy (MHT), which reduces bone loss and may have cardiometabolic benefits. Evidence-based non-hormonal interventions are also available for symptom relief. Treatment should be individualized with shared decision-making. Most MHT regimens are not regulator approved for perimenopausal women. Studies that include perimenopausal women are needed to determine the efficacy and safety of treatment options. Further research is crucial to improve menopause care, along with research to guide policy and clinical practice.
Collapse
Affiliation(s)
- Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Endocrinology and Diabetes, Alfred Health, Commercial Rd., Melbourne, VIC 3004, Australia.
| | - JoAnn Pinkerton
- Department of Obstetrics and Gynecology, Division of Midlife Health, The University of Virginia Health System, Charlottesville, VA, USA
| | | | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Reavis KM, Bisgaard N, Canlon B, Dubno JR, Frisina RD, Hertzano R, Humes LE, Mick P, Phillips NA, Pichora-Fuller MK, Shuster B, Singh G. Sex-Linked Biology and Gender-Related Research Is Essential to Advancing Hearing Health. Ear Hear 2023; 44:10-27. [PMID: 36384870 PMCID: PMC10234332 DOI: 10.1097/aud.0000000000001291] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
There is robust evidence that sex (biological) and gender (behavioral/social) differences influence hearing loss risk and outcomes. These differences are noted for animals and humans-in the occurrence of hearing loss, hearing loss progression, and response to interventions. Nevertheless, many studies have not reported or disaggregated data by sex or gender. This article describes the influence of sex-linked biology (specifically sex-linked hormones) and gender on hearing and hearing interventions, including the role of sex-linked biology and gender in modifying the association between risk factors and hearing loss, and the effects of hearing loss on quality of life and functioning. Most prevalence studies indicate that hearing loss begins earlier and is more common and severe among men than women. Intrinsic sex-linked biological differences in the auditory system may account, in part, for the predominance of hearing loss in males. Sex- and gender-related differences in the effects of noise exposure or cardiovascular disease on the auditory system may help explain some of these differences in the prevalence of hearing loss. Further still, differences in hearing aid use and uptake, and the effects of hearing loss on health may also vary by sex and gender. Recognizing that sex-linked biology and gender are key determinants of hearing health, the present review concludes by emphasizing the importance of a well-developed research platform that proactively measures and assesses sex- and gender-related differences in hearing, including in understudied populations. Such research focus is necessary to advance the field of hearing science and benefit all members of society.
Collapse
Affiliation(s)
- Kelly M. Reavis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Judy R. Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert D. Frisina
- Department of Medical Engineering and Communication Sciences & Disorders, University of South Florida, Tampa, Florida, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Larry E. Humes
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana, USA
| | - Paul Mick
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
10
|
Hioki T, Matsushima-Nishiwaki R, Tokuda H, Kozawa O. Selective estrogen receptor modulators, acting as agonists of estrogen receptor α in osteoblasts, reduce the TGF-β-induced synthesis of macrophage colony-stimulating factor via inhibition of JNK signaling pathway. Biomed Res 2022; 43:211-221. [PMID: 36517023 DOI: 10.2220/biomedres.43.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selective estrogen receptor modulator (SERM) binds to estrogen receptors (ERs) and acts as both an agonist or an antagonist, depending on the target tissue. Raloxifene and bazedoxifene as SERMs are currently used hormone replacement medicines for postmenopausal osteoporosis. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts promotes osteoclastogenesis. We have previously demonstrated that transforming growth factor (TGF)-β induces the synthesis of M-CSF via SMAD2/3, p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and c-Jun N-terminal kinase (JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether SERM affects the M-CSF synthesis by TGF-β in MC3T3-E1 cells. Raloxifene and bazedoxifene significantly suppressed the synthesis of M-CSF. PPT, an ERα agonist, but not ERB041, an ERβ agonist, inhibited the release of M-CSF. MPP, an ERα antagonist, reversed the suppression by raloxifene of the M-CSF release. Raloxifene attenuated the TGF-β-induced phosphorylation of JNK but not SMAD3, p42 MAPK and p38 MAPK. Bazedoxifene and PPT also inhibited the phosphorylation of JNK. Furthermore, MPP, an ERα antagonist, reversed the suppression by both raloxifene and bazedoxifene of the phosphorylation of JNK. Our results strongly indicate that raloxifene and bazedoxifene, SERMs, suppress the TGF-β-induced synthesis of M-CSF through ERα-mediated inhibition of JNK pathway in osteoblasts.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine.,Department of Dermatology, Central Japan International Medical Center
| | | | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine.,Department of Metabolic Research, National Center for Geriatrics and Gerontology.,Department of Clinical Laboratory/Medical Genome Center, National Center for Geriatrics and Gerontology
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine.,Department of Metabolic Research, National Center for Geriatrics and Gerontology
| |
Collapse
|
11
|
Wang Y, Minden A. Current Molecular Combination Therapies Used for the Treatment of Breast Cancer. Int J Mol Sci 2022; 23:ijms231911046. [PMID: 36232349 PMCID: PMC9569555 DOI: 10.3390/ijms231911046] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. While monotherapy (single agent) treatments have been used for many years, they are not always effective, and many patients relapse after initial treatment. Moreover, in some patients the response to therapy becomes weaker, or resistance to monotherapy develops over time. This is especially problematic for metastatic breast cancer or triple-negative breast cancer. Recently, combination therapies (in which two or more drugs are used to target two or more pathways) have emerged as promising new treatment options. Combination therapies are often more effective than monotherapies and demonstrate lower levels of toxicity during long-term treatment. In this review, we provide a comprehensive overview of current combination therapies, including molecular-targeted therapy, hormone therapy, immunotherapy, and chemotherapy. We also describe the molecular basis of breast cancer and the various treatment options for different breast cancer subtypes. While combination therapies are promising, we also discuss some of the challenges. Despite these challenges, the use of innovative combination therapy holds great promise compared with traditional monotherapies. In addition, the use of multidisciplinary technologies (such as nanotechnology and computer technology) has the potential to optimize combination therapies even further.
Collapse
|
12
|
Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, Dey A, Rahman MH, Joo SW, Barai HR, Cavalu S. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers (Basel) 2022; 14:polym14142964. [PMID: 35890740 PMCID: PMC9319147 DOI: 10.3390/polym14142964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt;
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| |
Collapse
|
13
|
Gilbert ZA, Muller A, Leibowitz JA, Kesselman MM. Osteoporosis Prevention and Treatment: The Risk of Comorbid Cardiovascular Events in Postmenopausal Women. Cureus 2022; 14:e24117. [PMID: 35573562 PMCID: PMC9106546 DOI: 10.7759/cureus.24117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/11/2022] [Indexed: 11/05/2022] Open
|
14
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
15
|
Matsushima-Nishiwaki R, Yamada N, Hattori Y, Hosokawa Y, Tachi J, Hori T, Kozawa O. SERMs (selective estrogen receptor modulator), acting as estrogen receptor β agonists in hepatocellular carcinoma cells, inhibit the transforming growth factor-α-induced migration via specific inhibition of AKT signaling pathway. PLoS One 2022; 17:e0262485. [PMID: 35007301 PMCID: PMC8746762 DOI: 10.1371/journal.pone.0262485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/27/2021] [Indexed: 01/18/2023] Open
Abstract
Selective estrogen receptor modulator (SERM) interacts with estrogen receptors and acts as both an agonist or an antagonist, depending on the target tissue. SERM is widely used as a safer hormone replacement therapeutic medicine for postmenopausal osteoporosis. Regarding hepatocellular carcinoma (HCC), accumulating evidence indicates gender differences in the development, and that men are at higher morbidity risk than premenopausal women, suggesting that estrogen protects against HCC. However, it remains unclear whether SERM affects the HCC progression. Previously, we have shown that transforming growth factor (TGF)-α promotes the migration of HCC cells via p38 mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase and AKT. In the present study, we investigated whether SERM such as tamoxifen, raloxifene and bazedoxifene, affects the HCC cell migration using human HCC-derived HuH7 cells. Raloxifene and bazedoxifene but not tamoxifen, significantly suppressed the TGF-α-induced HuH7 cell migration. ERB041 and DPN, estrogen receptor (ER) β agonists, inhibited the TGF-α-induced cell migration whereas PPT, an ERα agonist, did not show the suppressive effect on the cell migration. ERB041 attenuated the TGF-α-induced phosphorylation of AKT without affecting the phosphorylation of p38 MAPK and c-Jun N-terminal kinase. Raloxifene and bazedoxifene also inhibited the phosphorylation of AKT by TGF-α. Furthermore, PHTPP, an ERβ antagonist, significantly reversed the suppression by both raloxifene and bazedoxifene of the TGF-α-induced cell migration. Taken together, our results strongly indicate that raloxifene and bazedoxifene, SERMs, suppress the TGF-α-induced migration of HCC cells through ERβ-mediated inhibition of the AKT signaling pathway.
