1
|
Wadaan MA, Baabbad A, Yesuf MB, Asaithambi P. Kinetics analysis of PAHs degradation using SiO 2-ZnO nanoparticles and evaluating their antibacterial and antibiofilm efficacy. ENVIRONMENTAL RESEARCH 2024; 260:119669. [PMID: 39048065 DOI: 10.1016/j.envres.2024.119669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The adsorption of Polycyclic aromatic hydrocarbons (PAHs) using nanoparticles is gaining significant attention due to the rapid removal or treatment rates. In this study, Silicon Dioxide-Zinc Oxide nanoparticles (SiO2-ZnO NPs) were synthesized to adsorb pyrene. Physicochemical characterization of SiO2-ZnO NPs showed plasmon resonance at 323 nm, agglomeration, irregular dispersion, and diameters of 90-100 nm. FT-IR analysis identified major functional groups on SiO2-ZnO NPs, including alkyne, amine, and isothiocyanate. SiO2-ZnO NPs demonstrated significant pyrene adsorption at pH 5, with 10 μg/mL of SiO2-ZnO NPs and 2 μg/mL of PAHs, performing better under UV irradiation. Two isotherm models, adsorption isotherm and kinetics adsorption, were used to analyze the PAHs adsorption by SiO2-ZnO NPs. Additionally, SiO2-ZnO NPs were tested for antibacterial and antibiofilm activities against both Gram-negative and Gram-positive bacteria. At a concentration of 150 μg/mL, SiO2-ZnO NPs produced inhibition zones of 21.57 mm, 20.30 mm, 19.30 mm, and 11.30 mm against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Klebsiella pneumoniae, respectively. They also inhibited and disrupted biofilms of Micrococcus luteus and Acinetobacter baumannii. Furthermore, SiO2-ZnO NPs exhibited photocatalytic degradation of lead, achieving 68.24% degradation within 5 h of treatment. Therefore, SiO2-ZnO NPs are efficient candidates for multiple applications, including pyrene adsorption, bacterial biofilm disruption, and lead degradation under sunlight.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- BioProducts Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad Baabbad
- BioProducts Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Mamuye Busier Yesuf
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box 378, Jimma, Ethiopia
| | - Perumal Asaithambi
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box 378, Jimma, Ethiopia.
| |
Collapse
|
2
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
3
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
4
|
Shanmuganathan R, Sibtain Kadri M, Mathimani T, Hoang Le Q, Pugazhendhi A. Recent innovations and challenges in the eradication of emerging contaminants from aquatic systems. CHEMOSPHERE 2023; 332:138812. [PMID: 37127197 DOI: 10.1016/j.chemosphere.2023.138812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Presence of emerging pollutants (EPs), aka Micropollutants (MPs) in the freshwater environments is a severe threat to the environment and human beings. They include pharmaceuticals, insecticides, industrial chemicals, natural hormones, and personal care items and the pollutants are mostly present in wastewater generated from urbanization and increased industrial growth. Even concentrations as low as ngL-1 or mgL-1 have proven ecologically lethal to aquatic biota. For several years, the biodegradation of various Micropollutants (MPs) in aquatic ecosystems has been a significant area of research worldwide, with many chemical compounds being discovered in various water bodies. As aquatic biota spends most of their formative phases in polluted water, the impacts on aquatic biota are obvious, indicating that the environmental danger is substantial. In contrast, the impact of these contaminants on aquatic creatures and freshwater consumption is more subtle and manifests directly when disrupting the endocrine system. Research and development activities are expected to enable the development of ecologically sustainable, cost-effective, and efficient treatments for practical systems in the near future. Therefore, this review aims to understand recent emerging pollutants discovered and the available treatment technologies and suggest an innovative and cost-effective method to treat these EPs, which is sustainable and follows the circular bioeconomy.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804201, Taiwan
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Chen B, Guan H, Zhang Y, Liu S, Zhao B, Zhong C, Zhang H, Ding W, Song A, Zhu D, Liu L, Wulan B, Li H, Liu G, Feng X. Performance and mechanism of Pb2+ and Cd2+ ions’ adsorption via modified antibiotic residue-based hydrochar. Heliyon 2023; 9:e14930. [PMID: 37077678 PMCID: PMC10106921 DOI: 10.1016/j.heliyon.2023.e14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
This study investigated the hydrochar-based porous carbon prepared by combining the technical route of hydrothermal carbonization (HTC) + chemical activation. The hydrochar morphology was adjusted by changing the activation reaction conditions and adding metal salts. Experiments showed that the activation of KHCO3 significantly increased the specific surface area and pore size of the hydrochar. Besides, oxygen-rich groups on the surface of the activated hydrochar interacted with heavy metal ions to achieve efficient adsorption. The activated hydrothermal carbon adsorption capacity for Pb2+ and Cd2+ ions reached 289 and 186 mg/g, respectively. The adsorption mechanism study indicated that the adsorption of Pb2+ and Cd2+ was related to electrostatic attraction, ion exchange, and complexation reactions. The "HTC + chemical activation" technology was environmentally friendly and effectively implemented antibiotic residues. Carbon materials with high adsorption capacity can be prepared so that biomass resources can be utilized with excessive value, as a consequence presenting technical assistance for the comprehensive disposal of organic waste in the pharmaceutical industry and establishing a green and clean production system.
