1
|
Nascimento LS, Marson FAL, dos Santos RDC. Epidemiological profile of patients hospitalized with Crohn's disease due to severe acute respiratory infection during the COVID-19 pandemic: a 2-year report from Brazil. Front Med (Lausanne) 2024; 11:1440101. [PMID: 39507710 PMCID: PMC11537927 DOI: 10.3389/fmed.2024.1440101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024] Open
Abstract
Background and aims The novel coronavirus-induced severe acute respiratory syndrome (COVID-19) led to one of the most significant global pandemics of the 21st century, causing substantial challenges for healthcare systems worldwide, including those in Brazil. This study aimed to investigate the demographic and clinical profiles of hospitalized patients in Brazil who had both COVID-19 and Crohn's disease (CD) over a 2-year period. Methods An epidemiological analysis was conducted using data from Open-Data-SUS. The study focused on describing the demographic characteristics, clinical manifestations, comorbidities, and hospitalization details of patients afflicted with severe acute respiratory syndrome due to COVID-19 and CD, with the aim of predicting mortality risk. Results The states of São Paulo, Paraná, and Minas Gerais accounted for 50% of the reported COVID-19 cases. The most affected racial group consisted of individuals who self-declared as mixed race. Common comorbidities included heart disease, diabetes mellitus, and obesity. The age group most affected was 25 to 60 years old, particularly among hospitalized patients with both CD and COVID-19 who ultimately succumbed to the illness. A multivariable analysis was conducted to identify the following significant risk factors for death: (a) the presence of neurological disorder (OR = 6.716; 95% CI = 1.954-23.078), (b) the need for intensive care (OR = 3.348; 95% CI = 1.770-6.335), and (c) the need for invasive mechanical ventilation (OR = 59.017; 95% CI = 19.796-175.944). Conclusion There was no discernible gender-based prevalence among hospitalized patients with CD and COVID-19; however, individuals of mixed race were disproportionately affected. The 25 to 60 age group emerged as the most vulnerable demographic group, with high risks of hospitalization and mortality. Moreover, the study highlights the potential for COVID-19 to induce systemic pathologies that may result in long-term degenerative effects and sequelae.
Collapse
Affiliation(s)
- Laís Silva Nascimento
- Laboratory of Natural Products, São Francisco University, Bragança Paulista, Brazil
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista, Brazil
- Laboratory of Clinical and Molecular Microbiology, São Francisco University, Bragança Paulista, Brazil
- LunGuardian Research Group-Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista, Brazil
| | | |
Collapse
|
2
|
Leveau CM, Velázquez GA. COVID-19 mortality: educational inequalities and socio-spatial context in two provinces of Argentina. Rev Peru Med Exp Salud Publica 2024; 41:171-177. [PMID: 39166640 PMCID: PMC11300695 DOI: 10.17843/rpmesp.2024.412.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 08/23/2024] Open
Abstract
Motivation for the study. There are very few studies on the educational inequalities in COVID-19 mortality, taking into account social contextual factors. Main findings. We found educational inequalities of COVID-19 mortality during both the 2020 and 2021 waves, regardless of the level of poverty and urbanization in the departments of Mendoza and San Juan provinces (Argentina). Implications. Preventive policies should focus not only in areas with high levels of poverty, but also in areas with adults of low educational level. With the aim of describing the association between sociodemographic characteristics and contextual factors with COVID-19 mortality during 2020-2021 in the provinces of Mendoza and San Juan in Argentina, we conducted an ecological study, which included the sociodemographic factors: age, sex and educational level, and the contextual factors: poverty and urbanization at the departmental level. The analyses were estimated using negative binomial Bayesian hierarchical models. Educational inequalities existed regardless of socioeconomic context and level of urbanization. The exception was the age group 65 years and older during 2021, which, regardless of educational level, showed a higher risk of death by COVID-19 in departments with high levels of structural poverty. In conclusion, educational inequality is an indicator of social inequality that increases vulnerability to COVID-19 mortality.
Collapse
Affiliation(s)
- Carlos M Leveau
- Instituto de Producción, Economía y Trabajo, Universidad Nacional de Lanús. Remedios de Escalada, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires, Argentina
| | - Guillermo A Velázquez
- Instituto de Geografía, Historia y Ciencias Sociales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
3
|
Garbin JRT, Leite FMC, Dell'Antonio CSS, Dell'Antonio LS, Dos Santos APB, Lopes-Júnior LC. Hospitalizations for coronavirus disease 2019: an analysis of the occurrence waves. Sci Rep 2024; 14:5777. [PMID: 38459098 PMCID: PMC10924092 DOI: 10.1038/s41598-024-56289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
The pandemic has been characterized by several waves defined by viral strains responsible for the predominance of infections. We aimed to analyze the mean length of hospital stay for patients with COVID-19 during the first three waves of the pandemic and its distribution according to sociodemographic and clinical variables. This retrospective study used the notifications of patients hospitalized for COVID-19 in a Brazilian state during the period of the three waves of the disease as the data source. There were 13,910 hospitalizations for confirmed COVID-19 cases. The first wave was the longest, with 4101 (29.5%) hospitalizations, while the third, although shorter, had a higher number of hospitalized patients (N = 6960). The average length of stay in the hospital in all waves was associated with age groups up to 60 years old., elementary, high school and higher education, residents of the periurban area Regarding the presence of comorbidities, there was a statistically significant difference in the mean number of days of hospitalization among patients with chronic cardiovascular disease and obesity (P < 0.001). In conclusion, the COVID-19 pandemic has been distinctly revealed among the waves.
Collapse
Affiliation(s)
- Juliana Rodrigues Tovar Garbin
- Graduate Program in Public Health at the Universidade Federal do Espírito Santo (PPGSC/UFES), Vitória, ES, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES Campus Vitória), Vitória, ES, Brazil
| | | | | | | | | | - Luís Carlos Lopes-Júnior
- Graduate Program in Public Health at the Universidade Federal do Espírito Santo (PPGSC/UFES), Vitória, ES, Brazil.
| |
Collapse
|
4
|
Singh P, Anand A, Rana S, Kumar A, Goel P, Kumar S, Gouda KC, Singh H. Impact of COVID-19 vaccination: a global perspective. Front Public Health 2024; 11:1272961. [PMID: 38274537 PMCID: PMC10808156 DOI: 10.3389/fpubh.2023.1272961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The COVID-19 pandemic has caused widespread morbidity, mortality, and socio-economic disruptions worldwide. Vaccination has proven to be a crucial strategy in controlling the spread of the virus and mitigating its impact. Objective The study focuses on assessing the effectiveness of COVID-19 vaccination in reducing the incidence of positive cases, hospitalizations, and ICU admissions. The presented study is focused on the COVID-19 fully vaccinated population by considering the data from the first positive case reported until 20 September 2021. Methods Using data from multiple countries, time series analysis is deployed to investigate the variations in the COVID-19 positivity rates, hospitalization rates, and ICU requirements after successful vaccination campaigns at the country scale. Results Analysis of the COVID-19 positivity rates revealed a substantial decline in countries with high pre-vaccination rates. Within 1-3 months of vaccination campaigns, these rates decreased by 20-44%. However, certain countries experienced an increase in positivity rates with the emergence of the new Delta variant, emphasizing the importance of ongoing monitoring and adaptable vaccination strategies. Similarly, the analysis of hospitalization rates demonstrated a steady decline as vaccination drive rates rose in various countries. Within 90 days of vaccination, several countries achieved hospitalization rates below 200 per million. However, a slight increase in hospitalizations was observed in some countries after 180 days of vaccination, underscoring the need for continued vigilance. Furthermore, the ICU patient rates decreased as vaccination rates increased across most countries. Within 120 days, several countries achieved an ICU patient rate of 20 per million, highlighting the effectiveness of vaccination in preventing severe cases requiring intensive care. Conclusion COVID-19 vaccination has proven to be very much effective in reducing the incidence of cases, hospitalizations, and ICU admissions. However, ongoing surveillance, variant monitoring, and adaptive vaccination strategies are crucial for maximizing the benefits of vaccination and effectively controlling the spread of the virus.