Collapse
Affiliation(s)
| | - Noriko Yamada
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuria Hattori
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yui Hosokawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takamitsu Hori
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| |
Collapse
|
16
|
Bonaccorsi G, Rizzati M, Salani L, Giganti M. Postmenopausal osteoporosis: risk evaluation and treatment options. Minerva Obstet Gynecol 2021; 73:714-729. [PMID: 34905877 DOI: 10.23736/s2724-606x.21.04896-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Postmenopausal osteoporosis is a chronic progressive condition characterized by reduced bone mass and impaired bone quality, leading to an increased risk of fragility fractures. Osteoporotic fractures reduce quality of life and are associated with high morbidity, mortality and economic burden. Primary and secondary prevention interventions are always recommended starting from the premenopausal age, in women after menopause, however, it is essential to develop a long-term intervention strategy that allows to identify patients at high risk of fracture and the choice of therapy based on the estimated risk. This narrative review described the tools for layering the management approach in relation to low, high and very high fracture risk. Several medications are now available for the treatment of osteoporosis and the prevention of fractures; the knowledge of the efficacy, safety and additional benefits profile of the individual preparations allows an appropriate choice between the different drugs available and the possibility of adapting the prescription to the lifetime fracture risk spectrum. From the literature it emerges that menopausal hormone therapy (MHT), TSEC combination and SERMs can be drugs of choice to counteract postmenopausal bone loss in younger women or at low risk of fracture, while bisphosphonates and denosumab are appropriate for women with high risk or at an older age. Therapy with denosumab and anabolic agents such as teriparatide and romosozumab is particularly indicated for subjects with very high risk of fracture.
Collapse
Affiliation(s)
- Gloria Bonaccorsi
- Department of Translational Medicine, Menopause and Osteoporosis Center, University of Ferrara, Ferrara, Italy - .,University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy -
| | - Monica Rizzati
- Department of Translational Medicine, Menopause and Osteoporosis Center, University of Ferrara, Ferrara, Italy
| | - Lara Salani
- Department of Translational Medicine, Menopause and Osteoporosis Center, University of Ferrara, Ferrara, Italy
| | - Melchiore Giganti
- Department of Translational Medicine and for Romagna, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Xu Q, Cao Z, Xu J, Dai M, Zhang B, Lai Q, Liu X. Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases. J Drug Target 2021; 30:394-412. [PMID: 34859718 DOI: 10.1080/1061186x.2021.2013488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bone-destructive diseases, caused by overdifferentiation of osteoclasts, reduce bone mass and quality, and disrupt bone microstructure, thereby causes osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis. Osteoclasts, the only multinucleated cells with bone resorption function, are derived from haematopoietic progenitors of the monocyte/macrophage lineage. The regulation of osteoclast differentiation is considered an effective target for the treatment of bone-destructive diseases. Natural plant-derived products have received increasing attention in recent years due to their good safety profile, the preference of natural compounds over synthetic drugs, and their potential therapeutic and preventive activity against osteoclast-mediated bone-destructive diseases. In this study, we reviewed the research progress of the potential antiosteoclast active compounds extracted from medicinal plants and their molecular mechanisms. Active compounds from natural plants that inhibit osteoclast differentiation and functions include flavonoids, terpenoids, quinones, glucosides, polyphenols, alkaloids, coumarins, lignans, and limonoids. They inhibit bone destruction by downregulating the expression of osteoclast-specific marker genes (CTSK, MMP-9, TRAP, OSCAR, DC-STAMP, V-ATPase d2, and integrin av3) and transcription factors (c-Fos, NFATc1, and c-Src), prevent the effects of local factors (ROS, LPS, and NO), and suppress the activation of various signalling pathways (MAPK, NF-κB, Akt, and Ca2+). Therefore, osteoclast-targeting natural products are of great value in the prevention and treatment of bone destructive diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyou Cao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - JiaQiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Bakhidze EV, Belyaeva AV, Berlev IV, Anisimov VN, Belyaev AM. Menopausal Hormonal Therapy and Breast Cancer. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
19
|
Abstract
Selective estrogen receptor (ER) modulators have variable tissue specific estrogen agonist and antagonist activities. Tamoxifen is approved for treatment and prevention of breast cancer; acts as an endometrial estrogen agonist. Raloxifene is approved for prevention and treatment of osteoporosis and prevention of breast cancer. The selective ER modulators bazedoxifene paired with conjugated estrogens relieves vasomotor symptoms and prevents bone loss with neutral effects on breast and amenorrhea similar to placebo. Ospemifene is approved to treat dyspareunia. Lasofoxifene is in development for resistant ER positive breast cancer. Estetrol (E4), synthesized by human fetal liver, has dual weak-estrogenic/antiestrogenic features, now approved as a contraceptive.