Collapse
Affiliation(s)
- Bingtong Chen
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Haibin Guan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Yue Zhang
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Suxiang Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Baofeng Zhao
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Cunqing Zhong
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Heming Zhang
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Wenran Ding
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Angang Song
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Di Zhu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Liangbei Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Bari Wulan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Huan Li
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Guofu Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Xiangyu Feng
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| |
Collapse
|
6
|
Shaba EY, Tijani JO, Jacob JO, Suleiman MAT. Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/Fe 3O 4 nanocomposite. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 57:1146-1167. [PMID: 36601714 DOI: 10.1080/10934529.2022.2162794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The presence and removal of heavy metals such as Cu(II) as well as Cr(VI) in petroleum refinery wastewater calls for concerted efforts due to their mobility, toxicity, bioaccumulation, and non-biodegradability in the environment. In this present work, zinc oxide (ZnO), iron oxide (Fe3O4) nanoparticles and ZnO/Fe3O4 nanocomposites were synthesized via simple sol-gel and chemical reduction methods; characterized using different analytical tools and then applied as nanoadsorbent to sequester Cu(II) and Cr(VI) ions from Petroleum Refinery wastewater via batch adsorption process. Cu(II) and Cr(VI) adsorption processes were examined with respect to contact time (kinetic effect), nanoadsorbent dosage, isotherm equilibrium, and thermodynamic parameters. ZnO/Fe3O4 nanocomposites with higher surface area (39.450 m2/g) have a mixture of rod-like and spherical shapes as compared to ZnO and Fe3O4 nanoparticles with spherical shape only and surface areas of 8.62 m2/g and 7.86 m2/g) according to the high-resolution scanning electron microscopy (HRSEM) and Brunauer-Emmett-Teller (BET) analysis. The X-ray diffractometer (XRD) results revealed the formation of hexagonal wurtzite structure of ZnO and the face-centered cubic structure phase of Fe3O4 nanoparticles, after the formation of the ZnO/Fe3O4 nanocomposites the phases of the nanoparticles were not affected but the diffraction peaks shifted to higher 2θ degree. The average crystallite size of ZnO and Fe3O4 nanoparticles and ZnO/Fe3O4 nanocomposites were 20.12, 26.36 and 14.50 nm respectively. The maximum removal efficiency of Cu (II) (92.99%) and Cr (VI) (77.60%) by ZnO/Fe3O4 nanocomposites was higher than 85.83%; 65.19% for Cu (II) and 80.57%; 62.53 for Cr (VI) using ZnO and Fe3O4 nanoadsorbents individually under the following conditions: contact time (15), dosage (0.08 g) and temperature (30 °C). The experimental data for Cu (II) and Cr (VI) ion removal fitted well to the pseudo-second-order kinetic and Langmuir isotherm models. The thermodynamic study suggested that the removal of the two metal ions from petroleum wastewater was endothermic. The reusability study after the fourth adsorption-desorption cycle indicated the stability of ZnO/Fe3O4 nanocomposites with 85.51% and 69.42% removal efficiency of Cu (II) and Cr (VI). The results showed that ZnO/Fe3O4 nanocomposite achieves higher performance than ZnO and Fe3O4 alone in the removal of Cu (II) and Cr (VI) ions from the petroleum refinery wastewater.
Collapse
Affiliation(s)
- E Y Shaba
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| | - J O Tijani
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| | - J O Jacob
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| | - M A T Suleiman
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| |
Collapse
|
7
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
8
|
Malar CG, Seenuvasan M, Murugesan M, Ron Carter SB, Kumar KS. Modelling of urea hydrolysis kinetics using genetic algorithm coupled artificial neural networks in urease immobilized magnetite nanoparticles. CHEMOSPHERE 2022; 303:134929. [PMID: 35577134 DOI: 10.1016/j.chemosphere.2022.134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The presence of urea in runoff from fertilized soil could be contributing to the growth of dangerous blooms. Enzymatic urea hydrolysis is a well-known outstanding process that, when integrated with nanotechnology, would be much more efficient. This research provides a novel perspective on magnetic nanobiocatalysts that reduce diffusion barriers in effective urea hydrolysis. Surprisingly, the model developed with the use of a Genetic Algorithm (GA) and an Artificial Neural Network (ANN) demonstrated that the system's diffusion restrictions were reduced. In order to forecast accurate outputs using artificial intelligence (AI), a neural network with one hidden layer and 20 neurons was built utilizing multilayer feed-forward network and showed highest output (diffusion co-efficient) with least mean square error (MSE). The diffusion coefficients of free urease, urease immobilized onto porous MNs (U-aMNs), and nanobiocatalyst, i.e. urease immobilized onto surface modified MNs (U-MNβ), were 1.9 × 10-17, 12.62 × 10-16, and 15.48 × 10-16 cm2/min, respectively. These results revealed that the addition of Chitosan to the surface of MNs had a considerable impact on enzyme dispersion. The decrease in Damkohler number (Da) from 2.37 ± 0.26 for U-aMNs to 2.19 ± 0.11 for U-MNβ suggested a beneficial effect in overcoming diffusion constraints. Pseudo-first order and pseudo-second order models were used to analyze urea uptake kinetics, with the former model offering the best fit to the system, with R2 values that were much closer to unity.
