1
|
Dai S, Dong Y, Shi H, Jin J, Gan Y, Li X, Wu Y, Wang F, Zhu X, Hu Q, Dong Y, Fu Y. Aerobic exercise prevents and improves cognitive dysfunction caused by morphine withdrawal via regulating endogenous opioid peptides in the brain. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06698-3. [PMID: 39417859 DOI: 10.1007/s00213-024-06698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Morphine withdrawal leads to serious cognitive deficits in which dynorphins are directly involved. Recently, exercise has been shown to prevent and improve cognition dysfunction in a variety of ways. Meanwhile, exercise can regulate the endogenous opioid peptides including dynorphins. However, it remains unclear whether exercise influences cognitive dysfunction caused by morphine withdrawal via dynorphins. In the current study, we investigate the physiological mechanism of exercise prevention and improvement aganist cognition dysfunction caused by morphine withdrawal. METHODS Male, adult C57BL/6 mice were randomly divided into 5 groups : Saline control (WT), exercise (EXE), morphine withdrawl (MW), exercise + morphine withdrawl (EMW), morphine withdrawl + exercise (MWE). We established aerobic exercise prevention/improvement models, and conducted behavioral tests including Open field test (OFT), Temporal order memory test (TOM) and Y-maze. Through Western Blotting and immunofluorescence staining, we detected endogenous opioid peptides in hippocampus and mPFC. RESULTS Compared with MW group, EMW group and MWE group showed the same performance as WT group in TOM and Y-maze, with correct object recognition and memory ability. In Western Blotting and immunofluorescence staining experiments, it indicated that EMW group reduced the expression of PDYN and its fluorescence intensity in hippocampus; MWE group reduced the expression of OPRK1 and its fluorescence intensity in mPFC. CONCLUSION Our data suggest that aerobic exercise can both prevent and improve cognitive dysfunction caused by acute morphine withdrawal via respectively down-regulating PDYN in the hippocampus and down-regulating OPRK1 in the mPFC. They may become new targets for drugs development in the future.
Collapse
Affiliation(s)
- Shanghua Dai
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yigang Dong
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Haifeng Shi
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Jiawei Jin
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yixia Gan
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xinyi Li
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yongkang Wu
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Fanglin Wang
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xinrui Zhu
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Qingmiao Hu
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yi Dong
- Key Laboratory of Adolescent HealthAssessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China.
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
2
|
Zhao M, Li J, Li Z, Yang D, Wang D, Sun Z, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Yang L. SIRT1 Regulates Mitochondrial Damage in N2a Cells Treated with the Prion Protein Fragment 106-126 via PGC-1α-TFAM-Mediated Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:9707. [PMID: 39273653 PMCID: PMC11395710 DOI: 10.3390/ijms25179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial damage is an early and key marker of neuronal damage in prion diseases. As a process involved in mitochondrial quality control, mitochondrial biogenesis regulates mitochondrial homeostasis in neurons and promotes neuron health by increasing the number of effective mitochondria in the cytoplasm. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that regulates neuronal mitochondrial biogenesis and quality control in neurodegenerative diseases via deacetylation of a variety of substrates. In a cellular model of prion diseases, we found that both SIRT1 protein levels and deacetylase activity decreased, and SIRT1 overexpression and activation significantly ameliorated mitochondrial morphological damage and dysfunction caused by the neurotoxic peptide PrP106-126. Moreover, we found that mitochondrial biogenesis was impaired, and SIRT1 overexpression and activation alleviated PrP106-126-induced impairment of mitochondrial biogenesis in N2a cells. Further studies in PrP106-126-treated N2a cells revealed that SIRT1 regulates mitochondrial biogenesis through the PGC-1α-TFAM pathway. Finally, we showed that resveratrol resolved PrP106-126-induced mitochondrial dysfunction and cell apoptosis by promoting mitochondrial biogenesis through activation of the SIRT1-dependent PGC-1α/TFAM signaling pathway in N2a cells. Taken together, our findings further describe SIRT1 regulation of mitochondrial biogenesis and improve our understanding of mitochondria-related pathogenesis in prion diseases. Our findings support further investigation of SIRT1 as a potential target for therapeutic intervention of prion diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.)
| |
Collapse
|
3
|
Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, Li Y, Jiang T, Liu B, Yan H. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDH-induced sirtuin 1 activation in Alzheimer's disease. Br J Pharmacol 2024; 181:3039-3063. [PMID: 38679474 DOI: 10.1111/bph.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyloid-β (Aβ) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aβ. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aβ and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aβ clearance remain unclear. EXPERIMENTAL APPROACH We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS AdipoRon promotes Aβ clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aβ deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS AdipoRon promotes the clearance of Aβ by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Lingbin Meng
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenyu Zhou
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yong Xu
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Tianrui Jiang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Lin S, Li T, Zhang B, Wang P. Taurine rescues intervertebral disc degeneration by activating mitophagy through the PINK1/Parkin pathway. Biochem Biophys Res Commun 2024; 739:150587. [PMID: 39182353 DOI: 10.1016/j.bbrc.2024.150587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain and disability. Recent studies have highlighted the critical role of mitochondrial dysfunction in the progression of IDD. In this study, we investigated the therapeutic potential of taurine in delaying IDD through the activation of mitophagy via the PINK1/Parkin pathway. Our in vitro and in vivo experiments demonstrate that taurine treatment significantly enhances mitophagy, reduces oxidative stress, delays cell senescence, and promotes the removal of damaged mitochondria in nucleus pulposus cells (NPC). Additionally, taurine-mediated activation of the PINK1/Parkin pathway leads to improved mitochondrial homeostasis and slows the progression of disc degeneration. These findings provide new insights into the protective effects of taurine and highlight its potential as a therapeutic agent for IDD.