Collapse
Affiliation(s)
- JoAnn V Pinkerton
- Department of Obstetrics and Gynecology, Division of Midlife Health, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
20
|
Shuster B, Casserly R, Lipford E, Olszewski R, Milon B, Viechweg S, Davidson K, Enoch J, McMurray M, Rutherford MA, Ohlemiller KK, Hoa M, Depireux DA, Mong JA, Hertzano R. Estradiol Protects against Noise-Induced Hearing Loss and Modulates Auditory Physiology in Female Mice. Int J Mol Sci 2021; 22:12208. [PMID: 34830090 PMCID: PMC8620009 DOI: 10.3390/ijms222212208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17β-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Benjamin Shuster
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Ryan Casserly
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Erika Lipford
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | - Béatrice Milon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Shaun Viechweg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Kanisa Davidson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Jennifer Enoch
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Mark McMurray
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | | | - Jessica A. Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Ronna Hertzano
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
22
|
Guo Y, Liu Y, Shi C, Wu T, Cui Y, Wang S, Liu P, Feng X, He Y, Fu D. Remote-controllable bone-targeted delivery of estradiol for the treatment of ovariectomy-induced osteoporosis in rats. J Nanobiotechnology 2021; 19:248. [PMID: 34407835 PMCID: PMC8371851 DOI: 10.1186/s12951-021-00976-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic skeletal disease marked by bone mass reduction and bone tissue destruction. Hormone replacement therapy is an effective treatment for post-menopausal OP, but estrogen has poor tissue selectivity and severe side effects. RESULTS In this study, we constructed a poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)-based drug delivery system to co-load 17β estradiol (E2) and iron oxide (Fe3O4) together, modified with alendronate (AL) to achieve bone targeting and realize a magnetically remote-controllable drug release. The NPs were fabricated through the emulsion solvent diffusion method. The particle size was approximately 200 nm while the encapsulation efficiency of E2 was 58.34 ± 9.21%. The NPs were found to be spherical with a homogenous distribution of particle size. The NPs showed good stability, good biocompatibility, high encapsulation ability of E2 and excellent magnetic properties. The NPs could be effectively taken up by Raw 264.7 cells and were effective in enriching drugs in bone tissue. The co-loaded NPs exposed to an external magnetic field ameliorated OVX-induced bone loss through increased BV/TV, decreased Tb.N and Tb.Sp, improved bone strength, increased PINP and OC, and downregulated CTX and TRAP-5b. The haematological index and histopathological analyses displayed the NPs had less side effects on non-skeletal tissues. CONCLUSIONS This study presented a remote-controlled release system based on bone-targeted multifunctional NPs and a new potential approach to bone-targeted therapy of OP.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongwei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongzhi Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dehao Fu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Ping SH, Tian FM, Liu H, Sun Q, Shao LT, Lian QQ, Zhang L. Raloxifene inhibits the overexpression of TGF-β1 in cartilage and regulates the metabolism of subchondral bone in rats with osteoporotic osteoarthritis. Bosn J Basic Med Sci 2021; 21:284-293. [PMID: 33259777 PMCID: PMC8112563 DOI: 10.17305/bjbms.2020.5142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Overexpression of transforming growth factor-beta 1 (TGF-β1) and subchondral bone remodelling play key roles in osteoarthritis (OA). Raloxifene (RAL) reduces the serum level of TGF-β1 in postmenopausal women. However, the effect of RAL on TGF-β1 expression in articular cartilage is still unclear. Therefore, we aimed to investigate the protective effect of RAL on osteoporotic osteoarthritis via affecting TGF-β1 expression in cartilage and the metabolism of subchondral bone. Osteoporotic osteoarthritis was induced by a combination of anterior cruciate transection (ACLT) and ovariectomy (OVX). Rats were divided into five groups (n = 12): The sham group, the ACLT group, the OVX group, the ACLT + OVX group, and the RAL group (ACLT + OVX + RAL, 6.25 mg/kg/day for 12 weeks). Assessment was performed by histomorphology, microcomputed tomography (micro-CT) scan, immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining. We found that severe cartilage degeneration was shown in the ACLT + OVX group. The histomorphological scores, the levels of TGF-β1, and its related catabolic enzymes and osteoclasts numbers in the ACLT + OVX group were higher than those in other groups (p < 0.05). Furthermore, structure model index (SMI) and trabecular spacing (Tb.Sp) were decreased (p < 0.05), while bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular number (Tb.N) were increased by RAL compared with the ACLT + OVX group (p < 0.05). Our findings demonstrated that RAL in clinical doses retards the development of osteoporotic osteoarthritis by inhibiting the overexpression of TGF-β1 in cartilage and regulating the metabolism of subchondral bone. These results provide support for RAL in the expansion of clinical indication for prevention and treatment in postmenopausal osteoarthritis.
Collapse
Affiliation(s)
- Shao-Hua Ping
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Hao Liu
- Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Qi Sun
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Li-Tao Shao
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Qiang-Qiang Lian
- Department of Orthopedic Surgery, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China; Department of Orthopedic Surgery, Emergency General Hospital, Beijing, China
| |
Collapse
|
24
|
The 2020 genitourinary syndrome of menopause position statement of The North American Menopause Society. ACTA ACUST UNITED AC 2021; 27:976-992. [PMID: 32852449 DOI: 10.1097/gme.0000000000001609] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To update and expand the 2013 position statement of The North American Menopause Society (NAMS) on the management of the genitourinary syndrome of menopause (GSM), of which symptomatic vulvovaginal atrophy (VVA) is a component. METHODS A Panel of acknowledged experts in the field of genitourinary health reviewed the literature to evaluate new evidence on vaginal hormone therapies as well as on other management options available or in development for GSM. A search of PubMed was conducted identifying medical literature on VVA and GSM published since the 2013 position statement on the role of pharmacologic and nonpharmacologic treatments for VVA in postmenopausal women. The Panel revised and added recommendations on the basis of current evidence. The Panel's conclusions and recommendations were reviewed and approved by the NAMS Board of Trustees. RESULTS Genitourinary syndrome of menopause affects approximately 27% to 84% of postmenopausal women and can significantly impair health, sexual function, and quality of life. Genitourinary syndrome of menopause is likely underdiagnosed and undertreated. In most cases, symptoms can be effectively managed. A number of over-the-counter and government-approved prescription therapies available in the United States and Canada demonstrate effectiveness, depending on the severity of symptoms. These include vaginal lubricants and moisturizers, vaginal estrogens and dehydroepiandrosterone (DHEA), systemic hormone therapy, and the estrogen agonist/antagonist ospemifene. Long-term studies on the endometrial safety of vaginal estrogen, vaginal DHEA, and ospemifene are lacking. There are insufficient placebo-controlled trials of energy-based therapies, including laser, to draw conclusions on efficacy and safety or to make treatment recommendations. CONCLUSIONS Clinicians can resolve many distressing genitourinary symptoms and improve sexual health and the quality of life of postmenopausal women by educating women about, diagnosing, and appropriately managing GSM. Choice of therapy depends on the severity of symptoms, the effectiveness and safety of treatments for the individual patient, and patient preference. Nonhormone therapies available without a prescription provide sufficient relief for most women with mild symptoms. Low-dose vaginal estrogens, vaginal DHEA, systemic estrogen therapy, and ospemifene are effective treatments for moderate to severe GSM. When low-dose vaginal estrogen or DHEA or ospemifene is administered, a progestogen is not indicated; however, endometrial safety has not been studied in clinical trials beyond 1 year. There are insufficient data at present to confirm the safety of vaginal estrogen or DHEA or ospemifene in women with breast cancer; management of GSM should consider the woman's needs and the recommendations of her oncologist.
Collapse
|
25
|
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B, Nakshatri H. Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2021; 13:369. [PMID: 33498407 PMCID: PMC7864210 DOI: 10.3390/cancers13030369] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Signaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.
Collapse
Affiliation(s)
- Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher A. Herodotou
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Carneiro ALB, Spadella APC, de Souza FA, Alves KBF, de Araujo-Neto JT, Haidar MA, Dardes RDCDM. Effects of Raloxifene Combined with Low-dose Conjugated Estrogen on the Endometrium in Menopausal Women at High Risk for Breast Cancer. Clinics (Sao Paulo) 2021; 76:e2380. [PMID: 33503193 PMCID: PMC7798121 DOI: 10.6061/clinics/2021/e2380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To compare the effects of low-dose conjugated estrogen (CE), raloxifene, and the combination thereof on the endometrium of postmenopausal women. METHODS Postmenopausal women between 45 and 60 years of age, with Gail score≥1.67 and no endometrial disorders, were randomly assigned to receive low-dose CE (0.3 mg), raloxifene (60 mg), or combined therapy for 1 year. Transvaginal ultrasound was performed at baseline and every 3 months; the Kupperman Index was assessed at baseline and every 6 months. Endometrial biopsies were performed if endometrial thickness (ET) was ≥5 mm or if vaginal bleeding occurred. The primary outcome was the occurrence of ET≥5 mm over the one-year period. RESULTS Seventy-three women were randomly assigned and analyzed on an intent-to-treat basis. Eight, three, and four women in the CE, raloxifene, and combination groups, respectively, exhibited ET≥5 mm. No genital bleeding was reported in the combination group. Endometrial biopsy revealed atrophy or polyps in all groups, with one patient in the CE group exhibiting a proliferative endometrium without atypia. At 6 months, there was a progressive increase in mean ET in the CE group, but not in the other two groups, with statistically significant differences at 6, 9, and 12 months. Mean scores for vasomotor symptoms and Kupperman Index favored the CE and combination groups over raloxifene. CONCLUSION Combined raloxifene and low-dose CE decreased the severity of menopausal symptoms to a similar extent as CE alone and had similar effects as raloxifene alone on the endometrium.