Collapse
Affiliation(s)
- Carlin Geor Malar
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Tamilnadu, 602105, India.
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India.
| | - Mohanraj Murugesan
- Department of Mechanical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India
| | - S B Ron Carter
- Department of Electrical and Electronics Engineering, Rajalakshmi Engineering College, Thandalam, Tamilnadu, 602105, India
| | - Kannaiyan Sathish Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamilnadu, 603110, India
| |
Collapse
|
9
|
Rajendran S, Priya AK, Senthil Kumar P, Hoang TKA, Sekar K, Chong KY, Khoo KS, Ng HS, Show PL. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. CHEMOSPHERE 2022; 303:135146. [PMID: 35636612 DOI: 10.1016/j.chemosphere.2022.135146] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This review provides a quantitative description of the nano-adsorbent processing and its viability against wastewater detoxification by extracting heavy metal ions. The impact of nano-adsorbent functionalities on specific essential attributes such as the surface area, segregation, and adsorption capacity were comprehensively evaluated. A detailed analysis has been presented on the characteristics of nanomaterials through their limited resistance to adsorb some heavy metal ions. Experimental variables such as the adsorbent dosage, pH, substrate concentration, response duration, temperature, and electrostatic force that influence the uptake of metal ions have been studied. Besides, separate models for the adsorption kinetics and isothermal adsorption have been investigated to understand the mechanism behind adsorption. Here, we reviewed the different adsorbent materials with nano-based techniques for the removal of heavy metals from wastewater and especially highlighted the nano adsorption technique. The influencing factors such as pH, temperature, dosage time, sorbent dosage, adsorption capacities, ion concentration, and mechanisms related to the removal of heavy metals by nano composites are highlighted. Lastly, the application potentials and challenges of nano adsorption for environmental remediation are discussed. This critical review would benefit engineers, chemists, and environmental scientists involved in the utilization of nanomaterials for wastewater treatment.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Kar Yeen Chong
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Gourmand C, Bertagnolli C, Brandel J, Hubscher-Bruder V, Boos A. Bioinspired Mesoporous Silica for Cd(II) Removal from Aqueous Solutions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Cléophée Gourmand
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg F-67000, France
| | | | - Jérémy Brandel
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg F-67000, France
| | | | - Anne Boos
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg F-67000, France
| |
Collapse
|
11
|
Sivaranjanee R, Kumar PS, Mahalaxmi S. A Review on Agro-based Materials on the Separation of Environmental Pollutants From Water System. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kumar JA, Krithiga T, Narendrakumar G, Prakash P, Balasankar K, Sathish S, Prabu D, Pushkala DP, Marraiki N, Ramu AG, Choi D. Effect of Ca 2+ ions on naphthalene adsorption/desorption onto calcium oxide nanoparticle: Adsorption isotherm, kinetics and regeneration studies. ENVIRONMENTAL RESEARCH 2022; 204:112070. [PMID: 34555407 DOI: 10.1016/j.envres.2021.112070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The adsorptive nature of calcium oxide nanoparticles in aqueous sample of naphthalene in presence of Ca2+ ions was estimated. Enhanced efficiency of calcium oxide regeneration (90%) with the aid of calcium chloride in the solution concentration of 0.002-0.1 M was depicted. The less degree of toxic naphthalene desorption merged with SEM, FTIR and XRD characterization data portrays the importance of naphthalene adsorption onto calcium oxide using calcium chloride for regeneration. Batch adsorption studies were performed to evaluate the operating parameters such as pH, naphthalene concentration, contact time and impact of Ca2+ on naphthalene study. The adsorption isotherm of naphthalene on calcium oxide nanoparticle was described by Langmuir, Freundlich, Temkin and Dubinin Radushkevich and theoretical maximum monolayer adsorption capacity was found to be 63.81 mg/g at 303 K. The adsorption kinetic best fitted with pseudo second order kinetic model. The positive influence of making the addition of Ca2+ ions into naphthalene solution for its rapid adsorption was elucidated which is leaded by a probable increase in sorption capacity for naphthalene molecules at lower concentrations. The stable nature of crystallinity of calcium oxide and a less degree of naphthalene molecules leaching during consecutive cycles of adsorptive process and nanoparticle regeneration was also scrutinized.
Collapse
Affiliation(s)
- J Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India.
