1
|
Hypoxia-inducible factor signaling in vascular calcification in chronic kidney disease patients. J Nephrol 2022; 35:2205-2213. [PMID: 36208406 DOI: 10.1007/s40620-022-01432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/02/2022] [Indexed: 10/10/2022]
Abstract
Chronic kidney disease (CKD) affects approximately 15% of the adult population in high-income countries and is associated with significant comorbidities, including increased vascular calcifications which is associated with a higher risk for cardiovascular events. Even though the underlying pathophysiology is unclear, hypoxia-inducible factor (HIF) signaling appears to play a central role in inflammation, angiogenesis, fibrosis, cellular proliferation, apoptosis and vascular calcifications which is influenced by multiple variables such as iron deficiency anemia, serum phosphorus and calcium levels, fibroblast growth factor-23 (FGF-23) and Klotho. Along with the growing understanding of the pathology, potential therapeutic alternatives have emerged including HIF stabilizers and SGLT-2 inhibitors. The aim of this review is to discuss the role of HIF signaling in the pathophysiology of vascular calcification in CKD patients and to identify potential therapeutic approaches.
Collapse
|
2
|
Migdalski A, Jawien A. New insight into biology, molecular diagnostics and treatment options of unstable carotid atherosclerotic plaque: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1207. [PMID: 34430648 PMCID: PMC8350668 DOI: 10.21037/atm-20-7197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
Indications for intervention in hemodynamically relevant carotid artery stenosis (carotid endarterectomy or stenting) are primarily based on a degree of stenosis and symptomatology. To date the plaque vulnerability is rarely taken into account in clinical decision making although development of molecular imaging allows a better understanding of plaque biology and provides new techniques detecting potentially vulnerable plaque at risk. A significant number of reports describing the mechanisms of unstable plaque formation suggest that it is a multifactorial process. Inflammation, lipid accumulation, apoptosis, proteolysis, the thrombotic process and angiogenesis are among the main factors of carotid plaque destabilization. Although inflammation is a key process in development of plaque vulnerability, the hemostasis and neoangiogenesis should be regarded as equally important. Only a small group of asymptomatic patients may benefit from the invasive treatment and it remains a challenge to determine whether initially asymptomatic carotid plaque become unstable or vulnerable. Currently, the main task of research on atherosclerotic lesion imaging is focused on functional state of the plaque. The presence of one or more features such as stenosis progression, large plaque area, large juxta-luminal black area, plaque echolucency, intra-plaque hemorrhage, impaired cerebral vascular reserve and spontaneous embolization may indicate patients at higher risk for stroke suitable for revascularization. Treatment of carotid stenosis as one of the manifestations of generalized atherosclerosis requires a broad approach. Nowadays pharmacological treatment options for the atherosclerotic process are largely aimed at stimulating the plaque stabilization, but in symptomatic patients and selected asymptomatic patients, carotid plaque should be removed as a potential source of embolism.
Collapse
Affiliation(s)
- Arkadiusz Migdalski
- Department of Vascular Surgery and Angiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Arkadiusz Jawien
- Department of Vascular Surgery and Angiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
3
|
Wu X, Zhao Q, Chen Z, Geng YJ, Zhang W, Zhou Q, Yang W, Liu Q, Liu H. Estrogen inhibits vascular calcification in rats via hypoxia-induced factor-1α signaling. Vascular 2020; 28:465-474. [PMID: 32089109 PMCID: PMC7391482 DOI: 10.1177/1708538120904297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Calcification serves as a surrogate for atherosclerosis-associated vascular diseases, and coronary artery calcification is mediated by multiple pathogenic factors. Estrogen is a known factor that protects the arterial wall against atherosclerosis, but its role in the coronary artery calcification development remains largely unclear. This study tested the hypothesis that estrogen inhibits coronary artery calcification via the hypoxia-induced factor-1α pathway. METHODS Eight-week-old healthy female Sprague-Dawley rats were castrated, and vitamin D3 was administered orally to establish. Hypoxia-induced factor-1 inhibitor was administered to test its effect on vascular calcification and expression of bone morphogenetic protein 2 and runt-related transcription factor-2. Vascular smooth muscle cell calcification was induced with CaCl2 in rat aortic smooth muscle cells in the presence or absence of E2(17β-estradiol) and bone morphogenetic protein 2 siRNA intervention. RESULTS The estrogen levels in ovariectomized rats were significantly decreased, as determined by ELISA. Expression of hypoxia-induced factor-1α mRNA and protein was significantly increased in vascular cells with calcification as compared to those without calcification (p < 0.01). E2 treatment decreased the calcium concentration in vascular cell calcification and cell calcium nodules in vitro (p < 0.05). E2 also lowered the levels of hypoxia-induced factor-1α mRNA and protein (p < 0.01). Oral administration of the hypoxia-induced factor-1α inhibitor dimethyloxetane in castrated rats alleviated vascular calcification and expression of osteogenesis-related transcription factors, bone morphogenetic protein 2 and RUNX2 (p < 0.01). Finally, bone morphogenetic protein 2 siRNA treatment decreased the levels of p-Smad1/5/8 in A7r5 calcification cells (p < 0.01). CONCLUSION Estrogen deficiency enhances vascular calcification. Treatment with estrogen reduces the expression of hypoxia-induced factor-1α as well as vascular calcification in rats. The estrogen effects occur in a fashion dependent on hypoxia-induced factor-1α regulation of bone morphogenetic protein-2 and downstream Smad1/5/8.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Bone Morphogenetic Protein 2/genetics
- Bone Morphogenetic Protein 2/metabolism
- Cell Line
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Disease Models, Animal
