1
|
Andersen TA, Bjerner J, Tjade T, Ranheim TE, Axelsen EW, Sovershaev M, Chen Y, Gaustad P. The COVID-19 pandemic and critical laboratory functions. Can fast-track molecular testing reduce work absence in the laboratory? J Infect Prev 2025:17571774251330455. [PMID: 40190997 PMCID: PMC11969475 DOI: 10.1177/17571774251330455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/12/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025] Open
Abstract
Background Amid the SARS-CoV-2 pandemic, laboratories faced the challenge of maintaining diagnostic operations while adhering to infection prevention and control (IPC) guidelines. We investigated the impact of implementing rapid molecular testing of employees of a large medical laboratory to prevent workplace transmission. Aim/objective To evaluate if fast-track PCR diagnostics, alongside local infection control measures, could reduce internal transmission and workplace sickness absence. Methods Employees with respiratory symptoms, but testing negative for SARS-CoV-2, were allowed to work if clinically healthy. All included employees completed a questionnaire and underwent SARS-CoV-2 antibody testing post-pandemic. Data on sickness absence were retrieved from local human resources systems, and comparative analyses were conducted between the pre-pandemic and pandemic periods. Findings/results Of 153 participants, 84 (55%) reported having had COVID-19, with 12 (14%) suspecting workplace transmission. Six (4%) tested positive for SARS-CoV-2 IgG nucleocapsid despite no COVID-19 diagnosis. Among 101 (66%) reporting respiratory symptoms and negative SARS-CoV-2 tests, 80 (79%) were allowed to return to the workplace. Mean workplace sickness absence during the pandemic 2020 (3.74%) and 2021 (4.19%) was significant lower compared with sickness absence in the laboratory before the pandemic in 2019 (4.54%). No larger outbreaks in the laboratory were recorded. Discussion SARS-CoV-2 infections in the laboratory were mostly symptomatic and acquired outside the workplace. The combination of local IPC and rapid and frequent testing of employees facilitated an effective infection control and minimized workplace absence, maintain diagnostic operations.
Collapse
Affiliation(s)
| | | | | | | | - Eyvind W Axelsen
- Fürst Medical Laboratory, Oslo, Norway
- The Faculty of Informatics and Natural Sciences, Institute of Informatics, University of Oslo, Oslo, Norway
| | | | - Ying Chen
- Fürst Medical Laboratory, Oslo, Norway
- Faculty of Health Sciences, Institute of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Peter Gaustad
- Fürst Medical Laboratory, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Gemander N, Kemlin D, Depickère S, Kelkar NS, Sharma S, Pannus P, Waegemans A, Olislagers V, Georges D, Dhondt E, Braga M, Heyndrickx L, Michiels J, Thiriard A, Lemy A, Baudoux T, Vandevenne M, Goossens ME, Matagne A, Desombere I, Ariën KK, Ackerman ME, Le Moine A, Marchant A. COVID-19 vaccine responses are influenced by distinct risk factors in naive and SARS-CoV-2 experienced hemodialysis recipients. Vaccine 2025; 44:126544. [PMID: 39608249 DOI: 10.1016/j.vaccine.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Clinical risk factors of deficient immune responses to COVID-19 mRNA vaccination in SARS-CoV-2 naive hemodialysis recipients (HDR) have already been identified. Clinical factors influencing hybrid immunity induced by SARS-CoV-2 infection and vaccination in HDR have not been reported. METHODS A comprehensive analysis of antibody (Ab) and T cell responses to two doses of BNT162b2 mRNA vaccination was performed in 103 HDR, including 75 SARS-CoV-2 naive and 28 experienced patients, and in 106 healthy controls (HC) not undergoing HD, including 40 SARS-CoV-2 naive and 66 experienced subjects. Clinical risk factors associated with lower humoral and cellular immunity were analyzed in SARS-CoV-2 naive and experienced HDR by univariate and multivariate analyses. RESULTS Naive HDR had lower neutralizing and non-neutralizing antibody responses to vaccination than naive HC; lower vaccine responses were correlated with previous transplantation, immunosuppressive treatment, corticosteroid treatment, hypoalbuminemia, older age, hypertension, and negative response to hepatitis B vaccination. In contrast, vaccine responses of SARS-CoV-2 experienced HDR were similar to those of HC and were correlated with time between infection and vaccination and with previous transplantation, but not with the other risk factors associated with lower vaccine responses in naive HDR. CONCLUSION COVID-19 vaccine responses are influenced by distinct risk factors in SARS-CoV-2 naive and experienced HDR. These observations have important implications for the understanding of vaccine-induced immunity and for the management of this vulnerable patient population.
Collapse
Affiliation(s)
- Nicolas Gemander
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Delphine Kemlin
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Stéphanie Depickère
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pieter Pannus
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Alexandra Waegemans
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Olislagers
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Daphnée Georges
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Emilie Dhondt
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Margarida Braga
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anaïs Thiriard
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anne Lemy
- Department of Nephrology, Marie Curie Hospital, Charleroi, Belgium
| | - Thomas Baudoux
- Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Maria E Goossens
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Isabelle Desombere
- Laboratory of Immune Response, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Alain Le Moine
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
3
|
Zhao Y, Kakodkar P, Pan H, Zhu R, Musa K, Hassan A, Shoker A, Webster D, Pearce T, Dokouhaki P, Wu F, Mostafa A. The Interplay Between Human Leukocyte Antigen Antibody Profile and COVID-19 Vaccination in Waitlisted Renal Transplant Patients. Arch Pathol Lab Med 2025; 149:20-29. [PMID: 38599589 DOI: 10.5858/arpa.2023-0370-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 04/12/2024]
Abstract
CONTEXT.— Mass COVID-19 vaccination is mandated in vulnerable populations in our renal transplant waitlist cohort. However, the anti-human leukocyte antigen (anti-HLA) profile after COVID-19 vaccination is controversial, and the side effects are yet to be discerned. OBJECTIVE.— To evaluate the status of HLA antibodies in waitlisted renal transplant patients before and 3 weeks after each vaccination and if comorbidities are associated with the HLA antibody profile. DESIGN.— A total of 59 waitlisted kidney transplant patients were included in this study. The anti-HLA antibodies were analyzed before and 6 months after their last COVID-19 vaccination. The mean fluorescence intensity change in the anti-HLA antibody levels was used to classify patients into 3 groups: high inducers, low inducers, and noninducers. RESULTS.— There were significant HLA antibody profile changes after COVID-19 vaccination, showing 21 antibodies generated against HLA class I antigens and 7 against HLA class II antigens to their baseline. Compared with the noninducers, the high and low inducers showed a higher prevalence of COVID-19 infection, COVID-19 vaccine type, and background hypertension history. CONCLUSIONS.— Our data suggest that COVID-19 vaccination propagates anti-HLA class I and II antibodies for waitlisted renal transplant patients. The clinical significance of these antibodies needs further study. Furthermore, comorbidities, such as history of COVID-19 infection and hypertension, supplemented this effect. Anti-HLA antibody monitoring may be warranted in COVID-19 vaccinated, waitlisted renal transplant patients with a history of COVID-19 infection and/or hypertension.
Collapse
Affiliation(s)
- Yayuan Zhao
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Pramath Kakodkar
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Henry Pan
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Richard Zhu
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Khalid Musa
- From the Department of Division of Kidney Transplantation Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Musa, Hassan, Shoker)
| | - Abubaker Hassan
- From the Department of Division of Kidney Transplantation Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Musa, Hassan, Shoker)
| | - Ahmed Shoker
- From the Department of Division of Kidney Transplantation Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Musa, Hassan, Shoker)
| | - Destinie Webster
- the Histocompatibility and Immunogenetics Laboratory, St Paul's Hospital, Saskatoon, Canada (Webster, Pearce, Mostafa)
| | - Twyla Pearce
- the Histocompatibility and Immunogenetics Laboratory, St Paul's Hospital, Saskatoon, Canada (Webster, Pearce, Mostafa)
| | - Pouneh Dokouhaki
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Fang Wu
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
| | - Ahmed Mostafa
- From the Department of Pathology and Laboratory Medicine University of Saskatchewan, Saskatoon, Saskatchewan, Canada(Zhao, Kakodkar, Pan, Zhu, Dokouhaki, Wu, Mostafa)
- the Histocompatibility and Immunogenetics Laboratory, St Paul's Hospital, Saskatoon, Canada (Webster, Pearce, Mostafa)
| |
Collapse
|
4
|
Situma S, Omondi E, Nyakarahuka L, Odinoh R, Mweu M, Mureithi MW, Mulinge MM, Clancey E, Dawa J, Ngere I, Osoro E, Gunn B, Konongoi L, Khamadi SA, Michiels J, Ariën KK, Bakamutumaho B, Breiman RF, Njenga K. Serological Evidence of Cryptic Rift Valley Fever Virus Transmission Among Humans and Livestock in Central Highlands of Kenya. Viruses 2024; 16:1927. [PMID: 39772234 PMCID: PMC11680181 DOI: 10.3390/v16121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Although the highlands of East Africa lack the geo-ecological landmarks of Rift Valley fever (RVF) disease hotspots to participate in cyclic RVF epidemics, they have recently reported growing numbers of small RVF clusters. Here, we investigated whether RVF cycling occurred among livestock and humans in the central highlands of Kenya during inter-epidemic periods. A 2-year prospective hospital-based study among febrile patients (March 2022-February 2024) in Murang'a County of Kenya was followed by a cross-sectional human-animal survey. A total of 1468 febrile patients were enrolled at two clinics and sera tested for RVF virus RNA and antiviral antibodies. In the cross-sectional study, humans (n = 282) and livestock (n = 706) from randomly selected households were tested and questionnaire data were used to investigate sociodemographic and environmental risk factors by multivariate logistic regression. No human (n = 1750) or livestock (n = 706) sera tested positive for RVFV RNA. However, 4.4% livestock and 2.0% humans tested positive for anti-RVFV IgG, including 0.27% febrile patients who showed four-fold IgG increase and 2.4% young livestock (<12 months old), indicating recent virus exposure. Among humans, the odds of RVF exposure increased significantly (p < 0.05, 95% CI) in males (aOR: 4.77, 2.08-12.4), those consuming raw milk (aOR: 5.24, 1.13-17.9), milkers (aOR: 2.69, 1.23-6.36), and participants residing near quarries (aOR: 2.4, 1.08-5.72). In livestock, sheep and goats were less likely to be seropositive (aOR: 0.27, 0.12-0.60) than cattle. The increase in RVF disease activities in the highlands represents a widening geographic dispersal of the virus, and a greater risk of more widespread RVF epidemics in the future.
Collapse
Affiliation(s)
- Silvia Situma
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi 00202, Kenya;
- Washington State University Global Health Program-Kenya, Nairobi 00200, Kenya; (R.O.); (J.D.); (I.N.); (E.O.)
- Department of Animal Science, Pwani University, Kilifi 80108, Kenya
| | - Evans Omondi
- African Population and Health Research Center (APHRC), Nairobi 00100, Kenya;
- Institute of Mathematical Sciences, Strathmore University, Nairobi 00200, Kenya
| | - Luke Nyakarahuka
- Uganda Virus Research Institute, Entebbe P.O. Box 49, Uganda; (L.N.); (B.B.)
- Department of Animal Resources and Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Raymond Odinoh
- Washington State University Global Health Program-Kenya, Nairobi 00200, Kenya; (R.O.); (J.D.); (I.N.); (E.O.)
| | - Marshal Mweu
- Department of Public Health, University of Nairobi, Nairobi 00202, Kenya;
| | - Marianne W. Mureithi
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi 00202, Kenya;
| | - Martin M. Mulinge
- Department of Biochemistry, University of Nairobi, Nairobi 00100, Kenya;
| | - Erin Clancey
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 98165, USA; (E.C.); (B.G.)
| | - Jeanette Dawa
- Washington State University Global Health Program-Kenya, Nairobi 00200, Kenya; (R.O.); (J.D.); (I.N.); (E.O.)
- Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi 00202, Kenya
| | - Isaac Ngere
- Washington State University Global Health Program-Kenya, Nairobi 00200, Kenya; (R.O.); (J.D.); (I.N.); (E.O.)
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 98165, USA; (E.C.); (B.G.)
| | - Eric Osoro
- Washington State University Global Health Program-Kenya, Nairobi 00200, Kenya; (R.O.); (J.D.); (I.N.); (E.O.)
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 98165, USA; (E.C.); (B.G.)
| | - Bronwyn Gunn
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 98165, USA; (E.C.); (B.G.)
| | - Limbaso Konongoi
- Kenya Medical Research Institute, Nairobi 00200, Kenya; (L.K.); (S.A.K.)
| | - Samoel A. Khamadi
- Kenya Medical Research Institute, Nairobi 00200, Kenya; (L.K.); (S.A.K.)
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (K.K.A.)
| | - Kevin K. Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (K.K.A.)
| | | | - Robert F. Breiman
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Kariuki Njenga
- Washington State University Global Health Program-Kenya, Nairobi 00200, Kenya; (R.O.); (J.D.); (I.N.); (E.O.)
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 98165, USA; (E.C.); (B.G.)
| |
Collapse
|
5
|
Haynesworth K, Kemp TJ, Loftus SA, Metz J, Castro NC, Bullock J, Fetterer D, Pinto LA. Analytical measuring interval, linearity, and precision of serology assays for detection of SARS-CoV-2 antibodies according to CLSI guidelines. mSphere 2024; 9:e0039324. [PMID: 39480103 PMCID: PMC11580426 DOI: 10.1128/msphere.00393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Serology testing is commonly used to evaluate the immunogenicity of COVID-19 vaccines and measure antibodies as a marker of previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, four laboratory-developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike and anti-Nucleocapsid immunoglobin G [IgG] and immunoglobin M [IgM]) calibrated to the WHO International Standard 20/136 were validated via analytical measuring interval (limit of blank [LOB], limit of detection [LOD], and limit of quantification [LOQ]), linearity, and precision according to the Clinical and Laboratory Standards Institute (CLSI) guidelines EP17-A2, EP06 2nd Edition, and EP05-A3. For Spike IgG, LOB was 3.0 binding antibody units per milliliter (BAU/mL), LOD was 4.1 BAU/mL, and LOQ was 27.1 BAU/mL. For Nucleocapsid IgG, LOB was 1.9 BAU/mL, LOD was 3.2 BAU/mL, and LOQ was 24.6 BAU/mL. For Spike IgM, LOB was 57.1 BAU/mL, LOD was 69.0 BAU/mL, and LOQ was 113.5 BAU/mL. For Nucleocapsid IgM, LOD was 242.2 BAU/mL, LOD was 289.9 BAU/mL, and LOQ was 572.4 BAU/mL. Each assay displayed good linearity (max % deviation from linearity (≥LOQ) = 10.7%). The result of within-run repeatability evaluation for medium positive samples was 7.7% for Spike IgG, 4.6% for Nucleocapsid IgG, 7.5% for Spike IgM, and 10.1% for Nucleocapsid IgM. The total precision, including medium positive sample variability across 20 days, three reagent kits, and two operators, was 13.5% for Spike IgG, 14.5% for Nucleocapsid IgG, 17.6% for Spike IgM, and 16.2% for Nucleocapsid IgM. The assays were successfully validated following the applicable CLSI guidelines. All assays met the ±20% deviation from linearity and the ±20% coefficient of variation specification for precision and repeatability. IMPORTANCE Reliable and validated serology assays are of increasing importance as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to evolve and cause outbreaks. Validation of serology assays along with calibration to the International and National Standards (such as anti-SARS-CoV-2 Immunoglobulin WHO International Standard 20/136 or Frederick National Laboratory for Cancer Research's National Serology Standard COVID-NS01097) is critical to ensuring that results from clinical studies are reliable and comparable among various assays and laboratories. We describe the design and execution of a comprehensive study that established the analytical measuring intervals, linearity, precision, and repeatability of four in-house developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike immunoglobin G [IgG] and immunoglobin M [IgM] and anti-Nucleocapsid IgG and IgM) following applicable Clinical and Laboratory Standards Institute (CLSI) guidelines. Overall, this study provides practical guidance on experimental design strategies and data analysis techniques, pertaining to the validation of COVID-19 serology assays according to CLSI guidelines, for use in clinical research studies.
