1
|
Lu J, Su P, Zhao F, Yu K, Yang X, Lv H, Wang D, Zhang J. The role of TFEB-mediated autophagy-lysosome dysfunction in manganese neurotoxicity. Curr Res Toxicol 2024; 7:100193. [PMID: 39381497 PMCID: PMC11459403 DOI: 10.1016/j.crtox.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Excessive long-term manganese intake can inflict irreversible damage to the nervous system, with a predominant effect on the substantia nigra-striatum pathway. Through a mouse model simulating manganese exposure, we delved into its implications on the central nervous motor system, uncovering autophagy-lysosome dysfunction as a pivotal factor in manganese-induced neurotoxicity. Our research illuminated the molecular mechanisms behind TFEB's role in manganese-triggered neuronal autophagy dysfunction, offering insights into the cellular and molecular mechanisms of manganese-induced abnormal protein accumulation. This study lays a significant theoretical foundation for future endeavors aimed at safeguarding against manganese neurotoxicity. Furthermore, TFEB emerges as a potential early molecular biomarker for manganese exposure, providing a solid basis for preemptive protection and clinical treatment for populations exposed to manganese.
Collapse
Affiliation(s)
- Jiaqiao Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Fang Zhao
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Kailun Yu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Xunbo Yang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Hui Lv
- Department of Health Service Teaching and Research, Dalian Health Service Training Center of Chinese PLA, Da Lian 116001, China
| | - Diya Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| |
Collapse
|
2
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
3
|
Cernigliaro F, Santangelo A, Nardello R, Lo Cascio S, D'Agostino S, Correnti E, Marchese F, Pitino R, Valdese S, Rizzo C, Raieli V, Santangelo G. Prenatal Nutritional Factors and Neurodevelopmental Disorders: A Narrative Review. Life (Basel) 2024; 14:1084. [PMID: 39337868 PMCID: PMC11433086 DOI: 10.3390/life14091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
According to the DSM-5, neurodevelopmental disorders represent a group of heterogeneous conditions, with onset during the developmental period, characterized by an alteration of communication and social skills, learning, adaptive behavior, executive functions, and psychomotor skills. These deficits determine an impairment of personal, social, scholastic, or occupational functioning. Neurodevelopmental disorders are characterized by an increased incidence and a multifactorial etiology, including genetic and environmental components. Data largely explain the role of genetic and environmental factors, also through epigenetic modifications such as DNA methylation and miRNA. Despite genetic factors, nutritional factors also play a significant role in the pathophysiology of these disorders, both in the prenatal and postnatal period, underscoring that the control of modifiable factors could decrease the incidence of neurodevelopmental disorders. The preventive role of nutrition is widely studied as regards many chronic diseases, such as diabetes, hypertension, and cancer, but actually we also know the effects of nutrition on embryonic brain development and the influence of prenatal and preconceptional nutrition in predisposition to various pathologies. These factors are not limited only to a correct caloric intake and a good BMI, but rather to an adequate and balanced intake of macro and micronutrients, the type of diet, and other elements such as exposure to heavy metals. This review represents an analysis of the literature as regards the physiopathological mechanisms by which food influences our state of health, especially in the age of development (from birth to adolescence), through prenatal and preconceptional changes, underlying how controlling these nutritional factors should improve mothers' nutritional state to significantly reduce the risk of neurodevelopmental disorders in offspring. We searched key words such as "maternal nutrition and neurodevelopmental disorders" on Pubmed and Google Scholar, selecting the main reviews and excluding individual cases. Therefore, nutrigenetics and nutrigenomics teach us the importance of personalized nutrition for good health. So future perspectives may include well-established reference values in order to determine the correct nutritional intake of mothers through food and integration.