Collapse
Affiliation(s)
- Priya Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Aditya Anand
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Amit Kumar
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Prabudh Goel
- Department of Pediatrics Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sujeet Kumar
- Centre for Proteomics and Drug Discovery, Amity University Maharashtra, Mumbai, India
| | - Krushna Chandra Gouda
- Earth and Engineering Sciences Division, CSIR Fourth Paradigm Institute, Bangalore, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
5
|
Ferrareze PAG, Cybis GB, de Oliveira LFV, Zimerman RA, Schiavon DEB, Peter C, Thompson CE. Intense P.1 (Gamma) diversification followed by rapid Delta substitution in Southern Brazil: a SARS-CoV-2 genomic epidemiology study. Microbes Infect 2024; 26:105216. [PMID: 37827275 DOI: 10.1016/j.micinf.2023.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023]
Abstract
The analyses of genetic traits, dispersion patterns and phylogenomics are essential for understanding the evolutionary forces driving SARS-CoV-2 viruses in these three years of COVID-19 pandemics. Brazil is one of the most affected countries in the world and not sufficient genomic studies have been performed. The emergence of P.1 lineage led to one of the most serious public health crises on record. Our study presents the genomic sequencing and characterization of 412 samples from Rio Grande do Sul state, in the Brazilian Southern region, during Gamma and Delta epidemic waves, in 2021. Additionally, molecular evolution tests were performed to identify positively selected sites in Brazil between 2020 and 2022, as well as offer some evolutionary perspective about the maintenance of multiple spike mutations in Omicron lineages. Genomic epidemiology analysis has indicated an intense P.1 (Gamma) diversification followed by rapid Delta substitution in Southern Brazil.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gabriela Betella Cybis
- Department of Statistics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Dieine Estela Bernieri Schiavon
- Undergraduate Program in Biomedical Informatics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Pitsillou E, Yu Y, Beh RC, Liang JJ, Hung A, Karagiannis TC. Chronicling the 3-year evolution of the COVID-19 pandemic: analysis of disease management, characteristics of major variants, and impacts on pathogenicity. Clin Exp Med 2023; 23:3277-3298. [PMID: 37615803 DOI: 10.1007/s10238-023-01168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Announced on December 31, 2019, the novel coronavirus arising in Wuhan City, Hubei Province resulted in millions of cases and lives lost. Following intense tracking, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) in 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of COVID-19 and the continuous evolution of the virus has given rise to several variants. In this review, a comprehensive analysis of the response to the pandemic over the first three-year period is provided, focusing on disease management, development of vaccines and therapeutics, and identification of variants. The transmissibility and pathogenicity of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron are compared. The binding characteristics of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor and reproduction numbers are evaluated. The effects of major variants on disease severity, hospitalisation, and case-fatality rates are outlined. In addition to the spike protein, open reading frames mutations are investigated. We also compare the pathogenicity of SARS-CoV-2 with SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Overall, this study highlights the strengths and weaknesses of the global response to the pandemic, as well as the importance of prevention and preparedness. Monitoring the evolution of SARS-CoV-2 is critical in identifying and potentially predicting the health outcomes of concerning variants as they emerge. The ultimate goal would be a position in which existing vaccines and therapeutics could be adapted to suit new variants in as close to real-time as possible.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Yiping Yu
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Lee J, Zepeda SK, Park YJ, Taylor AL, Quispe J, Stewart C, Leaf EM, Treichel C, Corti D, King NP, Starr TN, Veesler D. Broad receptor tropism and immunogenicity of a clade 3 sarbecovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557371. [PMID: 37745523 PMCID: PMC10515872 DOI: 10.1101/2023.09.12.557371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad ACE2 usage and that RBD mutations further expand receptor promiscuity and enable human ACE2 utilization. We determined a cryoEM structure of the PRD-0038 RBD bound to R. alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryoEM and monoclonal antibody reactivity revealed its distinct antigenicity relative to SARS-CoV-2 and identified PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicited greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared to SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Elizabeth M. Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Pinho CT, Vidal AF, Negri Rocha TC, Oliveira RRM, da Costa Barros MC, Closset L, Azevedo-Pinheiro J, Braga-da-Silva C, Silva CS, Magalhães LL, do Carmo Pinto PD, Souza GBS, dos Santos Vieira JR, Burbano RMR, de Sousa MS, de Souza JES, Nunes G, da Silva MB, da Costa PF, Salgado CG, Sousa RCM, Degrave WMS, Ribeiro-dos-Santos Â, Oliveira G. Transmission dynamics of SARS-CoV-2 variants in the Brazilian state of Pará. Front Public Health 2023; 11:1186463. [PMID: 37790714 PMCID: PMC10543262 DOI: 10.3389/fpubh.2023.1186463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction After three years since the beginning of the pandemic, the new coronavirus continues to raise several questions regarding its infectious process and host response. Several mutations occurred in different regions of the SARS-CoV-2 genome, such as in the spike gene, causing the emergence of variants of concern and interest (VOCs and VOIs), of which some present higher transmissibility and virulence, especially among patients with previous comorbidities. It is essential to understand its spread dynamics to prevent and control new biological threats that may occur in the future. In this population_based retrospective observational study, we generated data and used public databases to understand SARS-CoV-2 dynamics. Methods We sequenced 1,003 SARS-CoV-2 genomes from naso-oropharyngeal swabs and saliva samples from Pará from May 2020 to October 2022. To gather epidemiological data from Brazil and the world, we used FIOCRUZ and GISAID databases. Results Regarding our samples, 496 (49.45%) were derived from female participants and 507 (50.55%) from male participants, and the average age was 43 years old. The Gamma variant presented the highest number of cases, with 290 (28.91%) cases, followed by delta with 53 (5.28%). Moreover, we found seven (0.69%) Omicron cases and 651 (64.9%) non-VOC cases. A significant association was observed between sex and the clinical condition (female, p = 8.65e-08; male, p = 0.008961) and age (p = 3.6e-10). Discussion Although gamma had been officially identified only in December 2020/January 2021, we identified a gamma case from Belém (capital of Pará State) dated May 2020 and three other cases in October 2020. This indicates that this variant was circulating in the North region of Brazil several months before its formal identification and that Gamma demonstrated its actual transmission capacity only at the end of 2020. Furthermore, the public data analysis showed that SARS-CoV-2 dispersion dynamics differed in Brazil as Gamma played an important role here, while most other countries reported a new infection caused by the Delta variant. The genetic and epidemiological information of this study reinforces the relevance of having a robust genomic surveillance service that allows better management of the pandemic and that provides efficient solutions to possible new disease-causing agents.
Collapse
Affiliation(s)
- Catarina T. Pinho
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | | - Maria Clara da Costa Barros
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Laura Closset
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Jhully Azevedo-Pinheiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cíntia Braga-da-Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Caio Santos Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Leandro L. Magalhães
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Pablo Diego do Carmo Pinto
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Giordano Bruno Soares Souza
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - José Ricardo dos Santos Vieira
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | - Jorge Estefano Santana de Souza
- Programa de Pós-Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Bioinformatics Núcleo Multidisciplinar de Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Moises Batista da Silva
- Laboratório de Dermatologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, Pará, Brazil
| | - Patrícia Fagundes da Costa
- Laboratório de Dermatologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, Pará, Brazil
| | - Claudio Guedes Salgado
- Laboratório de Dermatologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, Pará, Brazil
| | | | - Wim Maurits Sylvain Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
9
|
Cribari-Neto F. A beta regression analysis of COVID-19 mortality in Brazil. Infect Dis Model 2023; 8:309-317. [PMID: 36945696 PMCID: PMC9988698 DOI: 10.1016/j.idm.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
Brazil was one of the countries most impacted by the COVID-19 pandemic, with a cumulative total of nearly 700,000 deaths by early 2023. The country's federative units were unevenly affected by the pandemic and adopted mitigation measures of different scopes and intensity. There was intense conflict between the federal government and state governments over the relevance and extent of such measures. We build a simple regression model with good predictive power on state COVID-19 mortality rates in Brazil. Our results reveal that the federative units' urbanization rate and per capita income are important for determining their mean mortality rate and that the number of physicians per 100,000 inhabitants is important for modeling the mortality rate precision. Based on the fitted model, we obtain approximations for the levels of administrative efficiency of local governments in dealing with the pandemic.
Collapse
Affiliation(s)
- Francisco Cribari-Neto
- Department of Statistics, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| |
Collapse
|
10
|
Riddell AC, Cutino-Moguel T. The origins of new SARS-COV-2 variants in immunocompromised individuals. Curr Opin HIV AIDS 2023; 18:148-156. [PMID: 36977190 DOI: 10.1097/coh.0000000000000794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW To explore the origins of new severe acute respiratory coronavirus 2 (SARS-CoV-2) variants in immunocompromised individuals and whether the emergence of novel mutations in these individuals is responsible for the development of variants of concern (VOC). RECENT FINDINGS Next generation sequencing of samples from chronically infected immunocompromised patients has enabled identification of VOC- defining mutations in individuals prior to the emergence of these variants worldwide. Whether these individuals are the source of variant generation is uncertain. Vaccine effectiveness in immunocompromised individuals and with respect to VOCs is also discussed. SUMMARY Current evidence on chronic SARS-CoV-2 infection in immunocompromised populations is reviewed including the relevance of this to the generation of novel variants. Continued viral replication in the absence of an effective immune response at an individual level or high levels of viral infection at the population level are likely to have contributed to the appearance of the main VOC.
Collapse
Affiliation(s)
- Anna C Riddell
- Department of Virology, Division of Infection, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
11
|
Xiao H, Hu J, Huang C, Feng W, Liu Y, Kumblathan T, Tao J, Xu J, Le XC, Zhang H. CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. Trends Analyt Chem 2023; 161:117000. [PMID: 36937152 PMCID: PMC9977466 DOI: 10.1016/j.trac.2023.117000] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
The continuing evolution of the SARS-CoV-2 virus has led to the emergence of many variants, including variants of concern (VOCs). CRISPR-Cas systems have been used to develop techniques for the detection of variants. These techniques have focused on the detection of variant-specific mutations in the spike protein gene of SARS-CoV-2. These sequences mostly carry single-nucleotide mutations and are difficult to differentiate using a single CRISPR-based assay. Here we discuss the specificity of the Cas9, Cas12, and Cas13 systems, important considerations of mutation sites, design of guide RNA, and recent progress in CRISPR-based assays for SARS-CoV-2 variants. Strategies for discriminating single-nucleotide mutations include optimizing the position of mismatches, modifying nucleotides in the guide RNA, and using two guide RNAs to recognize the specific mutation sequence and a conservative sequence. Further research is needed to confront challenges in the detection and differentiation of variants and sublineages of SARS-CoV-2 in clinical diagnostic and point-of-care applications.
Collapse
Affiliation(s)
- Huyan Xiao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Camille Huang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Wei Feng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jingyang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| |
Collapse
|
12
|
He D, Lin L, Artzy-Randrup Y, Demirhan H, Cowling BJ, Stone L. Resolving the enigma of Iquitos and Manaus: A modeling analysis of multiple COVID-19 epidemic waves in two Amazonian cities. Proc Natl Acad Sci U S A 2023; 120:e2211422120. [PMID: 36848558 PMCID: PMC10013854 DOI: 10.1073/pnas.2211422120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023] Open
Abstract
The two nearby Amazonian cities of Iquitos and Manaus endured explosive COVID-19 epidemics and may well have suffered the world's highest infection and death rates over 2020, the first year of the pandemic. State-of-the-art epidemiological and modeling studies estimated that the populations of both cities came close to attaining herd immunity (>70% infected) at the termination of the first wave and were thus protected. This makes it difficult to explain the more deadly second wave of COVID-19 that struck again in Manaus just months later, simultaneous with the appearance of a new P.1 variant of concern, creating a catastrophe for the unprepared population. It was suggested that the second wave was driven by reinfections, but the episode has become controversial and an enigma in the history of the pandemic. We present a data-driven model of epidemic dynamics in Iquitos, which we also use to explain and model events in Manaus. By reverse engineering the multiple epidemic waves over 2 y in these two cities, the partially observed Markov process model inferred that the first wave left Manaus with a highly susceptible and vulnerable population (≈40% infected) open to invasion by P.1, in contrast to Iquitos (≈72% infected). The model reconstructed the full epidemic outbreak dynamics from mortality data by fitting a flexible time-varying reproductive number [Formula: see text] while estimating reinfection and impulsive immune evasion. The approach is currently highly relevant given the lack of tools available to assess these factors as new SARS-CoV-2 virus variants appear with different degrees of immune evasion.