Collapse
Affiliation(s)
- Katarzyna Haynesworth
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy J. Kemp
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Sarah A Loftus
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jordan Metz
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Nicholas C. Castro
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jimmie Bullock
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - David Fetterer
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Ligia A. Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| |
Collapse
|
6
|
Steenackers K, Hanning N, Bruckers L, Desombere I, Marchant A, Ariën KK, Georges D, Soentjens P, D'Onofrio V, Hites M, Berens-Riha N, De Coster I, Damme PV. Humoral immune response against SARS-CoV-2 after adapted COVID-19 vaccine schedules in healthy adults: The IMCOVAS randomized clinical trial. Vaccine 2024; 42:126117. [PMID: 39019657 DOI: 10.1016/j.vaccine.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND To overcome supply issues of COVID-19 vaccines, this partially single blind, multi-centric, vaccine trial aimed to evaluate humoral immunogenicity using lower vaccine doses, intradermal vaccination, and heterologous vaccine schedules. Also, the immunity after a booster vaccination was assessed. METHODOLOGY 566 COVID-19-naïve healthy adults were randomized to 1 of 8 treatment arms consisting of combinations of BNT162b2, mRNA-1273, and ChAdOx1-S. Anti-Receptor-Binding Domain immunoglobulin G (RBD IgG) titers, neutralizing antibody titres, and avidity of the anti-RBD IgGs was assessed up to 1 year after study start. RESULTS Prolonging the interval between vaccinations from 28 to 84 days and the use of a heterologous BNT162b2 + mRNA-1273 vaccination schedule led to a non-inferior immune response, compared to the reference schedule. A low dose of mRNA-1273 was sufficient to induce non-inferior immunity. Non-inferiority could not be demonstrated for intradermal vaccination. For all adapted vaccination schedules, anti-RBD IgG titres measured after a first booster vaccination were non-inferior to their reference schedule. CONCLUSION This study suggests that reference vaccine schedules can be adapted without jeopardizing the development of an adequate immune response. Immunity after a booster vaccination did not depend on the dose or brand of the booster vaccine, which is relevant for future booster campaigns. The trial is registered in the European Union Clinical Trials Register (number 2021-001993-52) and on clinicaltrials.gov (NCT06189040).
Collapse
Affiliation(s)
- Katie Steenackers
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium
| | - Nikita Hanning
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium
| | - Liesbeth Bruckers
- Data Science Institute, UHasselt, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Isabelle Desombere
- Laboratory Immune Response, Department of Infectious Diseases in Humans, Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Rte de Lennik 900, 1070 Anderlecht, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Daphnée Georges
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Rte de Lennik 900, 1070 Anderlecht, Belgium; Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Bât.B6c Quartier Agora, allée du six Août 11, 4000 Liège, Belgium
| | - Patrick Soentjens
- Department of Clinical Sciences, Institute of Tropical Medicine, Kronenburgstraat 43, 2000 Antwerp, Belgium
| | - Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Maya Hites
- Université libre de Bruxelles, Av. Franklin Roosevelt 50, 1050 Bruxelles, Belgium; Clinic of Infectious Diseases, Hôpital Universitaire de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Nicole Berens-Riha
- Department of Clinical Sciences, Institute of Tropical Medicine, Kronenburgstraat 43, 2000 Antwerp, Belgium
| | - Ilse De Coster
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium
| | - Pierre Van Damme
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium.
| |
Collapse
|
7
|
Etienne I, Kemlin D, Gemander N, Olislagers V, Waegemans A, Dhondt E, Heyndrickx L, Depickère S, Charles A, Goossens M, Vandermosten L, Desombere I, Ariën KK, Pannus P, Knoop C, Marchant A. Persistent defect in SARS-CoV-2 humoral and cellular immunity in lung transplant recipients. J Heart Lung Transplant 2024; 43:1857-1860. [PMID: 39134165 DOI: 10.1016/j.healun.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Lung transplant recipients (LTRs) are susceptible to severe Coronavirus Disease 2019 (COVID-19) and had lower immune responses to primary severe acute respiratory syndrome-related to coronavirus 2 (SARS-CoV-2) vaccination as compared to the general population and to other solid organ transplant recipients. As immunity induced by booster vaccination and natural infection has increased since the beginning of the pandemic in the general population, immunity acquired by LTRs is not well documented. Humoral and cellular immunity to SARS-CoV-2 was monitored in February and May 2023 in 30 LTRs and compared to that of health care workers (HCWs) and nursing home residents (NHRs). LTRs had significantly lower levels of SARS-CoV-2 binding and neutralizing antibodies and lower interferon-gamma responses to Wuhan, Delta, and XBB1.5 variants as compared to HCWs and NHRs. Humoral immunity decreased between the 2 visits, whereas cellular immunity remained more stable. The persistent defect in SARS-CoV-2 immunity in LTRs should encourage continued monitoring and preventive measures for this vulnerable population.
Collapse
Affiliation(s)
- Isabelle Etienne
- Chest Department, Hôpital Universitaire de Bruxelles Erasme, Université Libre de Bruxelles, Brussels, Belgium; European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Delphine Kemlin
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Department of Nephrology, Dialysis and Transplantation, Hôpital Universitaire de Bruxelles Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Gemander
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Department of Nephrology, Dialysis and Transplantation, Hôpital Universitaire de Bruxelles Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Olislagers
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Waegemans
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Emilie Dhondt
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Stéphanie Depickère
- Plateform Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Alexia Charles
- Plateform Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Maria Goossens
- Plateform Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Leen Vandermosten
- Laboratory of Immune Response, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Isabelle Desombere
- Laboratory of Immune Response, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Pannus
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Christiane Knoop
- Chest Department, Hôpital Universitaire de Bruxelles Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
De Bouver C, Bouziotis J, Wijtvliet VPWM, Ariën KK, Mariën J, Heyndrickx L, Couttenye MM, de Fijter HJW, Mestrez F, Treille S, Mat O, Collart F, Allard SD, Vingerhoets L, Moons P, Abramowicz D, De Winter BY, Pipeleers L, Wissing KM, Ledeganck KJ. Humoral immunity to SARS-CoV-2 in kidney transplant recipients and dialysis patients: IgA and IgG patterns unraveled after SARS-CoV-2 infection and vaccination. Virol J 2024; 21:138. [PMID: 38872127 PMCID: PMC11170792 DOI: 10.1186/s12985-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Infection with SARS-CoV-2 in high-risk groups such as kidney transplant and dialysis patients is shown to be associated with a more serious course of the disease. Four years after the start of the COVID-19 pandemic, crucial knowledge on the immune responses in these patient groups is still lacking. Therefore, this study aimed at investigating the humoral immune response after a SARS-CoV-2 infection compared to vaccination as well as the evolution of immunoglobulins over time. METHODS Kidney transplant recipients, patients on haemodialysis or on peritoneal dialysis and healthy controls were included in this longitudinal multicenter study. SARS-CoV-2 anti-RBD, anti-NP and anti-S1S2 immunoglobulin G (IgG) and A (IgA) as well as the neutralizing antibody capacity were measured. RESULTS Kidney transplant recipients had a significantly better humoral response to SARS-CoV-2 after infection (86.4%) than after a two-dose mRNA vaccination (55.8%) while seroconversion was comparable in patients on haemodialysis after infection (95.8%) versus vaccination (89.4%). In individuals without prior COVID-19, the IgG levels after vaccination were significantly lower in kidney transplant recipients when compared to all other groups. However, the IgA titres remained the highest in this patient group at each time point, both after infection and vaccination. A history COVID-19 was associated with higher antibody levels after double-dose vaccination in all patient categories and, while decreasing, titres remained high six months after double-dose vaccination. CONCLUSION Kidney transplant recipients had a more robust humoral response to SARS-CoV-2 following infection compared to a two-dose mRNA vaccination, while patients on haemodialysis exhibited comparable seroconversion rates. Notably, individuals with prior COVID-19 exhibited higher IgG levels in response to vaccination. Hybrid immunity is thus the best possible defence against severe COVID-19 disease and seems also to hold up for these populations. Next, it is not clear whether the higher IgA levels in the kidney transplant recipients is beneficial for neutralizing SARS-CoV-2 or if it is a sign of disease severity.
Collapse
Affiliation(s)
- Caroline De Bouver
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jason Bouziotis
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Veerle P W M Wijtvliet
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joachim Mariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Marie M Couttenye
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium
| | - Hans J W de Fijter
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium
| | - Fabienne Mestrez
- Department of Nephrology-Dialysis, University Hospital (CHU) Ambroise Paré, Mons, Belgium
| | - Serge Treille
- Department of Nephrology, Centre Hospitalier Universitaire Charleroi, Charleroi, Belgium
| | - Olivier Mat
- Department of Nephrology, Hospital Centre EpiCURA, Ath, Belgium
| | - Frederic Collart
- Department of Nephrology, Hospital Universitaire Brugmann, Brussels, Belgium
| | - Sabine D Allard
- Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Pieter Moons
- Biobank Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Daniel Abramowicz
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lissa Pipeleers
- Department of Nephrology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karl Martin Wissing
- Department of Nephrology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kristien J Ledeganck
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Pradeep S, Patil SM, Dharmashekara C, Jain A, Ramu R, Shirahatti PS, Mandal SP, Reddy P, Srinivasa C, Patil SS, Ortega-Castro J, Frau J, Flores-Holgúın N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Molecular insights into the in silico discovery of corilagin from Terminalia chebula as a potential dual inhibitor of SARS-CoV-2 structural proteins. J Biomol Struct Dyn 2023; 41:10869-10884. [PMID: 36576118 DOI: 10.1080/07391102.2022.2158943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Anisha Jain
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangotri, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | | | - Juan Frau
- Departament de Qúımica, Universitat de les Illes Balears, Palma de Malllorca, Spain
| | - Norma Flores-Holgúın
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| |
Collapse
|
10
|
Su WY, Ho TS, Tsai TC, Du PX, Tsai PS, Keskin BB, Shizen MA, Lin PC, Lin WH, Shih HC, Syu GD. Developing magnetic barcode bead fluorescence assay for high throughput analyzing humoral responses against multiple SARS-CoV-2 variants. Biosens Bioelectron 2023; 241:115709. [PMID: 37776623 DOI: 10.1016/j.bios.2023.115709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
The continuous mutation of SARS-CoV-2 highlights the need for rapid, cost-effective, and high-throughput detection methods. To better analyze the antibody levels against SARS-CoV-2 and its variants in vaccinated or infected subjects, we developed a multiplex detection named Barcode Bead Fluorescence (BBF) assay. These barcode beads were magnetic, characterized by 2-dimensional edges, highly multiplexed, and could be decrypted with visible light. We conjugated 12 magnetic barcode beads with corresponding nine spike proteins (wild-type, alpha, beta, gamma, delta, and current omicrons), two nucleocapsid proteins (wild-type and omicron), and one negative control. First, the conjugated beads underwent serial quality controls via fluorescence labeling, e.g., reproducibility (R square = 0.99) and detection limits (119 pg via anti-spike antibody). Next, we investigated serums from vaccinated subjects and COVID-19 patients for clinical applications. A significant reduction of antibody levels against all variant beads was observed in both vaccinated and COVID-19 studies. Subjects with two doses of mRNA-1273 exhibited the highest level of antibodies against all spike variants compared to two doses of AZD1222 and unvaccinated. We also found that COVID-19 patients showed higher antibody levels against spike beads from wild-type, alpha, beta, and delta. Finally, the nucleocapsid beads served as markers to distinguish infections from vaccinated subjects. Overall, this study developed the BBF assay for analyzing humoral immune responses, which has the advantages of robustness, automation, scalability, and cost-effectiveness.
Collapse
Affiliation(s)
- Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan, ROC; Department of Pediatrics, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, 640, Taiwan, ROC
| | - Tien-Chun Tsai
- Core Facility Center, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Pei-Shan Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Maulida Azizza Shizen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Pei-Chun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Wei-Hsun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Hsi-Chang Shih
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
11
|
Sood N, Lam CN, Kawaguchi E, Pernet O, Kovacs A, Unger JB, Hu H. Association between levels of receptor binding domain antibodies of SARS-CoV-2, receipt of booster and risk of breakthrough infections: LA pandemic surveillance cohort study. Sci Rep 2023; 13:20761. [PMID: 38007568 PMCID: PMC10676434 DOI: 10.1038/s41598-023-47261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Prevention of COVID-19 with vaccine requires multiple doses and updated boosters to maintain protection; however currently there are no tests that can measure immunity and guide clinical decisions about timing of booster doses. This study examined the association between the risk of COVID-19 breakthrough infections and receptor binding domain (RBD) antibody levels and receipt of booster of COVID-19 vaccines. A community sample of Los Angeles County adults were surveyed between 2021 and 2022 to determine if they had a self-reported breakthrough infection. Predictors included RBD antibody levels, measured by binding antibody responses to the ancestral strain at baseline and self-reported booster shot during the study period. Of the 859 participants, 182 (21%) reported a breakthrough infection. Irrespective of the level of antibodies, the risk of breakthrough infection was similar, ranging from 19 to 23% (P = 0.78). The risk of breakthrough infections was lower among participants who had a booster shot (P = 0.004). The protective effect of a booster shot did not vary by antibody levels prior to receiving the booster. This study found no association between RBD antibody levels and risk of breakthrough infections, while the receipt of booster was associated with lower risk of breakthrough infections, which was independent of pre-booster antibody levels. Therefore, antibody levels might not be a useful guide for clinical decisions about timing of booster doses.