Collapse
Affiliation(s)
- Federica Cernigliaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Andrea Santangelo
- Pediatrics Department, AOUP Santa Chiara Hospital, 56126 Pisa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Salvatore Lo Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Sofia D'Agostino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Edvige Correnti
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | | | - Renata Pitino
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Silvia Valdese
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Carmelo Rizzo
- A.I.Nu.C-International Academy of Clinical Nutrition, 00166 Rome, Italy
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Giuseppe Santangelo
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| |
Collapse
|
4
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
5
|
Del Rio Naiz SC, Varela KG, de Carvalho D, Remor AP. Probucol neuroprotection against manganese-induced damage in adult Wistar rat brain slices. Toxicol Ind Health 2023; 39:638-650. [PMID: 37705340 DOI: 10.1177/07482337231201565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Manganese (Mn) is an abundant element used for commercial purposes and is essential for the proper function of biological systems. Chronic exposure to high Mn concentrations causes Manganism, a Parkinson's-like neurological disorder. The pathophysiological mechanism of Manganism remains unknown; however, it involves mitochondrial dysfunction and oxidative stress. This study assessed the neuroprotective effect of probucol, a hypolipidemic agent with anti-inflammatory and antioxidant properties, on cell viability and oxidative stress in slices of the cerebral cortex and striatum from adult male Wistar rats. Brain structure slices were kept separately and incubated with manganese chloride (MnCl2) and probucol to evaluate the cell viability and oxidative parameters. Probucol prevented Mn toxicity in the cerebral cortex and striatum, as evidenced by the preservation of cell viability observed with probucol (10 and 30 μM) pre-treatment, as well as the prevention of mitochondrial complex I inhibition in the striatum (30 μM). These findings support the protective antioxidant action of probucol, attributed to its ability to prevent cell death and mitigate Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Karina Giacomini Varela
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Diego de Carvalho
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Aline Pertile Remor
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| |
Collapse
|
6
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
8
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
9
|
Ademiluyi AO, Ogunsuyi OB, Akinduro JO, Aro OP, Oboh G. Evaluating Water bitter leaf ( Struchium sparganophora) and Scent Leaf ( Ocimum gratissimum) extracts as sources of nutraceuticals against manganese-induced toxicity in fruit fly model. Drug Chem Toxicol 2023; 46:236-246. [PMID: 35315297 DOI: 10.1080/01480545.2021.2021928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tropical vegetables remain one of the major sources of functional foods and nutraceuticals, while their constituent phytochemicals, especially alkaloids, have been reported to exhibit neuroprotective properties. Here, the protective effect of alkaloid extracts from Scent leaf (Ocimum gratissimum) and Water bitter leaf (Struchium sparganophora) on manganese (Mn)- induced toxicity in wild type fruit fly (Drosophila melanogaster) model was investigated. Flies were exposed to 30 mM of Mn, the alkaloid extracts (20 and 200 µg/g) and co-treatment of Mn plus extracts, respectively. The survival rate and locomotor performance of the flies were assessed 7 days post-treatment, after which the flies were homogenized and assayed for activities of acetylcholinesterase (AChE), monoamine oxidase (MAO), glutathione-S transferase (GST), catalase, superoxide dismutase SOD), as well as total thiol, reactive oxygen species (ROS) and neural L-DOPA levels. Results showed that the extract significantly reversed Mn-induced reduction in the survival rate and locomotor performance of the flies. Furthermore, both extracts counteracted the Mn-induced elevation in AChE and MAO activities, as well as reduced antioxidant enzyme activities, with a concomitant mitigation of Mn-induced elevated ROS and neural L-DOPA level. The HPLC characterization of the extracts revealed the presence of N-propylamine, Vernomine and Piperidine as predominant in Water bitter leaf extract, while 2, 6-dimethylpyrazine and sesbanimide were found in scent leaf extract. Therefore, the alkaloid extract of these leaves may thus be sources of useful nutraceuticals for the management of pathological conditions associated with manganese toxicity.
Collapse
Affiliation(s)
- Adedayo Oluwaseun Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Josephine Oluwaseun Akinduro
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Olayemi Philemon Aro
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
10
|
Luo H, Li J, Song B, Zhang B, Li Y, Zhou Z, Chang X. The binary combined toxicity of lithium, lead, and manganese on the proliferation of murine neural stem cells using two different models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5047-5058. [PMID: 35976582 DOI: 10.1007/s11356-022-22433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As persistent environmental pollutants, more than thirty metals impose a potential global threat to the environment and humans, which has raised scientific concerns. Although the toxic effects of metals had been extensively studied, there is a paucity of information on their mixture toxicity. In this study, we examined the individual and binary combined toxicity of three common metals such as lithium (Li), lead (Pb), and manganese (Mn) on the proliferation of murine neural stem cells (mNSCs), respectively. Li, Pb, and Mn reduced cell proliferation at the concentration of 5.00 mM, 2.50 μM, and 5.00 μM, respectively (all p < 0.050), in a dose-dependent manner of each metal solely on mNSCs with the cytotoxicity rank as Pb > Mn > Li. Furthermore, the interactions of metal mixtures on mNSCs were determined by using response-additivity and dose-additivity models. Pb + Mn mixtures showed a more than additive effect (synergistic) of toxicity in both two methods. In the dose-additivity method, Pb + Li and Li + Mn mixtures exhibited synergistic effects in the compound with a high ratio of Li (25.0% Pb/75.0% Li, 75.0% Li/25.0% Mn), whereas they are antagonistic in the lower or equal ratio of Li (such as 75.0% Pb/25.0% Li, 25.0% Li/75.0% Mn). Besides, the interactions of Li + Mn mixtures showed some discrepancies between different endpoints. In conclusion, our study highlights the complexity of the mixtures' interaction patterns and the possible neuroprotective effect of Li under certain conditions. In the future, more research on different levels of metal mixtures, especially Li metal, is necessary to evaluate their underlying interactions and contribute to establishing risk assessment systems.