Collapse
Affiliation(s)
- Shengyuan Lin
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China.
| | - Tao Li
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China
| | - Bin Zhang
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China
| | - Peng Wang
- Department of Orthopaedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China
| |
Collapse
|
5
|
Zhu L, Yang M, Fan L, Yan Q, Zhang L, Mu P, Lu F. Interaction between resveratrol and SIRT1: role in neurodegenerative diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03319-w. [PMID: 39105797 DOI: 10.1007/s00210-024-03319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant health challenges and economic burdens worldwide. Recent studies have emphasized the potential therapeutic value of activating silent information regulator-1 (SIRT1) in treating these conditions. Resveratrol, a compound known for its ability to potently activate SIRT1, has demonstrated promising neuroprotective effects by targeting the underlying mechanisms of neurodegeneration. In this review, we delve into the crucial role of resveratrol-mediated SIRT1 upregulation in improving neurodegenerative diseases. The role of the activation of SIRT1 by resveratrol was reviewed. Moreover, network pharmacology was used to elucidate the possible mechanisms of resveratrol in these diseases. Activation of SIRT1 by resveratrol had positive effects on neuronal function and survival and alleviated the hallmark features of these diseases, such as protein aggregation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. In terms of network pharmacology, the signaling pathways by which resveratrol protects against different neurodegenerative diseases were slightly different. Although the precise mechanisms underlying the neuroprotective effects of resveratrol and SIRT1 activation remain under investigation, these findings offer valuable insights into potential therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, 113004, People's Republic of China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Miaomiao Yang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, 113004, People's Republic of China
- Basic Medical College, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Lehao Fan
- Basic Medical College, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Qiuying Yan
- Basic Medical College, Shenyang Medical College, Shenyang, 113004, People's Republic of China
| | - Lifeng Zhang
- Department of Public Health, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
| | - Ping Mu
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
- Department of Physiology, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
| | - Fangjin Lu
- Department of Pharmaceutical Analysis, Shenyang Medical College, Shenyang, 113004, People's Republic of China.
| |
Collapse
|
6
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Bonanni R, Cariati I, Cifelli P, Frank C, Annino G, Tancredi V, D'Arcangelo G. Exercise to Counteract Alzheimer's Disease: What Do Fluid Biomarkers Say? Int J Mol Sci 2024; 25:6951. [PMID: 39000060 PMCID: PMC11241657 DOI: 10.3390/ijms25136951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases (NDs) represent an unsolved problem to date with an ever-increasing population incidence. Particularly, Alzheimer's disease (AD) is the most widespread ND characterized by an accumulation of amyloid aggregates of beta-amyloid (Aβ) and Tau proteins that lead to neuronal death and subsequent cognitive decline. Although neuroimaging techniques are needed to diagnose AD, the investigation of biomarkers within body fluids could provide important information on neurodegeneration. Indeed, as there is no definitive solution for AD, the monitoring of these biomarkers is of strategic importance as they are useful for both diagnosing AD and assessing the progression of the neurodegenerative state. In this context, exercise is known to be an effective non-pharmacological management strategy for AD that can counteract cognitive decline and neurodegeneration. However, investigation of the concentration of fluid biomarkers in AD patients undergoing exercise protocols has led to unclear and often conflicting results, suggesting the need to clarify the role of exercise in modulating fluid biomarkers in AD. Therefore, this critical literature review aims to gather evidence on the main fluid biomarkers of AD and the modulatory effects of exercise to clarify the efficacy and usefulness of this non-pharmacological strategy in counteracting neurodegeneration in AD.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Sports Engineering Laboratory, Department of Industrial Engineering, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| |
Collapse
|
8
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Yan C, Yang S, Shao S, Zu R, Lu H, Chen Y, Zhou Y, Ying X, Xiang S, Zhang P, Li Z, Yuan Y, Zhang Z, Wang P, Xie Z, Wang W, Ma H, Sun Y. Exploring the anti-ferroptosis mechanism of Kai-Xin-San against Alzheimer's disease through integrating network pharmacology, bioinformatics, and experimental validation strategy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117915. [PMID: 38360383 DOI: 10.1016/j.jep.2024.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai Xin San (KXS), first proposed by Sun Simiao during the Tang Dynasty, has been utilized to treat dementia by tonifying qi and dispersing phlegm. AIM OF THE STUDY This study aimed to elucidate the mechanism by which KXS exerts its therapeutic effects on Alzheimer's disease (AD) by targeting ferroptosis, using a combination of network pharmacology, bioinformatics, and experimental validation strategies. MATERIALS AND METHODS The active target sites and the further potential mechanisms of KXS in protecting against AD were investigated through molecular docking, molecular dynamics simulation, and network pharmacology, and combined with the validation of animal experiments. RESULTS Computational and experimental findings provide the first indication that KXS significantly improves learning and memory defects and inhibits neuronal ferroptosis by repairing mitochondria damage and upregulating the protein expression of ferroptosis suppressor protein 1 (FSP1) in vivo APP/PS1 mice AD model. According to bioinformatics analysis, the mechanism by which KXS inhibits ferroptosis may involve SIRT1. KXS notably upregulated the mRNA and protein expression of SIRT1 in both vivo APP/PS1 mice and in vitro APP-overexpressed HT22 cells. Additionally, KXS inhibited ferroptosis induced by APP-overexpression in HT22 cells through activating the SIRT1-FSP1 signal pathway. CONCLUSIONS Collectively, our findings suggest that KXS may inhibit neuronal ferroptosis through activating the SIRT1/FSP1 signaling pathway. This study reveals the scientific basis and underlying modern theory of replenishing qi and eliminating phlegm, which involves the inhibition of ferroptosis. Moreover, it highlights the potential application of SIRT1 or FSP1 activators in the treatment of AD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Simai Shao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Runru Zu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hao Lu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yangang Zhou
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiran Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Peixu Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, PR China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
10
|
Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener 2024; 13:7. [PMID: 38254235 PMCID: PMC10804662 DOI: 10.1186/s40035-024-00397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China.