Collapse
Affiliation(s)
- Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lixin Lin
- Mathematical Sciences, School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria 3000, Australia
| | - Yael Artzy-Randrup
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE, Amsterdam, Netherlands
| | - Haydar Demirhan
- Mathematical Sciences, School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria 3000, Australia
| | - Benjamin J. Cowling
- World Health Organization (WHO) Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lewi Stone
- Mathematical Sciences, School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria 3000, Australia
- Biomathematics Unit, School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv69978, Israel
| |
Collapse
|
13
|
Wolf JM, Wolf LM, Bello GL, Maccari JG, Nasi LA. Molecular evolution of SARS-CoV-2 from December 2019 to August 2022. J Med Virol 2023; 95:e28366. [PMID: 36458547 PMCID: PMC9877913 DOI: 10.1002/jmv.28366] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Severe acute respiratorysyndrome coronavirus-2 (SARS-CoV-2) pandemic spread rapidly and this scenario is concerning worldwide, presenting more than 590 million coronavirus disease 2019 cases and 6.4 million deaths. The emergence of novel lineages carrying several mutations in the spike protein has raised additional public health concerns worldwide during the pandemic. The present study review and summarizes the temporal spreading and molecular evolution of SARS-CoV-2 clades and variants worldwide. The evaluation of these data is important for understanding the evolutionary histories of SARSCoV-2 lineages, allowing us to identify the origins of each lineage of this virus responsible for one of the biggest pandemics in history. A total of 2897 SARS-CoV-2 whole-genome sequences with available information from the country and sampling date (December 2019 to August 2022), were obtained and were evaluated by Bayesian approach. The results demonstrated that the SARS-CoV-2 the time to the most recent common ancestor (tMRCA) in Asia was 2019-12-26 (highest posterior density 95% [HPD95%]: 2019-12-18; 2019-12-29), in Oceania 2020-01-24 (HPD95%: 2020-01-15; 2020-01-30), in Africa 2020-02-27 (HPD95%: 2020-02-21; 2020-03-04), in Europe 2020-02-27 (HPD95%: 2020-02-20; 2020-03-06), in North America 2020-03-12 (HPD95%: 2020-03-05; 2020-03-18), and in South America 2020-03-15 (HPD95%: 2020-03-09; 2020-03-28). Between December 2019 and June 2020, 11 clades were detected (20I [Alpha] and 19A, 19B, 20B, 20C, 20A, 20D, 20E [EU1], 20F, 20H [Beta]). From July to December 2020, 4 clades were identified (20J [Gamma, V3], 21 C [Epsilon], 21D [Eta], and 21G [Lambda]). Between January and June 2021, 3 clades of the Delta variant were detected (21A, 21I, and 21J). Between July and December 2021, two variants were detected, Delta (21A, 21I, and 21J) and Omicron (21K, 21L, 22B, and 22C). Between January and June 2022, the Delta (21I and 21J) and Omicron (21K, 21L, and 22A) variants were detected. Finally, between July and August 2022, 3 clades of Omicron were detected (22B, 22C, and 22D). Clade 19A was first detected in the SARS-CoV-2 pandemic (Wuhan strain) with origin in 2019-12-16 (HPD95%: 2019-12-15; 2019-12-25); 20I (Alpha) in 2020-11-24 (HPD95%: 2020-11-15; 2021-12-02); 20H (Beta) in 2020-11-25 (HPD95%: 2020-11-13; 2020-11-29); 20J (Gamma) was 2020-12-21 (HPD95%: 2020-11-05; 2021-01-15); 21A (Delta) in 2020-09-20 (HPD95%: 2020-05-17; 2021-02-03); 21J (Delta) in 2021-02-26 (2020-11-02; 2021-04-24); 21M (Omicron) in 2021-01-25 (HPD95%: 2020-09-16; 2021-08-08); 21K (Omicron) in 2021-07-30 (HPD95%: 2021-05-30; 2021-10-19); 21L (Omicron) in 2021-10-03 (HPD95%: 2021-04-16; 2021-12-23); 22B (Omicron) in 2022-01-25 (HPD95%: 2022-01-10; 2022-02-05); 21L in 2021-12-20 (HPD95%: 2021-05-16; 2021-12-31). Currently, the Omicron variant predominates worldwide, with the 21L clade branching into 3 (22A, 22B, and 22C). Phylogeographic data showed that Alpha variant originated in the United Kingdom, Beta in South Africa, Gamma in Brazil, Delta in India, Omicron in South Africa, Mu in Colombia, Epsilon in the United States of America, and Lambda in Peru. The COVID-19 pandemic has had a significant impact on global health worldwide and the present study provides an overview of the molecular evolution of SARS-CoV-2 lineage clades (from the Wuhan strain to the currently circulating lineages of the Omicron).
Collapse
Affiliation(s)
| | - Lucas Michel Wolf
- Veterinary MedicineUFRGS (Universidade Federal do Rio Grande do Sul)Porto AlegreRio Grande do SulBrasil
| | - Graziele Lima Bello
- Programa Institutos Nacionais de Ciência e TecnologiaInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT‐TB)Porto AlegreRio Grande do SulBrasil
| | | | | |
Collapse
|
14
|
Szwarcwald CL, Boccolini CS, da Silva de Almeida W, Soares Filho AM, Malta DC. COVID-19 mortality in Brazil, 2020-21: consequences of the pandemic inadequate management. Arch Public Health 2022; 80:255. [PMID: 36536434 PMCID: PMC9762984 DOI: 10.1186/s13690-022-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic brought countless challenges to public health and highlighted the Brazilian health system vulnerabilities in facing the emergency. In this article, we analyze data on COVID-19-related deaths in 2020-21 to show the epidemic consequences in Brazil. METHODS The Mortality Information System and the Live Birth Information System were the primary information sources. We used population estimates in 2020-21 to calculate COVID-19 specific mortality rates by age, sex, and educational level. Considering the total number of COVID-19 deaths in 2020-21, the COVID-19 proportional mortality (%) was estimated for each age group and sex. A graph of the daily number of deaths from January 2020 to December 2021 by sex was elaborated to show the temporal evolution of COVID-19 deaths in Brazil. In addition, four indicators related to COVID-19 mortality were estimated: infant mortality rate (IMR); maternal mortality ratio (MMR); number and rate of orphans due to mother's COVID-19 death; the average number of years lost. RESULTS The overall COVID-19 mortality rate was 14.8 (/10,000). The mortality rates increase with age and show a decreasing gradient with higher schooling. The rate among illiterate people was 38.8/10,000, three times higher than a college education. Male mortality was 31% higher than female mortality. COVID-19 deaths represented 19.1% of all deaths, with the highest proportions in the age group of 40-59 years. The average number of years lost due to COVID-19 was 19 years. The MMR due to COVID-19 was 35.7 per 100,000 live births (LB), representing 37.4% of the overall MMR. Regarding the number of orphans due to COVID-19, we estimated that 40,830 children under 18 lost their mothers during the epidemic, with an orphans' rate of 7.5/10,000 children aged 0-17 years. The IMR was 11.7 per 1000 LB, with 0.2 caused by COVID-19. The peak of COVID-19 deaths occurred in March 2021, reaching almost 4000 COVID-19 deaths per day, higher than the average number of deaths per day from all causes in 2019. CONCLUSIONS The delay in adopting public health measures necessary to control the epidemic has exacerbated the spread of the disease, resulting in several avoidable deaths.
Collapse
Affiliation(s)
- Célia Landmann Szwarcwald
- grid.418068.30000 0001 0723 0931Institute of Scientific and Technological Communication and Information in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cristiano Siqueira Boccolini
- grid.418068.30000 0001 0723 0931Institute of Scientific and Technological Communication and Information in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wanessa da Silva de Almeida
- grid.418068.30000 0001 0723 0931Institute of Scientific and Technological Communication and Information in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adauto Martins Soares Filho
- grid.8430.f0000 0001 2181 4888Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Deborah Carvalho Malta
- grid.8430.f0000 0001 2181 4888School of Nursing, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
15
|
Tan J, Wu Z, Gan L, Zhong Q, Zhu Y, Li Y, Zhang D. Impact of Vaccination and Control Measures on the Fatality of COVID-19: An Ecological Study. J Epidemiol Glob Health 2022; 12:456-471. [PMID: 36161649 PMCID: PMC9513007 DOI: 10.1007/s44197-022-00064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND During the COVID-19 pandemic, reducing the case fatality rate (CFR) becomes an urgent goal. OBJECTIVE This study explored the effect of vaccination and variants on COVID-19 fatality and provide a basis for the adjustment of control measures. METHODS This study collected epidemiological information on COVID-19 from January to October 2021. By setting different lag times, we calculated the adjusted CFR. The Spearman correlation coefficient and beta regression were used to explore factors that may affect COVID-19 fatality. RESULTS Every 1% increase in the percentage of full vaccinations may reduce the 3 weeks lagging CFR by 0.66%. Increasing the restrictions on internal movement from level 0 to 1, restrictions on international travel controls from level 2 to 3, and stay-at-home restrictions from level 0 to 2 were associated with an average reduction in 3 weeks lagging CFR of 0.20%, 0.39%, and 0.36%, respectively. Increasing strictness in canceling public events from level 0 to 1 and 2 may reduce the 3 weeks lagging CFR by 0.49% and 0.37, respectively. Increasing the severity of school and workplace closures from level 1 or level 0 to 3 may increase the 3 weeks lagging CFR of 0.39% and 0.83, respectively. Every 1-point increase in the Global Health Security (GHS) index score may increase the 3 weeks lagging CFR by 0.12%. CONCLUSION A higher percentage of full vaccinations, higher levels of internal movement restrictions, international travel control restrictions, cancelations of public events, and stay-at-home restrictions are factors that may reduce the adjusted CFR.