Collapse
Affiliation(s)
- Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Zhang X, Liu J, Wang H. The cGAS-STING-autophagy pathway: Novel perspectives in neurotoxicity induced by manganese exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120412. [PMID: 36240967 DOI: 10.1016/j.envpol.2022.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chronic high-level heavy metal exposure increases the risk of developing different neurodegenerative diseases. Chronic excessive manganese (Mn) exposure is known to lead to neurodegenerative diseases. In addition, some evidence suggests that autophagy dysfunction plays an important role in the pathogenesis of various neurodegenerative diseases. Over the past decade, the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signal-efficient interferon gene stimulator (STING), as well as the molecular composition and regulatory mechanisms of this pathway have been well understood. The cGAS-STING pathway has emerged as a crucial mechanism to induce effective innate immune responses by inducing type I interferons in mammalian cells. Moreover, recent studies have found that Mn2+ is the second activator of the cGAS-STING pathway besides dsDNA, and inducing autophagy is a primitive function for the activation of the cGAS-STING pathway. However, overactivation of the immune response can lead to tissue damage. This review discusses the mechanism of neurotoxicity induced by Mn exposure from the cGAS-STING-autophagy pathway. Future work exploiting the cGAS-STING-autophagy pathway may provide a novel perspective for manganese neurotoxicity.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
12
|
Soto-Verdugo J, Siva-Parra J, Hernández-Kelly LC, Ortega A. Acute Manganese Exposure Modifies the Translation Machinery via PI3K/Akt Signaling in Glial Cells. ASN Neuro 2022; 14:17590914221131452. [PMID: 36203371 PMCID: PMC9551334 DOI: 10.1177/17590914221131452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARY STATEMENT We demonstrate herein that short-term exposure of radial glia cells to Manganese, a neurotoxic metal, induces an effect on protein synthesis, altering the protein repertoire of these cells.
Collapse
Affiliation(s)
| | | | | | - Arturo Ortega
- Arturo Ortega, Departamento de Toxicología,
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
Nacional, México City, México, 07360.
| |
Collapse
|
13
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
14
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
15
|
Wang Y, Liu L, Pu X, Ma C, Qu H, Wei M, Zhang K, Wu Q, Li C. Transcriptome Analysis and SNP Identification Reveal That Heterologous Overexpression of Two Uncharacterized Genes Enhances the Tolerance of Magnaporthe oryzae to Manganese Toxicity. Microbiol Spectr 2022; 10:e0260521. [PMID: 35638819 PMCID: PMC9241697 DOI: 10.1128/spectrum.02605-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Manganese is a crucial trace element that constitutes the cofactors of many enzymes. However, excessive Mn2+ can be toxic for both prokaryotes and eukaryotes. The mechanism of fungal genetics and metabolism in response to Mn2+ stress remains understudied, warranting further studies. Magnaporthe oryzae is well-established as the most destructive pathogen of rice. A field strain, YN2046, more sensitive to Mn2+ toxicity than other strains, was obtained from a previous study. Herein, we explored the genetic mechanisms of Mn2+ sensitivity in YN2046 through comparative transcriptomic analyses. We found that many genes previously reported to participate in Mn2+ stress were not regulated in YN2046. These non-responsive genes might cause Mn2+ sensitivity in YN2046. Weight gene correlation network analysis (WGCNA) was performed to characterize the expression profile in YN2046. Some overexpressed genes were only found in the Mn2+ tolerant isolate YN125. Among these, many single nucleotide polymorphism (SNP) were identified between YN125 and YN2046, which might disrupt the expression levels of Mn responsive genes. We cloned two uncharacterized genes, MGG_13347 and MGG_16609, from YN125 and transformed them to YN2046 with a strong promoter. Our results showed that the heterologous overexpression of two genes in YN2046 restored its sensitivity. Transcriptomic and biochemical analyses were performed to understand Mn tolerance mechanisms mediated by the two heterologous overexpressed genes. Our results showed that heterologous overexpression of these two genes activated downstream gene expression and metabolite production to restore M. oryzae sensitivity to Mn, implying that SNPs in responsive genes account for different phenotypes of the two strains under Mn stress. IMPORTANCE Heavy metals are used for fungicides as they target phytopathogen in multiple ways. Magnaporthe oryzae is the most destructive rice pathogen and is threatening global rice production. In the eukaryotes, the regulation mechanisms of Mn