Collapse
Affiliation(s)
- Neeraj Sood
- Sol Price School of Public Policy, University of Southern California, University Park Campus, Verna and Peter Dauterive Hall, 635 Downey Way, Los Angeles, CA, 90089, USA.
- Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | - Chun Nok Lam
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Eric Kawaguchi
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Olivier Pernet
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Andrea Kovacs
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Jennifer B Unger
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Howard Hu
- Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
12
|
de Almeida MT, Barbosa AP, Bomfim CG, Visnardi AB, Vinces TC, Ceroni A, Durigon EL, Guzzo CR. Obtaining a high titer of polyclonal antibodies from rats to the SARS-CoV-2 nucleocapsid protein and its N- and C-terminal domains for diagnostic test development. J Immunol Methods 2023; 522:113558. [PMID: 37704125 DOI: 10.1016/j.jim.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped, plus-stranded RNA virus responsible for the Coronavirus Disease 2019 (COVID-19). Patients infected with COVID-19 may be asymptomatic or have symptoms ranging from mild manifestations to severe cases of the disease that could lead to death. The SARS-CoV-2 genome encodes 4 structural proteins, including the Spike protein (S), the Nucleocapsid protein (N), Membrane protein (M) and, the Envelope protein (E). The N protein forms a major component of the ribonucleoprotein complex within the virus particle and play a vital role in its transcription and replication. Nevertheless, the S protein was the most important protein in the development of vaccines against COVID-19. However, the decrease in number of registered immunizations against the disease and the rapid drop in neutralizing antibody titers together with looser preventive measures for virus transmission, favored the rapid appearance of new variants of concerns (VOCs) that primarily show mutations in the S protein. This fact makes the N protein a good candidate for the development of diagnostic tests, due to its stability, amino acid conservation, high immunogenicity, and the smaller likelihood of mutation. With the aim of developing a new diagnostic kit based on the N protein, we evaluated the humoral response in female Wistar rats against this target. Three constructions of the N protein were used to inoculate the animals: the full-length protein (Cfull), the N- (NTD), and the C-terminal (CTD) portion of the protein. The immunizations induced the animal's immune response, with specific polyclonal IgG antibodies against the Cfull protein and its fragments. There were not non-specific bind to the protein used as negative control. Anti-Cfull antibodies demonstrated high efficiency in binding to the NTD protein and the antibodies present in the anti-CTD and anti-NTD sera have recognized the Cfull protein, but they were not able to recognize the NTD and CTD proteins, respectively. Our results indicate an efficient protocol for obtaining high antibody titers against the N recombinant protein of SARS-CoV-2 and its fragments highlighting the Cfull protein, which can be used in the development of new diagnostic kits.
Collapse
Affiliation(s)
| | - Ana Paula Barbosa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Gasque Bomfim
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Biazola Visnardi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania Churasacari Vinces
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Scientific Platform Pasteur USP, São Paulo, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Rottmayer K, Loeffler-Wirth H, Gruenewald T, Doxiadis I, Lehmann C. Individual Immune Response to SARS-CoV-2 Infection-The Role of Seasonal Coronaviruses and Human Leukocyte Antigen. BIOLOGY 2023; 12:1293. [PMID: 37887003 PMCID: PMC10603889 DOI: 10.3390/biology12101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
During the coronavirus pandemic, evidence is growing that the severity, susceptibility and host immune response to SARS-CoV-2 infection can be highly variable. Several influencing factors have been discussed. Here, we investigated the humoral immune response against SARS-CoV-2 spike, S1, S2, the RBD, nucleocapsid moieties and S1 of seasonal coronaviruses: hCoV-229E, hCoV-HKU1, hCoV-NL63 and hCoV-OC43, as well as MERS-CoV and SARS-CoV, in a cohort of 512 individuals. A bead-based multiplex assay allowed simultaneous testing for all the above antigens and the identification of different antibody patterns. Then, we correlated these patterns with 11 HLA loci. Regarding the seasonal coronaviruses, we found a moderate negative correlation between antibody levels against hCoV-229E, hCoV-HKU1 and hCoV-NL63 and the SARS-CoV-2 antigens. This could be an indication of the original immunological imprinting. High and low antibody response patterns were distinguishable, demonstrating the individuality of the humoral response towards the virus. An immunogenetical factor associated with a high antibody response (formation of ≥4 different antibodies) was the presence of HLA A*26:01, C*02:02 and DPB1*04:01 alleles, whereas the HLA alleles DRB3*01:01, DPB1*03:01 and DB1*10:01 were enriched in low responders. A better understanding of this variable immune response could enable more individualized protective measures.
Collapse
Affiliation(s)
- Karla Rottmayer
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, IZBI, Leipzig University, Haertelstr. 16–18, 04107 Leipzig, Germany
| | - Thomas Gruenewald
- Clinic for Infectious Diseases and Tropical Medicine, Klinikum Chemnitz, Flemmingstraße 2, 09116 Chemnitz, Germany
| | - Ilias Doxiadis
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Yuan F, Chen C, Covaleda LM, Martins M, Reinhart JM, Sullivan DR, Diel DG, Fang Y. Development of monoclonal antibody-based blocking ELISA for detecting SARS-CoV-2 exposure in animals. mSphere 2023; 8:e0006723. [PMID: 37409816 PMCID: PMC10449516 DOI: 10.1128/msphere.00067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to public health. Besides humans, SARS-CoV-2 can infect several animal species. Highly sensitive and specific diagnostic reagents and assays are urgently needed for rapid detection and implementation of strategies for prevention and control of the infection in animals. In this study, we initially developed a panel of monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid protein. To detect SARS-CoV-2 antibodies in a broad spectrum of animal species, an mAb-based blocking enzyme-linked immunosorbent assay (bELISA) was developed. Test validation using a set of animal serum samples with known infection status obtained an optimal percentage of inhibition cut-off value of 17.6% with diagnostic sensitivity of 97.8% and diagnostic specificity of 98.9%. The assay demonstrates high repeatability as determined by a low coefficient of variation (7.23%, 4.89%, and 3.16%) between-runs, within-run, and within-plate, respectively. Testing of samples collected over time from experimentally infected cats showed that the bELISA was able to detect seroconversion as early as 7 days post-infection. Subsequently, the bELISA was applied for testing pet animals with coronavirus disease 2019 (COVID-19)-like symptoms and specific antibody responses were detected in two dogs. The panel of mAbs generated in this study provides a valuable tool for SARS-CoV-2 diagnostics and research. The mAb-based bELISA provides a serological test in aid of COVID-19 surveillance in animals. IMPORTANCE Antibody tests are commonly used as a diagnostic tool for detecting host immune response following infection. Serology (antibody) tests complement nucleic acid assays by providing a history of virus exposure, no matter symptoms developed from infection or the infection was asymptomatic. Serology tests for COVID-19 are in high demand, especially when the vaccines become available. They are important to determine the prevalence of the viral infection in a population and identify individuals who have been infected or vaccinated. ELISA is a simple and practically reliable serological test, which allows high-throughput implementation in surveillance studies. Several COVID-19 ELISA kits are available. However, they are mostly designed for human samples and species-specific secondary antibody is required for indirect ELISA format. This paper describes the development of an all species applicable monoclonal antibody (mAb)-based blocking ELISA to facilitate the detection and surveillance of COVID-19 in animals.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lina M. Covaleda
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer M. Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Drew R. Sullivan
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Medical District Veterinary Clinic, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Chicago, Illinois, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Ndiaye MDB, Rasoloharimanana LT, Razafimahatratra SL, Ratovoson R, Rasolofo V, Ranaivomanana P, Raskine L, Hoffmann J, Randremanana R, Rakotosamimanana N, Schoenhals M. Using a multiplex serological assay to estimate time since SARS-CoV-2 infection and past clinical presentation in malagasy patients. Heliyon 2023; 9:e17264. [PMID: 37332901 PMCID: PMC10263216 DOI: 10.1016/j.heliyon.2023.e17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
Background The world is facing a 2019 coronavirus (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, efficient serological assays are needed to accurately describe the humoral responses against the virus. These tools could potentially provide temporal and clinical characteristics and are thus paramount in developing-countries lacking sufficient ongoing COVID-19 epidemic descriptions. Methods We developed and validated a Luminex xMAP® multiplex serological assay targeting specific IgM and IgG antibodies against the SARS-CoV-2 Spike subunit 1 (S1), Spike subunit 2 (S2), Spike Receptor Binding Domain (RBD) and the Nucleocapsid protein (N). Blood samples collected periodically for 12 months from 43 patients diagnosed with COVID-19 in Madagascar were tested for these antibodies. A random forest algorithm was used to build a predictive model of time since infection and symptom presentation. Findings The performance of the multiplex serological assay was evaluated for the detection of SARS-CoV-2 anti-IgG and anti-IgM antibodies. Both sensitivity and specificity were equal to 100% (89.85-100) for S1, RBD and N (S2 had a lower specificity = 95%) for IgG at day 14 after enrolment. This multiplex assay compared with two commercialized ELISA kits, showed a higher sensitivity. Principal Component Analysis was performed on serologic data to group patients according to time of sample collection and clinical presentations. The random forest algorithm built by this approach predicted symptom presentation and time since infection with an accuracy of 87.1% (95% CI = 70.17-96.37, p-value = 0.0016), and 80% (95% CI = 61.43-92.29, p-value = 0.0001) respectively. Interpretation This study demonstrates that the statistical model predicts time since infection and previous symptom presentation using IgM and IgG response to SARS-CoV2. This tool may be useful for global surveillance, discriminating recent- and past- SARS-CoV-2 infection, and assessing disease severity. Fundings This study was funded by the French Ministry for Europe and Foreign Affairs through the REPAIR COVID-19-Africa project coordinated by the Pasteur International Network association. WANTAI reagents were provided by WHO AFRO as part of a Sero-epidemiological "Unity" Study Grant/Award Number: 2020/1,019,828-0 P·O 202546047 and Initiative 5% grant n°AP-5PC-2018-03-RO.
Collapse
Affiliation(s)
| | | | | | - Rila Ratovoson
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | | | - Laurent Raskine
- Medical and Scientific Department, Fondation Mérieux, Lyon, France
| | | | | | | | | |
Collapse
|
16
|
Byrum JR, Waltari E, Janson O, Guo SM, Folkesson J, Chhun BB, Vinden J, Ivanov IE, Forst ML, Li H, Larson AG, Blackmon L, Liu Z, Wu W, Ahyong V, Tato CM, McCutcheon KM, Hoh R, Kelly JD, Martin JN, Peluso MJ, Henrich TJ, Deeks SG, Prakash M, Greenhouse B, Mehta SB, Pak JE. MultiSero: An Open-Source Multiplex-ELISA Platform for Measuring Antibody Responses to Infection. Pathogens 2023; 12:671. [PMID: 37242341 PMCID: PMC10221076 DOI: 10.3390/pathogens12050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
A multiplexed enzyme-linked immunosorbent assay (ELISA) that simultaneously measures antibody binding to multiple antigens can extend the impact of serosurveillance studies, particularly if the assay approaches the simplicity, robustness, and accuracy of a conventional single-antigen ELISA. Here, we report on the development of multiSero, an open-source multiplex ELISA platform for measuring antibody responses to viral infection. Our assay consists of three parts: (1) an ELISA against an array of proteins in a 96-well format; (2) automated imaging of each well of the ELISA array using an open-source plate reader; and (3) automated measurement of optical densities for each protein within the array using an open-source analysis pipeline. We validated the platform by comparing antibody binding to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antigens in 217 human sera samples, showing high sensitivity (0.978), specificity (0.977), positive predictive value (0.978), and negative predictive value (0.977) for classifying seropositivity, a high correlation of multiSero determined antibody titers with commercially available SARS-CoV-2 antibody tests, and antigen-specific changes in antibody titer dynamics upon vaccination. The open-source format and accessibility of our multiSero platform can contribute to the adoption of multiplexed ELISA arrays for serosurveillance studies, for SARS-CoV-2 and other pathogens of significance.