Collapse
Affiliation(s)
- Jinlin Tan
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Zhilong Wu
- Department of Tuberculosis Control, The Fourth People’s Hospital of Foshan City, Foshan, 528000 Guangdong China
| | - Lin Gan
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Qianhong Zhong
- Department of Tuberculosis Control, The Fourth People’s Hospital of Foshan City, Foshan, 528000 Guangdong China
| | - Yajuan Zhu
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Yufen Li
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Dingmei Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| |
Collapse
|
16
|
Sansone NMS, Valencise FE, Bredariol RF, Peixoto AO, Marson FAL. Profile of coronavirus disease enlightened asthma as a protective factor against death: An epidemiology study from Brazil during the pandemic. Front Med (Lausanne) 2022; 9:953084. [PMID: 36523782 PMCID: PMC9745079 DOI: 10.3389/fmed.2022.953084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION The possibility that asthma is not a risk factor for the worst outcomes due to coronavirus disease (COVID-19) is encouraged. The increase in Th2 response dominance can downregulate the late phase of hyperinflammation, which is typically the hallmark of more severe respiratory viral infections, alongside lower angiotensin-converting enzyme receptors in patients with asthma due to chronic inflammation. Few studies associated asthma diagnosis and COVID-19 outcomes. In this context, we aimed to associate the asthma phenotype with the clinical signs, disease progression, and outcomes in patients with COVID-19. METHODS We performed an epidemiologic study using patients' characteristics from OpenDataSUS to verify the severity of COVID-19 among Brazilian hospitalized patients with and without the asthma phenotype according to the need for intensive care units, intubation, and deaths. We also evaluated the demographic data (sex, age, place of residence, educational level, and race), the profile of clinical signs, and the comorbidities. RESULTS Asthma was present in 43,245/1,129,838 (3.8%) patients. Among the patients with asthma, 74.7% who required invasive ventilatory support evolved to death. In contrast, 78.0% of non-asthmatic patients who required invasive ventilatory support died (OR = 0.83; 95% CI = 0.79-0.88). Also, 20.0% of the patients with asthma that required non-invasive ventilatory support evolved to death, while 23.5% of non-asthmatic patients evolved to death (OR = 0.81; 95% CI = 0.79-0.84). Finally, only 11.2% of the patients with asthma who did not require any ventilatory support evolved to death, while 15.8% of non-asthmatic patients evolved to death (OR = 0.67; 95% CI = 0.62-0.72). In our multivariate analysis, one comorbidity and one clinical characteristic stood out as protective factors against death during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients with asthma were less prone to die than other patients (OR = 0.79; 95% CI = 0.73-0.85), just like puerperal patients (OR = 0.74; 95% CI = 0.56-0.97) compared to other patients. CONCLUSION Asthma was a protective factor for death in hospitalized patients with COVID-19 in Brazil. Despite the study's limitations on patients' asthma phenotype information and corticosteroid usage, this study brings to light information regarding a prevalent condition that was considered a risk factor for death in COVID-19, being ultimately protective.
Collapse
Affiliation(s)
- Nathalia Mariana Santos Sansone
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
| | - Felipe Eduardo Valencise
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
| | - Rafael Fumachi Bredariol
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
| | | | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
- Center for Pediatric Investigation, University of Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Manna PR, Gray ZC, Sikdar M, Reddy H. COVID-19 and its genomic variants: Molecular pathogenesis and therapeutic interventions. EXCLI JOURNAL 2022; 21:1196-1221. [PMID: 36381644 PMCID: PMC9650701 DOI: 10.17179/excli2022-5315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Coronavirus disease-19 (COVID-19), caused by a β-coronavirus and its genomic variants, is associated with substantial morbidities and mortalities globally. The COVID-19 virus and its genomic variants enter host cells upon binding to the angiotensin converting enzyme 2 receptors that are expressed in a variety of tissues, but predominantly in the lungs, heart, and blood vessels. Patients afflicted with COVID-19 may be asymptomatic or present with critical symptoms possibly due to diverse lifestyles, immune responses, aging, and underlying medical conditions. Geriatric populations, especially men in comparison to women, with immunocompromised conditions, are most vulnerable to severe COVID-19 associated infections, complications, and mortalities. Notably, whereas immunomodulation, involving nutritional consumption, is essential to protecting an individual from COVID-19, immunosuppression is detrimental to a person with this aggressive disease. As such, immune health is inversely correlated to COVID-19 severity and resulting consequences. Advances in genomic and proteomic technologies have helped us to understand the molecular events underlying symptomatology, transmission and, pathogenesis of COVID-19 and its genomic variants. Accordingly, there has been development of a variety of therapeutic interventions, ranging from mask wearing to vaccination to medication. This review summarizes the current understanding of molecular pathogenesis of COVID-19, effects of comorbidities on COVID-19, and prospective therapeutic strategies for the prevention and treatment of this contagious disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA,*To whom correspondence should be addressed: Pulak R. Manna, Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Tel: +1-806-743-3573, Fax: +1-806-743-3143, E-mail:
| | - Zackery C. Gray
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Malabika Sikdar
- Department of Zoology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Public Health Department of the Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
18
|
Clinical and demographic characteristics of COVID-19 cases in Brunei Darussalam: comparison between the first and second waves, 2020 and 2021. Western Pac Surveill Response J 2022; 13:1-7. [PMID: 36688183 PMCID: PMC9831597 DOI: 10.5365/wpsar.2022.13.3.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective Differences in clinical manifestations between strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. This retrospective descriptive study compares the clinical and demographic characteristics of all confirmed coronavirus disease (COVID-19) cases admitted to the National Isolation Centre (NIC) in the first wave and at the beginning of the second wave of the pandemic in Brunei Darussalam. Methods All COVID-19 cases admitted to the NIC between 9 March and 6 May 2020 (first wave) and 7-17 August 2021 (second wave) were included. Data were obtained from NIC databases and case characteristics compared using Student's t-tests and χ2 tests, as appropriate. Results Cases from the first wave were significantly older than those from the second wave (mean 37.2 vs 29.7 years, P < 0.001), and a higher proportion reported comorbidities (30.5% vs 20.3%, P = 0.019). Cases from the second wave were more likely to be symptomatic at admission (77.7% vs 63.1%, P < 0.001), with a higher proportion reporting cough, anosmia, sore throat and ageusia/dysgeusia; however, myalgia and nausea/vomiting were more common among symptomatic first wave cases (all P < 0.05). There was no difference in the mean number of reported symptoms (2.6 vs 2.4, P = 0.890). Discussion Our study showed clear differences in the profile of COVID-19 cases in Brunei Darussalam between the first and second waves, reflecting a shift in the predominating SARS-CoV-2 strain. Awareness of changes in COVID-19 disease manifestation can help guide adjustments to management policies such as duration of isolation, testing strategies, and criteria for admission and treatment.
Collapse
|
19
|
Sansone NMS, Boschiero MN, Valencise FE, Palamim CVC, Marson FAL. Characterization of demographic data, clinical signs, comorbidities, and outcomes according to the race in hospitalized individuals with COVID-19 in Brazil: An observational study. J Glob Health 2022; 12:05027. [PMID: 35871427 PMCID: PMC9309002 DOI: 10.7189/jogh.12.05027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Brazil is a multiracial country with five major official races: White, Black, individuals with multiracial backgrounds, Asian, and Indigenous. Brazil is also one of the epicentres of the Coronavirus Disease (COVID)-19 pandemic. Thus, we evaluated how the races of the Brazilian population contribute to the outcomes in hospitalized individuals with COVID-19, and we also described the clinical profile of the five official Brazilian races. Methods We performed an epidemiological analysis for the first 67 epidemiological weeks of the COVID-19 pandemic in Brazil (from February 22, 2020, to April 04, 2021) using the data available at OpenDataSUS of the Brazilian Ministry of Health, a data set containing data from Brazilian hospitalized individuals. We evaluated more than 30 characteristics, including demographic data, clinical symptoms, comorbidities, need for intensive care unit and mechanical ventilation, and outcomes. Results In our data, 585 655 hospitalized individuals with a positive result in SARS-CoV-2 real-time chain reaction (RT-PCR) were included. Of these total, 309 646 (52.9%) identified as White, 31 872 (5.4%) identified as Black, 7108 (1.2%) identified as Asian, 235 108 (40.1%) identified as individuals with multiracial background, and 1921 (0.3%) identified as Indigenous. The multivariate analysis demonstrated that race was significative to predict the death being that Black (OR = 1.43; 95% CI = 1.39-1.48), individuals with multiracial background (OR = 1.36; 95% CI = 1.34-1.38), and Indigenous (OR = 1.91; 95% CI = 1.70-2.15) races were more prone to die compared to the White race. The Asian individuals did not have a higher chance of dying due to SARS-CoV-2 infection compared to White individuals (OR = 0.99; 95% CI = 0.94-1.06). In addition, other characteristics contributed as such as being male (OR = 1.17; 95% CI = 1.16-1.19), age (mainly, +85 years old – OR = 23.02; 95% CI = 20.05-26.42) compared to 1-year-old individuals, living in rural areas (OR = 1.22; 95% CI = 1.18-1.26) or in peri-urban places (OR = 1.25; 95% CI = 1.11-1.40), and the presence of nosocomial infection (OR = 1.91; 95% CI = 1.82-2.01). Among the clinical symptoms, the main predictors were dyspnoea (OR = 1.25; 95% CI = 1.23-1.28), respiratory discomfort (OR = 1.30; 95% CI = 1.28-1.32), oxygen saturation <95% (OR = 1.40; 95% CI = 1.38-1.43). Also, among the comorbidities, the main predictors were the presence of immunosuppressive disorder (OR = 1.44; 95% CI = 1.39-1.49), neurological disorder (OR = 1.21; 95% CI = 1.17-1.25), hepatic disorder (OR = 1.41; 95% CI = 1.34-1.50), diabetes mellitus (OR = 1.40; 95% CI = 1.37-1.42), cardiopathy (OR = 1.13; 95%CI = 1.11-1.14), hematologic disorder (OR = 1.34; 95% CI = 1.24-1.43), Down syndrome (OR = 1.61; 95% CI = 1.43-1.81), renal disease (OR = 1.15; 95% CI = 1.11-1.18), and obesity (OR = 1.18; 95% CI = 1.15-1.21). Individuals on intensive care unit (OR = 2.25; 95% CI = 2.22-2.29) and on invasive (OR = 10.92; 95% CI = 10.66-11.18) or non-invasive (OR = 1.33; 95% CI = 1.30-1.35) mechanical ventilation were more prone to die. Conclusions Alongside several clinical symptoms and comorbidities, we associated race with an enhanced risk of death in Black individuals, individuals with multiracial backgrounds, and Indigenous peoples.