- Estradiol/pharmacology
- Female
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Ovariectomy
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- Smad Proteins, Receptor-Regulated/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
Collapse
Affiliation(s)
- Xinhua Wu
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
- Yunnan Trans-plateau Cardiovascular Disease of Prevention and Treatment Research Center, Yunnan, China
- Institute of Trans-plateau Cardiovascular Disease Prevention and Treatment of Dali University, Dali, Yunnan, China
| | - Qiuyan Zhao
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Zhangrong Chen
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
- Yunnan Trans-plateau Cardiovascular Disease of Prevention and Treatment Research Center, Yunnan, China
- Institute of Trans-plateau Cardiovascular Disease Prevention and Treatment of Dali University, Dali, Yunnan, China
| | - Yong-Jian Geng
- Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis, McGovern School of Medicine, University of Texas Health Science Center at Houston, TX, USA
| | - Wanting Zhang
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Qingqing Zhou
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Wei Yang
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Quanyi Liu
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Hong Liu
- Department of Cardiology, First Affiliated Hospital of Dali University, Dali, Yunnan, China
- Yunnan Trans-plateau Cardiovascular Disease of Prevention and Treatment Research Center, Yunnan, China
- Institute of Trans-plateau Cardiovascular Disease Prevention and Treatment of Dali University, Dali, Yunnan, China
| |
Collapse
|
4
|
Sadaghianloo N, Contenti J, Dufies M, Parola J, Rouleau M, Lee S, Peyron J, Fabbri L, Hassen‐Khodja R, Pouysségur J, Bost F, Jean‐Baptiste E, Dardik A, Mazure NM. Co-culture of human fibroblasts, smooth muscle and endothelial cells promotes osteopontin induction in hypoxia. J Cell Mol Med 2020; 24:2931-2941. [PMID: 32032472 PMCID: PMC7077551 DOI: 10.1111/jcmm.14905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Department of Vascular SurgeryCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Julie Contenti
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Department of Emergency MedicineCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | | | - Julien Parola
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
| | | | - Shinrong Lee
- Department of Surgery and the Vascular Biology and Therapeutics ProgramYale UniversityNew HavenCTUSA
- Department of Vascular SurgeryVA Connecticut Healthcare SystemsWest HavenCTUSA
| | - Jean‐François Peyron
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
| | - Lucilla Fabbri
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Réda Hassen‐Khodja
- Department of Vascular SurgeryCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Jacques Pouysségur
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Centre Scientifique de Monaco (CSM)MonacoMonaco
| | - Frédéric Bost
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
| | - Elixène Jean‐Baptiste
- Department of Vascular SurgeryCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics ProgramYale UniversityNew HavenCTUSA
- Department of Vascular SurgeryVA Connecticut Healthcare SystemsWest HavenCTUSA
| | - Nathalie M. Mazure
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| |
Collapse
|
5
|
MacAskill MG, Newby DE, Tavares AAS. Frontiers in positron emission tomography imaging of the vulnerable atherosclerotic plaque. Cardiovasc Res 2019; 115:1952-1962. [PMID: 31233100 PMCID: PMC6872971 DOI: 10.1093/cvr/cvz162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rupture of vulnerable atherosclerotic plaques leading to an atherothrombotic event is the primary driver of myocardial infarction and stroke. The ability to detect non-invasively the presence and evolution of vulnerable plaques could have a huge impact on the future identification and management of atherosclerotic cardiovascular disease. Positron emission tomography (PET) imaging with an appropriate radiotracer has the potential to achieve this goal. This review will discuss the biological hallmarks of plaque vulnerability before going on to evaluate and to present PET imaging approaches which target these processes. The focus of this review will be on techniques beyond [18F]FDG imaging, some of which are clinically advanced, and others which are on the horizon. As inflammation is the primary driving force behind atherosclerotic plaque development, we will predominantly focus on approaches which either directly, or indirectly, target this process.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Honda-Kohmo K, Hutcheson R, Innes KE, Conway BN. Perfluoroalkyl substances are inversely associated with coronary heart disease in adults with diabetes. J Diabetes Complications 2019; 33:407-412. [PMID: 30928231 PMCID: PMC6511468 DOI: 10.1016/j.jdiacomp.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023]
Abstract
AIMS Perfluoroalkyl substances (PFAS) are environmentally and biologically persistent synthetic environmental contaminants linked to adverse health outcomes. Though null to modest inverse relationships between PFAS and coronary heart disease (CHD) have been reported, studies regarding relationships in high risk populations such as those with diabetes are sparse. We investigated the relationship of PFAS with CHD in persons with diabetes. METHODS Data on 5270 adults, aged ≥20 years, with diabetes were obtained from the C8 Health Project. Four PFAS were investigated separately: perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononanoic acid (PFNA). RESULTS In logistic regression analyses adjusting for age, sex, diabetes duration, BMI, smoking, lipids, WBC, CRP, eGFR, uric acid, hemoglobin and iron, all PFAS were inversely associated with CHD, ORs (95% CIs): PFHxS; 0.72 (0.65-0.79), PFOA; 0.90 (0.81-0.96), PFOS; 0.90 (0.81-0.99), PFNA; 0.88 (0.76-1.02). Stratification by chronic kidney disease status revealed similar inverse relationships for those with and without chronic kidney disease. CONCLUSIONS In this cross-sectional study of over 5000 adults with diabetes, PFAS showed inverse associations with CHD. These findings may, if confirmed in future studies, provide new physiologic understanding of CHD prevention strategies.