homeostasis often focus on the posttranslation, there were a few results about regulation at transcript level. The comparative transcriptome analysis showed that fewer genes were regulated in the Mn-sensitive strain. WGCNA and SNP analyses found that mutations in promoter and coding sequence regions might disrupt the expression of genes involved in Mn detoxification in the sensitive strain. We transferred two unannotated genes that were cloned from the Mn-tolerant strain into a sensitive strain with strong promoters, and the transformants exhibited an enhanced tolerance to Mn2+ toxicity. Transcriptome and biochemistry results indicated that heterologous overexpression of the two genes enhanced the tolerance to Mn toxicity by reactivation of downstream genes in M. oryzae.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xin Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Mian Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|
16
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
17
|
Zhang K, He K, Xu J, Nie L, Li S, Liu J, Long D, Dai Z, Yang X. Manganese exposure causes movement deficit and changes in the protein profile of the external globus pallidus in Sprague Dawley rats. Toxicol Ind Health 2021; 37:715-726. [PMID: 34706592 DOI: 10.1177/07482337211022223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Manganese (Mn) is required for normal brain development and function. Excess Mn may trigger a parkinsonian movement disorder but the underlying mechanisms are incompletely understood. We explored changes in the brain proteomic profile and movement behavior of adult Sprague Dawley (SD) rats systemically treated with or without 1.0 mg/mL MnCl2 for 3 months. Mn treatment significantly increased the concentration of protein-bound Mn in the external globus pallidus (GP), as demonstrated by inductively coupled plasma mass spectrometry. Behavioral study showed that Mn treatment induced movement deficits, especially of skilled movement. Proteome analysis by two-dimensional fluorescence difference gel electrophoresis coupled with mass spectrometry revealed 13 differentially expressed proteins in the GP of Mn-treated versus Mn-untreated SD rats. The differentially expressed proteins were mostly involved in glycolysis, metabolic pathways, and response to hypoxia. Selected pathway class analysis of differentially expressed GP proteins, which included phosphoglycerate mutase 1 (PGAM1), primarily identified enrichment in glycolytic process and innate immune response. In conclusion, perturbation of brain energy production and innate immune response, in which PGAM1 has key roles, may contribute to the movement disorder associated with Mn neurotoxicity.
Collapse
Affiliation(s)
- Kaiqin Zhang
- School of Public Health, University of South China, Hunan Hengyang, China.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jia Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dingxin Long
- School of Public Health, University of South China, Hunan Hengyang, China
| | - Zhongliang Dai
- The department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
18
|
Critical Involvement of Glial Cells in Manganese Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596185. [PMID: 34660781 PMCID: PMC8514895 DOI: 10.1155/2021/1596185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.
Collapse
|
19
|
Effects of Pentoxifylline in a Rat Model of Manganism: Evaluation of the Possible Toxicity. J CHEM-NY 2021. [DOI: 10.1155/2021/9926100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. Manganese (Mn) has been reported, through dietary and occupational overexposure, to induce neurotoxicity named manganism. Pentoxifylline (PTX) administration attracts much attention considering the beneficial properties of PTX, as an anti-inflammatory and smooth muscle relaxation agent. This in vivo study aims to evaluate the effect of PTX on manganism in rat model. Materials and Methods. Thirty adult male Sprague Dawley rats received MnCl2 (100 mg/kg, i.p. on days 1, 3, and 7) during a week alone or in combination with PTX (300 mg/kg, i.p. every day for 8 consecutive days on manganism rat model). Several locomotor activity indices, as well as biomarkers of oxidative stress, were monitored in the brain tissue of Mn-exposed animals. Results. It was found that PTX supplementation (300 mg/kg, i.p.) deteriorated the Mn-induced locomotor deficit. This drug also increased the Mn brain accumulation as well as reactive oxygen species (ROS) and lipid peroxidation products in the manganism rat model. Moreover, the levels of total antioxidant capacity (TAC) and glutathione (GSH) were shown to be reduced significantly compared to the control group. Conclusion. The results of this study revealed that PTX at a high dose (300 mg/kg) might increase manganism complications. PTX lowers the blood viscosity, improves the tissue perfusion, and increases the Mn levels in the brain.