Collapse
Affiliation(s)
- Andrea Lucia Bastos Carneiro
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Ana Paula Curi Spadella
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Fabiola Amaral de Souza
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Karen Borelli Ferreira Alves
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Joaquim Teodoro de Araujo-Neto
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Mauro Abi Haidar
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Rita de Cássia de Maio Dardes
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
27
|
Lambrinidis G, Gouedard C, Stasinopoulou S, Angelopoulou A, Ganou V, Meligova AK, Mitsiou DJ, Marakos P, Pouli N, Mikros E, Alexis MN. Design, synthesis, and biological evaluation of new raloxifene analogues of improved antagonist activity and endometrial safety. Bioorg Chem 2020; 106:104482. [PMID: 33272706 DOI: 10.1016/j.bioorg.2020.104482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023]
Abstract
Raloxifene agonism of estrogen receptor (ER) in post-menopausal endometrium is not negligible. Based on a rational drug design workflow, we synthesized 14 analogues of raloxifene bearing a polar group in the aromatic ring of the basic side chain (BSC) and/or changes in the bulkiness of the BSC amino group. Analogues with a polar BSC aromatic ring and amino group substituents of increasing volume displayed increasing ER antagonism in Ishikawa cells. Analogues with cyclohexylaminoethoxy (13a) or adamantylaminoethoxy BSC (13b) lacking a polar aromatic ring displayed high ER-binding affinity and ER antagonism in Ishikawa cells higher than raloxifene and similar to fulvestrant (ICI182,780). The endometrial surface epithelium of immature female CD1 mice injected with 13b was comparable to that of vehicle-treated mice, while that of mice treated with estradiol, raloxifene or 13b in combination with estradiol was hyperplastic. These findings indicate that raloxifene analogues with a bulky BSC amino group could provide for higher endometrial safety treatment of the menopausal syndrome.
Collapse
Affiliation(s)
- George Lambrinidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Cedric Gouedard
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Sotiria Stasinopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Angeliki Angelopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassiliki Ganou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aggeliki K Meligova
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Dimitra J Mitsiou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Panagiotis Marakos
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nicole Pouli
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Michael N Alexis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
28
|
Machin N, Ragni MV. Hormones and thrombosis: risk across the reproductive years and beyond. Transl Res 2020; 225:9-19. [PMID: 32599096 DOI: 10.1016/j.trsl.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022]
Abstract
Endogenous and exogenous hormones have significant effects on coagulation and may tip the hemostatic balance toward thrombosis. The endogenous hormonal changes in pregnancy and polycystic ovary syndrome, and exogenous hormonal contraception, menopause replacement, and transgender cross-hormone replacement may increase thromboembolism risk. Using the lowest effective dose is critical for prevention, but once thrombosis occurs, anticoagulation may be required, in some, long term. We review the relative risk of thrombosis in these conditions, risk factors, and anticoagulation treatment and prevention. Implementation of lowest effective hormonal therapies, thrombosis reduction strategies, and current anticoagulation management are critical for optimal patient outcomes.
Collapse
Affiliation(s)
- Nicoletta Machin
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Hemophilia Center of Western Pennsylvania, Pittsburgh, Pennsylvania
| | - Margaret V Ragni
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Hemophilia Center of Western Pennsylvania, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Gambari L, Grassi F, Roseti L, Grigolo B, Desando G. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21176001. [PMID: 32825443 PMCID: PMC7504439 DOI: 10.3390/ijms21176001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.
Collapse
Affiliation(s)
| | | | - Livia Roseti
- Correspondence: (L.R.); (B.G.); Tel.: +39-051-6366090 (B.G.)
| | | | | |
Collapse
|
30
|
Bae S, Zeng S, Park-Min KH. Nuclear receptors in osteoclasts. Curr Opin Pharmacol 2020; 53:8-17. [PMID: 32569976 PMCID: PMC7669703 DOI: 10.1016/j.coph.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of bone under physiological conditions and numerous pathological conditions, such as osteoporosis, bone metastasis, and inflammatory bone erosion. Nuclear receptors are crucial to various physiological processes, including metabolism, development and inflammation, and function as transcription factors to activate target genes. Synthetic ligands of nuclear receptors are also available for the treatment of metabolic and inflammatory diseases. However, dysregulated bone phenotypes have been documented in patients who take synthetic nuclear receptor ligands as a therapy. Therefore, the effect of nuclear receptors on bone cells has become an important area of exploration; additionally, the molecular mechanisms underlying the action of nuclear receptors in osteoclasts have not been completely understood. Here, we cover the recent progress in our understanding of the roles of nuclear receptors in osteoclasts.
Collapse
Affiliation(s)
- Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Steven Zeng
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
31
|
Peres-Ueno MJ, Fernandes F, Brito VGB, Nicola ÂC, Stringhetta-Garcia CT, Castoldi RC, Menezes AP, Ciarlini PC, Louzada MJQ, Oliveira SHP, Ervolino E, Chaves-Neto AH, Dornelles RCM. Effect of pre-treatment of strength training and raloxifene in periestropause on bone healing. Bone 2020; 134:115285. [PMID: 32097761 DOI: 10.1016/j.bone.2020.115285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND There is evidence that strength training (ST) and raloxifene (Ral) treatment during periestropause promotes better bone quality. We wanted to determine whether the skeletal benefits of ST or Ral treatment, performed during periestropause, would persist after fracture. Therefore, the present study aimed to analyze the influence of pre-treatment with ST and administration of Ral during periestropause on bone healing after total unilateral osteotomy. METHODS Senescent female Wistar rats between 18 and 21 months of age, performed ST on a ladder three times per week, were administered Ral by gavage (2.3 mg/kg/day), or an association of both. After 120 days, the treatments were interrupted, and a total osteotomy was performed on the left tibia in all animals. They were euthanized 1 and 8 weeks post-osteotomy. RESULTS The administration of Ral during periestropause worsened the biochemical and oxidative profile, decreased gene expression of markers related to bone resorption and remodeling, which negatively affected the physicochemical properties; this lead to changes in the bone callus microarchitecture and mass, as well as a decrease in callus resistance to torsional deformation, resulting in lower tissue quality during bone healing. In contrast, ST performed prior to the osteotomy resulted in better bone healing, improvement of the biochemical and oxidative profile, alteration of the genetic profile in favor of bone formation and resorption, as well as the physic-ochemical properties of the callus. These changes led to better microarchitecture and bone mass and increased callus resistance to torsional deformation, confirming its beneficial effect on the quality of bone tissue, providing acceleration of bone consolidation. The combination of therapies at this exercise intensity and drug dosage showed a negative interaction, where the negative effect of Ral overcame the positive effect of ST, leading to decreased tissue quality in the bone healing process. CONCLUSIONS This study indicates that in addition to excellent non-pharmacological therapy and action in the prevention of osteoporosis, ST performed during the aging period may increase bone quality at the onset of healing and provide improved bone consolidation. Furthermore, the anti-osteoclastogenic effect of Ral shown in this model delayed the bone repair process, resulting in considerable clinical concern.