Collapse
Affiliation(s)
- Janie R. Byrum
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Eric Waltari
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Owen Janson
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
- EPPIcenter Program, University of California, San Francisco, CA 94143, USA
| | - Syuan-Ming Guo
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Jenny Folkesson
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Bryant B. Chhun
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Joanna Vinden
- Infectious Diseases and Immunity Graduate Program, University of California, Berkeley, CA 94720-3370, USA
| | - Ivan E. Ivanov
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Marcus L. Forst
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam G. Larson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lena Blackmon
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Ziwen Liu
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Vida Ahyong
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Cristina M. Tato
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | | | - Rebecca Hoh
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA 94110, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - Manu Prakash
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bryan Greenhouse
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
- EPPIcenter Program, University of California, San Francisco, CA 94143, USA
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - John E. Pak
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Cox A, Stevens M, Kallon D, Gupta A, White E. Comparative evaluation of Luminex based assays for detection of SARS-CoV-2 antibodies in a transplantation laboratory. J Immunol Methods 2023; 517:113472. [PMID: 37059296 PMCID: PMC10091782 DOI: 10.1016/j.jim.2023.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Detection of SARS-CoV-2 antibodies is essential in establishing the parameters of an individual's immune response to COVID-19, from both natural infection and vaccination. Despite this, there is currently limited clinical guidance or recommendations for serological methods for their measurement. Here, we evaluate and compare four Luminex-based assays for the multiplex detection of IgG SARS-CoV-2 antibodies. METHODS The four assays tested were Magnetic Luminex Assay, MULTICOV-AB Assay, Luminex xMAP SARS-CoV-2 Multi-Antigen IgG Assay and LABScreen COVID Plus Assay. Each assay's ability to detect antibodies to SARS-CoV-2 Spike (S), Nucleocapsid (N) and Spike-Receptor Binding Domain (RBD) was evaluated using 50 test samples (25 positive, 25 negative), previously tested by a widely used ELISA technique. RESULTS The MULTICOV-AB Assay had the highest clinical performance detecting antibodies to S trimer and RBD in 100% (n = 25) of known positive samples. Both the Magnetic Luminex Assay and LABScreen COVID Plus Assay showed significant diagnostic accuracy with sensitivities of 90% and 88% respectively. The Luminex xMAP SARS-CoV-2 Multi-Antigen IgG Assay demonstrated limited detection of antibodies to the S antigen resulting in a sensitivity of 68%. CONCLUSION Luminex-based assays provide a suitable serological method for multiplex detection of SARS-CoV-2 specific antibodies, with each assay able to detect antibodies to a minimum of 3 different SARS-CoV-2 antigens. Assay comparison identified there is moderate performance variability between manufacturers and further inter-assay variation of antibodies detected to different SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- A Cox
- Clinical Transplantation Laboratory, 3rd Floor Pathology & Pharmacy Building, 80 Newark Street, London E1 2ES, United Kingdom; The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - M Stevens
- Immunology Laboratory, Royal Sussex County Hospital Barry, Eastern Rd, Brighton BN2 5BE, United Kingdom
| | - D Kallon
- Clinical Transplantation Laboratory, 3rd Floor Pathology & Pharmacy Building, 80 Newark Street, London E1 2ES, United Kingdom
| | - A Gupta
- Clinical Transplantation Laboratory, 3rd Floor Pathology & Pharmacy Building, 80 Newark Street, London E1 2ES, United Kingdom
| | - E White
- Clinical Transplantation Laboratory, 3rd Floor Pathology & Pharmacy Building, 80 Newark Street, London E1 2ES, United Kingdom
| |
Collapse
|
18
|
Soares SR, da Silva Torres MK, Lima SS, de Sarges KML, Santos EFD, de Brito MTFM, da Silva ALS, de Meira Leite M, da Costa FP, Cantanhede MHD, da Silva R, de Oliveira Lameira Veríssimo A, Vallinoto IMVC, Feitosa RNM, Quaresma JAS, Chaves TDSS, Viana GMR, Falcão LFM, Santos EJMD, Vallinoto ACR, da Silva ANMR. Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles. Viruses 2023; 15:v15040898. [PMID: 37112878 PMCID: PMC10141342 DOI: 10.3390/v15040898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Brazil was diagnosed on February 26, 2020. Due to the important epidemiological impact of COVID-19, the present study aimed to analyze the specificity of IgG antibody responses to the S1, S2 and N proteins of SARS-CoV-2 in different COVID-19 clinical profiles. This study enrolled 136 individuals who were diagnosed with or without COVID-19 based on clinical findings and laboratory results and classified as asymptomatic or as having mild, moderate or severe disease. Data collection was performed through a semistructured questionnaire to obtain demographic information and main clinical manifestations. IgG antibody responses to the S1 and S2 subunits of the spike (S) protein and the nucleocapsid (N) protein were evaluated using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions. The results showed that among the participants, 87.5% (119/136) exhibited IgG responses to the S1 subunit and 88.25% (120/136) to N. Conversely, only 14.44% of the subjects (21/136) displayed S2 subunit responses. When analyzing the IgG antibody response while considering the different proteins of the virus, patients with severe disease had significantly higher antibody responses to N and S1 than asymptomatic individuals (p ≤ 0.0001), whereas most of the participants had low antibody titers against the S2 subunit. In addition, individuals with long COVID-19 showed a greater IgG response profile than those with symptomatology of a short duration. Based on the results of this study, it is concluded that levels of IgG antibodies may be related to the clinical evolution of COVID-19, with high levels of IgG antibodies against S1 and N in severe cases and in individuals with long COVID-19.
Collapse
Affiliation(s)
- Sinei Ramos Soares
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Maria Karoliny da Silva Torres
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Sandra Souza Lima
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Kevin Matheus Lima de Sarges
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Erika Ferreira dos Santos
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Andréa Luciana Soares da Silva
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Mauro de Meira Leite
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Flávia Póvoa da Costa
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Rosilene da Silva
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Izaura Maria Vieira Cayres Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Rosimar Neris Martins Feitosa
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Juarez Antônio Simões Quaresma
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratório de Pesquisas Básicas em Malária em Malária, Seção de Parasitologia, Instituto Evandro Chagas, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Ministério da Saúde do Brasil, Ananindeua 70068-900, Brazil
| | - Giselle Maria Rachid Viana
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
- Laboratório de Pesquisas Básicas em Malária em Malária, Seção de Parasitologia, Instituto Evandro Chagas, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Ministério da Saúde do Brasil, Ananindeua 70068-900, Brazil
| | - Luiz Fábio Magno Falcão
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Eduardo José Melo dos Santos
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Andréa Nazaré Monteiro Rangel da Silva
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
19
|
Yue H, Nowak RP, Overwijn D, Payne NC, Fischinger S, Atyeo C, Lam EC, St. Denis K, Brais LK, Konishi Y, Sklavenitis-Pistofidis R, Baden LR, Nilles EJ, Karlson EW, Yu XG, Li JZ, Woolley AE, Ghobrial IM, Meyerhardt JA, Balazs AB, Alter G, Mazitschek R, Fischer ES. Diagnostic TR-FRET assays for detection of antibodies in patient samples. CELL REPORTS METHODS 2023; 3:100421. [PMID: 37056371 PMCID: PMC10088089 DOI: 10.1016/j.crmeth.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/15/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Serological assays are important diagnostic tools for surveying exposure to the pathogen, monitoring immune response post vaccination, and managing spread of the infectious agent among the population. Current serological laboratory assays are often limited because they require the use of specialized laboratory technology and/or work with a limited number of sample types. Here, we evaluate an alternative by developing time-resolved Förster resonance energy transfer (TR-FRET) homogeneous assays that exhibited exceptional versatility, scalability, and sensitivity and outperformed or matched currently used strategies in terms of sensitivity, specificity, and precision. We validated the performance of the assays measuring total immunoglobulin G (IgG) levels; antibodies against severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle Eastern respiratory syndrome (MERS)-CoV spike (S) protein; and SARS-CoV-2 S and nucleocapsid (N) proteins and applied it to several large sample sets and real-world applications. We further established a TR-FRET-based ACE2-S competition assay to assess the neutralization propensity of the antibodies. Overall, these TR-FRET-based serological assays can be rapidly extended to other antigens and are compatible with commonly used plate readers.
Collapse
Affiliation(s)
- Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Radosław P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Daan Overwijn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - N. Connor Payne
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Kerri St. Denis
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Lauren K. Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yoshinobu Konishi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Romanos Sklavenitis-Pistofidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric J. Nilles
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Xu G. Yu
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Z. Li
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ann E. Woolley
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alejandro B. Balazs
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Yuan F, Chen C, Covaleda LM, Martins M, Reinhart JM, Sullivan DR, Diel DG, Fang Y. Development of monoclonal antibody-based blocking ELISA for detecting SARS-CoV-2 exposure in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532204. [PMID: 36993307 PMCID: PMC10055009 DOI: 10.1101/2023.03.11.532204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to public health. Besides humans, SARS-CoV-2 can infect several animal species. Highly sensitive and specific diagnostic reagents and assays are urgently needed for rapid detection and implementation of strategies for prevention and control of the infection in animals. In this study, we initially developed a panel of monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid (N) protein. To detect SARS-CoV-2 antibodies in a broad spectrum of animal species, a mAb-based bELISA was developed. Test validation using a set of animal serum samples with known infection status obtained an optimal percentage of inhibition (PI) cut-off value of 17.6% with diagnostic sensitivity of 97.8% and diagnostic specificity of 98.9%. The assay demonstrates high repeatability as determined by a low coefficient of variation (7.23%, 6.95%, and 5.15%) between-runs, within-run, and within-plate, respectively. Testing of samples collected over time from experimentally infected cats showed that the bELISA was able to detect seroconversion as early as 7 days post-infection. Subsequently, the bELISA was applied for testing pet animals with COVID-19-like symptoms and specific antibody responses were detected in two dogs. The panel of mAbs generated in this study provides a valuable tool for SARS-CoV-2 diagnostics and research. The mAb-based bELISA provides a serological test in aid of COVID-19 surveillance in animals. IMPORTANCE Antibody tests are commonly used as a diagnostic tool for detecting host immune response following infection. Serology (antibody) tests complement nucleic acid assays by providing a history of virus exposure, no matter symptoms developed from infection or the infection was asymptomatic. Serology tests for COVID-19 are in high demand, especially when the vaccines become available. They are important to determine the prevalence of the viral infection in a population and identify individuals who have been infected or vaccinated. ELISA is a simple and practically reliable serological test, which allows high-throughput implementation in surveillance studies. Several COVID-19 ELISA kits are available. However, they are mostly designed for human samples and species-specific secondary antibody is required for indirect ELISA format. This paper describes the development of an all species applicable monoclonal antibody (mAb)-based blocking ELISA to facilitate the detection and surveillance of COVID-19 in animals.
Collapse
|
21
|
Ramírez-Reveco A, Velásquez G, Aros C, Navarrete G, Villarroel-Espíndola F, Navarrete M, Fica A, Plaza A, Castro N, Verdugo C, Acosta-Jamett G, Verdugo CC. Performance estimation of two in-house ELISA assays for COVID-19 surveillance through the combined detection of anti-SARS-CoV-2 IgA, IgM, and IgG immunoglobulin isotypes. PLoS One 2023; 18:e0270388. [PMID: 36745590 PMCID: PMC9901778 DOI: 10.1371/journal.pone.0270388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/07/2022] [Indexed: 02/07/2023] Open
Abstract
The main objective of this study was to estimate the performance, under local epidemiological conditions, of two in-house ELISA assays for the combined detection of anti-SARS-CoV-2 IgA, IgM, and IgG immunoglobulins. A total of 94 serum samples were used for the assessment, where 44 corresponded to sera collected before the pandemic (free of SARS-CoV-2 antibodies), and 50 sera were collected from confirmed COVID-19 patients admitted to the main public hospital in the city of Valdivia, southern Chile. The Nucleocapsid (Np) and the receptor-binding domain (RBD) proteins were separately used as antigens (Np and RBD ELISA, respectively) to assess their diagnostic performance. A receiver operating characteristic (ROC) analysis was performed to estimate the optical density (OD) cut-off that maximized the sensitivity (Se) and specificity (Sp) of the ELISA assays. Np ELISA had a mean Se of 94% (95% CI = 83.5-98.8%) and a mean Sp of 100% (95% CI = 92.0-100%), with an OD 450 nm positive cut-off value of 0.88. On the other hand, RBD ELISA presented a mean Se of 96% (95% CI = 86.3-99.5%) and a mean Sp of 90% (95% CI = 78.3-97.5%), with an OD 450 nm positive cut off value of 0.996. Non-significant differences were observed between the Se distributions of Np and RBD ELISAs, but the latter presented a significant lower Sp than Np ELISA. In parallel, collected sera were also analyzed using a commercial lateral flow chromatographic immunoassay (LFCI), to compare the performance of the in-house ELISA assays against a commercial test. The LFCI had a mean sensitivity of 94% (95% CI = 87.4-100%) and a mean specificity of 100% (95% CI = 100-100%). When compared to Np ELISA, non-significant differences were observed on the performance distributions. Conversely, RBD ELISA had a significant lower Sp than the LFCI. Although, Np ELISA presented a similar performance to the commercial test, this was 2.5 times cheaper than the LFCI assay (labor cost not considered). Thus, the in-house Np ELISA could be a suitable alternative tool, in resource limited environments, for the surveillance of SARS-CoV-2 infection, supporting further epidemiological studies.
Collapse
Affiliation(s)
- Alfredo Ramírez-Reveco
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gerardo Velásquez
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Biología Molecular, Hospital Base de Valdivia (HBV), Valdivia, Chile
| | - Christopher Aros
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriela Navarrete
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Maritza Navarrete
- Laboratorio de Biología Molecular, Hospital Base de Valdivia (HBV), Valdivia, Chile
| | - Alberto Fica
- Sub Departamento de Medicina, Hospital Base Valdivia; Instituto Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Anita Plaza
- Center for the Surveillance and Evolution of Infectious Diseases (CSEID), Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Castro
- Center for the Surveillance and Evolution of Infectious Diseases (CSEID), Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Verdugo
- Center for the Surveillance and Evolution of Infectious Diseases (CSEID), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gerardo Acosta-Jamett
- Center for the Surveillance and Evolution of Infectious Diseases (CSEID), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Cristóbal C. Verdugo
- Center for the Surveillance and Evolution of Infectious Diseases (CSEID), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
22
|
Debie Y, Van Audenaerde JRM, Vandamme T, Croes L, Teuwen LA, Verbruggen L, Vanhoutte G, Marcq E, Verheggen L, Le Blon D, Peeters B, Goossens ME, Pannus P, Ariën KK, Anguille S, Janssens A, Prenen H, Smits ELJ, Vulsteke C, Lion E, Peeters M, van Dam PA. Humoral and Cellular Immune Responses against SARS-CoV-2 after Third Dose BNT162b2 following Double-Dose Vaccination with BNT162b2 versus ChAdOx1 in Patients with Cancer. Clin Cancer Res 2023; 29:635-646. [PMID: 36341493 DOI: 10.1158/1078-0432.ccr-22-2185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine from the one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. EXPERIMENTAL DESIGN A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARS-CoV-2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4+ and CD8+ T-cell responses against SARS-CoV-2-specific S1 and S2 peptides. RESULTS Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95-2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48-1,977.46)]. However, homologous-boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8+ T cells, including higher IFNγ and TNFα levels. CONCLUSIONS In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.
Collapse
Affiliation(s)
- Yana Debie
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Jonas R M Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Timon Vandamme
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lieselot Croes
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Laure-Anne Teuwen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Lise Verbruggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Greetje Vanhoutte
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lisa Verheggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Debbie Le Blon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Bart Peeters
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Maria E Goossens
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Pieter Pannus
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Division of Hematology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Annelies Janssens
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Christof Vulsteke
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marc Peeters
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
23
|
Reliability of antibody tests for COVID-19 diagnosis. MARMARA MEDICAL JOURNAL 2023. [DOI: 10.5472/marumj.1245068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objective: The reverse transcription–polymerase chain reaction test (RT-PCR) is the gold standard for the diagnosis of coronavirus
disease 2019 (COVID-19), and antibody tests are useful as supplemental tools for diagnosis, for measuring the population’s immunity
levels, and for checking infection in asymptomatic contacts. This study aimed to evaluate the reliability of five commercial antibody
detection test kits.
Materials and Methods: The reliability of the Colloidal Gold COVID-19 IgG/IgM Rapid Test Kit, Antibody Rapid Test Hotgen,
Beijing Hotgen Biotech Co., Ltd., China), Abbott Chemiluminescent Microparticle Immunoassay (Illinois, USA), Roche
Electrochemiluminescence Immunoassay (Roche Diagnostics, Switzerland), Siemens Chemiluminescence (Munich, Germany), and
Euroimmun ELISA (Lübeck, Germany) for COVID-19 diagnosis was studied. The antibody-negative group included 50 sera from
2018, and the antibody-positive group included 98 patients with positive RT-PCR results from whom blood samples had been collected
3–9 weeks after hospital discharge. Statistical analysis was performed using SPSS version 23.0 (IBM Corporation, Armonk, NY, USA).