Collapse
Affiliation(s)
- Nathália MS Sansone
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Matheus N Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Felipe E Valencise
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Camila VC Palamim
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Fernando AL Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
20
|
Induction of Broadly Cross-Reactive Antibody Responses to SARS-CoV-2 Variants by S1 Nanoparticle Vaccines. J Virol 2022; 96:e0038322. [PMID: 35699445 PMCID: PMC9278117 DOI: 10.1128/jvi.00383-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite the rapid deployment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the emergence of SARS-CoV-2 variants and reports of their immune evasion characteristics have led to an urgent need for novel vaccines that confer potent cross-protective immunity. In this study, we constructed three different SARS-CoV-2 spike S1-conjugated nanoparticle vaccine candidates that exhibited high structural homogeneity and stability. Notably, these vaccines elicited up to 50-times-higher neutralizing antibody titers than the S1 monomer in mice. Crucially, it was found that the S1-conjugated nanoparticle vaccine could elicit comparable levels of neutralizing antibodies against wild-type or emerging variant SARS-CoV-2, with cross-reactivity to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), the effect of which could be further enhanced using our designed nanoparticles. Our results indicate that the S1-conjugated nanoparticles are promising vaccine candidates with the potential to elicit potent and cross-reactive immunity against not only wild-type SARS-CoV-2, but also its variants of concern, variants of interest, and even other pathogenic betacoronaviruses. IMPORTANCE The emergence of SARS-CoV-2 variants led to an urgent demand for a broadly effective vaccine against the threat of variant infection. The spike protein S1-based nanoparticle designed in our study could elicit a comprehensive humoral response toward different SARS-CoV-2 variants of concern and variants of interest and will be helpful to combat COVID-19 globally.
Collapse
|
21
|
Spira B. The Impact of the Highly Virulent SARS-CoV-2 Gamma Variant on Young Adults in the State of São Paulo: Was It Inevitable? Cureus 2022; 14:e26486. [PMID: 35919213 PMCID: PMC9339207 DOI: 10.7759/cureus.26486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic had and is still having a tremendous impact on people all over the world, but it has been particularly harsh in South America. Nine out of 13 South American countries are among the 50 countries with the highest COVID-19 death rates. The gamma severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that emerged by the end of 2020 in the Brazilian Amazon quickly spread throughout the country causing the harsh COVID-19 second wave. This variant displayed high viral loads, high transmissibility, and increased virulence as compared to previous variants. Aims The aim of this retrospective study is to revisit and analyse the epidemiology of the COVID-19 second wave in the state of São Paulo, the most populous Brazilian state. In addition to examining the possible factors that led to the emergence and propagation of the gamma variant, measures that could have prevented its spread and that of other highly virulent variants were also investigated. Materials and methods Data from São Paulo's official sources on morbidity, mortality, age distribution, and testing prior to and during the COVID-19 second wave (February - June 2021) and data regarding the distribution of SARS-CoV-2 variants in the country were parsed, analyzed, and compared to the period that anteceded the eruption of the second COVID-19 wave. Results In the state of São Paulo, the toll of the COVID-19 second wave surpassed that of the first 11 months of the pandemic (from March 2020 to January 2021), as 56% of the deaths occurred in the five months of the second wave between February and June 2021. The mean age of COVID-19 victims, which was already below life expectancy in the state dropped even further in the pandemic's second wave, reaching an average of 60 years of age. The years of life lost per death per month doubled and the case-fatality rate (CFR) of young adults (20-39 years old) more than trebled during this period. A number of hypotheses have been raised that might explain the emergence and spread of the gamma variant and the measures that could have been taken to prevent it and minimise its impact on the population. Conclusions Over 142,000 people died as a result of the SARS-CoV-2 gamma variant sweep in São Paulo in the first semester of 2021. Due to its high viral load, the gamma variant displayed high transmissibility and a high degree of virulence resulting in increased case fatality rates across most age tiers. Notably, this second wave was marked by a very significant increase in deaths among young adults. This increase was at least partially due to a deterioration in general health provoked by non-pharmaceutical interventions. In hindsight, a safer and more effective measure might have been to allow the free spread of the virus among the young and healthy in the first wave, thus conferring immunity against more virulent variants that emerged later on.
Collapse
|
22
|
Brizzi A, Whittaker C, Servo LMS, Hawryluk I, Prete CA, de Souza WM, Aguiar RS, Araujo LJT, Bastos LS, Blenkinsop A, Buss LF, Candido D, Castro MC, Costa SF, Croda J, de Souza Santos AA, Dye C, Flaxman S, Fonseca PLC, Geddes VEV, Gutierrez B, Lemey P, Levin AS, Mellan T, Bonfim DM, Miscouridou X, Mishra S, Monod M, Moreira FRR, Nelson B, Pereira RHM, Ranzani O, Schnekenberg RP, Semenova E, Sonabend R, Souza RP, Xi X, Sabino EC, Faria NR, Bhatt S, Ratmann O. Spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals. Nat Med 2022; 28:1476-1485. [PMID: 35538260 PMCID: PMC9307484 DOI: 10.1038/s41591-022-01807-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitalization with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to document temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates were primarily associated with geographic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hospitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Andrea Brizzi
- Department of Mathematics, Imperial College London, London, UK
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | | | - Iwona Hawryluk
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Carlos A Prete
- Departamento de Engenharia de Sistemas Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - William M de Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
| | - Renato S Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
| | - Leonardo J T Araujo
- Laboratory of Quantitative Pathology, Center of Pathology, Adolfo Lutz Institute, São Paulo, Brazil
| | - Leonardo S Bastos
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Lewis F Buss
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marcia C Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston MA, USA
| | - Silvia F Costa
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Julio Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven CT, USA
| | | | | | - Seth Flaxman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Paula L C Fonseca
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Victor E V Geddes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Anna S Levin
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas Mellan
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Diego M Bonfim
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Swapnil Mishra
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
- Section of Epidemiology, School of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mélodie Monod
- Department of Mathematics, Imperial College London, London, UK
| | - Filipe R R Moreira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruce Nelson
- Environmental Dynamics, INPA, National Institute for Amazon Research, Manaus, Brazil
| | | | - Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
| | | | | | - Raphael Sonabend
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Renan P Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Xiaoyue Xi
- Department of Mathematics, Imperial College London, London, UK
| | - Ester C Sabino
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK.
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK.
- Section of Epidemiology, School of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, UK.
| |
Collapse
|
23
|
Fonseca PLC, Moreira FRR, de Souza RM, Guimarães NR, Carvalho NO, Adelino TER, Alves HJ, Alvim LB, Candido DS, Coelho HP, Costa AVB, Costa WC, de Carvalho AF, de Faria BWF, de Lima AB, de Oliveira ES, de Souza CSA, de Souza FG, Dias RC, Geddes VEV, Godinho IP, Gonçalves AL, Lourenço KL, Magalhães RDM, Malta FSV, Medeiros ELA, Mendes FS, Mendes PHBDP, Mendonça CPTB, Menezes AL, Menezes D, Menezes MT, Miguita L, Moreira RG, Peixoto RB, Queiroz DC, Ribeiro AA, Ribeiro APDB, Saliba JW, Sato HI, Silva JDP, Silva NP, Faria NR, Teixeira SMR, da Fonseca FG, Fernandes APSM, Zauli DAG, Januario JN, de Oliveira JS, Iani FCDM, de Aguiar RS, de Souza RP. Tracking the turnover of SARS-CoV-2 VOCs Gamma to Delta in a Brazilian state (Minas Gerais) with a high-vaccination status. Virus Evol 2022; 8:veac064. [PMID: 35996592 PMCID: PMC9384558 DOI: 10.1093/ve/veac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence and global dissemination of Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2) variants of concern (VOCs) have been described as the main factor driving the Coronavirus Disease 2019 pandemic. In Brazil, the Gamma variant dominated the epidemiological scenario during the first period of 2021. Many Brazilian regions detected the Delta variant after its first description and documented its spread. To monitor the introduction and spread of VOC Delta, we performed Polymerase Chain Reaction (PCR) genotyping and genome sequencing in ten regional sentinel units from June to October 2021 in the State of Minas Gerais (MG). We documented the introduction and spread of Delta, comprising 70 per cent of the cases 8 weeks later. Comparing the viral loads of the Gamma and Delta dominance periods, we provide additional evidence that the latter is more transmissible. The spread and dominance of Delta did not culminate in the increase in cases and deaths, suggesting that the vaccination may have restrained the epidemic growth. Analysis of 224 novel Delta genomes revealed that Rio de Janeiro state was the primary source for disseminating this variant in the state of MG. We present the establishment of Delta, providing evidence of its enhanced transmissibility and showing that this variant shift did not aggravate the epidemiological scenario in a high immunity setting.