Collapse
Affiliation(s)
- Melise Jacon Peres-Ueno
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| | - Fernanda Fernandes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Ângela Cristina Nicola
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Camila Tami Stringhetta-Garcia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Robson Chacon Castoldi
- Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Amanda Pinatti Menezes
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Paulo Cézar Ciarlini
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Mário Jeferson Quirino Louzada
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rita Cassia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
32
|
Pinkerton JV, Conner EA. Beyond estrogen: advances in tissue selective estrogen complexes and selective estrogen receptor modulators. Climacteric 2020; 22:140-147. [PMID: 30895900 DOI: 10.1080/13697137.2019.1568403] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are synthetic non-steroidal agents which have variable estrogen agonist and antagonist activities in different target tissues. Tamoxifen is an anti-estrogen in the breast used for treatment and prevention of breast cancer, with estrogen agonist activity in the uterus. Raloxifene prevents and treats osteoporosis and prevents breast cancer, and can be safely combined with vaginal but not systemic estrogen. The tissue selective estrogen complex combines conjugated equine estrogens (CEE) with the SERM bazedoxifene (BZA). The five Selective Estrogen Menopause and Response to Therapy studies, with up to 2 years of data, demonstrated that CEE/BZA 0.45 mg/BZA 20 mg improved vasomotor symptoms and vulvovaginal atrophy, prevented bone loss, and was neutral on breast tenderness, breast density, with breast cancer incidence similar to placebo. Protection against estrogen-induced endometrial hyperplasia and cancer was found, with similar amenorrhea rates to placebo. Ospemifene is approved to treat dyspareunia, with potential benefits on bone and the breast, while lasofoxifene is being developed to treat resistant estrogen receptor-positive breast cancer in women. Estetrol is an estrogen synthesized exclusively during pregnancy by the human fetal liver and initially considered a weak estrogen, but it appears to have dual weak estrogenic/anti-estrogenic features.
Collapse
Affiliation(s)
- J V Pinkerton
- a Department of Obstetrics and Gynecology, Division of Midlife Health , University of Virginia Health System , Charlottesville , VA , USA
| | - E A Conner
- a Department of Obstetrics and Gynecology, Division of Midlife Health , University of Virginia Health System , Charlottesville , VA , USA
| |
Collapse
|
33
|
Bei MJ, Tian FM, Xiao YP, Cao XH, Liu N, Zheng ZY, Dai MW, Wang WY, Song HP, Zhang L. Raloxifene retards cartilage degradation and improves subchondral bone micro-architecture in ovariectomized rats with patella baja-induced - patellofemoral joint osteoarthritis. Osteoarthritis Cartilage 2020; 28:344-355. [PMID: 31326553 DOI: 10.1016/j.joca.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Abnormal remodeling of subchondral bone (SB) induced by estrogen deficiency has been shown to be involved in osteoarthritis (OA). Raloxifene (RAL) is commonly used to treat postmenopausal osteoporosis (OP). However, little is known about its effects on OA combined with estrogen deficiency. This study was performed to evaluate the efficacy of RAL on patella baja-induced patellofemoral joint OA (PFJOA) in an ovariectomized rat model. DESIGN Patellar ligament shortening (PLS) and ovariectomy (OVX) were performed simultaneously in 3-month-old female Sprague-Dawley rats, which were treated with RAL (10 mg/kg/day) or vehicle at 72 h postoperatively for 10 weeks. PFJOA was assessed by immunohistochemistry (IHC), real-time polymerase chain reaction (PCR), tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA), micro-computed tomography (μCT), histomorphology and behavioral analyses. RESULTS X-ray examinations showed that patella baja was successfully established by PLS. Histomorphological analysis revealed that PFJOA was significantly exacerbated by OVX and markedly alleviated by RAL. Moreover, RAL improved cartilage metabolism by decreasing MMP-13, ADAMTS-4, and caspase-3 and increasing Col-II and aggrecan at both the protein and mRNA levels. Furthermore, RAL markedly improved bone mass and SB microarchitecture and reduced osteoclast numbers and the serum osteocalcin and CTX-I levels. Although RAL showed a trend toward reducing pain sensitivity based on mechanical allodynia testing, this result was not statistically significant. CONCLUSION These findings demonstrate that RAL treatment retards PFJOA progression in an ovariectomized rat model, suggesting that it may be a potential candidate for amelioration of the progression of PFJOA accompanied by postmenopausal OP.
Collapse
Affiliation(s)
- M-J Bei
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China.
| | - F-M Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, PR China.
| | - Y-P Xiao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, PR China.
| | - X-H Cao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, PR China.
| | - N Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, PR China.
| | - Z-Y Zheng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, PR China.
| | - M-W Dai
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China.
| | - W-Y Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, PR China.
| | - H-P Song
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, PR China.
| | - L Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
34
|
Roch PJ, Henkies D, Carstens JC, Krischek C, Lehmann W, Komrakova M, Sehmisch S. Ostarine and Ligandrol Improve Muscle Tissue in an Ovariectomized Rat Model. Front Endocrinol (Lausanne) 2020; 11:556581. [PMID: 33042018 PMCID: PMC7528560 DOI: 10.3389/fendo.2020.556581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
In postmenopausal women, hormonal decline changes muscle function and structure. The non-steroidal selective androgen receptor modulators (SARMs) Ostarine (OS) and Ligandrol (LG) have been shown to increase muscle mass and physical function while showing a relative low risk profile. Information about their effects on muscle structure and metabolism is lacking. To analyze this, two experiments were performed using ovariectomized rats as a standard model for postmenopausal conditions. In each experiment, 3-month old Sprague-Dawley rats were divided into five groups (n = 12 to 15). One group remained intact (Non-OVX), the other four groups were ovariectomized (OVX) and remained untreated for eight (OS Experiment) or nine (LG Experiment) weeks. Thereafter, rats of three of the four OVX groups were treated with OS or LG (with doses of 0.04, 0.4, or 4 mg/kg body weight/day) for 5 weeks. Then, uterus, gastrocnemius, and soleus muscles were weighed, fiber size, capillary density, and enzyme activity (lactate dehydrogenase [LDH], citrate synthase [CS], and complex I) were analyzed. In the LG experiment, intramuscular fat content was determined in the quadriceps femoris muscle. All OS treatments resulted in a higher capillary density in the gastrocnemius and longissimus muscles compared with the Non-OVX and the OVX rats, whereas all LG treatments showed a higher capillary density compared with the Non-OVX group. Muscle fiber size and distribution patterns were not changed under either SARM. The CS activity was higher in the longissimus muscle under OS treatment. LG resulted in a higher activity of CS in the gastrocnemius and of LDH in the longissimus muscle. Both SARMs showed an uterotrophic effect, OS at 4 and 0,4 mg dosages, LG at 4 mg dosage. In sum, beneficial effect on muscle vascularization was observed for both SARMs with a stronger impact for OS. LG showed more effect on muscle metabolism. However, a higher muscle weight and intramuscular fat content observed after LG treatment (4 mg) as well as an uterotrophic effect of both SARMs at higher dosages could be considered as an unfavorable side effects and might be a limitation for their application at these dosages.