The antibody tests’ validity and intra-assay reproducibility were examined, and the Cohen’s kappa coefficients were obtained. The
disease prevalence was pegged at 10%.
Results: The antibody tests’ sensitivity (69.12–72.46%) and positive predictive values (42.44–100.0%) were low, and their specificity
(89.58–100%) and negative predictive values (96.31–97.03%) were high. Their accuracy rates varied from 87.54% to 97.25%, and their
intra-assay coefficients of variation varied from 1% to 10%.
Conclusion: The agreement between the results of the antibody detection test kits was higher when the kits were classified according to
the targeted antigens. The time of blood sample collection, targeted antigens, and antibody types affected the results. Serological tests
were found to be useful, and the commercial kits were found to be largely reliable, although, some parameters need to be improved.
Collapse
|
24
|
Tian X, Zhang Y, Wang W, Fang F, Zhang W, Zhu Z, Wan Y. The impacts of vaccination status and host factors during early infection on SARS-CoV-2 persistence:a retrospective single-center cohort study. Int Immunopharmacol 2023; 114:109534. [PMID: 36476489 PMCID: PMC9708622 DOI: 10.1016/j.intimp.2022.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Viral persistence is a crucial factor that influences the transmissibility of SARS-CoV-2. However, the impacts of vaccination and physiological variables on viral persistence have not been adequately clarified. METHODS We collected the clinical records of 377 COVID-19 patients, which contained unvaccinated patients and patients received two doses of an inactivated vaccine or an mRNA vaccine. The impacts of vaccination on disease severity and viral persistence and the correlations between 49 laboratory variables and viral persistence were analyzed separately. Finally, we established a multivariate regression model to predict the persistence of viral RNA. RESULTS Both inactivated and mRNA vaccines significantly reduced the rate of moderate cases, while the vaccine related shortening of viral RNA persistence was only observed in moderate patients. Correlation analysis showed that 10 significant laboratory variables were shared by the unvaccinated mild patients and mild patients inoculated with an inactivated vaccine, but not by the mild patients inoculated with an mRNA vaccine. A multivariate regression model established based on the variables correlating with viral persistence in unvaccinated mild patients could predict the persistence of viral RNA for all patients except three moderate patients inoculated with an mRNA vaccine. CONCLUSION Vaccination contributed limitedly to the clearance of viral RNA in COVID-19 patients. While, laboratory variables in early infection could predict the persistence of viral RNA.
Collapse
Affiliation(s)
- Xiangxiang Tian
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, China; Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Clinical Laboratory, The First People's Hospital of Shangqiu, Shangqiu 476000, China
| | - Yifan Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, China; Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanhai Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, China
| | - Fang Fang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Yanmin Wan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China.
| |
Collapse
|
25
|
Das S, Dunbar S. Multiplex Immunoassay Approaches Using Luminex® xMAP® Technology for the Study of COVID-19 Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:479-489. [PMID: 37378784 DOI: 10.1007/978-3-031-28012-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has been one of the most severe outbreaks of respiratory illness in history. The clinical symptoms of COVID-19 may be similar to flu, although they can be life-threatening, particularly in the elderly and immunocompromised population. Together with nucleic acid detection, serological testing has been essential for the diagnosis of SARS-CoV-2 infection but has been critically important for studying the epidemiology, serosurveillance, and for vaccine research and development. Multiplexed immunoassay technologies have a particular advantage as they can simultaneously measure multiple analytes from a single sample. xMAP technology is a multiplex analysis platform that can measure up to 500 analytes at the same time from the same sample. It has been shown to be an important tool for studying immune response to the various SARS-CoV-2 antigens, as well as for measuring host protein biomarker levels as prognostic indicators of COVID-19. In this chapter, we describe several key studies where xMAP technology was used for multiplexed analysis of SARS-COV-2 antibody responses and host protein expression in COVID-19 patients.
Collapse
|
26
|
Corsi Decenti E, Salvatore MA, Mancon A, Portella G, Rocca A, Vocale C, Donati S. A large series of molecular and serological specimens to evaluate mother-to-child SARS-CoV-2 transmission: a prospective study from the Italian Obstetric Surveillance System. Int J Infect Dis 2023; 126:1-9. [PMID: 36368605 PMCID: PMC9640374 DOI: 10.1016/j.ijid.2022.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To assay the presence of the SARS-CoV-2 genome in vaginal, rectal, and placental swabs among pregnant women and in newborn nasopharyngeal swabs and to investigate the immunological response and maternal antibody transfer through the umbilical cord blood and milk of unvaccinated mothers. METHODS Vaginal, rectal, and placental specimens, maternal and neonatal serum, and milk were collected from a wide cohort of pregnant Italian women with confirmed SARS-CoV-2 infection admitted to the hospital between February 25, 2020 and June 30, 2021. Samples were tested in selected reference laboratories according to a shared interlaboratory protocol. RESULTS Among 1086 enrolled women, the SARS-CoV-2 positive rate detected in all specimens ranged from 0.7% to 8.4%. Respectively, 45.2% of maternal sera collected during pregnancy and 39.7% of those collected at birth tested positive for immunoglobulin G, whereas 50.5% tested positive among neonates. Nasopharyngeal swabs were positive in 0.8% of the newborns, and immunoglobulin G was detected in 3.0% of the milk samples. The highest immunological response was recorded within 30 days during pregnancy and within 60 days of birth and in the neonatal population. CONCLUSION Vertical transmission should be considered a rare event; although, a good maternal immunological response and antibodies transfer throughout the umbilical cord blood was detected.
Collapse
Affiliation(s)
- Edoardo Corsi Decenti
- Istituto Superiore di Sanità - Italian National Institute of Health, National Centre for Disease Prevention and Health Promotion, 00161 Rome, Italy,University of Rome Tor Vergata, Department of Biomedicine and Prevention, 00133 Rome, Italy
| | - Michele Antonio Salvatore
- Istituto Superiore di Sanità - Italian National Institute of Health, National Centre for Disease Prevention and Health Promotion, 00161 Rome, Italy,Corresponding author at: Michele Antonio Salvatore, Istituto Superiore di Sanità - Italian National Institute of Health, National Centre for Disease Prevention and Health Promotion, Viale Regina Elena 299, 00161 Rome, Italy. Tel: +39-0649904310
| | | | - Giuseppe Portella
- Federico II University of Naples, Dipartimento di Scienze Mediche Traslazionali, 80138 Naples, Italy
| | - Arianna Rocca
- Careggi University Hospital, Department of Experimental and Clinical Medicine, 50134 Florence, Italy
| | - Caterina Vocale
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) - University Hospital of Bologna, Microbiology Unit, 40138 Bologna, Italy
| | - Serena Donati
- Istituto Superiore di Sanità - Italian National Institute of Health, National Centre for Disease Prevention and Health Promotion, 00161 Rome, Italy
| | - Italian Obstetric Surveillance System COVID-19 Working GroupAlberiIrene7AnelliGaia Maria8BaltaroFederica9BisulliMaria10BrusaStefano11CataneoIlaria12CetinIrene13CuomoMarianna14RìPietro Dal15CerboLidia Di16FerrettiAlice17GismondoMaria Rita1819GrisoliaGianpaolo20LivioStefania21LocciMariavittoria22MalentacchiFrancesca23MecacciFederico24PaccaloniBarbara25PednaMaria Federica26PerroneEnrica27PignattiLucrezia28PirasMartina29PrimaveraAlessandra30SavasiValeria31SimeoneSerena32TaddeiFabrizio33TironiRoberta34TorriArianna35Department of Obstetrics and Gynaecology, Santa Chiara Hospital, 38122 Trento, ItalyDepartment of Biomedical and Clinical Sciences - University of Milan, via G.B. Grassi 74, 20157, Milan, ItalyUnit of Obstetrics and Gynecology, Grande Ospedale Metropolitano di Niguarda, 20162, Milan, ItalyObstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, ItalyDipartimento di Scienze Mediche Traslazionali, Federico II University of Naples, 80138, Naples, ItalyDepartment of Obstetrics and Gynecology, Ospedale Maggiore, 40133, Bologna, ItalyDepartment of Biomedical and Clinical Sciences, University of Milan, 20154, Milan, ItalyDepartment of Biomedical and Clinical Sciences - University of Milan, via G.B. Grassi 74, 20157, Milan, ItalyUnit of Obstetrics and Gynaecology, Santa Maria del Carmine Hospital, 38068, Rovereto, ItalyOspedale Infermi, 47923, Rimini, ItalyUnit of Obstetrics and Gynaecology, Azienda Unità Sanitaria Locale-IRCCS, 42123, Reggio Emilia, ItalyDepartment of Biomedical and Clinical Sciences - University of Milan, 20157, Milan, ItalyASST Fatebenefratelli Sacco - University Hospital L. Sacco, 20157, Milan, ItalyDepartment of Obstetrics and Gynaecology, Carlo Poma Hospital, 46100, Mantua, ItalyUnit of Obstetrics and Gynecology, Hospital V. Buzzi, ASST Fatebenefratelli Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20154, Milan, ItalyFederico II University of Naples, 80138, Naples, ItalySOD Microbiologia e Virologia, AOU Careggi, 50139, Florence, ItalyDepartment of Biomedical, Division of Obstetrics and Gynecology, Experimental and Clinical Sciences, University of Florence, 50134, Florence, ItalyUnit of Obstetrics and Gynaecology, Santa Maria della Scaletta Hospital, 40026, Imola, ItalyUnit of Microbiology, Greater Romagna Hub Laboratory, 47522, Pievesestina, Cesena, ItalyServizio Assistenza Territoriale, Direzione Generale Cura Della Persona, Salute e Welfare, Emilia‐Romagna Region, 40127, Bologna, ItalyDepartment of Obstetrics and Gynaecology, Maurizio Bufalini Hospital, 47521, Cesena, ItalyClinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS Reggio Emilia, 42122, Reggio Emilia, ItalyMicrobiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, ItalyUnit of Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, 20157, Milan, ItalyDepartment of Woman and Child's Health, Careggi University Hospital, 50141, Florence, ItalyDepartment of Obstetrics and Gynaecology, Santa Chiara Hospital, 38122, Trento, ItalyOspedale Manzoni, 23900, Lecco, ItalyUnit of Microbiology, Greater Romagna Hub Laboratory, 47522, Pievesestina, Cesena, Italy.
| |
Collapse
|
27
|
De Boeck I, Cauwenberghs E, Spacova I, Gehrmann T, Eilers T, Delanghe L, Wittouck S, Bron PA, Henkens T, Gamgami I, Simons A, Claes I, Mariën J, Ariën KK, Bakokimi D, Loens K, Jacobs K, Ieven M, Bruijning-Verhagen P, Delputte P, Coenen S, Verhoeven V, Lebeer S. Randomized, Double-Blind, Placebo-Controlled Trial of a Throat Spray with Selected Lactobacilli in COVID-19 Outpatients. Microbiol Spectr 2022; 10:e0168222. [PMID: 36154666 PMCID: PMC9604152 DOI: 10.1128/spectrum.01682-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
Primary care urgently needs treatments for coronavirus disease 2019 (COVID-19) patients because current options are limited, while these patients who do not require hospitalization encompass more than 90% of the people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a throat spray containing three Lactobacillaceae strains with broad antiviral properties in a randomized, double-blind, placebo-controlled trial. Before the availability of vaccines, 78 eligible COVID-19 patients were randomized to verum (n = 41) and placebo (n = 37) within 96 h of a positive PCR-based SARS-CoV-2 diagnosis, and a per-protocol analysis was performed. Symptoms and severity were reported daily via an online diary. Combined nose-throat swabs and dried blood spots were collected at regular time points in the study for microbiome, viral load, and antibody analyses. The daily reported symptoms were highly variable, with no added benefit for symptom resolution in the verum group. However, based on 16S V4 amplicon sequencing, the acute symptom score (fever, diarrhea, chills, and muscle pain) was significantly negatively associated with the relative abundance of amplicon sequence variants (ASVs) that included the applied lactobacilli (P < 0.05). Furthermore, specific monitoring of these applied lactobacilli strains showed that they were detectable via quantitative PCR (qPCR) analysis in 82% of the patients in the verum group. At the end of the trial, a trend toward lower test positivity for SARS-CoV-2 was observed for the verum group (2/30; 6.7% positive) than for the placebo group (7/27; 26% positive) (P = 0.07). These data indicate that the throat spray with selected antiviral lactobacilli could have the potential to reduce nasopharyngeal viral loads and acute symptoms but should be applied earlier in the viral infection process and substantiated in larger trials. IMPORTANCE Viral respiratory tract infections result in significant health and economic burdens, as highlighted by the COVID-19 pandemic. Primary care patients represent 90% of those infected with SARS-CoV-2, yet their treatment options are limited to analgesics and antiphlogistics, and few broadly acting antiviral strategies are available. Microbiome or probiotic therapy is a promising emerging treatment option because it is based on the multifactorial action of beneficial bacteria against respiratory viral disease. In this study, an innovative topical throat spray with select beneficial lactobacilli was administered to primary COVID-19 patients. A remote study setup (reducing the burden on hospitals and general practitioners) was successfully implemented using online questionnaires and longitudinal self-sampling. Our results point toward the potential mechanisms of action associated with spray administration at the levels of viral loads and microbiome modulation in the upper respiratory tract and pave the way for future clinical applications of beneficial bacteria against viral diseases.
Collapse
Affiliation(s)
- Ilke De Boeck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline Cauwenberghs
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Thies Gehrmann
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Lize Delanghe
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Peter A. Bron
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - Joachim Mariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Kevin K. Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Diana Bakokimi
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Katherine Loens
- Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Kevin Jacobs
- Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Patricia Bruijning-Verhagen
- Julius Centre for Health Sciences and Primary Care, Department of Epidemiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Samuel Coenen
- Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium
- Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Veronique Verhoeven
- Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
28
|
Discriminating cross-reactivity in polyclonal IgG1 responses against SARS-CoV-2 variants of concern. Nat Commun 2022; 13:6103. [PMID: 36243713 PMCID: PMC9568977 DOI: 10.1038/s41467-022-33899-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Existing assays to measure antibody cross-reactivity against different SARS-CoV-2 spike (S) protein variants lack the discriminatory power to provide insights at the level of individual clones. Using a mass spectrometry-based approach we are able to monitor individual donors' IgG1 clonal responses following a SARS-CoV-2 infection. We monitor the plasma clonal IgG1 profiles of 8 donors who had experienced an infection by either the wild type Wuhan Hu-1 virus or one of 3 VOCs (Alpha, Beta and Gamma). In these donors we chart the full plasma IgG1 repertoires as well as the IgG1 repertoires targeting the SARS-CoV-2 spike protein trimer VOC antigens. The plasma of each donor contains numerous anti-spike IgG1 antibodies, accounting for <0.1% up to almost 10% of all IgG1s. Some of these antibodies are VOC-specific whereas others do recognize multiple or even all VOCs. We show that in these polyclonal responses, each clone exhibits a distinct cross-reactivity and also distinct virus neutralization capacity. These observations support the need for a more personalized look at the antibody clonal responses to infectious diseases.