| |
Collapse
|
11
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
12
|
Zhang X, Li Q, Cong W, Mu S, Zhan R, Zhong S, Zhao M, Zhao C, Kang K, Zhou Z. Effect of physical activity on risk of Alzheimer's disease: A systematic review and meta-analysis of twenty-nine prospective cohort studies. Ageing Res Rev 2023; 92:102127. [PMID: 37979700 DOI: 10.1016/j.arr.2023.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE Physical activity (PA) is beneficial in reductions of all-cause mortality and dementia. However, whether Alzheimer's disease (AD) risk is modified by PA remains disputable. This meta-analysis aims to disclose the underlying relationship between PA and incident AD. METHODS Pubmed, Embase, Cochrane Library, and Web of Science were retrieved from inception to June 2023. Random-effects models were employed to derive the effect size, represented by hazard ratio (HR) and 95% confidence interval (CI). RESULTS Twenty-nine prospective cohort studies involving 2068,519 participants were included. The pooled estimate showed a favorable effect of PA on AD risk decline (HR 0.72, 95% CI 0.65-0.80). This association remained robust after adjusting for maximum confounders (HR 0.85, 95% CI 0.79-0.91). Subgroup analysis of PA intensity demonstrated an inverse dose-response relationship between PA and AD, effect sizes of which were significant in moderate (HR 0.85, 95% CI 0.80-0.93) and high PA (HR 0.56, 95% CI 0.45-0.68), but not in low PA (HR 0.94, 95% CI 0.77-1.15). Regardless of all participants or the mid-life cohort, the protection of PA against AD appeared to be valid in shorter follow-up (<15 years) rather than longer follow-up (≥15 years). In addition to follow-up, the robustness of the estimates persisted in supplementary meta-analyses, meta-regression analyses, and sensitivity analyses. CONCLUSION PA intervention reduces the incidence of AD, but merely in moderate to vigorous PA with follow-up of less than 15 years, thus conditionally recommending the popularization of PA as a modifiable lifestyle factor to prevent AD.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Qu Li
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Wenqiang Cong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Siyu Mu
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Rui Zhan
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Shanshan Zhong
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Kexin Kang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China.
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
13
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
14
|
Huang YQ, Wu Z, Lin S, Chen XR. The benefits of rehabilitation exercise in improving chronic traumatic encephalopathy: recent advances and future perspectives. Mol Med 2023; 29:131. [PMID: 37740180 PMCID: PMC10517475 DOI: 10.1186/s10020-023-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Traumatic encephalopathy syndrome (TES) is used to describe the clinical manifestations of chronic traumatic encephalopathy (CTE). However, effective treatment and prevention strategies are lacking. Increasing evidence has shown that rehabilitation training could prevent cognitive decline, enhance brain plasticity, and effectively improve neurological function in neurodegenerative diseases. Therefore, the mechanisms involved in the effects of rehabilitation exercise therapy on the prognosis of CTE are worth exploring. The aim of this article is to review the pathogenesis of CTE and provide a potential clinical intervention strategy for CTE.
Collapse
Affiliation(s)
- Yin-Qiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhe Wu
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
15
|
Xu G, Dong Y, Wang Z, Ding H, Wang J, Zhao J, Liu H, Lv W. Melatonin Attenuates Oxidative Stress-Induced Apoptosis of Bovine Ovarian Granulosa Cells by Promoting Mitophagy via SIRT1/FoxO1 Signaling Pathway. Int J Mol Sci 2023; 24:12854. [PMID: 37629033 PMCID: PMC10454225 DOI: 10.3390/ijms241612854] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative-stress-induced apoptosis of granulosa cells is considered to be a main driver of follicular atresia. Increasing evidence suggests a protective effect of melatonin against oxidative damage but the mechanism remains unclear. The aim of this study is to investigate the effects of melatonin on mitophagy and apoptosis of bovine ovarian granulosa cells under oxidative stress, and to clarify the mechanism. Our results indicate that melatonin inhibited H2O2-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells, as revealed by decreased apoptosis rate, reactive oxygen species (ROS) levels, Ca2+ concentration, and cytochrome C release and increased mitochondrial membrane potential (ΔΨm). Simultaneously, melatonin promoted mitophagy of bovine ovarian granulosa cells through increasing the expression of PTEN-induced putative kinase 1 (PINK1), PARKIN, BECLIN1, and LC3II/LC3I; decreasing the expression of sequestosome 1 (SQSMT1); and promoting mitophagosome and lysosome fusion. After treatment with a mitophagy inhibitor CsA, we found that melatonin alleviated apoptosis and mitochondrial injury through promoting mitophagy in bovine ovarian granulosa cells. Furthermore, melatonin promoted the expression of silent information regulator 1 (SIRT1) and decreased the expression level of forkhead transcription factors class O (type1) (FoxO1). By treatment with an SIRT1 inhibitor EX527 or FoxO1 overexpression, the promotion of melatonin on mitophagy as well as the inhibition on mitochondrial injury and apoptosis were reversed in bovine ovarian granulosa cells. In conclusion, our results suggest that melatonin could promote mitophagy to attenuate oxidative-stress-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells via the SIRT1/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Gaoqing Xu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yangyunyi Dong
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhe Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lv
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Pahlavani HA. Exercise therapy to prevent and treat Alzheimer's disease. Front Aging Neurosci 2023; 15:1243869. [PMID: 37600508 PMCID: PMC10436316 DOI: 10.3389/fnagi.2023.1243869] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in the elderly with dementia, memory loss, and severe cognitive impairment that imposes high medical costs on individuals. The causes of AD include increased deposition of amyloid beta (Aβ) and phosphorylated tau, age, mitochondrial defects, increased neuroinflammation, decreased synaptic connections, and decreased nerve growth factors (NGF). While in animals moderate-intensity exercise restores hippocampal and amygdala memory through increased levels of p-AKT, p-TrkB, and p-PKC and decreased levels of Aβ, tau phosphorylation, and amyloid precursor proteins (APP) in AD. Aerobic exercise (with an intensity of 50-75% of VO2 max) prevents hippocampal volume reduction, spatial memory reduction, and learning reduction through increasing synaptic flexibility. Exercise training induces the binding of brain-derived neurotrophic factor (BDNF) to TrkB and the binding of NGF to TrkA to induce cell survival and neuronal plasticity. After aerobic training and high-intensity interval training, the increase of VEGF, angiopoietin 1 and 2, NO, tPA, and HCAR1 in cerebral vessels causes increased blood flow and angiogenesis in the cerebellum, motor cortex, striatum, and hippocampus. In the hippocampus, exercise training decreases mitochondrial fragmentation, DRP1, and FIS1, improving OPA1, MFN1, MFN2, and mitochondrial morphology. In humans, acute exercise as an anti-inflammatory condition causes an acute increase in IL-6 and an increase in anti-inflammatory factors such as IL-1RA and IL-10. Moderate-intensity exercise also inhibits inflammatory markers such as IFN-γ, IL-1β, IL-6, CRP, TNF-α, sTNFR1, COX-2, and NF-κB. Aerobic exercise significantly increases plasma levels of BDNF, nerve growth factor, synaptic plasticity, motor activity, spatial memory, and exploratory behavior in AD subjects. Irisin is a myokine released from skeletal muscle during exercise and protects the hippocampus by suppressing Aβ accumulation and promoting hippocampal proliferation through STAT3 signaling. Therefore, combined exercise training such as aerobic training, strength training, balance and coordination training, and cognitive and social activities seems to provide important benefits for people with AD.