Collapse
Affiliation(s)
- Paula L C Fonseca
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Filipe R R Moreira
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitaria, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Rafael M de Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Natália R Guimarães
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Nara O Carvalho
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Talita E R Adelino
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Hugo J Alves
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Luige B Alvim
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Darlan S Candido
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford OX13SZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar 470, Jardim América, São Paulo 05403000, São Paulo, Brazil
| | - Helena P Coelho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Alana V B Costa
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Walyson C Costa
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Alex F de Carvalho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Bruna W F de Faria
- Secretaria Municipal de Saúde de Belo Horizonte, Av. Afonso Pena 2336, Funcionários, Belo Horizonte 30130-040, Minas Gerais, Brazil
| | - Aline B de Lima
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Eneida S de Oliveira
- Secretaria Municipal de Saúde de Belo Horizonte, Av. Afonso Pena 2336, Funcionários, Belo Horizonte 30130-040, Minas Gerais, Brazil
| | - Carolina S A de Souza
- Pan American Health Organization—PAHO, Av. Das Nações SEN, Asa Norte, Brasilia 70312970, Brazil
| | - Fernanda G de Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Rillery C Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Victor E V Geddes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Igor P Godinho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Alessandro L Gonçalves
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Karine L Lourenço
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Rubens D M Magalhães
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Frederico S V Malta
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Eva L A Medeiros
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Rodovia Papa João Paulo II 4143. Edifício Minas Gerais, Cidade Administrativa, Serra verde, Belo Horizonte 31630900, Minas Gerais, Brazil
| | - Fernanda S Mendes
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Pedro H B de P Mendes
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Cristiane P T B Mendonça
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Andre L Menezes
- Secretaria Municipal de Saúde de Belo Horizonte, Av. Afonso Pena 2336, Funcionários, Belo Horizonte 30130-040, Minas Gerais, Brazil
| | - Diego Menezes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Mariane T Menezes
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| | - Lucyene Miguita
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Rennan G Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Renata B Peixoto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Daniel C Queiroz
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Adriana A Ribeiro
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Ana Paula de B Ribeiro
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Juliana W Saliba
- Pan American Health Organization—PAHO, Av. Das Nações SEN, Asa Norte, Brasilia 70312970, Brazil
| | - Hugo I Sato
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Joice do P Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Natiely P Silva
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford OX13SZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar 470, Jardim América, São Paulo 05403000, São Paulo, Brazil
| | - Santuza M R Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Flávio G da Fonseca
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Ana Paula S M Fernandes
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Danielle A G Zauli
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - José Nélio Januario
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Jaqueline S de Oliveira
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Rodovia Papa João Paulo II 4143. Edifício Minas Gerais, Cidade Administrativa, Serra verde, Belo Horizonte 31630900, Minas Gerais, Brazil
| | - Felipe C de M Iani
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Renato S de Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
- Instituto D’OR de Pesquisa e Ensino, Rio de Janeiro 22281100, Rio de Janeiro, Brazil
| | - Renan P de Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| |
Collapse
|
24
|
Sansone NMS, Boschiero MN, Marson FAL. Epidemiologic Profile of Severe Acute Respiratory Infection in Brazil During the COVID-19 Pandemic: An Epidemiological Study. Front Microbiol 2022; 13:911036. [PMID: 35854935 PMCID: PMC9288583 DOI: 10.3389/fmicb.2022.911036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/08/2023] Open
Abstract
BackgroundThe COVID-19 is a significant public health issue, and monitoring confirmed cases and deaths is an essential epidemiologic tool. We evaluated the features in Brazilian hospitalized patients due to severe acute respiratory infection (SARI) during the COVID-19 pandemic in Brazil. We grouped the patients into the following categories: Influenza virus infection (G1), other respiratory viruses' infection (G2), other known etiologic agents (G3), SARS-CoV-2 infection (patients with COVID-19, G4), and undefined etiological agent (G5).MethodsWe performed an epidemiological study using data from DataSUS (https://opendatasus.saude.gov.br/) from December 2019 to October 2021. The dataset included Brazilian hospitalized patients due to SARI. We considered the clinical evolution of the patients with SARI during the COVID-19 pandemic according to the SARI patient groups as the outcome. We performed the multivariate statistical analysis using logistic regression, and we adopted an Alpha error of 0.05.ResultsA total of 2,740,272 patients were hospitalized due to SARI in Brazil, being the São Paulo state responsible for most of the cases [802,367 (29.3%)]. Most of the patients were male (1,495,416; 54.6%), aged between 25 and 60 years (1,269,398; 46.3%), and were White (1,105,123; 49.8%). A total of 1,577,279 (68.3%) patients recovered from SARI, whereas 701,607 (30.4%) died due to SARI, and 30,551 (1.3%) did not have their deaths related to SARI. A major part of the patients was grouped in G4 (1,817,098; 66.3%) and G5 (896,207; 32.7%). The other groups account for <1% of our sample [G1: 3,474 (0.1%), G2: 16,627 (0.6%), and G3: 6,866 (0.3%)]. The deaths related to SARI were more frequent in G4 (574,887; 34.7%); however, the deaths not related to SARI were more frequent among the patients categorized into the G3 (1,339; 21.3%) and G5 (25,829; 4.1%). In the multivariate analysis, the main predictors to classify the patients in the G5 when compared with G4 or G1-G4 were female sex, younger age, Black race, low educational level, rural place of residence, and the use of antiviral to treat the clinical signs. Furthermore, several features predict the risk of death by SARI, such as older age, race (Black, Indigenous, and multiracial background), low educational level, residence in a flu outbreak region, need for intensive care unit, and need for mechanical ventilatory support.ConclusionsThe possible COVID-19 underreporting (G5) might be associated with an enhanced mortality rate, more evident in distinct social groups. In addition, the patients' features are unequal between the patients' groups and can be used to determine the risk of possible COVID-19 underreporting in our population. Patients with a higher risk of death had a different epidemiological profile when compared with patients who recovered from SARI, like older age, Black, Indigenous, and multiracial background races, low educational level, residence in a flu outbreak region, need for intensive care unit and need for mechanical ventilatory support.
Collapse
Affiliation(s)
- Nathália Mariana Santos Sansone
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, Brazil
- *Correspondence: Fernando Augusto Lima Marson ; ; orcid.org/0000-0003-4955-4234
| |
Collapse
|
25
|
Boschiero MN, Palamim CVC, Ortega MM, Marson FAL. Clinical characteristics and comorbidities of COVID-19 in unvaccinated patients with Down syndrome: first year report in Brazil. Hum Genet 2022; 141:1887-1904. [PMID: 35763088 PMCID: PMC9244024 DOI: 10.1007/s00439-022-02468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/10/2022] [Indexed: 01/08/2023]
Abstract
Patients with Down syndrome (DS) are more affected by the Coronavirus Disease (COVID)-19 pandemic when compared with other populations. Therefore, the primary aim of our study was to report the death (case fatality rate) from SARS-CoV-2 infection in Brazilian hospitalized patients with DS from 03 January 2020 to 04 April 2021. The secondary objectives were (i) to compare the features of patients with DS and positive for COVID-19 (G1) to those with DS and with a severe acute respiratory infection (SARI) from other etiological factors (G2) to tease apart the unique influence of COVID-19, and (ii) to compare the features of patients with DS and positive for COVID-19 to those without DS, but positive for COVID-19 (G3) to tease apart the unique influence of DS. We obtained the markers for demographic profile, clinical symptoms, comorbidities, and the clinical features for SARI evolution during hospitalization in the first year of the COVID-19 pandemic in Brazil from a Brazilian open-access database. The data were compared between (i) G1 [1619 (0.4%) patients] and G2 [1431 (0.4%) patients]; and between (ii) G1 and G3 [222,181 (64.8%) patients]. The case fatality rate was higher in patients with DS and COVID-19 (G1: 39.2%), followed by individuals from G2 (18.1%) and G3 (14.0%). Patients from G1, when compared to G2, were older (≥ 25 years of age), presented more clinical symptoms related to severe illness and comorbidities, needed intensive care unit (ICU) treatment and non-invasive mechanical ventilation (MV) more frequently, and presented a nearly two fold-increased chance of death (OR = 2.92 [95% CI 2.44–3.50]). Patients from G1, when compared to G3, were younger (< 24 years of age), more prone to nosocomial infection, presented an increased chance for clinical symptoms related to a more severe illness; frequently needed ICU treatment, and invasive and non-invasive MV, and raised almost a three fold-increased chance of death (OR = 3.96 [95% CI 3.60–4.41]). The high case fatality rate in G1 was associated with older age (≥ 25 years of age), presence of clinical symptoms, and comorbidities, such as obesity, related to a more severe clinical condition. Unvaccinated patients with DS affected by COVID-19 had a high case fatality rate, and these patients had a different profile for comorbidities, clinical symptoms, and treatment (such as the need for ICU and MV) when compared with other study populations.
Collapse
Affiliation(s)
- Matheus Negri Boschiero
- Postgraduate Program in Health Science, Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Avenida São Francisco de Assis, 218. Jardim São José, Bragança Paulista, SP, 12916-900, Brazil
| | - Camila Vantini Capasso Palamim
- Postgraduate Program in Health Science, Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Avenida São Francisco de Assis, 218. Jardim São José, Bragança Paulista, SP, 12916-900, Brazil.,Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, Brazil
| | - Manoela Marques Ortega
- Postgraduate Program in Health Science, Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Avenida São Francisco de Assis, 218. Jardim São José, Bragança Paulista, SP, 12916-900, Brazil.,Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, Brazil
| | - Fernando Augusto Lima Marson
- Postgraduate Program in Health Science, Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Avenida São Francisco de Assis, 218. Jardim São José, Bragança Paulista, SP, 12916-900, Brazil. .,Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, Brazil.
| |
Collapse
|
26
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
27
|
Yang Z, Zhang S, Tang YP, Zhang S, Xu DQ, Yue SJ, Liu QL. Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. Aging Dis 2022; 13:402-422. [PMID: 35371608 PMCID: PMC8947836 DOI: 10.14336/ad.2021.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to the rapid, global spread of SARS-CoV-2, new and comparatively more contagious variants are of considerable concern. These emerging mutations have become a threat to the global public health, creating COVID-19 surges in different countries. However, information on these emerging variants is limited and scattered. In this review, we discuss new variants that have emerged worldwide and identify several variants of concern, such as B.1.1.7, B.1.351, P.1, B.1.617.2 and B.1.1.529, and their basic characteristics. Other significant variants such as C.37, B.1.621, B.1.525, B.1.526, AZ.5, C.1.2, and B.1.617.1 are also discussed. This review highlights the clinical characteristics of these variants, including transmissibility, pathogenicity, susceptible population, and re-infectivity. It provides the latest information on the recent variants of SARS-CoV-2. The summary of this information will help researchers formulate reasonable strategies to curb the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Yang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shuo Zhang
- 3School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ping Tang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Sai Zhang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Ding-Qiao Xu
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shi-Jun Yue
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Qi-Ling Liu
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Herrera-Esposito D, de Los Campos G. Age-specific rate of severe and critical SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC Infect Dis 2022; 22:311. [PMID: 35351016 DOI: 10.1101/2021.07.29.21261282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Knowing the age-specific rates at which individuals infected with SARS-CoV-2 develop severe and critical disease is essential for designing public policy, for infectious disease modeling, and for individual risk evaluation. METHODS In this study, we present the first estimates of these rates using multi-country serology studies, and public data on hospital admissions and mortality from early to mid-2020. We combine these under a Bayesian framework that accounts for the high heterogeneity between data sources and their respective uncertainties. We also validate our results using an indirect method based on infection fatality rates and hospital mortality data. RESULTS Our results show that the risk of severe and critical disease increases exponentially with age, but much less steeply than the risk of fatal illness. We also show that our results are consistent across several robustness checks. CONCLUSION A complete evaluation of the risks of SARS-CoV-2 for health must take non-fatal disease outcomes into account, particularly in young populations where they can be 2 orders of magnitude more frequent than deaths.