Collapse
|
29
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
McCafferty S, Haque AKMA, Vandierendonck A, Weidensee B, Plovyt M, Stuchlíková M, François N, Valembois S, Heyndrickx L, Michiels J, Ariën KK, Vandekerckhove L, Abdelnabi R, Foo CS, Neyts J, Sahu I, Sanders NN. A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity. Mol Ther 2022; 30:2968-2983. [PMID: 35450821 PMCID: PMC9020838 DOI: 10.1016/j.ymthe.2022.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023] Open
Abstract
Self-amplifying RNA vaccines may induce equivalent or more potent immune responses at lower doses compared to non-replicating mRNA vaccines via amplified antigen expression. In this paper, we demonstrate that 1 μg of an LNP-formulated dual-antigen self-amplifying RNA vaccine (ZIP1642), encoding both the S-RBD and N antigen, elicits considerably higher neutralizing antibody titers against Wuhan-like Beta B.1.351 and Delta B.1.617.2 SARS-CoV-2 variants compared to those of convalescent patients. In addition, ZIP1642 vaccination in mice expanded both S- and N-specific CD3+CD4+ and CD3+CD8+ T cells and caused a Th1 shifted cytokine response. We demonstrate that the induction of such dual antigen-targeted cell-mediated immune response may provide better protection against variants displaying highly mutated Spike proteins, as infectious viral loads of both Wuhan-like and Beta variants were decreased after challenge of ZIP1642 vaccinated hamsters. Supported by these results, we encourage redirecting focus toward the induction of multiple antigen-targeted cell-mediated immunity in addition to neutralizing antibody responses to bypass waning antibody responses and attenuate infectious breakthrough and disease severity of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sean McCafferty
- Ziphius Vaccines NV, B-9820 Merelbeke, Belgium; Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | - Nathalie François
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | | | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, B-2000 Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, B-2000 Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, B-2000 Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, B-2000 Antwerp, Belgium
| | - Linos Vandekerckhove
- HIV Cure and Research Center, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Rana Abdelnabi
- University of Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Caroline S Foo
- University of Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Johan Neyts
- University of Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium; Global Virus Network (GVN), Baltimore, MD, USA
| | | | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
31
|
Ellipilli S, Wang H, Lee WJ, Shu D, Guo P. Proof-of-concept for speedy development of rapid and simple at-home method for potential diagnosis of early COVID-19 mutant infections using nanogold and aptamer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102590. [PMID: 35905841 PMCID: PMC9315840 DOI: 10.1016/j.nano.2022.102590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The positive single-stranded nature of COVID-19 mRNA led to the low proof-reading efficacy for its genome authentication. Thus mutant covid-19 strains have been rapidly evolving. Besides Alpha, Beta, Gamma, Delta, and Omicron variants, currently, subvariants of omicron are circulating, including BA.4, BA.5, and BA.2.12.1. Therefore, the speedy development of a rapid, simple, and easier diagnosis method to deal with new mutant covid viral infection is critically important. Many diagnosis methods have been developed for COVID-19 detection such as RT-PCR and antibodies detection. However, the former is time-consuming, laborious, and expensive, and the latter relies on the production of antibodies making it not suitable for the early diagnosis of viral infection. Many lateral-flow methods are available but might not be suitable for detecting the mutants, Here we proved the concept for the speedy development of a simple, rapid, and cost-effective early at-home diagnosis method for mutant Covid-19 infection by combining a new aptamer. The idea is to use the current lateral flow Covid-19 diagnosis system available in the market or to use one existing antibody for the Lateral Flow Nitrocellulose filter. To prove the concept, the DNA aptamer specific to spike proteins (S-proteins) was conjugated to gold nanoparticles and served as a detection probe. An antibody that is specific to spike proteins overexpressed on COVID viral particles was used as a second probe immobilized to the nitrocellulose membrane. The aptamer conjugated nanoparticles were incubated with spike proteins for half an hour and tested for their ability to bind to antibodies anchored on the nitrocellulose membrane. The gold nanoparticles were visualized on the nitrocellulose membrane due to interaction between the antigen (S-protein) with both the aptamer and the antibody. Thus, the detection of viral antigen can be obtained within 2 h, with a cost of less than $5 for the diagnosis reagent. In the future, as long as the mutant of the newly emerged viral surface protein is reported, a peptide or protein corresponding to the mutation can be produced by peptide synthesis or gene cloning within several days. An RNA or DNA aptamer can be generated quickly via SELEX. A gold-labeled aptamer specific to spike proteins (S-proteins) will serve as a detection probe. Any available lateral-flow diagnosis kits with an immobilized antibody that has been available on the market, or simply an antibody that binds COVID-19 virus might be used as a second probe immobilized on the nitrocellulose. The diagnosis method can be carried out by patients at home if a clinical trial verifies the feasibility and specificity of this method.
Collapse
Affiliation(s)
- Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Wen-Jui Lee
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Colombo VC, Sluydts V, Mariën J, Vanden Broecke B, Van Houtte N, Leirs W, Jacobs L, Iserbyt A, Hubert M, Heyndrickx L, Goris H, Delputte P, De Roeck N, Elst J, Ariën KK, Leirs H, Gryseels S. SARS-CoV-2 surveillance in Norway rats (Rattus norvegicus) from Antwerp sewer system, Belgium. Transbound Emerg Dis 2022; 69:3016-3021. [PMID: 34224205 PMCID: PMC8447303 DOI: 10.1111/tbed.14219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 human-to-animal transmission can lead to the establishment of novel reservoirs and the evolution of new variants with the potential to start new outbreaks in humans. We tested Norway rats inhabiting the sewer system of Antwerp, Belgium, for the presence of SARS-CoV-2 following a local COVID-19 epidemic peak. In addition, we discuss the use and interpretation of SARS-CoV-2 serological tests on non-human samples. Between November and December 2020, Norway rat oral swabs, faeces and tissues from the sewer system of Antwerp were collected to be tested by RT-qPCR for the presence of SARS-CoV-2. Serum samples were screened for the presence of anti-SARS-CoV-2 IgG antibodies using a Luminex microsphere immunoassay (MIA). Samples considered positive were then checked for neutralizing antibodies using a conventional viral neutralization test (cVNT). The serum of 35 rats was tested by MIA showing three potentially positive sera that were later negative by cVNT. All tissue samples of 39 rats analysed tested negative for SARS-CoV-2 RNA. This is the first study that evaluates SARS-CoV-2 infection in urban rats. We can conclude that the sample of rats analysed had never been infected with SARS-CoV-2. However, monitoring activities should continue due to the emergence of new variants prone to infect Muridae rodents.
Collapse
Affiliation(s)
- Valeria Carolina Colombo
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Vincent Sluydts
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Joachim Mariën
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Bram Vanden Broecke
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Natalie Van Houtte
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Wannes Leirs
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Lotte Jacobs
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Arne Iserbyt
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Marine Hubert
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Leo Heyndrickx
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Hanne Goris
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Peter Delputte
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Naomi De Roeck
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Joris Elst
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Kevin K. Ariën
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Herwig Leirs
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Sophie Gryseels
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- OD Taxonomy and PhylogenyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| |
Collapse
|
33
|
Pannus P, Neven KY, De Craeye S, Heyndrickx L, Vande Kerckhove S, Georges D, Michiels J, Francotte A, Van Den Bulcke M, Zrein M, Van Gucht S, Schmickler MN, Verbrugghe M, Matagne A, Thomas I, Dierick K, Weiner JA, Ackerman ME, Goriely S, Goossens ME, Ariën KK, Desombere I, Marchant A. Poor Antibody Response to BioNTech/Pfizer Coronavirus Disease 2019 Vaccination in Severe Acute Respiratory Syndrome Coronavirus 2-Naive Residents of Nursing Homes. Clin Infect Dis 2022; 75:e695-e704. [PMID: 34864935 PMCID: PMC8690239 DOI: 10.1093/cid/ciab998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Residents of nursing homes (NHs) are at high risk of coronavirus disease 2019 (COVID-19)-related disease and death and may respond poorly to vaccination because of old age and frequent comorbid conditions. METHODS Seventy-eight residents and 106 staff members, naive to infection or previously infected with severe acute respiratory syndrome coronavirus (SARS-CoV-2), were recruited in NHs in Belgium before immunization with 2 doses of 30 µg BNT162b2 messenger RNA (mRNA) vaccine at days 0 and 21. Binding antibodies (Abs) to SARS-CoV-2 receptor-binding domain (RBD), spike domains S1 and S2, RBD Ab avidity, and neutralizing Abs against SARS-CoV-2 wild type and B.1.351 were assessed at days 0, 21, 28, and 49. RESULTS SARS-CoV-2-naive residents had lower Ab responses to BNT162b2 mRNA vaccination than naive staff. These poor responses involved lower levels of immunoglobulin (Ig) G to all spike domains, lower avidity of RBD IgG, and lower levels of Abs neutralizing the vaccine strain. No naive residents had detectable neutralizing Abs to the B.1.351 variant. In contrast, SARS-CoV-2-infected residents had high responses to mRNA vaccination, with Ab levels comparable to those in infected staff. Cluster analysis revealed that poor vaccine responders included not only naive residents but also naive staff, emphasizing the heterogeneity of responses to mRNA vaccination in the general population. CONCLUSIONS The poor Ab responses to mRNA vaccination observed in infection-naive NH residents and in some naive staff members suggest suboptimal protection against breakthrough infection, especially with variants of concern. These data support the administration of a third dose of mRNA vaccine to further improve protection of NH residents against COVID-19.
Collapse
Affiliation(s)
- Pieter Pannus
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Kristof Y Neven
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Daphnée Georges
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | | | | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Isabelle Thomas
- SD Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | | | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Stanislas Goriely
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | | | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Arnaud Marchant
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
34
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
35
|
Wijtvliet VPWM, Verheyden S, Depreter B, Heylen C, Coeman E, Abrams S, De Winter BY, Massart A, Hellemans R, Pipeleers L, Claas FHJ, Ariën KK, Wissing KM, Abramowicz D, Ledeganck KJ. SARS-CoV-2 mRNA vaccination is not associated with the induction of anti-HLA or non-HLA antibodies. Transpl Immunol 2022; 74:101670. [PMID: 35835296 PMCID: PMC9271456 DOI: 10.1016/j.trim.2022.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND SARS-CoV-2 vaccination is strongly recommended in kidney transplant recipients (KTR) and dialysis patients. Whether these vaccinations may trigger alloantibodies, is still debated. METHODS In the current study we evaluated the effect of SARS-CoV-2 mRNA vaccines on anti-Human Leukocyte Antigen (HLA) and 60 anti-non-HLA antibody profiles in clinically stable KTR and dialysis patients. In total, we included 28 KTR, 30 patients on haemodialysis, 25 patients on peritoneal dialysis and 31 controls with a positive seroresponse 16-21 days after the first dose of either the SARS-CoV-2 mRNA BNT162b2 or mRNA-1273 vaccine. Both anti-HLA and anti-non-HLA antibodies were determined prior to vaccination and 21 to 35 days after the second vaccine dose. RESULTS Overall, the proportion of patients with detectable anti-HLA antibodies was similar before and after vaccination (class I 14% vs. 16%, p = 0.48; class II 25% before and after vaccination). After vaccination, there was no pattern in 1) additionally detected anti-HLA antibodies, or 2) the levels of pre-existing ones. Additional anti-non-HLA antibodies were detected in 30% of the patients, ranging from 1 to 5 new anti-non-HLA antibodies per patient. However, the clinical significance of anti-non-HLA antibodies is still a matter of debate. To date, only a significant association has been found for anti-non-HLA ARHGDIB antibodies and long-term kidney graft loss. No additionally developed anti-ARHGDIB antibodies or elevated level of existing anti-ARHGDIB antibodies was observed. CONCLUSION The current data indicate that SARS-CoV-2 mRNA vaccination does not induce anti-HLA or anti-non-HLA antibodies, corroborating the importance of vaccinating KTR and dialysis patients.
Collapse
Affiliation(s)
- Veerle P W M Wijtvliet
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Edegem, Belgium; Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium.
| | - Sonja Verheyden
- Department of Hematology, HLA and Molecular Hematology Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Barbara Depreter
- Department of Hematology, HLA and Molecular Hematology Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | - Steven Abrams
- Department of Family Medicine and Population Health, Global Health Institute, University of Antwerp, Antwerp, Belgium; I-BioStat, Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Edegem, Belgium
| | - Annick Massart
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Edegem, Belgium; Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium
| | - Rachel Hellemans
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Edegem, Belgium; Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium
| | - Lissa Pipeleers
- Department of Nephrology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frans H J Claas
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Edegem, Belgium; Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Karl Martin Wissing
- Department of Nephrology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Abramowicz
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Edegem, Belgium; Department of Nephrology and Hypertension, Antwerp University Hospital, Edegem, Belgium
| | - Kristien J Ledeganck
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Edegem, Belgium
| |
Collapse
|
36
|
Mitchell KF, Carlson CM, Nace D, Wakeman BS, Drobeniuc J, Niemeyer GP, Werner B, Hoffmaster AR, Satheshkumar PS, Schuh AJ, Udhayakumar V, Rogier E. Evaluation of a Multiplex Bead Assay against Single-Target Assays for Detection of IgG Antibodies to SARS-CoV-2. Microbiol Spectr 2022; 10:e0105422. [PMID: 35647696 PMCID: PMC9241621 DOI: 10.1128/spectrum.01054-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Serological assays for SARS-CoV-2 antibodies must be validated for performance with a large panel of clinical specimens. Most existing assays utilize a single antigen target and may be subject to reduced diagnostic specificity. This study evaluated a multiplex assay that detects antibodies to three SARS-CoV-2 targets. Human serum specimens (n = 323) with known previous SARS-CoV-2 exposure status were tested on a commercially available multiplex bead assay (MBA) measuring IgG to SARS-CoV-2 spike protein receptor-binding domain (RBD), nucleocapsid protein (NP), and RBD/NP fusion antigens. Assay performance was evaluated against reverse transcriptase PCR (RT-PCR) results and also compared with test results for two single-target commercial assays. The MBA had a diagnostic sensitivity of 89.8% and a specificity of 100%, with serum collection at >28 days following COVID-19 symptom onset showing the highest seropositivity rates (sensitivity: 94.7%). The MBA performed comparably to single-target assays with the ability to detect IgG against specific antigen targets, with 19 (5.9%) discrepant specimens compared to the NP IgG assay and 12 (3.7%) compared to the S1 RBD IgG assay (kappa coefficients 0.92 and 0.88 compared to NP IgG and S1 RBD IgG assays, respectively. These findings highlight inherent advantages of using a SARS-CoV-2 serological test with multiple antigen targets; specifically, the ability to detect IgG against RBD and NP antigens simultaneously. In particular, the 100.0% diagnostic specificity exhibited by the MBA in this study is important for its implementation in populations with low SARS-CoV-2 seroprevalence or where background antibody reactivity to SARS-CoV-2 antigens has been detected. IMPORTANCE Reporting of SARS-CoV-2 infections through nucleic acid or antigen based diagnostic tests severely underestimates the true burden of exposure in a population. Serological data assaying for antibodies against SARS-CoV-2 antigens offers an alternative source of data to estimate population exposure, but most current immunoassays only include a single target for antibody detection. This report outlines a direct comparison of a multiplex bead assay to two other commercial single-target assays in their ability to detect IgG against SARS-CoV-2 antigens. Against a well-defined panel of 323 serum specimens, diagnostic sensitivity and specificity were very high for the multiplex assay, with strong agreement in IgG detection for single targets compared to the single-target assays. Collection of more data for individual- and population-level seroprofiles allows further investigation into more accurate exposure estimates and research into the determinants of infection and convalescent responses.