Collapse
|
20
|
Fang Y, Peng D, Liang Y, Lu L, Li J, Zhao L, Ou S, Li S, Aschner M, Jiang Y. Sodium P-aminosalicylic Acid Inhibits Manganese-Induced Neuroinflammation in BV2 Microglial Cells via NLRP3-CASP1 Inflammasome Pathway. Biol Trace Elem Res 2021; 199:3423-3432. [PMID: 33156491 DOI: 10.1007/s12011-020-02471-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sodium p-aminosalicylic acid (PAS-Na) was reported to exhibit anti-inflammatory effect in the nervous system. However, the mechanism by which PAS-Na exhibits anti-inflammatory effects on manganese (Mn)-stimulated BV2 microglia cells remains unclear. Thus, this study investigated the role of PAS-Na in Mn-stimulated BV2 microglial cells. METHODS Microglia-like BV2 were treated with MnCl2 with or without the non-steroidal anti-inflammatory drug PAS-Na for 12 or 24 h to examine cell viability using MTT; for 24 or 48 h to examine levels of NLRP3, CASP1, IL-1β, and IL-18 mRNA using Real-Time quantitative PCR; for 48 h to examine levels of NLRP3 and CASP1 inflammasomes, measured by western blot analysis; and for 48 h to examine levels of inflammatory cytokines, measured by enzyme-linked immunosorbent assay. RESULTS The MTT assay showed that PAS-Na produced significant neuroprotective effect by preventing Mn-induced inflammation in BV2 microglial cells. PAS-Na significantly concentration and time dependently inhibited Mn-induced production of NLRP3, CASP1, IL-1β, and IL-18. CONCLUSION Taken together, our results suggest that PAS-Na exerts anti-inflammatory effects in Mn-stimulated BV2 microglial cells via downregulation of NLRP3, CASP1, IL-1β, and I L-18. Furthermore, a high concentration and prolonged PAS-Na treatment appear necessary for its therapeutic efficacy. Taken together, we conclude that PAS-Na affords therapeutic efficacy in mitigating neurological conditions associated with neuroinflammation.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuan Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Junyan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shiyan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | | | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
21
|
Tinkov AA, Martins AC, Avila DS, Gritsenko VA, Skalny AV, Santamaria A, Lee E, Bowman AB, Aschner M. Gut Microbiota as a Potential Player in Mn-Induced Neurotoxicity. Biomolecules 2021; 11:1292. [PMID: 34572505 PMCID: PMC8469589 DOI: 10.3390/biom11091292] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an essential metal, which at high exposures causes neurotoxic effects and neurodegeneration. The neurotoxic effects of Mn are mediated by neuroinflammation, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, and other mechanisms. Recent findings have demonstrated the potential impact of Mn overexposure on gut microbiota dysbiosis, which is known to contribute to neurodegeneration via secretion of neuroactive and proinflammatory metabolites. Therefore, in this review, we discuss the existing data on the impact of Mn exposure on gut microbiota biodiversity, bacterial metabolite production, and gut wall permeability regulating systemic levels. Recent data have demonstrated that Mn exposure may affect gut microbiota biodiversity by altering the abundance of Shiegella, Ruminococcus, Dorea, Fusicatenibacter, Roseburia, Parabacteroides, Bacteroidetes, Firmicutes, Ruminococcaceae, Streptococcaceae, and other bacterial phyla. A Mn-induced increase in Bacteroidetes abundance and a reduced Firmicutes/Bacteroidetes ratio may increase lipopolysaccharide levels. Moreover, in addition to increased systemic lipopolysaccharide (LPS) levels, Mn is capable of potentiating LPS neurotoxicity. Due to the high metabolic activity of intestinal microflora, Mn-induced perturbations in gut microbiota result in a significant alteration in the gut metabolome that has the potential to at least partially mediate the biological effects of Mn overexposure. At the same time, a recent study demonstrated that healthy microbiome transplantation alleviates Mn-induced neurotoxicity, which is indicative of the significant role of gut microflora in the cascade of Mn-mediated neurotoxicity. High doses of Mn may cause enterocyte toxicity and affect gut wall integrity through disruption of tight junctions. The resulting increase in gut wall permeability further promotes increased translocation of LPS and neuroactive bacterial metabolites to the systemic blood flow, ultimately gaining access to the brain and leading to neuroinflammation and neurotransmitter imbalance. Therefore, the existing data lead us to hypothesize that gut microbiota should be considered as a potential target of Mn toxicity, although more detailed studies are required to characterize the interplay between Mn exposure and the gut, as well as its role in the pathogenesis of neurodegeneration and other diseases.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Daiana Silva Avila
- Laboratory of Biochemistry and Toxicoology in Caenorhabditis elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil;
| | - Victor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Pionerskaya st 11, 460000 Orenburg, Russia;
| | - Anatoly V. Skalny
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico;
| | - Eunsook Lee
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
22
|