Collapse
Affiliation(s)
- Paul Jonathan Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
- *Correspondence: Paul Jonathan Roch
| | - Danny Henkies
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Jan Christoph Carstens
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Carsten Krischek
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Vila È, Huerta-Ramos E, Núñez C, Usall J, Ramos B. Specificity proteins 1 and 4 in peripheral blood mononuclear cells in postmenopausal women with schizophrenia: a 24-week double-blind, randomized, parallel, placebo-controlled trial. Eur Arch Psychiatry Clin Neurosci 2019; 269:941-948. [PMID: 30167782 DOI: 10.1007/s00406-018-0938-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Accumulating evidence suggests that Specificity Protein 1 (SP1) and 4 (SP4) transcription factors are involved in the pathophysiology of schizophrenia. The therapeutic use of selective oestrogen modulators such as raloxifene added to antipsychotic drugs in the treatment of postmenopausal women with schizophrenia has been investigated in a few clinical trials, which reported an improvement in negative, positive, and general psychopathological symptoms. We aimed to investigate the possible association between peripheral SP protein levels and symptom improvement in postmenopausal women with schizophrenia treated with adjuvant raloxifene. In a subgroup of 14 postmenopausal women with schizophrenia from a 24-week, randomized, parallel, double-blind, placebo-controlled clinical trial (NCT015736370), we investigated changes in SP1 and SP4 protein levels in peripheral blood mononuclear cells. Participants were randomized to either 60 mg/day adjunctive raloxifene or placebo. Psychopathological symptoms were assessed at baseline and at week 24 with the Positive and Negative Syndrome Scale (PANSS). The expression of SP proteins was evaluated by immunoblot, and changes in PANSS scores and protein levels were compared at baseline and after 24 weeks of treatment. An improvement in symptoms was observed in the intervention group, but not in placebo group. Post-treatment protein levels of SP4, but not SP1, correlated with improvements in general and total PANSS subscales in the raloxifene intervention group. A reduction in SP4 levels was found after raloxifene treatment. These results suggest that SP4 may be involved in raloxifene symptom improvement in postmenopausal women and could be a potential candidate for future studies investigating blood-based biomarkers for raloxifene effectiveness.
Collapse
Affiliation(s)
- Èlia Vila
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
| | - Elena Huerta-Ramos
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain
| | - Christian Núñez
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain
| | - Judith Usall
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain.
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain.
| | - Belén Ramos
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain.
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
36
|
Chollet J, Mermelstein F, Rocamboli SC, Friend DR. Vaginal tamoxifen for treatment of vulvar and vaginal atrophy: Pharmacokinetics and local tolerance in a rabbit model over 28 days. Int J Pharm 2019; 570:118691. [DOI: 10.1016/j.ijpharm.2019.118691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 11/15/2022]
|
37
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
38
|
Poschner S, Maier-Salamon A, Thalhammer T, Jäger W. Resveratrol and other dietary polyphenols are inhibitors of estrogen metabolism in human breast cancer cells. J Steroid Biochem Mol Biol 2019; 190:11-18. [PMID: 30851384 DOI: 10.1016/j.jsbmb.2019.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/09/2023]
Abstract
Polyphenols in foods and dietary supplements are commonly used for the prevention and treatment of a variety of malignancies, including breast cancer. However, daily intake by patients with breast cancer is controversial, as these compounds may stimulate cancer growth. Estrogens serve key roles in breast cancer cell proliferation; therefore, understanding the interaction between endogenous steroid hormones and natural dietary polyphenols is essential. Currently, comprehensive knowledge regarding these effects remains limited. The current review summarizes the dose-dependent in vitro and in vivo interactions of resveratrol and other dietary polyphenols with estrogen precursors, active estrogens, catechol estrogens and their respective glucuronidated, sulfated, glutathionated or O-methylated metabolites in estrogen receptor alpha negative (ERα-) and positive (ERα+) breast cancer. Which estrogen-metabolizing enzymes are affected by polyphenols is also reviewed in detail. Furthermore, the impacts of dose and therapy duration on disease development and progression in patients with breast cancer are discussed. The present article is part of a Special Issue titled 'CSR 2018'.
Collapse
Affiliation(s)
- Stefan Poschner
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Maier-Salamon
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Austria.
| |
Collapse
|
39
|
Galanis D, Soultanis K, Lelovas P, Zervas A, Papadopoulos P, Galanos A, Argyropoulou K, Makropoulou M, Patsaki A, Passali C, Tsingotjidou A, Kourkoulis S, Mitakou S, Dontas I. Protective effect of Glycyrrhiza glabra roots extract on bone mineral density of ovariectomized rats. Biomedicine (Taipei) 2019; 9:8. [PMID: 31124454 PMCID: PMC6533940 DOI: 10.1051/bmdcn/2019090208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of this study was to evaluate the potential effect of the methanolic extract of plant Glycyrrhiza glabra roots on bone mineral density and femoral bone strength of ovariectomized rats. Methods: Thirty 10-month-old Wistar rats were randomly separated into three groups of ten, Control, Ovariectomy and Ovariectomy-plus-Glycyrrhiza in their drinking water. Total and proximal tibial bone mineral density was measured in all groups before ovariectomy (baseline) and after 3 and 6 months post ovariectomy. Three-point-bending of the femurs and uterine weight and histology were examined at the end of the study. Results: No significant difference was noted in bone density percentage change of total tibia from baseline to 3 months between Control and Ovariectomy-plus-Glycyrrhiza groups (+5.31% ± 4.75 and +3.30% ± 6.31 respectively, P = non significant), and of proximal tibia accordingly (+5.58% ± 6.92 and +2.61% ± 13.62, P = non significant) demonstrating a strong osteoprotective effect. There was notable difference in percentage change of total tibia from baseline to 6 months between groups Ovariectomy and Ovariectomy-plus-Glycyrrhiza (−13.03% ± 5.11 and −0.84% ± 7.63 respectively, P < 0.005), and of proximal tibia accordingly (−27.9% ± 3.69 and −0.81% ± 14.85 respectively, P < 0.001), confirming the protective effect of Glycyrrhiza glabra extract in preserving bone density of the Ovariectomy-plus-Glycyrrhiza group. Three-point-bending did not reveal any statistically significant difference between Ovariectomy and Ovariectomy-plus-Glycyrrhiza groups. Uterine weights of the Ovariectomy-plus-Glycyrrhiza group ranged between the other two groups with no statistically significant difference to each. Conclusions: Glycyrrhiza glabra root extract notably protected tibial bone mineral density loss in Ovariectomy-plus-Glycyrrhiza rats in comparison with ovariectomized rats, but did not improve biomechanical strength.