Collapse
|
17
|
Farsi RM. The Role of Mitochondrial Dysfunction in Alzheimer's: Molecular Defects and Mitophagy-Enhancing Approaches. Life (Basel) 2023; 13:life13040970. [PMID: 37109499 PMCID: PMC10142261 DOI: 10.3390/life13040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD), a progressive and chronic neurodegenerative syndrome, is categorized by cognitive and memory damage caused by the aggregations of abnormal proteins, specifically including Tau proteins and β-amyloid in brain tissue. Moreover, mitochondrial dysfunctions are the principal causes of AD, which is associated with mitophagy impairment. Investigations exploring pharmacological therapies alongside AD have explicitly concentrated on molecules accomplished in preventing/abolishing the gatherings of the abovementioned proteins and mitochondria damages. Mitophagy is the removal of dead mitochondria by the autophagy process. Damages in mitophagy, the manner of diversified mitochondrial degeneracy by autophagy resulting in an ongoing aggregation of malfunctioning mitochondria, were also suggested to support AD. Recently, plentiful reports have suggested a link between defective mitophagy and AD. This treaty highlights updated outlines of modern innovations and developments on mitophagy machinery dysfunctions in AD brains. Moreover, therapeutic and nanotherapeutic strategies targeting mitochondrial dysfunction are also presented in this review. Based on the significant role of diminished mitophagy in AD, we suggest that the application of different therapeutic approaches aimed at stimulating mitophagy in AD would be beneficial for targeting or reducing the mitochondrial dysfunction induced by AD.
Collapse
Affiliation(s)
- Reem M Farsi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21462, Saudi Arabia
| |
Collapse
|
18
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
19
|
Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Mol Psychiatry 2023; 28:202-216. [PMID: 35665766 PMCID: PMC9812780 DOI: 10.1038/s41380-022-01631-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunctions are central players in Alzheimer's disease (AD). In addition, impairments in mitophagy, the process of selective mitochondrial degradation by autophagy leading to a gradual accumulation of defective mitochondria, have also been reported to occur in AD. We provide an updated overview of the recent discoveries and advancements on mitophagic molecular dysfunctions in AD-derived fluids and cells as well as in AD brains. We discuss studies using AD cellular and animal models that have unraveled the contribution of relevant AD-related proteins (Tau, Aβ, APP-derived fragments and APOE) in mitophagy failure. In accordance with the important role of impaired mitophagy in AD, we report on various therapeutic strategies aiming at stimulating mitophagy in AD and we summarize the benefits of these potential therapeutic strategies in human clinical trials.
Collapse
|
20
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
21
|
Zhu X, Cheng J, Yu J, Liu R, Ma H, Zhao Y. Nicotinamide mononucleotides alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury. Int J Med Sci 2023; 20:307-317. [PMID: 36860678 PMCID: PMC9969499 DOI: 10.7150/ijms.80942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the main factors of death and disability in adults with a high incidence worldwide. Nervous system injury, as the most common and serious secondary injury after TBI, determines the prognosis of TBI patients. NAD+ has been confirmed to have neuroprotective effects in neurodegenerative diseases, but its role in TBI remains to be explored. In our study, nicotinamide mononucleotides (NMN), a direct precursor of NAD+, was used to explore the specific role of NAD+ in rats with TBI. Our results showed that NMN administration markedly attenuated histological damages, neuronal death, brain edema, and improved neurological and cognitive deficits in TBI rats. Moreover, NMN treatment significantly suppressed activated astrocytes and microglia after TBI, and further inhibited the expressions of inflammatory factor. Besides, RNA sequencing was used to access the differently expressed genes (DEGs) and their enriched (Kyoto Encyclopedia of Genes and Genomes) KEGG pathways between Sham, TBI, and TBI+NMN. We found that 1589 genes were significantly changed in TBI and 792 genes were reversed by NMN administration. For example, inflammatory factor CCL2, toll like receptors TLR2 and TLR4, proinflammatory cytokines IL-6, IL-11 and IL1rn which were activated after TBI and were decreased by NMN treatment. GO analysis also demonstrated that inflammatory response was the most significant biological process reversed by NMN treatment. Moreover, the reversed DEGs were typically enriched in NF-Kappa B signaling pathway, Jak-STAT signaling pathway and TNF signaling pathway. Taken together, our data showed that NMN alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury and the mechanisms may involve TLR2/4-NF-κB signaling.