Collapse
Affiliation(s)
- Kaitlin F. Mitchell
- Laboratory Leadership Service assigned to Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina M. Carlson
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Douglas Nace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brian S. Wakeman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Williams Consulting, LLC, Baltimore, Maryland, USA
| | - Jan Drobeniuc
- Laboratory Task Force, COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Glenn P. Niemeyer
- Laboratory Task Force, COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bonnie Werner
- Laboratory Task Force, COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alex R. Hoffmaster
- Laboratory Task Force, COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Amy J. Schuh
- Laboratory Task Force, COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Matefo L, Cloete VV, Armand BP, Dominique G, Samantha P, John F, Craig T, Daniel W, Theresa L, Sunetra G, Maréza B, Danelle VJ, Jane BF. Validation of laboratory developed serology assays for detection of IgG antibody to severe acute respiratory syndrome coronavirus 2 in the South African population. J Virol Methods 2022; 307:114571. [PMID: 35750222 PMCID: PMC9212509 DOI: 10.1016/j.jviromet.2022.114571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
Serological assays for detection of IgG, IgM or IgA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) play an important role in surveillance, antibody persistence, vaccine coverage and infection rate. Serological assays, including both ELISA and rapid lateral flow assays, are available commercially but the cost limits their accessibility for low resource countries. Although serological assays based on mammalian-expressed SARS-CoV-2 spike protein have been previously described these assays need to be validated using samples from local populations within the continent, or country, in which they will be used. Interpretation of results could be influenced by differences in specificity and potential for pre-existing cross-reactive antibodies. In this study, we investigated two laboratory developed serological assays, an enzyme linked immunosorbent assay (ELISA) and an immunofluorescent assay (IFA), developed using recombinant SARS-CoV-2 spike protein, for use in South African populations. The tests were compared with commercially available and South Africa Health Products Regulatory Authority (SAPHRA) approved assays. A panel of 100 residual diagnostic serum samples, collected prior to the pandemic, were tested on three separate occasions to determine a suitable cut-off value for differentiation of positive from negative samples. Specificity of 96 % and 100 % for ELISA and IFA respectively was demonstrated. A total of 82/89 serum samples collected between days 2–94 after onset of illness from patients with a positive molecular result were positive for IgG antibody. The sensitivity of the laboratory developed assays on samples collected > one week after onset of illness was shown to be 100 % and 98.8 % for ELISA and IFA respectively. Positive predictive values were 92.1 % for ELISA and 91.0 % for IFA using characterization of samples as positive based on confirmation of infection using RT-PCR. Serum samples (n = 62) collected from RT-PCR positive patients infected with either ancestral, or emerging variants such as Beta or Delta, tested positive for IgG antibody (62/62) using the laboratory developed assays confirming application of the assays regardless of currently circulating variant during the time of evaluation. High concordance was demonstrated between the laboratory developed assays and the commercial immunoassay among samples collected from South African populations, although the small sample size, especially for the comparison with commercial assays, must be noted. If all quality assurance controls are in place, the use of local laboratory developed assays for high-throughput screening in resource-constrained environments is a realistic alternative option.
Collapse
Affiliation(s)
- Litabe Matefo
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - van Vuuren Cloete
- Department of Internal Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; 3 Military Hospital, Bloemfontein, South Africa
| | - Bester Philip Armand
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; Division of Virology, National Health Laboratory Service, Bloemfontein, South Africa
| | - Goedhals Dominique
- Division of Virology, National Health Laboratory Service, Bloemfontein, South Africa; PathCare Vermaak, Pretoria, South Africa
| | - Potgieter Samantha
- Department of Internal Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Frater John
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thompson Craig
- Department of Zoology, University of Oxford, Oxford, United Kingdom; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Wright Daniel
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, United Kingdom; The Jenner Institute, University of Oxford, Oxford, UK, University of Oxford, Oxford, United Kingdom
| | - Lambe Theresa
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, United Kingdom; The Jenner Institute, University of Oxford, Oxford, UK, University of Oxford, Oxford, United Kingdom
| | - Gupta Sunetra
- Department of Zoology, University of Oxford, Oxford, United Kingdom; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brink Maréza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - van Jaarsveldt Danelle
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Burt Felicity Jane
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; Division of Virology, National Health Laboratory Service, Bloemfontein, South Africa.
| |
Collapse
|
38
|
On the caveats of a multiplex test for SARS-CoV-2 to detect seroconversion after infection or vaccination. Sci Rep 2022; 12:10366. [PMID: 35725758 PMCID: PMC9208546 DOI: 10.1038/s41598-022-14294-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The Covid-19 pandemic, caused by SARS-CoV-2, has resulted in over 6 million reported deaths worldwide being one of the biggest challenges the world faces today. Here we present optimizations of all steps of an enzyme-linked immunosorbent assay (ELISA)-based test to detect IgG, IgA and IgM against the trimeric spike (S) protein, receptor binding domain (RBD), and N terminal domain of the nucleocapsid (N-NTD) protein of SARS-CoV-2. We discuss how to determine specific thresholds for antibody positivity and its limitations according to the antigen used. We applied the assay to a cohort of 126 individuals from Rio de Janeiro, Brazil, consisting of 23 PCR-positive individuals and 103 individuals without a confirmed diagnosis for SARS-CoV-2 infection. To illustrate the differences in serological responses to vaccinal immunization, we applied the test in 18 individuals from our cohort before and after receiving ChAdOx-1 nCoV-19 or CoronaVac vaccines. Taken together, our results show that the test can be customized at different stages depending on its application, enabling the user to analyze different cohorts, saving time, reagents, or samples. It is also a valuable tool for elucidating the immunological consequences of new viral strains and monitoring vaccination coverage and duration of response to different immunization regimens.
Collapse
|
39
|
Zhong Z, Wang J, He S, Su X, Huang W, Chen M, Zhuo Z, Zhu X, Fang M, Li T, Zhang S, Ge S, Zhang J, Xia N. An encodable multiplex microsphere-phase amplification sensing platform detects SARS-CoV-2 mutations. Biosens Bioelectron 2022; 203:114032. [PMID: 35131697 PMCID: PMC8802492 DOI: 10.1016/j.bios.2022.114032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 variants of concern (VOCs) contain several single-nucleotide variants (SNVs) at key sites in the receptor-binding region (RBD) that enhance infectivity and transmission, as well as cause immune escape, resulting in an aggravation of the coronavirus disease 2019 (COVID-19) pandemic. Emerging VOCs have sparked the need for a diagnostic method capable of simultaneously monitoring these SNVs. To date, no highly sensitive, efficient clinical tool exists to monitor SNVs simultaneously. Here, an encodable multiplex microsphere-phase amplification (MMPA) sensing platform that combines primer-coded microsphere technology with dual fluorescence decoding strategy to detect SARS-CoV-2 RNA and simultaneously identify 10 key SNVs in the RBD. MMPA limits the amplification refractory mutation system PCR (ARMS-PCR) reaction for specific target sequence to the surface of a microsphere with specific fluorescence coding. This effectively solves the problem of non-specific amplification among primers and probes in multiplex PCR. For signal detection, specific fluorescence codes inside microspheres are used to determine the corresponding relationship between the microspheres and the SNV sites, while the report probes hybridized with PCR products are used to detect the microsphere amplification intensity. The MMPA platform offers a lower SARS-CoV-2 RNA detection limit of 28 copies/reaction, the ability to detect a respiratory pathogen panel without cross-reactivity, and a SNV analysis accuracy level comparable to that of sequencing. Moreover, this super-multiple parallel SNVs detection method enables a timely updating of the panel of detected SNVs that accompanies changing VOCs, and presents a clinical availability that traditional sequencing methods do not.
Collapse
|
40
|
Fluorescent bioassay for SARS-CoV-2 detection using polypyrene-g-poly(ε-caprolactone) prepared by simultaneous photoinduced step-growth and ring-opening polymerizations. Mikrochim Acta 2022; 189:202. [PMID: 35474492 PMCID: PMC9042169 DOI: 10.1007/s00604-022-05244-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
The construction of a rapid and easy immunofluorescence bioassay for SARS-CoV-2 detection is described. We report for the first time a novel one-pot synthetic approach for simultaneous photoinduced step-growth polymerization of pyrene (Py) and ring-opening polymerization of ε-caprolactone (PCL) to produce a graft fluorescent copolymer PPy-g-PCL that was conjugated to SARS-CoV-2-specific antibodies using EDC/NHS chemistry. The synthesis steps and conjugation products were fully characterized using standard spectral analysis. Next, the PPy-g-PCL was used for the construction of a dot-blot assay which was calibrated for applications to human nasopharyngeal samples. The analytical features of the proposed sensor showed a detection range of 6.03–8.7 LOG viral copy mL−1 (Ct Scores: 8–25), the limit of detection (LOD), and quantification (LOQ) of 1.84 and 6.16 LOG viral copy mL−1, respectively. The repeatability and reproducibility of the platform had a coefficient of variation (CV) ranging between 1.2 and 5.9%. The fluorescence-based dot-blot assay was tested with human samples. Significant differences were observed between the fluorescence intensity of the negative and positive samples, with an overall correct response of 93.33%. The assay demonstrated a high correlation with RT-PCR data. This strategy opens new insights into simplified synthesis procedures of the reporter molecules and their high potential sensing and diagnosis applications.
Collapse
|
41
|
Furukawa H, Oka S, Higuchi T, Yamaguchi M, Uchiyama S, Koiwa T, Nakama M, Minegishi M, Nagai H, Tohma S. Detection of Anti-SARS-CoV-2 Nucleocapsid and Spike Antibodies in Patients with Coronavirus Disease 2019 in Japan. Clin Med Insights Circ Respir Pulm Med 2022; 16:11795484221075492. [PMID: 35401020 PMCID: PMC8990541 DOI: 10.1177/11795484221075492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Coronavirus Disease 2019 (COVID-19) is caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Serological testing for anti-SARS-CoV-2
nucleocapsid (N) antibodies (Abs) and anti-SARS-CoV-2 spike (S) Abs is
performed to detect prior COVID-19 infection. It is still controversial
which antibodies are the most sensitive and specific, and which can be
detected earliest after infection. Here, we evaluated the results of
serological tests of anti-SARS-CoV-2 N and S Abs in Japan. METHODS Symptomatic COVID-19 patients (n = 84) and control patients with rheumatoid
arthritis (n = 93) were recruited at Tokyo National Hospital.
Anti-SARS-CoV-2 N and S Abs were measured by commercial
electrochemiluminescence immunoassays. RESULTS The fraction of patients positive for anti-SARS-CoV-2 N and S Abs was highest
>14 days after symptom onset. The frequency of anti-SARS-CoV-2 S Ab
positivity at this time (80.4%) tended to be slightly but not significantly
lower than anti-SARS-CoV-2 N Ab positivity (84.8%). Optimized cut-off levels
for anti-SARS-CoV-2 N and S Ab positivity were lower than the manufacturer's
recommended cut-off levels. Using multiple linear regression analyzes with
anti-SARS-CoV-2 N and S Abs, we created an Ab-index with high
sensitivity. CONCLUSION To increase the sensitivity of serological diagnostic tests for COVID-19, it
is suggested that both anti-SARS-CoV-2 N and S Abs should be measured and
cut-off levels decreased.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Shomi Oka
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Takashi Higuchi
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan.,Department of Nephrology, Ushiku Aiwa General Hospital, Ushiku, Japan
| | - Miho Yamaguchi
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Shota Uchiyama
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Tomohiro Koiwa
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Moriyuki Nakama
- Department of Clinical Laboratory, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Masaaki Minegishi
- Department of Clinical Laboratory, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Hideaki Nagai
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Shigeto Tohma
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| |
Collapse
|
42
|
Validation of xMAP SARS-CoV-2 Multi-Antigen IgG assay in Nigeria. PLoS One 2022; 17:e0266184. [PMID: 35363818 PMCID: PMC8974966 DOI: 10.1371/journal.pone.0266184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Objective There is a need for reliable serological assays to determine accurate estimates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence. Most single target antigen assays have shown some limitations in Africa. To assess the performance of a multi-antigen assay, we evaluated a commercially available SARS-CoV-2 Multi-Antigen IgG assay for human coronavirus disease 2019 (COVID-19) in Nigeria. Methods Validation of the xMAP SARS-CoV-2 Multi-Antigen IgG assay was carried out using well-characterized SARS-CoV-2 reverse transcription polymerase chain reactive positive (97) and pre-COVID-19 pandemic (86) plasma panels. Cross-reactivity was assessed using pre-COVID-19 pandemic plasma specimens (213) from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey (NAIIS). Results The overall sensitivity of the xMAP SARS-CoV-2 Multi-Antigen IgG assay was 75.3% [95% CI: 65.8%– 82.8%] and specificity was 99.0% [95% CI: 96.8%– 99.7%]. The sensitivity estimate increased to 83.3% [95% CI: 70.4%– 91.3%] for specimens >14 days post-confirmation of diagnosis. However, using the NAIIS pre-pandemic specimens, the false positivity rate was 1.4% (3/213). Conclusions Our results showed overall lower sensitivity and a comparable specificity with the manufacturer’s validation. There appears to be less cross-reactivity with NAIIS pre-pandemic COVID-19 specimens using the xMAP SARS-CoV-2 Multi-Antigen IgG assay. In-country SARS-CoV-2 serology assay validation can help guide the best choice of assays in Africa.