Collapse
Affiliation(s)
- Kyoko Honda-Kohmo
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Robert Hutcheson
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
| | - Kim E Innes
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
| | - Baqiyyah N Conway
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA; Department of Community Health, University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
7
|
Bertrand MJ, Tardif JC. Inflammation and beyond: new directions and emerging drugs for treating atherosclerosis. Expert Opin Emerg Drugs 2016; 22:1-26. [PMID: 27927063 DOI: 10.1080/14728214.2017.1269743] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cardiovascular (CV) atherosclerotic disease remains the leading cause of morbidity and mortality worldwide, despite the advances in contemporary therapies. Inflammation is an important process in atherosclerosis, leading to plaque rupture and acute coronary syndrome. Although statin therapy has substantially reduced CV events in primary and secondary prevention, many treated patients will have recurrent adverse CV events despite the standard of care. Thus, drug development aiming to target inflammatory pathways seems a promising avenue for novel therapies in atherosclerosis. Areas covered: Statins have been extensively studied and are the most effective lipid-lowering drugs available for CV prevention. Novel anti-inflammatory drugs are being tested in Phase II and III trials, targeting pathways like interleukin-1, leukotrienes, TNF-α, P-selectin, CCL2-CCR2 and MAP Kinase. Expert opinion: Novel anti-inflammatory therapies seem promising additions to address the residual CV risk present despite the current standard of care, but large clinical trials have not yet shown beneficial effects on clinical events. PCSK9 inhibitors have been shown to substantially reduce LDL-C, however their long-term safety and effects on CV risk are currently being investigated. Pharmacogenomics holds great potential in future lipid trials, enabling the identification of patients who will respond with greater benefits and smaller risk to therapies and to decrease failure rates in drug development, as genotype-dependent effects of the CETP inhibitor dalcetrapib were shown in the dal-OUTCOMES and dal-PLAQUE-2 trials.
Collapse
Affiliation(s)
- Marie-Jeanne Bertrand
- a Montreal Heart Institute, Department of medicine , Université de Montréal , Montreal , Canada
| | - Jean-Claude Tardif
- a Montreal Heart Institute, Department of medicine , Université de Montréal , Montreal , Canada
| |
Collapse
|
8
|
Quantitative analysis of the expression of caspase 3 and caspase 9 in different types of atherosclerotic lesions in the human aorta. Exp Mol Pathol 2015; 99:1-6. [DOI: 10.1016/j.yexmp.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/15/2023]
|
9
|
Abstract
The view of atherosclerosis as an inflammatory disease has emerged from observations of immune activation and inflammatory signalling in human atherosclerotic lesions, from the definition of inflammatory biomarkers as independent risk factors for cardiovascular events, and from evidence of low-density lipoprotein-induced immune activation. Studies in animal models of hyperlipidaemia have also supported the beneficial effects of countering inflammation to delay atherosclerosis progression. Specific inflammatory pathways with relevance to human diseases have been identified, and inhibitors of these pathways are either already in use for the treatment of other diseases, or are under development and evaluation. These include 'classic' drugs (such as allopurinol, colchicine, and methotrexate), biologic therapies (for example tumour necrosis factor inhibitors and IL-1 neutralization), as well as targeting of lipid mediators (such as phospholipase inhibitors and antileukotrienes) or intracellular pathways (inhibition of NADPH oxidase, p38 mitogen-activated protein kinase, or phosphodiesterase). The evidence supporting the use of anti-inflammatory therapies for atherosclerosis is mainly based on either observational or small interventional studies evaluating surrogate markers of disease activity. Nevertheless, these data are crucial to understand the role of inflammation in atherosclerosis, and to design randomized controlled studies to evaluate the effect of specific anti-inflammatory strategies on cardiovascular outcomes.