Collapse
Affiliation(s)
- Xiaolu Zhu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Cheng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Zhao N, Zhang X, Li B, Wang J, Zhang C, Xu B. Treadmill Exercise Improves PINK1/Parkin-Mediated Mitophagy Activity Against Alzheimer's Disease Pathologies by Upregulated SIRT1-FOXO1/3 Axis in APP/PS1 Mice. Mol Neurobiol 2023; 60:277-291. [PMID: 36261693 DOI: 10.1007/s12035-022-03035-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022]
Abstract
Although treadmill exercise is effective against Alzheimer's disease (AD), the molecular mechanisms underlying these effects are not fully understood. Recent literature has linked the accumulation of damaged mitochondria and defective mitophagy to AD progression. Here, we determined that abnormally activated PINK1/Parkin pathway-mediated mitophagy plays an important role in AD progression and pathogenesis in 6-month-old APP/PS1 mice. We used the lysosomal inhibitor chloroquine and demonstrated that a 12-week treadmill exercise program improved mitochondrial function, decreased accumulation of β-amyloid plaques, and ameliorated loss of learning and memory ability by enhancing PINK1/Parkin-mediated mitophagy activity in the hippocampus of APP/PS1 mice. Moreover, using the SIRT1 inhibitor EX527, we found that 12 weeks of treadmill exercise rescued PINK1/Parkin-mediated mitophagy by activating the SIRT1-FOXO1/3 axis in the hippocampus of APP/PS1 mice. These findings reveal that activating PINK1/Parkin-mediated mitophagy is a promising strategy for AD treatment, and that the SIRT1-FOXO1/3 axis is a potential candidate for the development of mitophagy enhancers.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China.,College of Physical Education and Health, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xianliang Zhang
- School of Physical Education, Shandong University, Jinan, China
| | - Baixia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China.,College of Physical Education and Health, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jing Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China.,College of Physical Education and Health, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chenfei Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China.,College of Physical Education and Health, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Bo Xu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China. .,College of Physical Education and Health, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
23
|
Li F, Geng X, Ilagan R, Bai S, Chen Y, Ding Y. Exercise postconditioning reduces ischemic injury via suppression of cerebral gluconeogenesis in rats. Brain Behav 2023; 13:e2805. [PMID: 36448290 PMCID: PMC9847623 DOI: 10.1002/brb3.2805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022] Open
Abstract
Pre-stroke exercise conditioning reduces neurovascular injury and improves functional outcomes after stroke. The goal of this study was to explore if post-stroke exercise conditioning (PostE) reduced brain injury and whether it was associated with the regulation of gluconeogenesis. Adult rats received 2 h of middle cerebral artery (MCA) occlusion, followed by 24 h of reperfusion. Treadmill activity was then initiated 24 h after reperfusion for PostE. The severity of the brain damage was determined by infarct volume, apoptotic cell death, and neurological deficit at one and three days after reperfusion. We measured gluconeogenesis including oxaloacetate (OAA), phosphoenolpyruvate (PEP), pyruvic acid, lactate, ROS, and glucose via ELISA, as well as the location and expression of the key enzyme phosphoenolpyruvate carboxykinase (PCK)-1/2 via immunofluorescence. We also determined upstream pathways including forkhead transcription factor (FoxO1), p-FoxO1, 3-kinase (PI3K)/Akt, and p-PI3K/Akt via Western blot. Additionally, the cytoplasmic expression of p-FoxO1 was detected by immunofluorescence. Compared to non-exercise control, PostE (*p < .05) decreased brain infarct volumes, neurological deficits, and cell death at one and three days. PostE groups (*p < .05) saw increases in OAA and decreases in PEP, pyruvic acid, lactate, ROS, glucose levels, and tissue PCKs expression on both days. PCK-1/2 expressions were also significantly (*p < .05) suppressed by the exercise setting. Additionally, phosphorylated PI3K, AKT, and FoxO1 protein expression were significantly induced by PostE at one and three days (*p < .05). In this study, PostE reduced brain injury after stroke, in association with activated PI3K/AKT/FoxO1 signaling, and inhibited gluconeogenesis. These results suggest the involvement of FoxO1 regulation of gluconeogenesis underlying post-stroke neuroprotection.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roxanne Ilagan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shangying Bai
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
24
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Mitophagy—A New Target of Bone Disease. Biomolecules 2022; 12:biom12101420. [PMID: 36291629 PMCID: PMC9599755 DOI: 10.3390/biom12101420] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023] Open
Abstract
Bone diseases are usually caused by abnormal metabolism and death of cells in bones, including osteoblasts, osteoclasts, osteocytes, chondrocytes, and bone marrow mesenchymal stem cells. Mitochondrial dysfunction, as an important cause of abnormal cell metabolism, is widely involved in the occurrence and progression of multiple bone diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma. As selective mitochondrial autophagy for damaged or dysfunctional mitochondria, mitophagy is closely related to mitochondrial quality control and homeostasis. Accumulating evidence suggests that mitophagy plays an important regulatory role in bone disease, indicating that regulating the level of mitophagy may be a new strategy for bone-related diseases. Therefore, by reviewing the relevant literature in recent years, this paper reviews the potential mechanism of mitophagy in bone-related diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma, to provide a theoretical basis for the related research of mitophagy in bone diseases.
Collapse
|
26
|
Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: Multiple pathways to promote non-amyloidogenic AβPP processing. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
27
|
Ren CZ, Wu ZT, Wang W, Tan X, Yang YH, Wang YK, Li ML, Wang WZ. SIRT1 exerts anti-hypertensive effect via FOXO1 activation in the rostral ventrolateral medulla. Free Radic Biol Med 2022; 188:1-13. [PMID: 35688305 DOI: 10.1016/j.freeradbiomed.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 12/09/2022]
Abstract
The rostral ventrolateral medulla (RVLM) is a pivotal region in the central regulation of blood pressure (BP). It has been documented that silent information regulator 2 homolog 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent multifunctional transcription regulatory factor, has many cardiovascular protective effects. However, the role and significance of SIRT1 in the central regulation of cardiovascular activity, especially in RVLM, remains unknown. Therefore, the aim of this study was to explore the role and underlying mechanism of SIRT1 in the central regulation of cardiovascular activity in hypertension. Spontaneously hypertensive rats (SHRs) were given resveratrol (RSV) via intracerebroventricular (ICV) infusion or injected with SIRT1-overexpressing lentiviral vectors into the RVLM. In vitro experiments, angiotensin II (Ang II)-induced rat pheochromocytoma cell line (PC12 cells) were transfected with forkhead box protein O1 (FOXO1) small interfering RNA (siRNA) before treatment with RSV. Our results showed that SIRT1 activation with RSV or overexpression in the RVLM significantly decreased BP and sympathetic outflow of SHRs. Furthermore, SIRT1 overexpression in the RVLM significantly decreased reactive oxygen species (ROS) production and facilitated the forkhead box protein O1 (FOXO1) activation, accompanied by upregulation of the ROS-detoxifying enzyme superoxide dismutases 1 (SOD1) in the RVLM of SHRs. In PC12 cells, it was found that Ang II could induce oxidative stress and downregulate the SIRT1-FOXO1-SOD1 signaling pathway, which indicated that the suppressed expression of SIRT1 in the RVLM of SHRs might relate to the elevated central Ang II level. Furthermore, the enhanced oxidative stress and decreased SIRT1-FOXO1-SOD1 axis induced by Ang II were restored by treatment with RSV. However, these favorable effects mediated by SIRT1 activation were blocked by FOXO1 knockdown. Based on these findings, we concluded that SIRT1 activation or overexpression in the RVLM exerts anti-hypertensive effect through reducing oxidative stress via SIRT1-FOXO1-SOD1 signaling pathway, which providing a new target for the prevention and intervention of hypertension.