Morcillo P, Cordero H, Ijomone OM, Ayodele A, Bornhorst J, Gunther L, Macaluso FP, Bowman AB, Aschner M. Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity. Mol Neurobiol 2021; 58:3270-3289. [PMID: 33666854 PMCID: PMC9009155 DOI: 10.1007/s12035-021-02341-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Perturbations in mitochondrial dynamics have been observed in most neurodegenerative diseases. Here, we focus on manganese (Mn)-induced Parkinsonism-like neurodegeneration, a disorder associated with the preferential of Mn in the basal ganglia where the mitochondria are considered an early target. Despite the extensive characterization of the clinical presentation of manganism, the mechanism by which Mn mediated mitochondrial toxicity is unclear. In this study we hypothesized whether Mn exposure alters mitochondrial activity, including axonal transport of mitochondria and mitochondrial dynamics, morphology, and network. Using primary neuron cultures exposed to 100 μM Mn (which is considered the threshold of Mn toxicity in vitro) and intraperitoneal injections of MnCl2 (25mg/kg) in rat, we observed that Mn increased mitochondrial fission mediated by phosphorylation of dynamin-related protein-1 at serine 616 (p-s616-DRP1) and decreased mitochondrial fusion proteins (MFN1 and MFN2) leading to mitochondrial fragmentation, defects in mitochondrial respiratory capacity, and mitochondrial ultrastructural damage in vivo and in vitro. Furthermore, Mn exposure impaired mitochondrial trafficking by decreasing dynactin (DCTN1) and kinesin-1 (KIF5B) motor proteins and increasing destabilization of the cytoskeleton at protein and gene levels. In addition, mitochondrial communication may also be altered by Mn exposure, increasing the length of nanotunnels to reach out distal mitochondria. These findings revealed an unrecognized role of Mn in dysregulation of mitochondrial dynamics providing a potential explanation of early hallmarks of the disorder, as well as a possible common pathway with neurological disorders arising upon chronic Mn exposure.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Akinyemi Ayodele
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Leslie Gunther
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Martins AC, Ruella Oliveira S, Barbosa F, Tinkov AA, V A, Santamaría A, Lee E, Bowman AB, Aschner M. Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opin Drug Metab Toxicol 2021; 17:581-593. [PMID: 33620266 PMCID: PMC8122055 DOI: 10.1080/17425255.2021.1894123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several diseases and clinical conditions can affect enteral nutrition and adequate gastrointestinal uptake. In this respect, parenteral nutrition (PN) is necessary for the provision of deficient trace elements. However, some essential elements, such as manganese (Mn) may be toxic to children and adults when parenterally administered in excess, leading to toxic, especially neurotoxic effects. AREAS COVERED Here, we briefly provide an overview on Mn, addressing its sources of exposure, the role of Mn in the etiology of neurodegenerative diseases, and focusing on potential mechanisms associated with Mn-induced neurotoxicity. In addition, we discuss the potential consequences of overexposure to Mn inherent to PN. EXPERT OPINION In this critical review, we suggest that additional research is required to safely set Mn levels in PN, and that eliminating Mn as an additive should be considered by physicians and nutritionists on a case by case basis in the meantime to avoid the greater risk of neurotoxicity by its presence. There is a need to better define clinical biomarkers for Mn toxicity by PN, as well as identify new effective agents to treat Mn-neurotoxicity. Moreover, we highlight the importance of the development of new guidelines and practice safeguards to protect patients from excessive Mn exposure and neurotoxicity upon PN administration.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvana Ruella Oliveira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly V
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
24
|
Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M. Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. Int J Mol Sci 2021; 22:4646. [PMID: 33925013 PMCID: PMC8124173 DOI: 10.3390/ijms22094646] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil
| | - Aksana N. Mazilina
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| | - Olga N. Voskresenskaya
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Jan Aaseth
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico;
| | - Svetlana V. Notova
- Institute of Bioelementology, Orenburg State University, 460018 Orenburg, Russia;
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Aristides Tsatsakis
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13 Heraklion, Greece
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| |
Collapse
|
25
|
Martins AC, Paoliello MMB, Docea AO, Santamaria A, Tinkov AA, Skalny AV, Aschner M. Review of the mechanism underlying mefloquine-induced neurotoxicity. Crit Rev Toxicol 2021; 51:209-216. [PMID: 33905310 DOI: 10.1080/10408444.2021.1901258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mefloquine, a potent blood schizontocide, is effective against drug-resistant Plasmodium falciparum. This property, along with its unique pharmacokinetic profile, makes mefloquine a widely prescribed antimalarial drug. However, several epidemiological studies have raised concerns on the safety of mefloquine as prophylaxis for malaria. Well-documented side-effects of mefloquine include abnormal dreams, insomnia, anxiety, and depressed mood, as well as nausea and dizziness (the last two most frequent effects). The mechanisms that underlie the neurological/psychiatric