Collapse
Affiliation(s)
- Magnus Bäck
- Experimental Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, L8:03, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Göran K Hansson
- Experimental Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, L8:03, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
10
|
Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr 2015; 3:33. [PMID: 25964891 PMCID: PMC4408850 DOI: 10.3389/fped.2015.00033] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications of a new method for therapeutic angiogenesis using HIF stabilizers.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine , New Haven, CT , USA ; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
11
|
Pérez de Ciriza C, Lawrie A, Varo N. Osteoprotegerin in Cardiometabolic Disorders. Int J Endocrinol 2015; 2015:564934. [PMID: 26078757 PMCID: PMC4442310 DOI: 10.1155/2015/564934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Osteoprotegerin (OPG), a glycoprotein traditionally implicated in bone remodelling, has been recently related to cardiovascular disease (CVD). Human studies show a positive relationship between circulating OPG, vascular damage, and CVD, and as such OPG has emerged as a potential biomarker for CVD. This review focuses on the relationship between circulating OPG and different endocrine cardiometabolic alterations such as type 1 and 2 diabetes. The association of OPG with diabetic complications (neuropathy, nephropathy, or retinopathy) as well as with atherosclerosis, coronary artery calcification, morbidity, and mortality is pointed out. Moreover, OPG modulation by different treatments is also established. Besides, other associated diseases such as obesity, hypertension, and metabolic syndrome, which are known cardiovascular risk factors, are also considered.
Collapse
Affiliation(s)
- C. Pérez de Ciriza
- Department of Clinical Chemistry, Clínica Universidad de Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - A. Lawrie
- Department of Cardiovascular Science, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - N. Varo
- Department of Clinical Chemistry, Clínica Universidad de Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
- *N. Varo:
| |
Collapse
|
12
|
The effect of ASK1 on vascular permeability and edema formation in cerebral ischemia. Brain Res 2014; 1595:143-55. [PMID: 25446452 DOI: 10.1016/j.brainres.2014.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/24/2023]
Abstract
Apoptosis signal-regulating kinase-1 (ASK1) is the mitogen-activated protein kinase kinase kinase (MAPKKK) and participates in the various central nervous system (CNS) signaling pathways. In cerebral ischemia, vascular permeability in the brain is an important issue because regulation failure of it results in edema formation and blood-brain barrier (BBB) disruption. To determine the role of ASK1 on vascular permeability and edema formation following cerebral ischemia, we first investigated ASK1-related gene expression using microarray analyses of ischemic brain tissue. We then measured protein levels of ASK1 and vascular endothelial growth factor (VEGF) in brain endothelial cells after hypoxia injury. We also examined protein expression of ASK1 and VEGF, edema formation, and morphological alteration through cresyl violet staining in ischemic brain tissue using ASK1-small interference RNA (ASK1-siRNA). Finally, immunohistochemistry was performed to examine VEGF and aquaporin-1 (AQP-1) expression in ischemic brain injury. Based on our findings, we propose that ASK1 is a regulating factor of vascular permeability and edema formation in cerebral ischemia.
Collapse
|
13
|
Pérez de Ciriza C, Moreno M, Restituto P, Bastarrika G, Simón I, Colina I, Varo N. Circulating osteoprotegerin is increased in the metabolic syndrome and associates with subclinical atherosclerosis and coronary arterial calcification. Clin Biochem 2014; 47:272-8. [PMID: 25218813 DOI: 10.1016/j.clinbiochem.2014.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/06/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
CONTEXT The relationship between osteoprotegerin (OPG) a glycoprotein related to bone metabolism and the metabolic syndrome (MS) has not been established. OBJECTIVE The aim of this study is to evaluate OPG concentration in patients with MS and its association with subclinical atherosclerosis and coronary arterial calcification (CAC). MATERIALS/METHODS The study included 238 asymptomatic patients. MS was diagnosed according to the NCEP/ATPIII guidelines. OPG was measured by ELISA. All subjects underwent ultrasonography of the common carotid arteries to measure intima-media thickness (IMT) and evaluate the presence of atheroma plaques. In a subgroup (n=39) CAC was quantified by ECG-triggered cardiac computed tomography. Adipose tissue was excised from 25 patients and OPG expression by RT-PCR and immunohistochemistry was studied. RESULTS Patients with the MS (n=60) had higher OPG than patients without (n=178) (p<0.05). OPG correlated with IMT (r=0.2, p=0.005) and patients with atheroma plaques had higher OPG (p=0.008) and also those with coronary artery calcification (p<0.05). OPG expression was confirmed in adipose tissue (n=12) and the expression was significantly higher in patients with MS than in those without (p=0.003). CONCLUSIONS This study shows that OPG may potentially be a biomarker for cardiovascular risk/damage in the MS and identifies adipose tissue as a potential source of OPG.