Collapse
Affiliation(s)
- Chang-Zhen Ren
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Department of General Practice, 960th Hospital of PLA, Jinan, 250031, China
| | - Zhao-Tang Wu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Ya-Hong Yang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Miao-Ling Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
28
|
The Potential Role of miRNA-Regulated Autophagy in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23147789. [PMID: 35887134 PMCID: PMC9317523 DOI: 10.3390/ijms23147789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
As a neurodegenerative disease, Alzheimer’s disease (AD) shows a higher incidence during the aging process, mainly revealing the characteristics of a significant decrease in cognition, uncontrolled emotion, and reduced learning and memory capacity, even leading to death. In the prevention and treatment of AD, some pharmacological therapy has been applied in clinical practice. Unfortunately, there are still limited effective treatments for AD due to the absence of clear and defined targets. Currently, it is recognized that the leading causes of AD include amyloid-β peptide (Aβ) deposition, hyperphosphorylation of tau protein, neurofibrillary tangles, mitochondrial dysfunction, and inflammation. With in-depth mechanistic exploration, it has been found that these causes are highly correlated with the dysfunctional status of autophagy. Numerous experimental results have also confirmed that the development and progression of AD is accompanied by an abnormal functional status of autophagy; therefore, regulating the functional status of autophagy has become one of the important strategies for alleviating or arresting the progression of AD. With the increasing attention given to microRNAs (miRNAs), more and more studies have found that a series of miRNAs are involved in the development and progression of AD through the indirect regulation of autophagy. Therefore, regulating autophagy through targeting these miRNAs may be an essential breakthrough for the prevention and treatment of AD. This article summarizes the regulation of miRNAs in autophagy, with the aim of providing a new theoretical reference point for the prevention and treatment of AD through the indirect regulation of miRNA-mediated autophagy.
Collapse
|
29
|
Wan W, Hua F, Fang P, Li C, Deng F, Chen S, Ying J, Wang X. Regulation of Mitophagy by Sirtuin Family Proteins: A Vital Role in Aging and Age-Related Diseases. Front Aging Neurosci 2022; 14:845330. [PMID: 35615591 PMCID: PMC9124796 DOI: 10.3389/fnagi.2022.845330] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
Sirtuins are protein factors that can delay aging and alleviate age-related diseases through multiple molecular pathways, mainly by promoting DNA damage repair, delaying telomere shortening, and mediating the longevity effect of caloric restriction. In the last decade, sirtuins have also been suggested to exert mitochondrial quality control by mediating mitophagy, which targets damaged mitochondria and delivers them to lysosomes for degradation. This is especially significant for age-related diseases because dysfunctional mitochondria accumulate in aging organisms. Accordingly, it has been suggested that sirtuins and mitophagy have many common and interactive aspects in the aging process. This article reviews the mechanisms and pathways of sirtuin family-mediated mitophagy and further discusses its role in aging and age-related diseases.
Collapse
Affiliation(s)
- Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
- Jun Ying
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xifeng Wang
| |
Collapse
|
30
|
Ma Z, Tang P, Dong W, Lu Y, Tan B, Zhou N, Hao J, Shen J, Hu Z. SIRT1 alleviates IL-1β induced nucleus pulposus cells pyroptosis via mitophagy in intervertebral disc degeneration. Int Immunopharmacol 2022; 107:108671. [PMID: 35305383 DOI: 10.1016/j.intimp.2022.108671] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory stress of nucleus pulposus cells (NPCs) plays an important role in the pathogenesis of intervertebral disc degeneration (IVDD). Pyroptosis and NLRP3 inflammasome activation have been reported aggravating IVDD. SIRT1 is essential for mammalian cell survival and longevity by participating in various cellular processes. However, few studies analyzed the potential mechanism of SIRT1 in NLRP3- activated pyroptosis in NPCs. In this study, we confirmed that IL-1β could induce pyroptosis and NLRP3 inflammation activation, meanwhile, resulted in mitochondrial oxidative stress injury and dysfunction in NPCs. When the mitochondrial ROS was inhibited by Mito-Tempo, the pyroptosis and NLRP3 inflammation activation was also inhibited. SIRT1 overexpression could ameliorate IL-1β induced mitochondrial dysfunction and ROS accumulation, inhibit NLRP3 inflammasome activation by promoting PINK1/Parkin mediated mitophagy, however, these protective phenomena reversed by autophagy inhibitor 3-MA pretreatment. In vivo, SIRT1 agonist (SRT1720) treatment decreased the expression of NLRP3, p20, and IL-1β, increased the expression of PINK1 and LC3, delayed IVDD process in the rat model. Taken together, our results indicate that SIRT1 alleviates IL-1β induced NLRP3 inflammasome activation via mitophagy in NPCs, SIRT1 may be a potential therapeutic target to alleviate NLRP3- activated pyroptosis in the inflammatory stress related IVDD.
Collapse
Affiliation(s)
- Zhaoxin Ma
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China
| | - Pan Tang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China
| | - Wei Dong
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China
| | - Yang Lu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China
| | - Bing Tan
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China
| | - Nian Zhou
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China
| | - Jie Hao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China
| | - Jieliang Shen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China.
| | - Zhenming Hu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing 40042, China.
| |
Collapse
|
31
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Huang S, Hong Z, Zhang L, Guo J, Li Y, Li K. CERKL alleviates ischemia reperfusion-induced nervous system injury through modulating the SIRT1/PINK1/Parkin pathway and mitophagy induction. Biol Chem 2022; 403:691-701. [PMID: 35238502 DOI: 10.1515/hsz-2021-0411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Recent studies showed that Ceramide Kinase-Like Protein (CERKL)was expressed in the nerve cells and could regulate autophagy. Sirtuin-1 (SIRT1) is the regulator of the mitophagy, which can be stabilized by CERKL. Furthermore, the study also revealed that the SIRT1 induced mitophagy by activating PINK1/Parkin signaling. Therefore, we speculated that CERKL has potential to activate the SIRT1/PINK1/Parkin pathway to induce mitophagy. In this study, cerebral ischemia reperfusion mouse model was established. CERKL was overexpressed in those mice and human neuroblastoma cells. Tunel staining and flow cytometry were applied for the detection of cell apoptosis. The ratios of LC3Ⅱ to LC3Ⅰ and the expression of LC3Ⅱ in mitochondria were determined by gel electrophoresis. Overexpression of CERKL alleviated the cerebral ischemia reperfusion injury and damage to OGD/R human neuroblastoma cells. Overexpression of CERKL enhanced the expression of LC3 Ⅱ in mitochondria and induced occurrence of mitophagy. Overexpression of CERKL promoted the stability of SIRT1 and facilitated the expression of PINK1 and Parkin in those cells. Knockdown of PINK1 impeded the mitophagy and suppressed the expression of LC3 Ⅱ in mitochondria. It can be concluded that CERKL alleviated the ischemia reperfusion induced nervous system injury through inducing mitophagy in a SIRT1/PINK1/Parkin dependent pathway.