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - G Narendrakumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - P Prakash
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - K Balasankar
- Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - D Purna Pushkala
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O 2455, Riyadh, 11451, Saudi Arabia
| | - A G Ramu
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong-ro, Jochiwon-eup, Sejong city, 30016, Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong-ro, Jochiwon-eup, Sejong city, 30016, Republic of Korea
| |
Collapse
|
13
|
Ahmad M, Islam IU, Ahmad M, Rukh S, Ullah I. Preparation of iron-modified biochar from rice straw and its application for the removal of lead (Pb+2) from lead-contaminated water by adsorption. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, Karaman C, Orooji Y, Show PL. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. CHEMOSPHERE 2022; 287:132369. [PMID: 34582930 DOI: 10.1016/j.chemosphere.2021.132369] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution remains a global environmental challenge that poses a significant threat to human life. Various methods have been explored to eliminate heavy metal pollutants from the environment. However, most methods are constrained by high expenses, processing duration, geological problems, and political issues. The immobilization of metals, phytoextraction, and biological methods have proven practical in treating metal contaminants from the soil. This review focuses on the general status of heavy metal contamination of soils, including the excessive heavy metal concentrations in crops. The assessment of the recent advanced technologies and future challenges were reviewed. Molecular and genetic mechanisms that allow microbes and plants to collect and tolerate heavy metals were elaborated. Tremendous efforts to remediate contaminated soils have generated several challenges, including the need for remediation methodologies, degrees of soil contamination, site conditions, widespread adoptions and various possibilities occurring at different stages of remediation are discussed in detail.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - T A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey
| | - Yasin Orooji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3106. [PMID: 34835870 PMCID: PMC8623625 DOI: 10.3390/nano11113106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications due to their unique and tunable magnetic properties, the existing versatility with regard to their (bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in the agricultural sector.
Collapse
Affiliation(s)
- Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Kyriakos Athanasiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus;
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | | |
Collapse
|
16
|
Narayana PL, Maurya AK, Wang XS, Harsha MR, Srikanth O, Alnuaim AA, Hatamleh WA, Hatamleh AA, Cho KK, Paturi UMR, Reddy NS. Artificial neural networks modeling for lead removal from aqueous solutions using iron oxide nanocomposites from bio-waste mass. ENVIRONMENTAL RESEARCH 2021; 199:111370. [PMID: 34043971 DOI: 10.1016/j.envres.2021.111370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal ions in aqueous solutions are taken into account as one of the most harmful environmental issues that ominously affect human health. Pb(II) is a common pollutant among heavy metals found in industrial wastewater, and various methods were developed to remove the Pb(II). The adsorption method was more efficient, cheap, and eco-friendly to remove the Pb(II) from aqueous solutions. The removal efficiency depends on the process parameters (initial concentration, the adsorbent dosage of T-Fe3O4 nanocomposites, residence time, and adsorbent pH). The relationship between the process parameters and output is non-linear and complex. The purpose of the present study is to develop an artificial neural networks (ANN) model to estimate and analyze the relationship between Pb(II) removal and adsorption process parameters. The model was trained with the backpropagation algorithm. The model was validated with the unseen datasets. The correlation coefficient adj.R2 values for total datasets is 0.991. The relationship between the parameters and Pb(II) removal was analyzed by sensitivity analysis and creating a virtual adsorption process. The study determined that the ANN modeling was a reliable tool for predicting and optimizing adsorption process parameters for maximum lead removal from aqueous solutions.
Collapse
Affiliation(s)
- P L Narayana
- School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, Republic of Korea
| | - A K Maurya
- School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, Republic of Korea
| | - Xiao-Song Wang
- School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, Republic of Korea
| | - M R Harsha
- Machine Learning and Artificial Intelligence, International Institute of Information Technology, Banglore, India
| | - O Srikanth
- Department of Mechanical Engineering, Dhanekula Institute of Engineering & Technology, Ganguru, Vijayawada, 521139, India
| | - Abeer Ali Alnuaim
- Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Wesam Atef Hatamleh
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - K K Cho
- Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, Jinju, South Korea
| | | | - N S Reddy
- School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
17
|
Qin H, He Y, Xu P, Huang D, Wang Z, Wang H, Wang Z, Zhao Y, Tian Q, Wang C. Spinel ferrites (MFe 2O 4): Synthesis, improvement and catalytic application in environment and energy field. Adv Colloid Interface Sci 2021; 294:102486. [PMID: 34274724 DOI: 10.1016/j.cis.2021.102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
To develop efficient catalysts is one of the major ways to solve the energy and environmental problems. Spinel ferrites, with the general chemical formula of MFe2O4 (where M = Mg2+, Co2+, Ni2+, Zn2+, Fe2+, Mn2+, etc.), have attracted considerable attention in catalytic research. The flexible position and valence variability of metal cations endow spinel ferrites with diverse physicochemical properties, such as abundant surface active sites, high catalytic activity and easy to be modified. Meanwhile, their unique advantages in regenerating and recycling on account of the magnetic performances facilitate their practical application potential. Herein, the conventional as well as green chemistry synthesis of spinel ferrites is reviewed. Most importantly, the critical pathways to improve the catalytic performance are discussed in detail, mainly covering selective doping, site substitution, structure reversal, defect introduction and coupled composites. Furthermore, the catalytic applications of spinel ferrites and their derivative composites are exclusively reviewed, including Fenton-type catalysis, photocatalysis, electrocatalysis and photoelectro-chemical catalysis. In addition, some vital remarks, including toxicity, recovery and reuse, are also covered. Future applications of spinel ferrites are envisioned focusing on environmental and energy issues, which will be pushed by the development of precise synthesis, skilled modification and advanced characterization along with emerging theoretical calculation.
