1
|
Wang F, An Y, Hao H. MicroRNA-361-5p acts as a biomarker for carotid artery stenosis and promotes vascular smooth muscle cell proliferation and migration. BMC Med Genomics 2023; 16:134. [PMID: 37328892 PMCID: PMC10273542 DOI: 10.1186/s12920-023-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) dysfunction participates in carotid artery stenosis (CAS). The study aimed to examine the expression pattern of miR-361-5p in CAS patients, and explore its role in VSMCs proliferation and migration. METHODS qRT-PCR was performed for the detection of miR-361-5p in serum samples of 150 CAS cases and 150 healthy people. Multiple logistic regression analysis and receiver operating characteristic (ROC) curve was accomplished to detect diagnostic value via SPSS 21.0 statistical software. Cell function of VSMCs was evaluated. Target association was predicted through bioinformatic analysis and confirmed via luciferase activity. RESULTS Serum miR-361-5p was enhanced in CAS cases and was positively correlated with CAS degree. Logistic regression analysis determined the independent influence of miR-361-5p in CAS, and ROC curve demonstrated its diagnostic value with AUC of 0.892. miR-361-5p promoted VSMCs proliferation and migration, but the influence was counteracted by TIMP4. CONCLUSIONS MiR-361-5p is a promising biomarker for CAS, and can be used as a potential target for early diagnosis and treatment of CAS. MiR-361-5p can promote VSMCs proliferation and migration via targeting TIMP4.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, No. 2428 Yuhe Road, Kuiwen District, 261035, Weifang, Shandong, China.
| | - Yumei An
- Department of Image Center, Affiliated Hospital of Weifang Medical University, 261035, Weifang, China
| | - Huihui Hao
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, 261035, Weifang, China
| |
Collapse
|
2
|
Cayetano-Salazar L, Nava-Tapia DA, Astudillo-Justo KD, Arizmendi-Izazaga A, Sotelo-Leyva C, Herrera-Martinez M, Villegas-Comonfort S, Navarro-Tito N. Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges. Life Sci 2022; 308:120932. [PMID: 36067841 DOI: 10.1016/j.lfs.2022.120932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death in patients worldwide, where invasion and metastasis are directly responsible for this statement. Although cancer therapy has progressed in recent years, current therapeutic approaches are ineffective due to toxicity and chemoresistance. Therefore, it is essential to evaluate other treatment options, and natural products are a promising alternative as they show antitumor properties in different study models. This review describes the regulation of tissue inhibitors of metalloproteinases (TIMPs) expression and the role of flavonoids as molecules with the antitumor activity that targets TIMPs therapeutically. These inhibitors regulate tissue extracellular matrix (ECM) turnover; they inhibit matrix metalloproteinases (MMPs), cell migration, invasion, and angiogenesis and induce apoptosis in tumor cells. Data obtained in cell lines and in vivo models suggest that flavonoids are chemopreventive and cytotoxic against various types of cancer through several mechanisms. Flavonoids also regulate crucial signaling pathways such as focal adhesion kinase (FAK), phosphatidylinositol-3-kinase (PI3K)-Akt, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NFκB), and mitogen-activated protein kinase (MAPK) involved in cancer cell migration, invasion, and metastasis. All these data reposition flavonoids as excellent candidates for use in cancer therapy.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Dania A Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Kevin D Astudillo-Justo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - César Sotelo-Leyva
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Mayra Herrera-Martinez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón, OAX 68540, Mexico
| | - Sócrates Villegas-Comonfort
- División de Ciencias Naturales e Ingeniería, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, CDMX 05348, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
3
|
Hu M, Jana S, Kilic T, Wang F, Shen M, Winkelaar G, Oudit GY, Rayner K, Zhang DW, Kassiri Z. Loss of TIMP4 (Tissue Inhibitor of Metalloproteinase 4) Promotes Atherosclerotic Plaque Deposition in the Abdominal Aorta Despite Suppressed Plasma Cholesterol Levels. Arterioscler Thromb Vasc Biol 2021; 41:1874-1889. [PMID: 33792349 DOI: 10.1161/atvbaha.120.315522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/metabolism
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/blood
- Cell Transdifferentiation
- Cells, Cultured
- Cholesterol/blood
- Disease Models, Animal
- Disease Progression
- Down-Regulation
- Female
- Foam Cells/metabolism
- Foam Cells/pathology
- Humans
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Proteolysis
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Tissue Inhibitor of Metalloproteinases/deficiency
- Tissue Inhibitor of Metalloproteinases/genetics
- Tissue Inhibitor of Metalloproteinase-4
- Mice
Collapse
Affiliation(s)
- Mei Hu
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Sayantan Jana
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Tolga Kilic
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Faqi Wang
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Mengcheng Shen
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Gerrit Winkelaar
- Division of Vascular Surgery, University of Alberta and The Northern Alberta Vascular Center, Grey Nuns Hospital, Edmonton, Canada (G.W.)