Collapse
Affiliation(s)
- Dimitrios Galanis
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Konstantinos Soultanis
- 1st Department of Orthopaedics, National and Kapodistrian University of Athens, Faculty of Medicine, Attiko Hospital, Athens, Greece
| | - Pavlos Lelovas
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Alexandros Zervas
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Panagiotis Papadopoulos
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Antonis Galanos
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Katerina Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Maria Makropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | | | - Christina Passali
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Anastasia Tsingotjidou
- Lab. of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Veterinary Medicine,
| | - Stavros Kourkoulis
- Department of Mechanics, National Technical University of Athens (NTUA), National Technical University of Athens, Greece
| | - Sofia Mitakou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Ismene Dontas
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| |
Collapse
|
40
|
Saha T, Makar S, Swetha R, Gutti G, Singh SK. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur J Med Chem 2019; 177:116-143. [PMID: 31129450 DOI: 10.1016/j.ejmech.2019.05.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a most common malignancy in women, was known to be associated with steroid hormone estrogen. The discovery of estrogen receptor (ER) gave us not only a powerful predictive and prognostic marker, but also an efficient target for the treatment of hormone-dependent breast cancer with various estrogen ligands. ER consists of two subtypes i.e. ERα and ERβ, that are mostly G-protein-coupled receptors and activated by estrogen, specially 17β-estradiol. The activation is followed by translocation into the nucleus and binding with DNA to modulate activities of different genes. ERs can manage synthesis of RNA through genomic actions without directly binding to DNA. Receptors are tethered by protein-protein interactions to a transcription factor complex to communicate with DNA. Estrogens also exhibit nongenomic actions, a characteristic feature of steroid hormones, which are so rapid to be considered by the activation of RNA and translation. These are habitually related to stimulation of different protein kinase cascades. Majority of post-menopausal breast cancer is estrogen dependent, mostly potent biological estrogen (E2) for continuous growth and proliferation. Estrogen helps in regulating the differentiation and proliferation of normal breast epithelial cells. In this review we have investigated the important role of ER in development and progression of breast cancer, which is complicated by receptor's interaction with co-regulatory proteins, cross-talk with other signal transduction pathways and development of treatment strategies viz. selective estrogen receptor modulators (SERMs), selective estrogen receptor down regulators (SERDs), aromatase and sulphatase inhibitors.
Collapse
Affiliation(s)
- Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India.
| |
Collapse
|
41
|
Burkhardt C, Bühler L, Tihy M, Morel P, Forni M. Bazedoxifene as a novel strategy for treatment of pancreatic and gastric adenocarcinoma. Oncotarget 2019. [DOI: 10.18632/oncotarget.26833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Claudia Burkhardt
- Service de chirurgie viscérale, Département de chirurgie, Hôpitaux Universitaires de Genève, 1211 Genève, Switzerland
| | - Leo Bühler
- Service de chirurgie viscérale, Département de chirurgie, Hôpitaux Universitaires de Genève, 1211 Genève, Switzerland
| | - Matthieu Tihy
- Département diagnostique Service de pathologie clinique, Hôpitaux Universitaires de Genève, 1211 Genève, Switzerland
| | - Philippe Morel
- Service de chirurgie viscérale, Département de chirurgie, Hôpitaux Universitaires de Genève, 1211 Genève, Switzerland
| | - Michel Forni
- Clinique de Carouge, Réseau la Tour, Avenue Cardinal Mermillod 1, 1227 Carouge, Switzerland
| |
Collapse
|
42
|
Martin-Jiménez C, Gaitán-Vaca DM, Areiza N, Echeverria V, Ashraf GM, González J, Sahebkar A, Garcia-Segura LM, Barreto GE. Astrocytes Mediate Protective Actions of Estrogenic Compounds after Traumatic Brain Injury. Neuroendocrinology 2019; 108:142-160. [PMID: 30391959 DOI: 10.1159/000495078] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Cynthia Martin-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Milena Gaitán-Vaca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Areiza
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Concepción, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia,
| |
Collapse
|
43
|
Martínez-Pérez C, Turnbull AK, Dixon JM. The evolving role of receptors as predictive biomarkers for metastatic breast cancer. Expert Rev Anticancer Ther 2018; 19:121-138. [PMID: 30501540 DOI: 10.1080/14737140.2019.1552138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In breast cancer, estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) are essential biomarkers to predict response to endocrine and anti-HER2 therapies, respectively. In metastatic breast cancer, the use of these receptors and targeted therapies present additional challenges: temporal heterogeneity, together with limited sampling methodologies, hinders receptor status assessment, and the constant evolution of the disease invariably leads to resistance to treatment. Areas covered: This review summarizes the genomic abnormalities in ER and HER2, such as mutations, amplifications, translocations, and alternative splicing, emerging as novel biomarkers that provide an insight into underlying mechanisms of resistance and hold potential predictive value to inform treatment selection. We also describe how liquid biopsies for sampling of circulating markers and ultrasensitive detection technologies have emerged which complement ongoing efforts for biomarker discovery and analysis. Expert commentary: While evidence suggests that genomic aberrations in ER and HER2 could contribute to meeting the pressing need for better predictive biomarkers, efforts need to be made to standardize assessment methods and better understand the resistance mechanisms these markers denote. Taking advantage of emerging technologies, research in upcoming years should include prospective trials incorporating these predictors into the study design to validate their potential clinical value.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Arran K Turnbull
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - J Michael Dixon
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK.,b Edinburgh Breast Unit , Western General Hospital , Edinburgh , UK
| |
Collapse
|
44
|
Zhu Z, Li J, Ruan G, Wang G, Huang C, Ding C. Investigational drugs for the treatment of osteoarthritis, an update on recent developments. Expert Opin Investig Drugs 2018; 27:881-900. [PMID: 30345826 DOI: 10.1080/13543784.2018.1539075] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is the leading cause of pain, loss of function, and disability among elderly, with the knee the most affected joint. It is a heterogeneous condition characterized by complex and multifactorial etiologies which contribute to the broad variation in symptoms presentation and treatment responses that OA patients present. This poses a challenge for the development of effective treatment on OA. AREAS COVERED This review will discuss recent development of agents for the treatment of OA, updating our previous narrative review published in 2015. They include drugs for controlling local and systemic inflammation, regulating articular cartilage, targeting subchondral bone, and relieving pain. EXPERT OPINION Although new OA drugs such as monoclonal antibodies have shown marked effects and favorable tolerance, current treatment options for OA remain limited. The authors believe there is no miracle drug that can be used for all OA patients'; treatment and disease stage is crucial for the effectiveness of drugs. Therefore, early diagnosis, phenotyping OA patients and precise therapy would expedite the development of investigational drugs targeting at symptoms and disease progression of OA.
Collapse
Affiliation(s)
- Zhaohua Zhu
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jia Li
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guangfeng Ruan
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China.,b Department of Rheumatology and Immunology , Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Guoliang Wang
- c Menzies Institute for Medical Research, University of Tasmania , Hobart , Australia
| | - Cibo Huang
- d Department of Rheumatology & Immunology , Beijing Hospital , Beijing , China
| | - Changhai Ding
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China.,b Department of Rheumatology and Immunology , Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,c Menzies Institute for Medical Research, University of Tasmania , Hobart , Australia
| |
Collapse
|
45
|
Makar S, Saha T, Singh SK. Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur J Med Chem 2018; 161:252-276. [PMID: 30366253 DOI: 10.1016/j.ejmech.2018.10.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023]
Abstract
Naphthalene, a cytotoxic moiety, is an extensively explored aromatic conjugated system with applications in various pathophysiological conditions viz. anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular, antihypertensive, antidiabetic, anti-neurodegenerative, antipsychotic, anticonvulsant, antidepressant. Naphthalene epoxides and naphthoquinones are most reactive metabolites of naphthalene and are responsible for the covalent interaction with cysteine amino acid of cellular proteins for cytotoxic nature. Many naphthalene derived bioactive phytoconstituents are present in nature including podophyllotoxins (Etoposide, teniposide), bis-ANS 82, Rifampicin, Justiprocumin A, B, Patentiflorin A. The naphthalene-based molecules, viz. Naphyrone, tolnaftate, naftifine, nafcillin, terbinafine, propranolol, nabumetone, nafimidone, naproxen, duloxetine, lasofoxifene, bedaquiline etc. have also been approved by FDA and are being marketed as therapeutics. Thus, the naphthalene scaffold emerges as an important building block in drug discovery owing to its broad spectrum of biological activities through varying structural modifications. This review incorporates the pharmacological aspects of different types of chemically modified naphthalene-based molecules along with their activity profile. This compiled information may serve as a benchmark for the alteration of existing ligands to design novel potent molecules with lesser side effects.