Collapse
Affiliation(s)
- Hong Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yangzhuo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Ziwei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zixuan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yin Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Quyang Tian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Changlin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
18
|
Aravind Kumar J, Krithiga T, Vijai Anand K, Sathish S, Karthick Raja Namasivayam S, Renita A, Hosseini-Bandegharaei A, Praveenkumar T, Rajasimman M, Bhat N, Dutta S. Kinetics and regression analysis of phenanthrene adsorption on the nanocomposite of CaO and activated carbon: Characterization, regeneration, and mechanistic approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Einollahipeer F, Okati N. High efficient Hg (II) and TNP removal by NH 2 grafted magnetic graphene oxide synthesized from Typha latifolia. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-17. [PMID: 34057883 DOI: 10.1080/09593330.2021.1937708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The present study for the first time manifests the outstanding potential of amine grafted magnetic graphene oxide (m-GO-NH2) synthesized from Typha latifolia stems for mercury (Hg (II)) and 2,4,6-trinitrophenol (TNP) removal. The adsorption performance of m-GO-NH2 was apprized by considering the impact of the contact time (0-120 min), pH (2-9), adsorbent dose (5-40 mg), and adsorbate concentration (10-50 mg/L). The maximum Hg (II) and TNP removals (∼ 100%) were obtained using 30 mg adsorbent dose in 90 and 75 min, respectively. The best performance of m-GO-NH2 was observed at pH of 7, 20 mg/L Hg (II), and pH of 2, 30 mg/L TNP. According to the Brunauer-Emmett-Teller (BET) analysis, the surface area of GO was 34.81 m2/g and the simultaneous micro and mesoporosity was observed. Regarding the thermodynamic studies, the adsorption procedure was spontaneous and endothermic for Hg (II) followed Redlich-Peterson (R-P) and Freundlich isotherm equations while it was exothermic for TNP, well fitted with Langmuir and R-P isotherms. Kinetic data also indicated a good correlation with pseudo-second-order model. The highest adsorption capacity was estimated as 107.33 and 105.2 mg/g for Hg (II) and TNP, respectively. Accordingly, the proposed m-GO-NH2 can be a promising adsorbent for the elimination of metal and organic contaminants.
Collapse
Affiliation(s)
- Fatemeh Einollahipeer
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Narjes Okati
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| |
Collapse
|
20
|
Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. New insights into the degradation of synthetic pollutants in contaminated environments. CHEMOSPHERE 2021; 268:128827. [PMID: 33162154 DOI: 10.1016/j.chemosphere.2020.128827] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
The environment is contaminated by synthetic contaminants owing to their extensive applications globally. Hence, the removal of synthetic pollutants (SPs) from the environment has received widespread attention. Different remediation technologies have been investigated for their abilities to eliminate SPs from the ecosystem; these include photocatalysis, sonochemical techniques, nanoremediation, and bioremediation. SPs, which can be organic or inorganic, can be degraded by microbial metabolism at contaminated sites. Owing to their diverse metabolisms, microbes can adapt to a wide variety of environments. Several microbial strains have been reported for their bioremediation potential concerning synthetic chemical compounds. The selection of potential strains for large-scale removal of organic pollutants is an important research priority. Additionally, novel microbial consortia have been found to be capable of efficient degradation owing to their combined and co-metabolic activities. Microbial engineering is one of the most prominent and promising techniques for providing new opportunities to develop proficient microorganisms for various biological processes; here, we have targeted the SP-degrading mechanisms of microorganisms. This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions. The degradation of these pollutants is investigated using abiotic and biotic approaches; interestingly, biotic approaches based on microbial methods are preferable owing to their high potential for pollutant removal and cost-effectiveness.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, 248161, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology, Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Fabrication of sulfamic acid functionalized magnetic nanoparticles with denderimeric linkers and its application for microextraction purposes, one-pot preparation of pyrans pigments and removal of malachite green. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2020.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Keshavarz M, Foroutan R, Papari F, Bulgariu L, Esmaeili H. Synthesis of CaO/Fe2O3 nanocomposite as an efficient nanoadsorbent for the treatment of wastewater containing Cr (III). SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1778727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Maryam Keshavarz
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Fatemeh Papari
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Laura Bulgariu
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Cristofor Simionescu” Faculty of Technical University Gheorghe Asachi of Iasi, Iaşi, Romania
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
23
|
Nawaz T, Zulfiqar S, Sarwar MI, Iqbal M. Synthesis of diglycolic acid functionalized core-shell silica coated Fe 3O 4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions. Sci Rep 2020; 10:10076. [PMID: 32572117 PMCID: PMC7308298 DOI: 10.1038/s41598-020-67168-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/03/2020] [Indexed: 11/08/2022] Open
Abstract
Amine-terminated core-shell silica coated magnetite nanoparticles were functionalized with diglycolic acid for the first time to create acid moiety on the surface of the nanoparticles. The formation of magnetite nanoparticles was scrutinised through XRD, SEM, EDS, TEM, VSM and FTIR spectroscopy. The BET surface area of nano-sorbent was found to be 4.04 m2/g with pore size 23.68 nm. These nanomaterials were then utilized to remove the Pb(II) and Cr(VI) ions from their aqueous media and uptake of metal ions was determined by atomic absorption spectroscopy (AAS). A batch adsorption technique was applied to remove both ions at optimised pH and contact time with maximum adsorption efficiency for Pb(II) ions at pH 7 while for Cr(VI) ions at pH 3. Adsorption mechanism was studied using Langmuir and Freundlich isotherms and equilibrium data fitted well for both the isotherms, showing complex nature of adsorption comprising both chemisorption as well as physio-sorption phenomena. The nanosorbents exhibited facile separation by applying external magnetic field due to the ferrimagnetic behaviour with 31.65 emu/g saturation magnetization. These nanosorbents were also found to be used multiple times after regeneration.