Collapse
Affiliation(s)
- Shaoyue Huang
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Zhen Hong
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Leguo Zhang
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Jian Guo
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Yanhua Li
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Kuo Li
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| |
Collapse
|
33
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|
34
|
Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exercise-Induced Benefits for Alzheimer's Disease by Stimulating Mitophagy and Improving Mitochondrial Function. Front Aging Neurosci 2021; 13:755665. [PMID: 34658846 PMCID: PMC8519401 DOI: 10.3389/fnagi.2021.755665] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Neurons are highly specialized post-mitotic cells that are inherently dependent on mitochondria due to their higher bioenergetic demand. Mitochondrial dysfunction is closely associated with a variety of aging-related neurological disorders, such as Alzheimer’s disease (AD), and the accumulation of dysfunctional and superfluous mitochondria has been reported as an early stage that significantly facilitates the progression of AD. Mitochondrial damage causes bioenergetic deficiency, intracellular calcium imbalance and oxidative stress, thereby aggravating β-amyloid (Aβ) accumulation and Tau hyperphosphorylation, and further leading to cognitive decline and memory loss. Although there is an intricate parallel relationship between mitochondrial dysfunction and AD, their triggering factors, such as Aβ aggregation and hyperphosphorylated Tau protein and action time, are still unclear. Moreover, many studies have confirmed abnormal mitochondrial biosynthesis, dynamics and functions will present once the mitochondrial quality control is impaired, thus leading to aggravated AD pathological changes. Accumulating evidence shows beneficial effects of appropriate exercise on improved mitophagy and mitochondrial function to promote mitochondrial plasticity, reduce oxidative stress, enhance cognitive capacity and reduce the risks of cognitive impairment and dementia in later life. Therefore, stimulating mitophagy and optimizing mitochondrial function through exercise may forestall the neurodegenerative process of AD.
Collapse
Affiliation(s)
- Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cenyi Wang
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Juying Xie
- Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
35
|
Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener 2021; 10:30. [PMID: 34389067 PMCID: PMC8361623 DOI: 10.1186/s40035-021-00254-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
The epigenetic clock is defined by the DNA methylation (DNAm) level and has been extensively applied to distinguish biological age from chronological age. Aging-related neurodegeneration is associated with epigenetic alteration, which determines the status of diseases. In recent years, extensive research has shown that physical exercise (PE) can affect the DNAm level, implying a reversal of the epigenetic clock in neurodegeneration. PE also regulates brain plasticity, neuroinflammation, and molecular signaling cascades associated with epigenetics. This review summarizes the effects of PE on neurodegenerative diseases via both general and disease-specific DNAm mechanisms, and discusses epigenetic modifications that alleviate the pathological symptoms of these diseases. This may lead to probing of the underpinnings of neurodegenerative disorders and provide valuable therapeutic references for cognitive and motor dysfunction.
Collapse
Affiliation(s)
- Miao Xu
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China.,Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - JiaYi Zhu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming-Ying Luo
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
36
|
Goudarzi S, Hosseini A, Abdollahi M, Haghi-Aminjan H. Insights Into Parkin-Mediated Mitophagy in Alzheimer's Disease: A Systematic Review. Front Aging Neurosci 2021; 13:674071. [PMID: 34393755 PMCID: PMC8358451 DOI: 10.3389/fnagi.2021.674071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Parkin-mediated mitophagy is the dominant mitophagy pathway of neural cells. Its restoration will result in prevention of cognitive decline, including Alzheimer's disease (AD). The role of this mitophagy pathway in neurodegenerative diseases has drawn attention in recent years. The two main pathological proteins in AD, amyloid β (Aβ) and human Tau (hTau), interfere with mitochondrial dynamics through several pathways. However, taking into consideration the specific interactions between Aβ/hTau and Parkin, special focus is required on this mitophagy pathway and AD. In this review, these interactions are fully discussed, and an overview of the neuroprotective drugs that enhance Parkin-mediated mitophagy is presented. Methods: This systematic review was performed according to PRISMA guidelines, and a comprehensive literature search was done in the electronic databases up to September 2020, using search terms in the titles and abstracts to identify relevant studies. One hundred eighty-six articles were found, and 113 articles were screened by title and abstract. Finally, 25 articles were included in this systematic review according to our inclusion and exclusion criteria. Results: Accumulation of Aβ and hTau affects mitophagy, including Parkin-mediated. Tau seems to prevent Parkin translocation directly. A Parkin level in the cell appears to be of importance in determining the damage caused by Aβ and hTau and in the future therapeutic approaches. Parkin controls the PINK1 level via the presenillins, suggesting that mutations in presenillins affect Parkin mitophagy. Significance: Parkin mitophagy is a process affected by several AD pathological events multidimensionally.
Collapse
Affiliation(s)
- Sepideh Goudarzi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
37
|
Liu ZQ, Liu K, Liu ZF, Cong L, Lei MY, Ma Z, Li J, Deng Y, Liu W, Xu B. Manganese-induced alpha-synuclein overexpression aggravates mitochondrial damage by repressing PINK1/Parkin-mediated mitophagy. Food Chem Toxicol 2021; 152:112213. [PMID: 33862121 DOI: 10.1016/j.fct.2021.112213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Chronic manganese (Mn) exposure is related to elevated risks of neurodegenerative diseases, and mitochondrial dysfunction is considered a critical pathophysiological feature of Mn neurotoxicity. Although previous research has demonstrated Mn-induced alpha-synuclein (α-Syn) overexpression, the role of α-Syn in mitochondrial dysfunction remains unclear. Here, we used Wistar rats and human neuroblastoma cells (SH-SY5Y cells) to elucidate the molecular mechanisms underlying how α-Syn overexpression induced by different doses of Mn (15, 30, and 60 mg/kg) results in mitochondrial dysfunction. We found that Mn-induced neural cell injury was associated with mitochondrial damage. Furthermore, Mn upregulated α-Syn protein levels and increased the interaction between α-Syn and mitochondria. We then used a lentivirus vector containing α-Syn shRNA to examine the effect of Mn-induced α-Syn protein on PINK1/Parkin-mediated mitophagy in SH-SY5Y cells. Our data demonstrated that the knockdown of α-Syn decreased the interaction between α-Syn and PINK1. The enhanced level of phosphorylated Parkin (p-Parkin) was due to the decrease of the interaction between α-Syn and PINK1. Moreover, the knockdown of α-Syn increased recruitment of p-Parkin to mitochondria. Collectively, these observations revealed that Mn-induced α-Syn overexpression repressed PINK1/Parkin-mediated mitophagy and exacerbated mitochondrial damage.