Collapse
Affiliation(s)
| | - María Moreno
- Clinical Chemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Patricia Restituto
- Clinical Chemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Isabel Simón
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Inmaculada Colina
- Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Nerea Varo
- Clinical Chemistry Department, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
14
|
Shin N, Kim H, Kim HJ, Han M, Lee S, Jo H, Hyuk H, Chin HJ. A mild decrease of renal function is related to increased hemoglobin level during 5-year follow-up period. Korean J Intern Med 2014; 29:341-51. [PMID: 24851069 PMCID: PMC4028524 DOI: 10.3904/kjim.2014.29.3.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/27/2013] [Accepted: 07/10/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS We analyzed chronological changes in hemoglobin according to renal function changes over a 5-year follow-up period. METHODS We enrolled 5,266 adults with a glomerular filtration rate (GFR) ≥ 60 mL/min/1.73 m(2) at an initial examination at a routine health check-up; a follow-up examination was conducted 5 years later. We categorized the subjects according to GFR ratio (groups 1, 2, and 3, defined as GFRratio ≥ 1.00, 0.75 to 0.99, and < 0.75, respectively). RESULTS The mean hemoglobin level in subjects with a GFR of 60 to 74 was higher than in those with a GFR of 75 to 89 or ≥ 90 mL/min/1.73 m(2) at the initial examination (all p < 0.001). Among females and males, the frequencies of increased hemoglobin were 46.8% and 40.6% in the GFRratio group 1, 52.4% and 46.1% in group 2, and 59.6% and 52.5% in group 3 over the 5-year period, respectively (all p < 0.001). With multiple logistic regression, group 3 showed 1.594-fold (95% confidence interval [CI], 1.127 to 2.225) and 1.353-fold (95% CI, 1.000 to 1.830) higher likelihoods of increased hemoglobin over the 5-year follow-up period in females and males, respectively. The estimated difference in hemoglobin level was highest in group 3 in both genders. These findings were more evident in subgroups without metabolic syndrome, diabetes mellitus, hypertension, or GFR less than 90 mL/min/1.73 m(2). CONCLUSIONS Among a population with GFR ≥ 60 mL/min/1.73 m(2), a mild decrease in GFR over a 5-year follow-up period was associated with an increase in hemoglobin levels.
Collapse
Affiliation(s)
- Nara Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyunsuk Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyo Jin Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Miyeun Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyungah Jo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Huh Hyuk
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Renal Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
15
|
Christoph M, Ibrahim K, Hesse K, Augstein A, Schmeisser A, Braun-Dullaeus RC, Simonis G, Wunderlich C, Quick S, Strasser RH, Poitz DM. Local inhibition of hypoxia-inducible factor reduces neointima formation after arterial injury in ApoE-/- mice. Atherosclerosis 2014; 233:641-647. [PMID: 24561491 DOI: 10.1016/j.atherosclerosis.2014.01.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hypoxia plays a pivotal role in development and progression of restenosis after vascular injury. Under hypoxic conditions the hypoxia-inducible factors (HIFs) are the most important transcription factors for the adaption to reduced oxygen supply. Therefore the aim of the study was to investigate the effect of a local HIF-inhibition and overexpression on atherosclerotic plaque development in a murine vascular injury model. METHODS AND RESULTS After wire-induced vascular injury in ApoE-/- mice a transient, local inhibition of HIF as well as an overexpression approach of the different HIF-subunits (HIF-1α, HIF-2α) by adenoviral infection was performed. The local inhibition of the HIF-pathway using a dominant-negative mutant dramatically reduced the extent of neointima formation. The diminished plaque size was associated with decreased expression of the well-known HIF-target genes vascular endothelial growth factor-A (VEGF-A) and its receptors Flt-1 and Flk-1. In contrast, the local overexpression of HIF-1α and HIF-2α further increased the plaque size after wire-induced vascular injury. CONCLUSIONS Local HIF-inhibition decreases and HIF-α overexpression increases the injury induced neointima formation. These findings provide new insight into the pathogenesis of atherosclerosis and may lead to new therapeutic options for the treatment of in stent restenosis.
Collapse
MESH Headings
- Adenoviridae
- Animals
- Apolipoproteins E/deficiency
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Coronary Restenosis
- Disease Models, Animal
- Endothelium, Vascular/injuries
- Femoral Artery/injuries
- Femoral Artery/pathology
- Genetic Vectors
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Male
- Mice
- Mice, Knockout
- Neointima/prevention & control
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/prevention & control
- Signal Transduction
- Transduction, Genetic
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-1/biosynthesis
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/genetics
Collapse
Affiliation(s)
- Marian Christoph
- University of Dresden, Heart Center, University Hospital, Germany
| | - Karim Ibrahim
- University of Dresden, Heart Center, University Hospital, Germany
| | - Kathleen Hesse
- University of Dresden, Heart Center, University Hospital, Germany
| | - Antje Augstein
- University of Dresden, Heart Center, University Hospital, Germany
| | | | | | - Gregor Simonis
- University of Dresden, Heart Center, University Hospital, Germany
| | | | - Silvio Quick
- University of Dresden, Heart Center, University Hospital, Germany
| | - Ruth H Strasser
- University of Dresden, Heart Center, University Hospital, Germany
| | - David M Poitz
- University of Dresden, Heart Center, University Hospital, Germany.