Collapse
Affiliation(s)
- Tehreema Nawaz
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Sonia Zulfiqar
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | | | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
24
|
Abstract
The discharge of toxic heavy metals including zinc (Zn), nickel (Ni), lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in water above the permissible limits causes high threat to the surrounding environment. Because of their toxicity, heavy metals greatly affect the human health and the environment. Recently, better remediation techniques were offered using the nanotechnology and nanomaterials. The attentions were directed toward cost-effective and new fabricated nanomaterials for the application in water/wastewater remediation, such as zeolite, carbonaceous, polymer based, chitosan, ferrite, magnetic, metal oxide, bimetallic, metallic, etc. This review focused on the synthesis and capacity of various nanoadsorbent materials for the elimination of different toxic ions, with discussion of the effect of their functionalization on the adsorption capacity and separation process. Additionally, the effect of various experimental physicochemical factors on heavy metals adsorption, such as ionic strength, initial ion concentration, temperature, contact time, adsorbent dose, and pH was discussed.
Collapse
|
25
|
Khorshidi P, Shirazi RHSM, Miralinaghi M, Moniri E, Saadi S. Adsorptive removal of mercury (II), copper (II), and lead (II) ions from aqueous solutions using glutathione-functionalized NiFe2O4/graphene oxide composite. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04164-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Liu Y, Xiong Y, Xu P, Pang Y, Du C. Enhancement of Pb (II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134918. [PMID: 31785912 DOI: 10.1016/j.scitotenv.2019.134918] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 04/15/2023]
Abstract
Boron doped ordered mesoporous carbon (BMC) was prepared to improve the adsorption of Pb(II). The effects of several parameters such as contact time, pH, and ionic strength on the adsorption by both pristine ordered mesoporous carbon (OMC) and BMC were investigated. Thermodynamic, sorption isotherm and adsorption kinetics models were used to study the adsorption mechanisms by each of the adsorbents. Based on intraparticle diffusion model, the adsorption process by the two adsorbents mainly involved the quick liquid-film diffusion stage and slow pore diffusion portion, and fitting experimental data with Temkin model indicates that the adsorption process by both of the adsorbents involve physisorption and chemisorption. Based on Langmuir model, the estimated maximum adsorption capacity for BMC was about 1.3 times higher than the pristine OMC. Moreover, BMC retained good adsorption performance in tap and lake water, and could be regenerated effectively and recycled using EDTA. The results suggested that BMC, with enhanced adsorption performance compared with OMC, could be considered as very effective and promising materials for Pb (II) removal from wastewater.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha 410114, Hunan, China; School of Architecture, Changsha University of Science and Technology, Changsha 410076, Hunan, China.
| | - Ying Xiong
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha 410114, Hunan, China; School of Architecture, Changsha University of Science and Technology, Changsha 410076, Hunan, China; Hunan Institute of Economics Geography, Changsha 410004, Hunan, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Ya Pang
- Department of Biology and Environmental Engineering, Changsha College, Changsha 410002, China
| | - Chunyan Du
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| |
Collapse
|
27
|
Xu P, Chen M, Zeng G, Huang D, Lai C, Wang Z, Yan M, Huang Z, Gong X, Song B, Li T, Duan A. Effects of multi-walled carbon nanotubes on metal transformation and natural organic matters in riverine sediment. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:459-468. [PMID: 31077889 DOI: 10.1016/j.jhazmat.2019.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, pragmatic prospection of multi-walled carbon nanotubes (MWCNTs) is conducted considering their impacts on Cd transformation, microbial activity and natural organic matter (NOM) in sediments. Indeed, dose-dependent of MWCNTs acceleration in Cd sedimentation and immobilization in water-sediment interface has been found. Unexpectedly, even with the reduced Cd bioavailability, high ratios of MWCNTs incorporation led to exacerbated microbial inactivation. Besides, we noted that MWCNTs significantly lowered NOM contents in sediments. Chemical characterization results also demonstrated that high ratios of MWCNTs incorporation reduced the aromaticity, hydrophobicity and humification of fulvic acid (FA) and humic acid (HA) in sediments. The Cd binding results confirmed that quantity and chemical variation of NOM affected their central ability to Cd binding, referring to significant decrease in combined Cd contents. The findings indicated that reduction in humic substances and chemical structure variation might be the important reason attributed to the MWCNTs toxicity. This study provides novel mechanisms understanding the fate of carbon nanotubes considering the balance in environmental benefit and potential risks.