Collapse
Affiliation(s)
- Daniel Herrera-Esposito
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
- Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático, Universidad de la República, Montevideo, Uruguay.
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
| |
Collapse
|
29
|
Herrera-Esposito D, de Los Campos G. Age-specific rate of severe and critical SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC Infect Dis 2022; 22:311. [PMID: 35351016 PMCID: PMC8962942 DOI: 10.1186/s12879-022-07262-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Knowing the age-specific rates at which individuals infected with SARS-CoV-2 develop severe and critical disease is essential for designing public policy, for infectious disease modeling, and for individual risk evaluation. METHODS In this study, we present the first estimates of these rates using multi-country serology studies, and public data on hospital admissions and mortality from early to mid-2020. We combine these under a Bayesian framework that accounts for the high heterogeneity between data sources and their respective uncertainties. We also validate our results using an indirect method based on infection fatality rates and hospital mortality data. RESULTS Our results show that the risk of severe and critical disease increases exponentially with age, but much less steeply than the risk of fatal illness. We also show that our results are consistent across several robustness checks. CONCLUSION A complete evaluation of the risks of SARS-CoV-2 for health must take non-fatal disease outcomes into account, particularly in young populations where they can be 2 orders of magnitude more frequent than deaths.
Collapse
Affiliation(s)
- Daniel Herrera-Esposito
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
- Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático, Universidad de la República, Montevideo, Uruguay.
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
| |
Collapse
|
30
|
Nicolete VC, Rodrigues PT, Fernandes ARJ, Corder RM, Tonini J, Buss LF, Sales FC, Faria NR, Sabino EC, Castro MC, Ferreira MU. Epidemiology of COVID-19 after Emergence of SARS-CoV-2 Gamma Variant, Brazilian Amazon, 2020-2021. Emerg Infect Dis 2022; 28:709-712. [PMID: 34963505 PMCID: PMC8888227 DOI: 10.3201/eid2803.211993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant has been hypothesized to cause more severe illness than previous variants, especially in children. Successive SARS-CoV-2 IgG serosurveys in the Brazilian Amazon showed that age-specific attack rates and proportions of symptomatic SARS-CoV-2 infections were similar before and after Gamma variant emergence.
Collapse
|
31
|
Parra-Lucares A, Segura P, Rojas V, Pumarino C, Saint-Pierre G, Toro L. Emergence of SARS-CoV-2 Variants in the World: How Could This Happen? Life (Basel) 2022; 12:194. [PMID: 35207482 PMCID: PMC8879166 DOI: 10.3390/life12020194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had a significant global impact, with more than 280,000,000 people infected and 5,400,000 deaths. The use of personal protective equipment and the anti-SARS-CoV-2 vaccination campaigns have reduced infection and death rates worldwide. However, a recent increase in infection rates has been observed associated with the appearance of SARS-CoV-2 variants, including the more recently described lineage B.1.617.2 (Delta variant) and lineage B.1.1.529/BA.1 (Omicron variant). These new variants put the effectiveness of international vaccination at risk, with the appearance of new outbreaks of COVID-19 throughout the world. This emergence of new variants has been due to multiple predisposing factors, including molecular characteristics of the virus, geographic and environmental conditions, and the impact of social determinants of health that favor the genetic diversification of SARS-CoV-2. We present a literature review on the most recent information available on the emergence of new variants of SARS-CoV-2 in the world. We analyzed the biological, geographical, and sociocultural factors that favor the development of these variants. Finally, we evaluate the surveillance strategies for the early detection of new variants and prevent their distribution outside these regions.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
| | - Paula Segura
- Department of Anatomic Pathology, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Verónica Rojas
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
| | - Catalina Pumarino
- School of Medicine, Faculty of Medicine, Universidad de Chile, 8380456 Santiago, Chile;
| | - Gustavo Saint-Pierre
- Microbiology Unit, Clinical Laboratory, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Luis Toro
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Critical Care Unit, Clínica Las Condes, 7591047 Santiago, Chile
| |
Collapse
|
32
|
Deciphering Multifactorial Correlations of COVID-19 Incidence and Mortality in the Brazilian Amazon Basin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031153. [PMID: 35162177 PMCID: PMC8834595 DOI: 10.3390/ijerph19031153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/10/2022]
Abstract
Amazonas suffered greatly during the COVID-19 pandemic. The mortality and fatality rates soared and scarcity of oxygen and healthcare supplies led the health system and funerary services to collapse. Thus, we analyzed the trends of incidence, mortality, and lethality indicators of COVID-19 and the dynamics of their main determinants in the state of Amazonas from March 2020 to June 2021. This is a time-series ecological study. We calculated the lethality, mortality, and incidence rates with official and public data from the Health Department. We used the Prais-Winsten regression and trends were classified as stationary, increasing, or decreasing. The effective reproduction number (Rt) was also estimated. Differences were considered significant when p < 0.05. We extracted 396,772 cases of and 13,420 deaths from COVID-19; 66% of deaths were in people aged over 60; 57% were men. Cardiovascular diseases were the most common comorbidity (28.84%), followed by diabetes (25.35%). Rural areas reported 53% of the total cases and 31% of the total deaths. The impact of COVID-19 in the Amazon is not limited to the direct effects of the pandemic itself; it may present characteristics of a syndemic due to the interaction of COVID-19 with pre-existing illnesses, endemic diseases, and social vulnerabilities.
Collapse
|
33
|
Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol 2022; 12:809244. [PMID: 35046961 PMCID: PMC8761766 DOI: 10.3389/fimmu.2021.809244] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new beta coronavirus that emerged at the end of 2019 in the Hubei province of China. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020. Herd or community immunity has been proposed as a strategy to protect the vulnerable, and can be established through immunity from past infection or vaccination. Whether SARS-CoV-2 infection results in the development of a reservoir of resilient memory cells is under investigation. Vaccines have been developed at an unprecedented rate and 7 408 870 760 vaccine doses have been administered worldwide. Recently emerged SARS-CoV-2 variants are more transmissible with a reduced sensitivity to immune mechanisms. This is due to the presence of amino acid substitutions in the spike protein, which confer a selective advantage. The emergence of variants therefore poses a risk for vaccine effectiveness and long-term immunity, and it is crucial therefore to determine the effectiveness of vaccines against currently circulating variants. Here we review both SARS-CoV-2-induced host immune activation and vaccine-induced immune responses, highlighting the responses of immune memory cells that are key indicators of host immunity. We further discuss how variants emerge and the currently circulating variants of concern (VOC), with particular focus on implications for vaccine effectiveness. Finally, we describe new antibody treatments and future vaccine approaches that will be important as we navigate through the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyal Mistry
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Fatima Barmania
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kimberly Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adéle Strydom
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ignatius M. Viljoen
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - William James
- James and Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Lin L, Liu Y, Tang X, He D. The Disease Severity and Clinical Outcomes of the SARS-CoV-2 Variants of Concern. Front Public Health 2021; 9:775224. [PMID: 34917580 PMCID: PMC8669511 DOI: 10.3389/fpubh.2021.775224] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
With the continuation of the pandemic, many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have appeared around the world. Owing to a possible risk of increasing the transmissibility of the virus, severity of the infected individuals, and the ability to escape the antibody produced by the vaccines, the four SARS-CoV-2 variants of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) have attracted the most widespread attention. At present, there is a unified conclusion that these four variants have increased the transmissibility of SARS-CoV-2, but the severity of the disease caused by them has not yet been determined. Studies from June 1, 2020 to October 15, 2021 were considered, and a meta-analysis was carried out to process the data. Alpha, Beta, Gamma, and Delta variants are all more serious than the wild-type virus in terms of hospitalization, ICU admission, and mortality, and the Beta and Delta variants have a higher risk than the Alpha and Gamma variants. Notably, the random effects of Beta variant to the wild-type virus with respect to hospitalization rate, severe illness rate, and mortality rate are 2.16 (95% CI: 1.19-3.14), 2.23 (95% CI: 1.31-3.15), and 1.50 (95% CI: 1.26-1.74), respectively, and the random effects of Delta variant to the wild-type virus are 2.08 (95% CI: 1.77-2.39), 3.35 (95% CI: 2.5-4.2), and 2.33 (95% CI: 1.45-3.21), respectively. Although, the emergence of vaccines may reduce the threat posed by SARS-CoV-2 variants, these are still very important, especially the Beta and Delta variants.
Collapse
Affiliation(s)
- Lixin Lin
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ying Liu
- School of International Business, Xiamen University Tan Kah Kee College, Zhangzhou, China
| | - Xiujuan Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Daihai He
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
35
|
Brizzi A, Whittaker C, Servo LMS, Hawryluk I, Prete CA, de Souza WM, Aguiar RS, Araujo LJT, Bastos LS, Blenkinsop A, Buss LF, Candido D, Castro MC, Costa SF, Croda J, de Souza Santos AA, Dye C, Flaxman S, Fonseca PLC, Geddes VEV, Gutierrez B, Lemey P, Levin AS, Mellan T, Bonfim DM, Miscouridou X, Mishra S, Monod M, Moreira FRR, Nelson B, Pereira RHM, Ranzani O, Schnekenberg RP, Semenova E, Sonnabend R, Souza RP, Xi X, Sabino EC, Faria NR, Bhatt S, Ratmann O. Report 46: Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.11.01.21265731. [PMID: 34751273 PMCID: PMC8575144 DOI: 10.1101/2021.11.01.21265731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gamma's spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gamma's detection, and were largely transient after Gamma's detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazil's COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NOTE The following manuscript has appeared as 'Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals' at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875 . ONE SENTENCE SUMMARY COVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.