Collapse
Affiliation(s)
- Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| |
Collapse
|
38
|
Lan T, Zheng YC, Li ND, Chen XS, Shen Z, Yan B. CRISPR/dCas9-Mediated Parkin Inhibition Impairs Mitophagy and Aggravates Apoptosis of Rat Nucleus Pulposus Cells Under Oxidative Stress. Front Mol Biosci 2021; 8:674632. [PMID: 33937342 PMCID: PMC8082403 DOI: 10.3389/fmolb.2021.674632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
Objective The aim of this study is to explore the role of Parkin in intervertebral disk degeneration (IDD) and its mitophagy regulation mechanism. Study design and methods Rat nucleus pulposus (NP) cells were stimulated with hydrogen peroxide (H2O2) to a mimic pathological condition. Apoptosis and mitophagy were assessed by Western blot, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and immunofluorescence staining. The CRISPR–dCas9–KRAB system was used to silence the expression of Parkin. Result In this study, we found that Parkin was downregulated in rat NP cells under oxidative stress. In addition, treatment with H2O2 resulted in mitochondrial dysfunction, autophagy inhibition, and a significant increase in the rate of apoptosis of NP cells. Meanwhile, mitophagy inhibition enhanced H2O2-induced apoptosis. Furthermore, repression of Parkin significantly attenuated mitophagy and exacerbated apoptosis. Conclusion These results suggested that Parkin may play a protective role in alleviating the apoptosis of NP cells via mitophagy, and that targeting Parkin may provide a promising therapeutic strategy for the prevention of IDD.
Collapse
Affiliation(s)
- Tao Lan
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu-Chen Zheng
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ning-Dao Li
- Department of Orthopedic Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiao-Sheng Chen
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhe Shen
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Bin Yan
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
39
|
Yang D, Ying J, Wang X, Zhao T, Yoon S, Fang Y, Zheng Q, Liu X, Yu W, Hua F. Mitochondrial Dynamics: A Key Role in Neurodegeneration and a Potential Target for Neurodegenerative Disease. Front Neurosci 2021; 15:654785. [PMID: 33912006 PMCID: PMC8072049 DOI: 10.3389/fnins.2021.654785] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
In neurodegenerative diseases, neurodegeneration has been related to several mitochondrial dynamics imbalances such as excessive fragmentation of mitochondria, impaired mitophagy, and blocked mitochondria mitochondrial transport in axons. Mitochondria are dynamic organelles, and essential for energy conversion, neuron survival, and cell death. As mitochondrial dynamics have a significant influence on homeostasis, in this review, we mainly discuss the role of mitochondrial dynamics in several neurodegenerative diseases. There is evidence that several mitochondrial dynamics-associated proteins, as well as related pathways, have roles in the pathological process of neurodegenerative diseases with an impact on mitochondrial functions and metabolism. However, specific pathological mechanisms need to be better understood in order to propose new therapeutic strategies targeting mitochondrial dynamics that have shown promise in recent studies.
Collapse
Affiliation(s)
- Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiancheng Zhao
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Sungtae Yoon
- Helping Minds International Charitable Foundation, New York, NY, United States
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
40
|
Apelin-36 Protects HT22 Cells Against Oxygen-Glucose Deprivation/Reperfusion-Induced Oxidative Stress and Mitochondrial Dysfunction by Promoting SIRT1-Mediated PINK1/Parkin-Dependent Mitophagy. Neurotox Res 2021; 39:740-753. [PMID: 33580874 DOI: 10.1007/s12640-021-00338-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 01/12/2023]
Abstract
Oxidative stress and mitochondrial dysfunction are involved in cerebral ischemia/reperfusion injury-induced neuronal apoptosis. Mitophagy is the main method to eliminate dysfunctional mitochondria. Apelin-36, a type of neuropeptide, has been reported to exert protective effects in cerebral I/R (I/R) injury, but its precise mechanisms remain to be elucidated. To study the effects of Apelin-36 on oxidative stress and mitochondrial dysfunction in cerebral I/R injury, the oxygen-glucose deprivation/reperfusion (OGD/R) model with 6 h of ischemia and 6 h of reperfusion was established in HT22 cells. Results demonstrated that Apelin-36 protected against OGD/R injury by improving cell viability, decreasing the apoptotic cells ratio and increasing the ratio of Bcl-2/Bax. In addition, Apelin-36 treatment inhibited oxidative stress by downregulating the level of reactive oxygen species (ROS) and malondialdehyde (MDA) as well as the expression of inducible nitric oxide synthase (iNOS). And Apelin-36 also activated the level of superoxide dismutase (SOD) and glutathione (GSH). Mitochondrial apoptosis was also alleviated with Apelin-36 treatment detected by the mitochondrial membrane potential (MMP) and the expression of Cytochrome c (Cyt c), Cleaved caspase-9, and Cleaved caspase-3. Furthermore, the SIRT1-mediated PINK1/Parkin-dependent mitophagy was activated by Apelin-36 treatment with the downregulation of p62 and upregulation of LC3B-II and Beclin1. Both EX527 and Cyclosporine A (CsA), which are inhibitors of SIRT1 and mitophagy, markedly alleviated the inhibition of oxidative stress and mitochondrial dysfunction caused by Apelin-36. These findings suggest that SIRT1-mediated PINK1/Parkin-dependent mitophagy is involved in the neuroprotective effects of Apelin-36 on OGD/R-induced oxidative stress and mitochondrial dysfunction.
Collapse
|
41
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|