Collapse
Affiliation(s)
- Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ziwei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Tao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
28
|
Wang X, Zheng G, Chen T, Nie E, Wang Y, Shi X, Liu J. Application of ceramsite and activated alumina balls as recyclable bulking agents for sludge composting. CHEMOSPHERE 2019; 218:42-51. [PMID: 30469003 DOI: 10.1016/j.chemosphere.2018.11.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Composting is a major sludge-treatment method and bulking agents are very important in sludge composting. In this study, ceramsite and activated alumina balls were chosen as recyclable bulking agents for sludge composting. Variations in the temperature, pH, electrical conductivity, organic matter, dissolved organic carbon, moisture content, and heavy metals were detected during composting with different bulking-agent treatments as well as differences in the germination index values. The results showed that both bulking agents could ensure the maturity of the compost; further, ceramsite treatment resulted in the best water removal efficiency. According to the sequential extraction procedure, both ceramsite and activated alumina balls could stabilize Cd but they also increased the mobility of Zn. After comparing the effects of different particle sizes of ceramsite on composting, 20 mm was determined to be the most optimal value. Additionally, the recovery rates of ceramsite and activated alumina balls were 96.9% and 99.9%, respectively.
Collapse
Affiliation(s)
- Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erqi Nie
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuewei Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Shi
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Tang N, Niu CG, Li XT, Liang C, Guo H, Lin LS, Zheng CW, Zeng GM. Efficient removal of Cd 2+ and Pb 2+ from aqueous solution with amino- and thiol-functionalized activated carbon: Isotherm and kinetics modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1331-1344. [PMID: 29710586 DOI: 10.1016/j.scitotenv.2018.04.236] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
In order to address the increasingly severe pollution issue caused by heavy metals, activated carbon-based absorbents have gained considerable attention. Herein, two novel adsorbents, amino-functionalized activated carbon (N-AC) and thiol-functionalized activated carbon (S-AC), were successfully synthesized by stepwise modification with tetraethylenepentamine (TEPA), cyanuric chloride (CC) and sodium sulfide. The pristine and synthesized materials were characterized by BET analysis, SEM, FTIR spectroscopy, elemental analysis and zeta-potential analyzer. Meanwhile, their adsorption properties for Cd2+ and Pb2+ and the effects of various variables on the adsorption processes were systematically investigated. The findings confirmed that amino-groups and thiol-groups endowed the AC with a strong affinity for metal ions and that the pH of solution affected the uptake efficiencies of the adsorbents by influencing their surface charges. Furthermore, six isotherm models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Sips and Redlich-Peterson) and four kinetic models (pseudo-first-order, pseudo-second-order, Intra-particle diffusion and Elovich) were applied to interpret the adsorption process at three different temperatures (288 K, 298 K and 308 K). The results indicated that temperature played an important role and that the rate-limiting step was chemosorption. A better fit for all adsorption systems was obtained with Langmuir model, with the maximum adsorption capacities at 298 K of 79.20 mg Cd2+/g and 142.03 mg Pb2+/g for N-AC, 130.05 mg Cd2+/g and 232.02 mg Pb2+/g for S-AC, respectively. Subsequently, the thermodynamic parameters revealed the nature of the adsorption was endothermic and spontaneous under the experimental condition. The possible adsorption procedures and the underlying mechanisms comprising physical and chemical interactions were proposed. Moreover, the as-synthesized adsorbents exhibited excellent regeneration performance after five adsorption/desorption cycles. The overall results demonstrated that both N-AC and S-AC could be the promising efficient candidates for removing Cd2+ and Pb2+ from contaminated water.
Collapse
Affiliation(s)
- Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Xue-Ting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hai Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Li-Shen Lin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao-Wen Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
30
|
Mahmoud ME, Hassan SSM, Kamel AH, Elserw MIA. Fast microwave-assisted sorption of heavy metals on the surface of nanosilica-functionalized-glycine and reduced glutathione. BIORESOURCE TECHNOLOGY 2018; 264:228-237. [PMID: 29807330 DOI: 10.1016/j.biortech.2018.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Two eco-friendly nanosorbents have been designed and synthesized via surface crosslinking of nanosilica (N-Si) with glycine (Gly) and reduced glutathione (GSH) to produce (N-Si-Gly) and (N-Si-Glu) using crosslinking reagent and sonochemical reactions, respectively. An investigation was performed to search selectivity of nanosorbents via microwave-assisted removal of Ni(II)/Cu(II)/Cd(II)/Pb(II) to affirm green and fast technique. The microwave-assisted removal values of Ni(II), Cu(II), Cd(II) and Pb(II) were observed at 850, 2100, 3500 and 2150 μmol g-1, respectively utilizing 10 mg of (N-Si-Glu) and 25.0 s heating, while those corresponded to 750, 1800, 2500 and 1850 μmol g-1, respectively by using (N-Si-Gly). The microwave-assisted removal processes were more fitted to Freundlich compared to Langmuir isotherm except in case of Pb(II). The high percent removal of Cd(II) and Pb(II) ions exceed 95% from the second run in real wastewater samples indicating the efficiency of N-Si-Glu in the uptake of these metals utilizing microwave-assisted sorption technique.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Saad S M Hassan
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| | - Ayman H Kamel
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| | - Mahmoud I A Elserw
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| |
Collapse
|
31
|
Wen X, Du C, Zeng G, Huang D, Zhang J, Yin L, Tan S, Huang L, Chen H, Yu G, Hu X, Lai C, Xu P, Wan J. A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater. CHEMOSPHERE 2018; 200:173-179. [PMID: 29477766 DOI: 10.1016/j.chemosphere.2018.02.078] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 05/27/2023]
Abstract
Magnetic polyving akohol (PVA) immobilized the endogenous bacterium Bacillus licheniformis with sodium alginate to get a novel biosorbent. The optimum preparation and adsorption conditions were studied. The optimal preparation conditions was the fraction of magnetic PVA was 9%, the fraction of sodium alginate was 0.8%, the fraction of microbial suspensions was 5% and the crosslinking time was 20 h. The best adsorption conditions were listed as follows: pH was 6, the biosorbent dosage was 0.7 g L-1, the initial concentration of lead ions was 200 mg L-1 and the optimal adsorption time was 12 h. The results of SEM and FTIR spectroscopy analysis displayed this novel biosorbents had good structure and the functional groups on the surface was abundant. The VSM analysis confirmed the novel biosorbents had good magnetic magnetization and were easily separated from aqueous medium. Under the optimum conditions, the removal rate of lead ions from waste water could reach 98%, the calculated maximum adsorption capacity could be up to 113.84 mg g-1. The whole adsorption process was well fit by the pseudo-second order kinetic and it was also a Langmuir monolayer adsorption. The desorption experiments showed the biosorbent had good re-usability.