complications of mefloquine are poorly understood. The aim of this study was to review the literature on the neurotoxic mechanisms of action of mefloquine to better understand its potential toxicity in the central nervous system, highlighting the mechanisms that lead to its psychiatric disorders. Experimental studies on the neurotoxic effects of mefloquine discussed herein include brain transporters of mefloquine, alteration in neurotransmitters, disruption on calcium (Ca2+) homeostasis and neuroinflammation, generation of oxidative stress response in neurons (involving glutathione, increased F2-isoprostanes, accumulation of cytosolic lipid globules), and alteration of voltage-dependent channels, as well as gap junction intercellular communications. Although several hypotheses have been proposed for the mechanisms that mediate mefloquine-induced brain damage, they are not fully understood, necessitating additional studies in the future.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anca O Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Abel Santamaria
- Laboratorio de Aminoacidos Excitadores, Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez, Mexico City, Mexico
| | - Alexey A Tinkov
- I.M. Sechenov First, Moscow State Medical University (Sechenov University), Moscow, Russia.,KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Anatoly V Skalny
- I.M. Sechenov First, Moscow State Medical University (Sechenov University), Moscow, Russia.,KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,I.M. Sechenov First, Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
26
|
Martins AC, Ke T, Bowman AB, Aschner M. New insights on mechanisms underlying methylmercury-induced and manganese-induced neurotoxicity. CURRENT OPINION IN TOXICOLOGY 2021; 25:30-35. [PMID: 33898886 PMCID: PMC8061890 DOI: 10.1016/j.cotox.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxic and essential elements are widely distributed in the Earth's crust and individuals may be exposed to several of them. Indeed, exposure to toxic elements such as mercury (Hg) can be a potential health risk factor of health, mainly by ingestion of fish containing methylmercury (MeHg). On the other hand, essential elements such as manganese (Mn) play an important role in physiological process in human body. However, Mn overexposure may cause toxic effects. In this respect, the neurotoxic effects of MeHg and Mn on the developing brain are well recognized. Therefore, in this critical review, we address the effects of MeHg and Mn on cell signaling pathways which may contribute to molecular mechanisms involved in MeHg- and Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Li S, De La Cruz J, Hutchens S, Mukhopadhyay S, Criss ZK, Aita R, Pellon-Cardenas O, Hur J, Soteropoulos P, Husain S, Dhawan P, Verlinden L, Carmeliet G, Fleet JC, Shroyer NF, Verzi MP, Christakos S. Analysis of 1,25-Dihydroxyvitamin D 3 Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Mol Cell Biol 2020; 41:e00372-20. [PMID: 33139494 PMCID: PMC7849401 DOI: 10.1128/mcb.00372-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica De La Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Zachary K Criss
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rohit Aita
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Joseph Hur
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Seema Husain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Lieve Verlinden
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
28
|
Ijomone OM, Olung NF, Akingbade GT, Okoh COA, Aschner M. Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. J Trace Elem Med Biol 2020; 62:126638. [PMID: 32891009 PMCID: PMC7655547 DOI: 10.1016/j.jtemb.2020.126638] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Environmental factors have been severally established to play major roles in the pathogenesis of neurodevelopmental disorders including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that is associated with symptoms that reduce the quality of life of affected individuals such as social interaction deficit, cognitive impairment, intellectual disabilities, restricted and repetitive behavioural patterns. ASD pathogenesis has been associated with environmental and genetic factors that alter physiologic processes during development. Here, we review literatures highlighting the environmental impact on neurodevelopmental disorders, and mechanisms by which environmental toxins may influence neurodevelopment. Furthermore, this review discusses reports highlighting neurotoxic metals (specifically, lead, mercury, cadmium, nickel and manganese) as environmental risk factors in the aetiology of ASD. This work, thus suggests that improving the environment could be vital in the management of ASD.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Nzube F Olung
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Grace T Akingbade
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
29
|
Martins AC, Krum BN, Queirós L, Tinkov AA, Skalny AV, Bowman AB, Aschner M. Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12893-12903. [PMID: 32298096 DOI: 10.1021/acs.jafc.0c00641] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) is an essential element that participates in several biological processes. Mn serves as a cofactor for several enzymes, such as glutamine synthetase and oxidoreductases, that have an important role in the defense of the organisms against oxidative stress. The diet is the main source of Mn intake for humans, and adequate daily intake levels for this metal change with age. Moreover, in higher amounts, Mn may be toxic, mainly to the brain. Here, we provide an overview of Mn occurrence in food, addressing its bioaccessibility and discussing the dietary standard and recommended intake of Mn consumption. In addition, we review some mechanisms underlying Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Bárbara Nunes Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Molecular of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexey A Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg 460000, Russia