Collapse
|
43
|
Dolci M, Signorini L, Cason C, Campisciano G, Kunderfranco P, Pariani E, Galli C, Petix V, Ferrante P, Delbue S, Comar M. Circulation of SARS-CoV-2 Variants among Children from November 2020 to January 2022 in Trieste (Italy). Microorganisms 2022; 10:612. [PMID: 35336187 PMCID: PMC8949205 DOI: 10.3390/microorganisms10030612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION The ongoing coronavirus disease 19 (COVID-19) outbreak involves the pediatric population, but to date, few reports have investigated the circulation of variants among children. MATERIAL AND METHODS In this retrospective study, non-hospitalized pediatric patients with SARS-CoV-2-positive nasopharyngeal swabs (NPS) were enrolled at the Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste (Italy), from November 2020 to January 2022. SARS-CoV-2 variants were identified by in vitro viral isolation, amplification, automatic sequencing of the receptor binding domain (RBD) of the SARS-CoV-2 spike coding gene, and subsequent next-generation sequencing. The growth curves of the isolated strains were defined in vitro by infecting Vero-E6 cells and quantifying the viral load in the supernatants up to 72 h post-infection by qRT-PCR. The neutralization activity of sera obtained from a COVID-19 vaccinated subject, recovered (2020) patient, vaccinated and recovered (2021) patient, and seronegative subject was assessed by microneutralization assay against the different variants. RESULTS In total, 32 SARS-CoV-2-positive children, 16 (50%) females, with a median age of 1.4 years (range: 1 day-13 years), were enrolled. The D614G amino acid substitution was detected in all isolated and amplified viral strains. Of the 32 isolates, 4 (12.5%) carried a nonsynonymous nucleotide mutation leading to the N439K (3/4), lineage B.1.258 (∆H69/∆V70), and S477N (1/4) substitution. In 7/32 (21.8%) isolates, amino acid substitutions allowed the identification of a delta variant, lineage B.1.617.2-AY.43, and in 1/32 (3.1%), the Omicron strain (B.1.1.529.BA1) was identified. The growth curves of the B.1, B.1.258 (∆H69/∆V70), B.1.617.2-AY.43, and B.1.1.529.BA1 variants did not show any significant differences. A reduction in the serum neutralizing activity against B.1.258 (∆H69/∆V70) only in a vaccinated subject (1.7-fold difference), against B.1.617.2-AY.43 in a vaccinated subject and in recovered patients (12.7 and ≥2.5-fold differences, respectively), and against B.1.1.529.BA1 variant (57.6- and 1.4-fold differences in vaccinated and in vaccinated and recovered patients) were observed compared to the B.1 variant. CONCLUSIONS SARS-CoV-2 variants carrying the B.1.258 (∆H69/∆V70) and S477N substitutions were reported here in a pediatric population for the first time. Although the growth rates of the isolated strains (B.1.258, B.1.617.2-AY.43, B.1.1.529.BA1) did not differ from the B.1 variant, neutralizing activity of the sera from vaccinated subjects significantly decreased against these variants. Attention should be devoted to the pediatric population to prevent the spread of new SARS-CoV-2 variants in an unvaccinated and predominantly naive population.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.D.); (L.S.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.D.); (L.S.)
| | - Carolina Cason
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
| | - Giuseppina Campisciano
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
| | - Paolo Kunderfranco
- Bioinformatics Unit, Humanitas Clinical and Research Center—IRCCS, Via Alessandro Manzoni 56, 20089 Milan, Italy;
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milano, Via Pascal 36, 20133 Milan, Italy; (E.P.); (C.G.)
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milano, Via Pascal 36, 20133 Milan, Italy; (E.P.); (C.G.)
| | - Vincenzo Petix
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
| | - Pasquale Ferrante
- Istituto Clinico Città Studi, Via Niccolò Jommelli, 17, 20131 Milan, Italy;
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.D.); (L.S.)
| | - Manola Comar
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
- Department of Medical Sciences (DSM), University of Trieste, 34129 Trieste, Italy
| |
Collapse
|
44
|
Ariën KK, Heyndrickx L, Michiels J, Vereecken K, Van Lent K, Coppens S, Willems B, Pannus P, Martens GA, Van Esbroeck M, Goossens ME, Marchant A, Bartholomeeusen K, Desombere I. Three doses of BNT162b2 vaccine confer neutralising antibody capacity against the SARS-CoV-2 Omicron variant. NPJ Vaccines 2022; 7:35. [PMID: 35260578 PMCID: PMC8904765 DOI: 10.1038/s41541-022-00459-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
We report the levels of neutralising antibodies against Wuhan, Delta and Omicron variants in unimmunized infected (group 1), immunised and boosted (group 2) and infected immunised and boosted (group 3) adult individuals. Our observations support the rapid administration of a booster vaccine dose to prevent infection and disease caused by Omicron.
Collapse
Affiliation(s)
- Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Katleen Vereecken
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kurt Van Lent
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Sandra Coppens
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Betty Willems
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Pieter Pannus
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Geert A Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Arnaud Marchant
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Isabelle Desombere
- Immune response, SD Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| |
Collapse
|
45
|
van den Hoogen LL, Smits G, van Hagen CC, Wong D, Vos ER, van Boven M, de Melker HE, van Vliet J, Kuijer M, Woudstra L, Wijmenga-Monsuur AJ, GeurtsvanKessel CH, Stoof SP, Reukers D, Wijsman LA, Meijer A, Reusken CB, Rots NY, van der Klis FR, van Binnendijk RS, den Hartog G. Seropositivity to Nucleoprotein to detect mild and asymptomatic SARS-CoV-2 infections: A complementary tool to detect breakthrough infections after COVID-19 vaccination? Vaccine 2022; 40:2251-2257. [PMID: 35287986 PMCID: PMC8904156 DOI: 10.1016/j.vaccine.2022.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
46
|
Zattoni IF, Huergo LF, Gerhardt ECM, Nardin JM, Dos Santos AMF, de Moraes Rego FG, Picheth G, Moure VR, Valdameri G. Multiplexed flow cytometric approach for detection of anti-SARS-CoV-2 IgG, IgM and IgA using beads covalently coupled to the nucleocapsid protein. Lett Appl Microbiol 2022; 74:863-872. [PMID: 35148433 PMCID: PMC9115257 DOI: 10.1111/lam.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Flow cytometry has emerged as a promising technique for detection of SARS‐CoV‐2 antibodies. In this study, we developed an innovative strategy for simultaneous detection of immunoglobulin G (IgG), IgM and IgA. The SARS‐CoV‐2 nucleocapsid protein was covalently bound to functional beads surface applying sulpho‐SMCC chemistry. BUV395 anti‐IgG, BB515 anti‐IgM, biotinylated anti‐IgA1/IgA2 and BV421 streptavidin were used as fluorophore conjugated secondary antibodies. Serum and antibodies reaction conditions were optimized for each antibody isotype detection and a multiplexed detection assay was developed. This new cell‐free assay efficiently discriminate COVID‐19 negative and positive samples. The simultaneous detection of IgG, IgM and IgA showed a sensitivity of 88·5–96·2% and specificity of 100%. This novel strategy opens a new avenue for flow cytometry‐based diagnosis.
Collapse
Affiliation(s)
- Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Luciano F Huergo
- Setor Litoral, Federal University of Paraná, 83260-000, Matinhos, PR, Brazil
| | - Edileusa C M Gerhardt
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, 80060-000, Curitiba, PR, Brazil
| | | | | | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil.,Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil.,Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| |
Collapse
|
47
|
A multiplex serological assay for the characterization of IgG immune response to SARS-CoV-2. PLoS One 2022; 17:e0262311. [PMID: 35025936 PMCID: PMC8757954 DOI: 10.1371/journal.pone.0262311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
In the fight against SARS-COV-2, the development of serological assays based on different antigenic domains represent a versatile tool to get a comprehensive picture of the immune response or differentiate infection from vaccination beyond simple diagnosis. Here we use a combination of the Nucleoprotein (NP), the Spike 1 (S1) and Spike 2 (S2) subunits, and the receptor binding domain (RBD) and N-terminal domain (NTD) of the Spike antigens from the CoViDiag® multiplex IgG assay, to follow the immune response to SARS-CoV-2 infection over a long time period and depending on disease severity. Using a panel of 209 sera collected from 61 patients up to eight months after infection, we observed that most patients develop an immune response against multiple viral epitope, but anti-S2 antibodies seemed to last longer. For all the tested IgGs, we have found higher responses for hospitalized patients than for non-hospitalized ones. Moreover the combination of the five different IgG responses increased the correlation to the neutralizing antibody titers than if considered individually. Multiplex immunoassays have the potential to improve diagnostic performances, especially for ancient infection or mild form of the disease presenting weaker antibody responses. Also the combined detection of anti-NP and anti-Spike-derived domains can be useful to differentiate vaccination from viral infection and accurately assess the antibody potential to neutralize the virus.
Collapse
|
48
|
Mariën J, Ceulemans A, Bakokimi D, Lammens C, Ieven M, Heytens S, De Sutter A, Verbakel JY, Van den Bruel A, Goossens H, Van Damme P, Ariën KK, Coenen S. Prospective SARS-CoV-2 cohort study among primary health care providers during the second COVID-19 wave in Flanders, Belgium. Fam Pract 2022; 39:92-98. [PMID: 34448859 DOI: 10.1093/fampra/cmab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Primary health care providers (PHCPs) are assumed to be at high risk of a COVID-19 infection, as they are exposed to patients with usually less personal protective equipment (PPE) than other frontline health care workers (HCWs). Nevertheless, current research efforts focussed on the assessment of COVID-19 seroprevalence rates in the general population or hospital HCWs. OBJECTIVE We aimed to determine the seroprevalence in PHCPs during the second SARS-CoV-2 wave in Flanders (Belgium) and compared it to the seroprevalence in the general population. We also assessed risk factors, availability of PPE and attitudes towards the government guidelines over time. METHODS A prospective cohort of PHCPs (n = 698), mainly general practitioners, was asked to complete a questionnaire and self-sample capillary blood by finger-pricking at five distinct points in time (June-December 2020). We analysed the dried blood spots for IgG antibodies using a Luminex multiplex immunoassay. RESULTS The seroprevalence of PHCPs remained stable between June and September (4.6-5.0%), increased significantly from October to December (8.1-13.4%) and was significantly higher than the seroprevalence of the general population. The majority of PHCPs were concerned about becoming infected, had adequate PPE and showed increasing confidence in government guidelines. CONCLUSIONS The marked increase in seroprevalence during the second COVID-19 wave shows that PHCPs were more at risk during the second wave compared to the first wave in Flanders. This increase was only slightly higher in PHCPs than in the general population suggesting that the occupational health measures implemented provided sufficient protection when managing patients.
Collapse
Affiliation(s)
- Joachim Mariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ann Ceulemans
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Diana Bakokimi
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Stefan Heytens
- Centre for Family Medicine, Department of Public Health and Primary Care, University of Ghent, Ghent, Belgium
| | - An De Sutter
- Centre for Family Medicine, Department of Public Health and Primary Care, University of Ghent, Ghent, Belgium
| | - Jan Y Verbakel
- EPI-Centre, KU Leuven, Leuven, Belgium.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Samuel Coenen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Centre for General Practice, Department of Family Medicine & Population Health, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
49
|
Rodrigues JP, Junior HFDA. Efficiency of a Single well IgG, IgM and IgA Anti T. gondii Fluorimetric Assay for Pre-natal Screening for Congenital Toxoplasmosis. J Fluoresc 2022; 32:661-667. [PMID: 35032281 DOI: 10.1007/s10895-022-02892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Toxoplasmosis, worldwide protozoan disease, is usually benign, except when acute disease occurs in pregnant women, resulting in fetal infection with deaths or high morbidity after birth. Treatment blocks fetal infection or damage after infection, imposing a quick and effective diagnosis. Maternal infection is mostly asymptomatic thus regular serology are the main tool for detect seroconversion and acute infection in prenatal care. Screening test for specific anti T. gondii IgG, IgM and IgA must be quick, cheaper and available for the prenatal care. Fluorescent solid phase assays appears as a good alternative as they allow one well detection of IgG and IgM aside to allow high throughput in 384 wells. Here, we standardize and analyze a single well anti-T. gondii IgG, IgM and IgA immunosorbent fluorescent assay in a large sample of a public hospital. We construct conjugates for each immunoglobulin with specific fluorophores, which allows concomitant detection in a microplate fluorimeter, with stability and reproducibility, allowing cheaper 384 wells use. Tested in our 600 mother samples from a large public hospital, they presented the same reactivity as standard routine tests, but with adequate IgM and IgA screening, as adequately standardized in house ELISA, while the design of most commercial assays give false positive results. The few TFISA positive IgG, IgM and IgA samples also had low avidity IgG, confirming recent infection. TFISA will help a screening toxoplasmosis in pregnancy program in large cities, with , allowing testing large numbers of samples at low cost and must be considered for other serological purposes.
Collapse
Affiliation(s)
- Jaqueline Polizeli Rodrigues
- Lab. Protozoology, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Pathology Department, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Heitor Franco de Andrade Junior
- Lab. Protozoology, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil.
- Pathology Department, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
50
|
Sood N, Pernet O, Lam CN, Klipp A, Kotha R, Kovacs A, Hu H. Seroprevalence of Antibodies Specific to Receptor Binding Domain of SARS-CoV-2 and Vaccination Coverage Among Adults in Los Angeles County, April 2021: The LA Pandemic Surveillance Cohort Study. JAMA Netw Open 2022; 5:e2144258. [PMID: 35050360 PMCID: PMC8777558 DOI: 10.1001/jamanetworkopen.2021.44258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Neeraj Sood
- Sol Price School of Public Policy, University of Southern California, Los Angeles
- Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles
- Keck School of Medicine, University of Southern California, Los Angeles
| | - Olivier Pernet
- Keck School of Medicine, University of Southern California, Los Angeles
| | - Chun Nok Lam
- Keck School of Medicine, University of Southern California, Los Angeles
| | - Angela Klipp
- Sol Price School of Public Policy, University of Southern California, Los Angeles
- Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles
| | - Rani Kotha
- Sol Price School of Public Policy, University of Southern California, Los Angeles
- Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles
| | - Andrea Kovacs
- Keck School of Medicine, University of Southern California, Los Angeles
| | - Howard Hu
- Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|