| | - Gavin Y Oudit
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
- Department of Medicine/Division of Cardiology, Mazankowski Alberta Heart Institute, Cardiovascular Research Center (G.Y.O.), University of Alberta, Edmonton, Canada
| | - Katey Rayner
- University of Ottawa Heart Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (K.R.)
| | - Da-Wei Zhang
- Department of Pediatrics, Lipid Group (D.-w.Z.), University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Dang Y, Gao N, Niu H, Guan Y, Fan Z, Guan J. Targeted Delivery of a Matrix Metalloproteinases-2 Specific Inhibitor Using Multifunctional Nanogels to Attenuate Ischemic Skeletal Muscle Degeneration and Promote Revascularization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5907-5918. [PMID: 33506676 PMCID: PMC8007230 DOI: 10.1021/acsami.0c19271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Critical limb ischemia (CLI) is a severe form of peripheral artery disease (PAD). It is featured by degenerated skeletal muscle and poor vascularization. During the development of CLI, the upregulated matrix metalloproteinase-2 (MMP-2) degrades muscle extracellular matrix to initiate the degeneration. Meanwhile, MMP-2 is necessary for blood vessel formation. It is thus hypothesized that appropriate MMP-2 bioactivity in ischemic limbs will not only attenuate muscle degeneration but also promote blood vessel formation. Herein, we developed ischemia-targeting poly(N-isopropylacrylamide)-based nanogels to specifically deliver an MMP-2 inhibitor CTTHWGFTLC (CTT) into ischemic limbs to tailor MMP-2 bioactivity. Besides acting as an MMP-2 inhibitor, CTT promoted endothelial cell migration under conditions mimicking the ischemic limbs. The nanogels were sensitive to the pH of ischemic tissues, allowing them to largely aggregate in the injured area. To help reduce nanogel uptake by macrophages and increase circulation time, the nanogels were cloaked with a platelet membrane. An ischemia-targeting peptide CSTSMLKA (CST) was further conjugated on the platelet membrane for targeted delivery of nanogels into the ischemic area. CTT gradually released from the nanogels for 4 weeks. The nanogels mostly accumulated in the ischemic area for 28 days. The released CTT preserved collagen in the muscle and promoted its regeneration. In addition, CTT stimulated angiogenesis. Four weeks after CLI, the blood flow and vessel density of the ischemic limbs treated with the nanogels were remarkably higher than the control groups without CTT release. These results demonstrate that the developed nanogel-based CTT release system has the potential to stimulate ischemic limb regeneration.