| | - Anatoly V Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| |
Collapse
|
30
|
Martins AC, Gubert P, Villas Boas GR, Paes MM, Santamaría A, Lee E, Tinkov AA, Bowman AB, Aschner M. Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Rev Neurother 2020; 20:1109-1121. [PMID: 32799578 PMCID: PMC7657997 DOI: 10.1080/14737175.2020.1807330] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion disease represent important public health concerns. Exposure to high levels of heavy metals such as manganese (Mn) may contribute to their development. AREAS COVERED In this critical review, we address the role of Mn in the etiology of neurodegenerative diseases and discuss emerging treatments of Mn overload, such as chelation therapy. In addition, we discuss natural and synthetic compounds under development as prospective therapeutics. Moreover, bioinformatic approaches to identify new potential targets and therapeutic substances to reverse the neurodegenerative diseases are discussed. EXPERT OPINION Here, the authors highlight the importance of better understanding the molecular mechanisms of toxicity associated with neurodegenerative diseases, and the role of Mn in these diseases. Additional emphasis should be directed to the discovery of new agents to treat Mn-induced diseases, since present day chelator therapies have limited bioavailability. Furthermore, the authors encourage the scientific community to develop research using libraries of compounds to screen those compounds that show efficacy in regulating brain Mn levels. In addition, bioinformatics may provide novel insight for pathways and clinical treatments associated with Mn-induced neurodegeneration, leading to a new direction in Mn toxicological research.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami, LIKA, Federal, University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Gustavo R Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Alexey A. Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
31
|
MnDPDP: Contrast Agent for Imaging and Protection of Viable Tissue. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:3262835. [PMID: 32994754 PMCID: PMC7501573 DOI: 10.1155/2020/3262835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 01/22/2023]
Abstract
The semistable chelate manganese (Mn) dipyridoxyl diphosphate (MnDPDP, mangafodipir), previously used as an intravenous (i.v.) contrast agent (Teslascan™, GE Healthcare) for Mn-ion-enhanced MRI (MEMRI), should be reappraised for clinical use but now as a diagnostic drug with cytoprotective properties. Approved for imaging of the liver and pancreas, MnDPDP enhances contrast also in other targets such as the heart, kidney, glandular tissue, and potentially retina and brain. Transmetallation releases paramagnetic Mn2+ for cellular uptake in competition with calcium (Ca2+), and intracellular (IC) macromolecular Mn2+ adducts lower myocardial T1 to midway between native values and values obtained with gadolinium (Gd3+). What is essential is that T1 mapping and, to a lesser degree, T1 weighted imaging enable quantification of viability at a cellular or even molecular level. IC Mn2+ retention for hours provides delayed imaging as another advantage. Examples in humans include quantitative imaging of cardiomyocyte remodeling and of Ca2+ channel activity, capabilities beyond the scope of Gd3+ based or native MRI. In addition, MnDPDP and the metabolite Mn dipyridoxyl diethyl-diamine (MnPLED) act as catalytic antioxidants enabling prevention and treatment of oxidative stress caused by tissue injury and inflammation. Tested applications in humans include protection of normal cells during chemotherapy of cancer and, potentially, of ischemic tissues during reperfusion. Theragnostic use combining therapy with delayed imaging remains to be explored. This review updates MnDPDP and its clinical potential with emphasis on the working mode of an exquisite chelate in the diagnosis of heart disease and in the treatment of oxidative stress.
Collapse
|
32
|
Martins AC, Morcillo P, Ijomone OM, Venkataramani V, Harrison FE, Lee E, Bowman AB, Aschner M. New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3546. [PMID: 31546716 PMCID: PMC6801377 DOI: 10.3390/ijerph16193546] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD. Here, we discuss the critical role of Mn in the etiology of these disorders and provide a summary of the proposed mechanisms underlying Mn-induced neurodegeneration. In addition, we review some new therapy options for AD and PD related to Mn overload.
Collapse
Affiliation(s)
- Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Omamuyovwi Meashack Ijomone
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure 340252, Nigeria;
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology and Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany;
| | - Fiona Edith Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Aaron Blaine Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| |
Collapse
|