| |
Collapse
|
16
|
Gratas-Delamarche A, Derbré F, Vincent S, Cillard J. Physical inactivity, insulin resistance, and the oxidative-inflammatory loop. Free Radic Res 2013; 48:93-108. [PMID: 24060092 DOI: 10.3109/10715762.2013.847528] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epidemiological data indicate that physical inactivity, a main factor of global energetic imbalance, is involved in the worldwide epidemic of obesity and metabolic disorders such as insulin resistance. Although the complex pathogenesis of insulin resistance is not fully understood, literature data accumulated during the past decades clearly indicate that the activation of the oxidative-inflammatory loop plays a major role. By activating the oxidative-inflammatory loop in insulin-sensitive tissues, fat gain and adipose tissue dysfunction likely contribute to induce insulin resistance during chronic and prolonged physical inactivity. However, in the past years, evidence has emerged showing that early insulin resistance also occurs after very short-term exposure to physical inactivity (1-7 days) without any fat gain or energetic imbalance. The possible role of liver disturbances or endothelial dysfunction is suggested, but further studies are necessary to really conclude. Inactive skeletal muscle probably constitutes the primary triggering tissue for the development of early insulin resistance. In the present review, we discuss on the current knowledge about the effect of physical inactivity on whole-body and peripheral insulin sensitivity, and how local inflammation and oxidative stress arising with physical inactivity could potentially induce insulin resistance. We assume that early muscle insulin resistance allows the excess nutrients to shift in the storage tissues to withstand starvation through energy storage. We also consider when chronic and prolonged, physical inactivity over an extended period of time is an underestimated contributor to pathological insulin resistance and hence indirectly to numerous chronic diseases.
Collapse
Affiliation(s)
- A Gratas-Delamarche
- University Rennes 2 - ENS Cachan - Antenne de Bretagne, Laboratory "Movement, Sport and Health Sciences" (M2S) , Rennes , France
| | | | | | | |
Collapse
|
17
|
Rozalski R, Migdalski A, Gackowski D, Guz J, Siomek A, Foksinski M, Szpila A, Zarakowska E, Majer M, Jawien A, Olinski R. Does morphology of carotid plaque depend on patient's oxidative stress? Clin Biochem 2013; 46:1030-1035. [PMID: 23726810 DOI: 10.1016/j.clinbiochem.2013.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/24/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This study explored the relationship between oxidative stress biomarkers and stability of carotid plaque. We decided to analyze the broad range of parameters describing oxidative stress in patients with carotid stenosis. DESIGN AND METHODS 124 consecutive patients undergoing carotid endarterectomy were enrolled in the study group. The control group consisted of 49 patients without symptoms of atherosclerosis. The stability of carotid plaques was assessed using GSM (gray-scale median) scoring system and the study group was divided into three subgroups according to echogenicity of the plaque. The following parameters of oxidative stress/DNA damage were analyzed: i) urinary excretion of the products of oxidative DNA damage repair; ii) the background level of 8-oxo-7,8-dihydro-2'-deoxyguanosine in leukocytes' DNA and in atherosclerotic plaques; and iii) the concentrations of antioxidant vitamins, uric acid and C-reactive protein in plasma. RESULTS Oxidative stress (described by redox status) was higher in the patient group than in the control group. There is a correlation between oxidative stress of the patients and stability of the plaque, echolucent plaques (GSM<25) being associated with the highest antioxidant level and lowest excretion of DNA repair markers. CONCLUSIONS The plaque formation/morphology may depend on local environment and is independent of oxidative stress/inflammation observed on the level of the whole body.
Collapse
Affiliation(s)
- Rafal Rozalski
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland.
| | - Arkadiusz Migdalski
- Department of Surgery, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Jolanta Guz
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Agnieszka Siomek
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Marek Foksinski
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Marcin Majer
- Department of Angiology, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Arkadiusz Jawien
- Department of Surgery, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Nicolaus Copernicus University in Torun, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
18
|
Sternberg Z, Ghanim H, Gillotti KM, Tario JD, Munschauer F, Curl R, Noor S, Yu J, Ambrus JL, Wallace P, Dandona P. Flow cytometry and gene expression profiling of immune cells of the carotid plaque and peripheral blood. Atherosclerosis 2013; 229:338-47. [PMID: 23880185 DOI: 10.1016/j.atherosclerosis.2013.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/08/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The relative contribution of the local vs. peripheral inflammation to the atherothrombotic processes is unknown. We compared the inflammatory status of the immune cells of the carotid plaque with similar cells in peripheral circulation of patients with advanced carotid disease (PCDs). METHODS Mononuclear cells (MNCs) were extracted from carotid endarterectomy (CEA) samples by enzymatic digestion and subsequent magnetic cell sorting. The cell surface antigenic expressions, and mRNA expression levels were compared between CEA MNCs and peripheral MNCs, using flow cytometry and RT-PCR techniques. RESULTS The percentages of resting MNCs were lower, and activated MNCs, particularly monocytes, were higher in the CEAMNCs, as compared to the peripheral MNCs. The percentages of activated T cells and B cells were higher in the peripheral MNCs of PCDs, than in healthy controls (HCs), but the percentages of activated monocytes did not differ between the two groups. The expression levels of both pro-inflammatory/pro-thrombotic (P(38), JNKB-1, Egr-1 PAI-1, MCP-1, TF, MMP-9, HMGB-1, TNF-α, mTOR) and anti-inflammatory (PPAR-γ, TGF-β) mediators were significantly higher in the CEA MNCs as compared to the peripheral MNCs. Furthermore, MMP-9 and PPAR-γ expression levels were higher in the peripheral MNCs of PCDs than HCs. CONCLUSION The inflammatory status is higher in the immune cells of the carotid plaque, as compared to those cells in the peripheral blood. The altered expression levels of both pro-inflammatory/pro-thrombotic and anti-inflammatory mediators in the milieu of the plaque suggest that the balance between these various mediators may play a key role in carotid disease progression.