Collapse
Affiliation(s)
- Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
46
|
Suardika A, Astawa Pemayun TG. New insights on the pathogenesis of endometriosis and novel non-surgical therapies. J Turk Ger Gynecol Assoc 2018; 19:158-164. [PMID: 30008440 PMCID: PMC6085523 DOI: 10.4274/jtgga.2018.0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Endometriosis is a disease of theories, but none has succeeded to explain the whole picture. Most widely available drugs for endometriosis aim to relieve symptoms and improve fertility. Unfortunately, many short and long-term side-effects are associated with the treatments. To overcome this problem, researchers have developed many novel therapeutic agents, including non-invasive technique. We aim to provide new insights on pathogenesis model and novel non-surgical treatments for endometriosis, including drugs already available in the market and also drugs which are still under research. Seven novel treatment modalities are recognized, namely dienogest, aromatase inhibitor (AI), gonadotrophine-releasing hormone (GnRH) antagonist, anti tumor necrosing factor (TNF)-α, selective estrogen receptor modulator (SERM), selective progesterone receptor modulator (SPRM), and high-intensity focused ultrasound (HIFU). Dienogest, AI, and GnRH antagonists are effective novel treatments with good tolerance and safety. SERM and SPRM show inconsistent results, while anti-TNF-α is still in the animal experimental stage. HIFU is a potential futuristic treatment. However, it is still a long way until this technology is truly applicable.
Collapse
Affiliation(s)
- Anom Suardika
- Department of Obstetrics and Gynecology, Udayan University, Sangah Hospital, Bali, Indonesia
| | | |
Collapse
|
47
|
Guan ZY, Chen LY, Li XL, Cui YR, Liu RH. Molecular mechanism of quercitrin on osteogenic differentiation and adipogenic differentiation of rat bone marrow stromal stem cells (rBMSCs). CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
48
|
Ornstrup MJ, Brüel A, Thomsen JS, Harsløf T, Langdahl BL, Pedersen SB. Long-Term High-Dose Resveratrol Supplementation Reduces Bone Mass and Fracture Strength in Rats. Calcif Tissue Int 2018; 102:337-347. [PMID: 29058054 DOI: 10.1007/s00223-017-0344-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023]
Abstract
Resveratrol (RSV) is a natural polyphenolic compound. A recent study suggests a positive effect on BMD in men; however, the underlying changes in microstructure and strength remain unknown. We aimed to investigate the effects of RSV on the skeleton in hindlimb-immobilized and non-immobilized rats. Seventy-two female Wistar rats were divided into six groups. Two baseline (BSL) groups underwent short-term diet intervention for 4 weeks before sacrifice [phytoestrogen-deficient diet (PD) (BSL + PD) or RSV diet (600 mg/kg body weight/day) (BSL + RSV)]. Four groups were injected in the right hindlimb with botulinum toxin (BTX) (immobilized) or saline (non-immobilized), and fed either PD diet or RSV diet 4 weeks pre-injection and 6 weeks post-injection before sacrifice (BTX + PD, BTX + RSV, PD, and RSV, respectively). DXA, µCT, dynamic histomorphometry, and mechanical tests were performed. Short-term RSV treatment did not affect bone parameters, whereas long-term RSV exposure had a consistent negative impact on non-immobilized rats (RSV vs. PD); whole femoral aBMD (p = 0.01) and distal femoral metaphyseal Tb.N (p = 0.01), Tb.Sp (p = 0.02), and BV/TV (p = 0.07). At the femoral mid-diaphysis, RSV increased periosteal resorption (p = 0.01) and increased endosteal formation (p = 0.02), while mineralization was unaffected. In addition, RSV reduced femoral mid-diaphyseal three-point bending strength (p = 0.03) and stiffness (p = 0.04). BTX-induced immobilization resulted in significant bone loss and reduced bone strength; however, RSV supplementation was unable to prevent this. In conclusion, long-term high-dose RSV reduced bone mass and fracture strength and did not prevent immobilization-induced bone loss in rats.
Collapse
Affiliation(s)
- Marie Juul Ornstrup
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Bente Lomholt Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
49
|
Bekić SS, Marinović MA, Petri ET, Sakač MN, Nikolić AR, Kojić VV, Ćelić AS. Identification of d-seco modified steroid derivatives with affinity for estrogen receptor α and β isoforms using a non-transcriptional fluorescent cell assay in yeast. Steroids 2018; 130:22-30. [PMID: 29224741 DOI: 10.1016/j.steroids.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Synthesis and biological evaluation of steroidal derivatives with anticancer properties is an active area of drug discovery. Here we measured the relative affinities of d-seco modified steroidal derivatives for estrogen receptor α, estrogen receptor β or androgen receptor ligand binding domains using an optimized non-transcriptional fluorescent cell assay in yeast. Ligand binding domains of steroid receptors were expressed in-frame with yellow fluorescent protein in the yeast Saccharomyces cerevisiae. Addition of known steroid ligands to yeast expressing the appropriate cognate receptor results in increased fluorescence intensity, enabling estimation of receptor binding affinities in a dose-response and time-dependent manner. Relative binding affinities of d-seco modified steroidal derivatives 1-4 were then evaluated using this yeast system by live cell fluorimetry and fluorescence microscopy, coupled with in vitro cytotoxicity and in silico molecular docking studies. d-Seco estratriene derivative 2displayed strong affinity for both estrogen receptor α and β ligand binding domains and negligible affinity for the androgen receptor ligand binding domain. Compound 2 also showed moderate cytotoxicity against estrogen receptor positive MCF-7 breast adenocarcinoma cells. In addition to identification of new ligands for steroid receptors, this assay could also be used to filter out compounds with potential for off-target interactions with steroid receptors during the early stages of compound screening.
Collapse
Affiliation(s)
- Sofija S Bekić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Maja A Marinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marija N Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Andrea R Nikolić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Andjelka S Ćelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia.
| |
Collapse
|
50
|
Padilla Colón CJ, Molina-Vicenty IL, Frontera-Rodríguez M, García-Ferré A, Rivera BP, Cintrón-Vélez G, Frontera-Rodríguez S. Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. JOURNAL OF BIOMEDICINE (SYDNEY, NSW) 2018; 3:40-49. [PMID: 30505650 PMCID: PMC6261527 DOI: 10.7150/jbm.23390] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is the result of different functional changes leading to a substantial reduction of all human capabilities. A variety of anatomical and physiological changes occur with advancing age. These changes are more evident in the elderly population. There are various methods to measure muscle and bone mass loss, but the dual X-ray absorptiometry (DXA) is considered one of the most efficient. The elderly population (65 years and older) has been increasing throughout the years. Loss of muscle mass (sarcopenia) and loss bone mass (osteopenia or osteoporosis) with advancing age, when untreated, represent a major public health problem for the elderly population and may result in loss of independence in later life. Untreated age-related sarcopenia and osteopenia/osteoporosis increase the risk for falls and fractures, making older individuals more susceptible to the development of mobility limitations or severe disabilities that ultimately affect their capacity for independence. In this review, we will discuss the muscle and bone mass loss in the elderly population and advances in diagnosis and treatment.
Collapse
Affiliation(s)
- Carlos J. Padilla Colón
- Department of Education, Physical Education and Health Programs, San Juan, PR, USA
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
| | - Irma L. Molina-Vicenty
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
- Department of Radiological Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - María Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Alejandra García-Ferré
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - Gerardo Cintrón-Vélez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Sebastián Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| |
Collapse
|