Collapse
Affiliation(s)
- Andrea Brizzi
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom
| | | | - Iwona Hawryluk
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom
| | - Carlos A Prete
- Departamento de Engenharia de Sistemas Eletrônicos, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil
| | - William M de Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Renato S Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
| | - Leonardo J T Araujo
- Laboratory of Quantitative Pathology, Center of Pathology, Adolfo Lutz Institute, São Paulo, Brazil
| | - Leonardo S Bastos
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Lewis F Buss
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Darlan Candido
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Silvia F Costa
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Julio Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | | | - Christopher Dye
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Seth Flaxman
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Paula L C Fonseca
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Victor E V Geddes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven - University of Leuven, Leuven, Belgium
| | - Anna S Levin
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Thomas Mellan
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom
| | - Diego M Bonfim
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Xenia Miscouridou
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Swapnil Mishra
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom
- Section of Epidemiology, School of Public Health, University of Copenhagen, Denmark, Copenhagen
| | - Mélodie Monod
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Filipe R R Moreira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruce Nelson
- Environmental Dynamics, INPA, National Institute for Amazon Research, Bairro Petropolis, Brazil
| | | | - Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
| | - Ricardo P Schnekenberg
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Elizaveta Semenova
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Raphael Sonnabend
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom
| | - Renan P Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Xiaoyue Xi
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Ester C Sabino
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom
- Section of Epidemiology, School of Public Health, University of Copenhagen
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
da Silva Francisco Junior R, Lamarca AP, de Almeida LGP, Cavalcante L, Machado DT, Martins Y, Brustolini O, Gerber AL, de C Guimarães AP, Gonçalves RB, Alves C, Mariani D, Cruz TF, de Souza IV, de Carvalho EM, Ribeiro MS, Carvalho S, da Silva FD, de Oliveira Garcia MH, de Souza LM, da Silva CG, Ribeiro CLP, Cavalcanti AC, de Mello CMB, Struchiner CJ, Tanuri A, Vasconcelos ATR. Turnover of SARS-CoV-2 Lineages Shaped the Pandemic and Enabled the Emergence of New Variants in the State of Rio de Janeiro, Brazil. Viruses 2021; 13:2013. [PMID: 34696443 PMCID: PMC8537965 DOI: 10.3390/v13102013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
In the present study, we provide a retrospective genomic epidemiology analysis of the SARS-CoV-2 pandemic in the state of Rio de Janeiro, Brazil. We gathered publicly available data from GISAID and sequenced 1927 new genomes sampled periodically from March 2021 to June 2021 from 91 out of the 92 cities of the state. Our results showed that the pandemic was characterized by three different phases driven by a successive replacement of lineages. Interestingly, we noticed that viral supercarriers accounted for the overwhelming majority of the circulating virus (>90%) among symptomatic individuals in the state. Moreover, SARS-CoV-2 genomic surveillance also revealed the emergence and spread of two new variants (P.5 and P.1.2), firstly reported in this study. Our findings provided important lessons learned from the different epidemiological aspects of the SARS-CoV-2 dynamic in Rio de Janeiro. Altogether, this might have a strong potential to shape future decisions aiming to improve public health management and understanding mechanisms underlying virus dispersion.
Collapse
Affiliation(s)
- Ronaldo da Silva Francisco Junior
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Alessandra P Lamarca
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Luiz G P de Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Liliane Cavalcante
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Yasmmin Martins
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Otávio Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Alexandra L Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Ana Paula de C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Reinaldo Bellini Gonçalves
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| | - Cassia Alves
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-570, Brazil; (C.A.); (D.M.); (T.F.C.); (A.T.)
| | - Diana Mariani
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-570, Brazil; (C.A.); (D.M.); (T.F.C.); (A.T.)
| | - Thais Felix Cruz
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-570, Brazil; (C.A.); (D.M.); (T.F.C.); (A.T.)
| | | | - Erika Martins de Carvalho
- Unidades de Apoio ao Diagnóstico da COVID-19, Rio de Janeiro 21040-900, Brazil; (I.V.d.S.); (E.M.d.C.)
| | - Mario Sergio Ribeiro
- Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro 20031-142, Brazil; (M.S.R.); (S.C.); (C.M.B.d.M.)
| | - Silvia Carvalho
- Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro 20031-142, Brazil; (M.S.R.); (S.C.); (C.M.B.d.M.)
| | - Flávio Dias da Silva
- Secretaria Municipal de Saúde Rio de Janeiro, Rio de Janeiro 20211-901, Brazil; (F.D.d.S.); (M.H.d.O.G.); (C.L.P.R.)
| | | | - Leandro Magalhães de Souza
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro 20231-092, Brazil; (L.M.d.S.); (C.G.d.S.); (A.C.C.)
| | - Cristiane Gomes da Silva
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro 20231-092, Brazil; (L.M.d.S.); (C.G.d.S.); (A.C.C.)
| | - Caio Luiz Pereira Ribeiro
- Secretaria Municipal de Saúde Rio de Janeiro, Rio de Janeiro 20211-901, Brazil; (F.D.d.S.); (M.H.d.O.G.); (C.L.P.R.)
| | - Andréa Cony Cavalcanti
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro 20231-092, Brazil; (L.M.d.S.); (C.G.d.S.); (A.C.C.)
| | - Claudia Maria Braga de Mello
- Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro 20031-142, Brazil; (M.S.R.); (S.C.); (C.M.B.d.M.)
| | | | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-570, Brazil; (C.A.); (D.M.); (T.F.C.); (A.T.)
| | - Ana Tereza R Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil; (R.d.S.F.J.); (A.P.L.); (L.G.P.d.A.); (L.C.); (D.T.M.); (Y.M.); (O.B.); (A.L.G.); (A.P.d.C.G.); (R.B.G.)
| |
Collapse
|
37
|
Altered demographic profile of hospitalizations during the second COVID-19 wave in Amazonas, Brazil. LANCET REGIONAL HEALTH. AMERICAS 2021; 2:100064. [PMID: 34522912 PMCID: PMC8431963 DOI: 10.1016/j.lana.2021.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022]
|
38
|
Jabłońska K, Aballéa S, Toumi M. The real-life impact of vaccination on COVID-19 mortality in Europe and Israel. Public Health 2021; 198:230-237. [PMID: 34482101 PMCID: PMC8413007 DOI: 10.1016/j.puhe.2021.07.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study aimed at estimating the real-life impact of vaccination on COVID-19 mortality, with adjustment for SARS-CoV-2 variants spread and other factors across Europe and Israel. STUDY DESIGN Time series analysis. METHODS Time series analysis of the daily number of COVID-19 deaths was performed using non-linear Poisson mixed regression models. Variables such as variants' frequency, demographics, climate, health, and mobility characteristics of thirty-two countries between January 2020 and April 2021 were considered as potentially relevant adjustment factors. RESULTS The analysis revealed that vaccination efficacy in terms of protection against deaths was 72%, with a lower reduction of the number of deaths for B.1.1.7 vs non-B.1.1.7 variants (70% and 78%, respectively). Other factors significantly related to mortality were arrivals at airports, mobility change from the prepandemic level, and temperature. CONCLUSIONS Our study confirms a strong effectiveness of COVID-19 vaccination based on real-life public data, although lower than expected from clinical trials. This suggests the absence of indirect protection for non-vaccinated individuals. Results also show that vaccination effectiveness against mortality associated with the B.1.1.7 variant is slightly lower than that with other variants. Lastly, this analysis confirms the role of mobility reduction, within and between countries, as an effective way to reduce COVID-19 mortality and suggests the possibility of seasonal variations in COVID-19 incidence.
Collapse
Affiliation(s)
| | - Samuel Aballéa
- Creativ-Ceutical, Westblaak 90, Rotterdam, 3012KM, the Netherlands.
| | - Mondher Toumi
- Faculty of Medicine, Public Health Department, Aix-Marseille University, 27 Boulevard Jean Moulin, Marseille, 13005, France.
| |
Collapse
|
39
|
Ranzani OT, Hitchings MDT, Dorion M, D'Agostini TL, de Paula RC, de Paula OFP, Villela EFDM, Torres MSS, de Oliveira SB, Schulz W, Almiron M, Said R, de Oliveira RD, Vieira da Silva P, de Araújo WN, Gorinchteyn JC, Andrews JR, Cummings DAT, Ko AI, Croda J. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of covid-19 in Brazil: test negative case-control study. BMJ 2021; 374:n2015. [PMID: 34417194 PMCID: PMC8377801 DOI: 10.1136/bmj.n2015] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To estimate the effectiveness of the inactivated whole virus vaccine, CoronaVac (Sinovac Biotech), against symptomatic covid-19 in the elderly population of São Paulo state, Brazil during widespread circulation of the gamma variant. DESIGN Test negative case-control study. SETTING Community testing for covid-19 in São Paulo state, Brazil. PARTICIPANTS 43 774 adults aged ≥70 years who were residents of São Paulo state and underwent reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 from 17 January to 29 April 2021. 26 433 cases with symptomatic covid-19 and 17 622 test negative controls with covid-19 symptoms were formed into 13 283 matched sets, one case with to up to five controls, according to age, sex, self-reported race, municipality of residence, previous covid-19 status, and date of RT-PCR test (±3 days). INTERVENTION Vaccination with a two dose regimen of CoronaVac. MAIN OUTCOME MEASURES RT-PCR confirmed symptomatic covid-19 and associated hospital admissions and deaths. RESULTS Adjusted vaccine effectiveness against symptomatic covid-19 was 24.7% (95% confidence interval 14.7% to 33.4%) at 0-13 days and 46.8% (38.7% to 53.8%) at ≥14 days after the second dose. Adjusted vaccine effectiveness against hospital admissions was 55.5% (46.5% to 62.9%) and against deaths was 61.2% (48.9% to 70.5%) at ≥14 days after the second dose. Vaccine effectiveness ≥14 days after the second dose was highest for the youngest age group (70-74 years)-59.0% (43.7% to 70.2%) against symptomatic disease, 77.6% (62.5% to 86.7%) against hospital admissions, and 83.9% (59.2% to 93.7%) against deaths-and declined with increasing age. CONCLUSIONS Vaccination with CoronaVac was associated with a reduction in symptomatic covid-19, hospital admissions, and deaths in adults aged ≥70 years in a setting with extensive transmission of the gamma variant. Vaccine protection was, however, low until completion of the two dose regimen, and vaccine effectiveness was observe to decline with increasing age among this elderly population.
Collapse
Affiliation(s)
- Otavio T Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Matt D T Hitchings
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Murilo Dorion
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | | | | | | | | | | | - Wade Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Almiron
- Pan American Health Organization, Brasília, DF, Brazil
| | - Rodrigo Said
- Pan American Health Organization, Brasília, DF, Brazil
| | | | | | - Wildo Navegantes de Araújo
- Pan American Health Organization, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
- National Institute for Science and Technology for Health Technology Assessment, Porto Alegre, RS, Brazil
| | | | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | - Julio Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, MS, Brazil
| |
Collapse
|