Collapse
|
19
|
Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 2013; 58:219-30. [PMID: 23643279 DOI: 10.1016/j.jvs.2013.02.240] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/11/2013] [Accepted: 02/16/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hypoxia may contribute to the pathogenesis of various diseases of the vascular wall. Hypoxia-inducible factors (HIFs) are nuclear transcriptional factors that regulate the transcription of genes that mediate cellular and tissue homeostatic responses to altered oxygenation. This article reviews the published literature on and discusses the role of the HIF pathway in diseases involving the vascular wall, including atherosclerosis, arterial aneurysms, pulmonary hypertension, vascular graft failure, chronic venous diseases, and vascular malformation. METHODS PubMed was searched with the terms "hypoxia-inducible factor" or "HIF" and "atherosclerosis," "carotid stenosis," "aneurysm," "pulmonary artery hypertension," "varicose veins," "venous thrombosis," "graft thrombosis," and "vascular malformation." RESULTS In atherosclerotic plaque, HIF-1α was localized in macrophages and smooth muscle cells bordering the necrotic core. Increased HIF-1α may contribute to atherosclerosis through alteration of smooth muscle cell proliferation and migration, angiogenesis, and lipid metabolism. The expression of HIF-1α is significantly elevated in aortic aneurysms compared with nonaneurysmal arteries. In pulmonary hypertension, HIF-1α contributes to the increase of intracellular K(+) and Ca(2+) leading to vasoconstriction of pulmonary smooth muscle cells. Alteration of the HIF pathway may contribute to vascular graft failure through the formation of intimal hyperplasia. In chronic venous disease, HIF pathway dysregulation contributes to formation of varicose veins and venous thromboembolism. However, whether the activation of the HIF pathway is protective or destructive to the venous wall is unclear. Increased activation of the HIF pathway causes aberrant expression of angiogenic factors contributing to the formation and maintenance of vascular malformations. CONCLUSIONS Pathologic vascular wall remodelling of many common diseases of the blood vessels has been found to be associated with altered activity of the HIF pathway. Therefore, understanding the role of the HIF pathway in diseases of the vascular wall is important to identify novel therapeutic strategies in the management of these pathologies.
Collapse
Affiliation(s)
- Chung S Lim
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Faculty of Medicine, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Kim YC, Koo HS, Ahn SY, Oh SW, Kim S, Na KY, Chae DW, Kim S, Chin HJ. The low number of red blood cells is an important risk factor for all-cause mortality in the general population. TOHOKU J EXP MED 2013; 227:149-59. [PMID: 22729150 DOI: 10.1620/tjem.227.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Patients with advanced chronic kidney disease (CKD) show decreased hemoglobin levels. We aimed to verify the changes of red blood cell (RBC) number according to glomerular filtration rate (GFR) levels and its influence on the clinical outcome. With the data from routine health checkups of 114,496 adults, we grouped the subjects according to quartile levels of RBC number in each gender. Mortality data were from the National Statistical Office. RBC number was increased with decreasing GFR and/or the presence of a component of metabolic syndrome (MS) in subjects with GFR ≥ 50 ml/min/1.73 m². The estimated mean RBC number of subjects with GFR 89-50 ml/min/1.73 m² was higher compared to those with GFR ≥ 100 ml/min/1.73 m² by ANCOVA. In men, the death rate was the highest in the 1st quartile group (1Q) of RBC number (1.22%), followed by the 2nd quartile group (2Q, 0.42%), the 3rd quartile group (3Q, 0.39%), and the 4th quartile group (4Q, 0.29%) (p < 0.001). The hazard ratio (HR) of death in 2Q, 3Q and 4Q was 0.446, 0.580, and 0.440, respectively, compared to 1Q (p < 0.001). Among men in 1Q group, subjects with hemoglobin < 14.0 g/dL showed higher mortality rate than those with hemoglobin 14.0-14.9 g/dL or ≥ 15.0 g/dL (2.3% : 0.8% : 1.1%, respectively, p < 0.001). In conclusion, the RBC number was increased according to declines of GFR in the range of GFR ≥ 50 ml/min/1.73 m² and was an important risk factor for mortality.