Collapse
Affiliation(s)
- Xiaofeng Wen
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinfan Zhang
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Lingshi Yin
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Shiyang Tan
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Lu Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Xuyue Hu
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
32
|
Yang K, Lou Z, Fu R, Zhou J, Xu J, Baig SA, Xu X. Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb(II) removal: Comparison and mechanism study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.082] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 210:10-22. [PMID: 29329004 DOI: 10.1016/j.jenvman.2017.12.075] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/10/2017] [Accepted: 12/29/2017] [Indexed: 05/26/2023]
Abstract
The persistent disposal of xenobiotic compounds like insecticides, pesticides, fertilizers, plastics and other hydrocarbon containing substances is the major source of environmental pollution which needs to be eliminated. Many contemporary remediation methods such as physical, chemical and biological are currently being used, but they are not sufficient to clean the environment. The enzyme based bioremediation is an easy, quick, eco-friendly and socially acceptable approach used for the bioremediation of these recalcitrant xenobiotic compounds from the natural environment. Several microbial enzymes with bioremediation capability have been isolated and characterized from different natural sources, but less production of such enzymes is a limiting their further exploitation. The genetic engineering approach has the potential to get large amount of recombinant enzymes. Along with this, enzyme immobilization techniques can boost the half-life, stability and activity of enzymes at a significant level. Recently, nanozymes may offer the potential bioremediation ability towards a broad range of pollutants. In the present review, we have described a brief overview of the microbial enzymes, different enzymes techniques (genetic engineering and immobilization of enzymes) and nanozymes involved in bioremediation of toxic, carcinogenic and hazardous environmental pollutants.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
34
|
Xu P, Lai C, Zeng G, Huang D, Chen M, Song B, Peng X, Wan J, Hu L, Duan A, Tang W. Enhanced bioremediation of 4-nonylphenol and cadmium co-contaminated sediment by composting with Phanerochaete chrysosporium inocula. BIORESOURCE TECHNOLOGY 2018; 250:625-634. [PMID: 29220806 DOI: 10.1016/j.biortech.2017.11.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Composting is identified as an effective approach for solid waste disposal. The bioremediation of 4-nonylphenol (4NP) and cadmium (Cd) co-contaminated sediment was investigated by composting with Phanerochaete chrysosporium (P. chrysosporium) inocula. P. chrysosporium inocula and proper C/N ratios (25.51) accelerated the composting process accompanied with faster total organic carbon loss, 4NP degradation and Cd passivation. Microbiological analysis demonstrated that elevated activities of lignocellulolytic enzymes and sediment enzymes was conducive to organic chemical transformation. Bacterial community diversity results illustrated that Firmicutes and Proteobacteria were predominant species during the whole composting process. Aerobic cellulolytic bacteria and organic degrading species played significant roles. Toxicity characteristic leaching procedure (TCLP) extraction and germination indices results indicated the efficient detoxification of 4NP and Cd co-contaminated sediment after 120 days of composting. Overall, results demonstrated that P. chrysosporium enhanced composting was available for the bioremediation of 4NP and Cd co-contaminated sediment.
Collapse
Affiliation(s)
- Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Xin Peng
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
35
|
Sun H, Wu T, Zhang Y, Ng DHL, Wang G. Structure-enhanced removal of Cr(vi) in aqueous solutions using MoS2 ultrathin nanosheets. NEW J CHEM 2018. [DOI: 10.1039/c8nj01062e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide (MoS2) ultrathin nanosheets with enlarged interlayer spacing and defects enables the structure-enhanced removal of Cr(vi), in which the synergistic effects of adsorption and reduction not only captured Cr(vi) from aqueous solutions, but also alleviated the toxicity of chromium to some degree.
Collapse
Affiliation(s)
- Huating Sun
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Tianxing Wu
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanostructures
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Yunxia Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanostructures
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Dickon H. L. Ng
- Department of Physics
- The Chinese University of Hong Kong
- New Territory
- Hong Kong
| | - Guozhong Wang
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- P. R. China
- Key Laboratory of Materials Physics
| |
Collapse
|