Collapse
Affiliation(s)
- Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hopsital
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shiizaki S, Naguro I, Ichijo H. Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Adv Biol Regul 2013; 53:135-44. [PMID: 23031789 DOI: 10.1016/j.jbior.2012.09.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 05/25/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase kinase family. ASK1 activates c-jun N-terminal kinase (JNK) and p38 in response to various stimuli such as oxidative stress, endoplasmic reticulum stress, infection and calcium influx. Under these stress conditions, ASK1 plays important roles in intracellular signaling pathways and biological functions. Diverse proteins are known to interact with ASK1 and regulate the activity of ASK1. However, activation mechanisms of ASK1 and ASK1-binding proteins which regulate the activity of ASK1 have not been completely understood. In this review, we focus on the recent findings on ASK1 and update the regulatory mechanisms of ASK1 activity.
Collapse
Affiliation(s)
- Shigeru Shiizaki
- Laboratory of Cell signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
22
|
Olesen M, Skov V, Mechta M, Mumm BH, Rasmussen LM. No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells. Mol Cell Endocrinol 2012; 362:149-56. [PMID: 22698523 DOI: 10.1016/j.mce.2012.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
Abstract
The aim of this study was to examine the effects of the OPG-RANKL-TRAIL system on proliferation, regulation of calcification-associated genes and calcification of human vascular smooth muscle cells (HVSMCs). Small interfering (si)RNA-mediated knockdown of OPG was followed by treatment of HVSMCs with recombinant RANKL or TRAIL. Regulation of a calcification-associated gene set was assayed by pathway analysis of microarray results. The lack of OPG in HVSMCs or treatment with RANKL or TRAIL did not affect proliferation of HVSMCs. In addition, OPG, RANKL or TRAIL did not modify the regulation of a calcification-associated gene set. Finally, in the long term calcification assay, we found that cells isolated from seven different human donors showed a great variability in the response to RANKL and insulin. However, overall RANKL and/or insulin did not affect the development of calcification of HVSMCs. These studies indicate that OPG knockdown does not alter the calcification process in HVSMCs.
Collapse
Affiliation(s)
- Malene Olesen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark.
| | | | | | | | | |
Collapse
|
23
|
Ji Q, Yang L, Zhou J, Lin R, Zhang J, Lin Q, Wang W, Zhang K. Protective effects of paeoniflorin against cobalt chloride-induced apoptosis of endothelial cells via HIF-1α pathway. Toxicol In Vitro 2012; 26:455-61. [DOI: 10.1016/j.tiv.2012.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 11/25/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
|
24
|
Oh SW, Baek SH, Kim YC, Goo HS, Chin HJ, Na KY, Chae DW, Kim S. Higher hemoglobin level is associated with subtle declines in renal function and presence of cardiorenal risk factors in early CKD stages. Nephrol Dial Transplant 2011; 27:267-75. [PMID: 21669882 DOI: 10.1093/ndt/gfr296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Patients with advanced renal dysfunction have comorbidities, including anemia, as a consequence of reduced production of erythropoietin. However, little is known about the renal response to early decreases in estimated glomerular filtration rate (eGFR) before the onset of anemia. We therefore investigated the hemoglobin concentration across subtle declines in renal function stratified by cardiorenal risk factors, in subjects with eGFR ≥50 mL/min/1.73 m(2). METHODS Based on the data from routine health checkups in tertiary university hospitals during the last 15 years, 145 865 adult subjects were identified. RESULTS Hemoglobin levels among eGFR Groups 2-6 (50 ≤ eGFR < 100 mL/min/1.73m(2)) were significantly higher compared to eGFR group ≥100 mL/min/1.73m(2) (P < 0.001), and the highest level of mean hemoglobin was seen at eGFR 50-59 mL/min/1.73m(2). The mean hemoglobin level of subjects with eGFR 50-59 mL/min/1.73m(2) and eGFR ≥ 100 mL/min/1.73m(2) were 13.36 [95% confidence interval (CI): 13.33-13.40] g/dL versus 12.92 (95% CI: 12.88-12.95) g/dL in women (P < 0.001); in men, 15.60 (95% CI: 15.57-15.63) g/dL versus 15.15 (95% CI: 15.11-15.18) g/dL (P < 0.001). Among each eGFR group, hemoglobin levels were higher in subjects with hypertension (P < 0.001 in both genders), diabetes mellitus (P < 0.001 in both genders) and components of MS (P < 0.003 in both genders) compared to subjects without these conditions. CONCLUSION Hemoglobin concentration may be slightly higher across subtle declines in renal function and the presence of cardiorenal risk factors in early CKD stages.
Collapse
Affiliation(s)
- Se Won Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Kyeong-Kido, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Olson N, van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 2011; 25:125-37. [PMID: 21199675 DOI: 10.1016/j.niox.2010.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 02/06/2023]
Abstract
Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O(2)) consumption and re-distribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders.
Collapse
Affiliation(s)
- Nels Olson
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|