Collapse
Affiliation(s)
- Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Bjørnholm KD, Skovsted GF, Mitgaard-Thomsen A, Rakipovski G, Tveden-Nyborg P, Lykkesfeldt J, Povlsen GK. Liraglutide treatment improves endothelial function in the Ldlr-/- mouse model of atherosclerosis and affects genes involved in vascular remodelling and inflammation. Basic Clin Pharmacol Toxicol 2021; 128:103-114. [PMID: 32896073 DOI: 10.1111/bcpt.13486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Recent clinical intervention studies have shown that the GLP1 analogue liraglutide lowers cardiovascular risk, but the underlying mechanism has not yet been fully elucidated. This study investigated the effects of liraglutide on endothelial function in the Ldlr-/- mouse model. Mice (n = 12/group) were fed Western diet (WD) or chow for 12 weeks followed by 4 weeks of treatment with liraglutide (1 mg/kg/day) or vehicle subcutaneously. Weight loss, blood lipid content, plaque burden, vasomotor function of the aorta and gene expression pattern in aorta and brachiocephalic artery were monitored. Liraglutide treatment significantly induced weight loss (P < .0001), decreased blood triglycerides (P < .0001) and total cholesterol (P < .0001) in WD-fed mice but did not decrease plaque burden. Liraglutide also improved endothelium-mediated dilation of the distal thoracis aorta (P = .0067), but it did not affect phenylephrine or sodium nitroprusside responses. Fluidigm analyses of 96 genes showed significantly altered expression of seven genes related to inflammation, vascular smooth muscle cells and extracellular matrix composition in liraglutide-treated animals. We conclude that treatment with liraglutide decreased endothelial dysfunction and that this could be linked to decreased inflammation or regulation of vascular remodelling.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Gene Expression Regulation
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/physiopathology
- Inflammation/prevention & control
- Liraglutide/pharmacology
- Male
- Mice, Knockout
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
- Mice
Collapse
Affiliation(s)
- Katrine Dahl Bjørnholm
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Gry Freja Skovsted
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | | - Günaj Rakipovski
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Pernille Tveden-Nyborg
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
6
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 707] [Impact Index Per Article: 176.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
7
|
Cooke EJ, Wyseure T, Zhou JY, Gopal S, Nasamran CA, Fisch KM, Manon-Jensen T, Karsdal MA, Mosnier LO, von Drygalski A. Mechanisms of vascular permeability and remodeling associated with hemarthrosis in factor VIII-deficient mice. J Thromb Haemost 2019; 17:1815-1826. [PMID: 31301687 PMCID: PMC6824926 DOI: 10.1111/jth.14567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/19/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vascular remodeling associated with hemophilic arthropathy (HA) may contribute to bleed propagation, but the mechanisms remain poorly understood. OBJECTIVES To explore molecular mechanisms of HA and the effects of hemostasis correction on synovial vascular remodeling after joint injury in hypocoagulable mice. METHODS Factor VIII (FVIII)-deficient mice +/- FVIII treatment and hypocoagulable wild-type mice (Hypo BALB/c) were subjected to subpatellar puncture. Hypo BALB/c mice were treated with warfarin and anti-FVIII before injury, after which warfarin was continued for 2 weeks or reversed +/- continuous anti-FVIII until harvest. Synovial vascularity was analyzed at baseline and 2 to 4 weeks post injury by histology, musculoskeletal ultrasound with power Doppler (microvascular flow), and Evans blue extravasation (vascular permeability). Synovial gene expression and systemic markers of vascular collagen turnover were studied in FVIII-deficient mice by RNA sequencing and enzyme-linked immunosorbent assay. RESULTS Vascular changes occurred in FVIII-deficient and Hypo BALB/c mice after injury with minimal effect of hemostasis correction. Increased vascular permeability was only significant in FVIII-deficient mice, who exhibited more pronounced vascular remodeling than Hypo BALB/c mice despite similar bleed volumes. FVIII-deficient mice exhibited a strong transcriptional response in synovium that was only partially affected by FVIII treatment and involved genes relating to angiogenesis and extracellular matrix remodeling, with vascular collagen turnover markers detected systemically. CONCLUSIONS Intact hemostasis at the time of hemarthrosis and during healing are both critical to prevent vascular remodeling, which appears worse with severe and prolonged FVIII deficiency. Unbiased RNA sequencing revealed potential targets for intervention and biomarker development to improve management of HA.
Collapse
Affiliation(s)
- Esther J Cooke
- University of California San Diego, Department of Medicine,
Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular
Medicine, La Jolla, CA, USA
| | - Tine Wyseure
- The Scripps Research Institute, Department of Molecular
Medicine, La Jolla, CA, USA
| | - Jenny Y Zhou
- University of California San Diego, Department of Medicine,
Division of Hematology/Oncology, La Jolla, CA, USA
| | - Srila Gopal
- University of California San Diego, Department of Medicine,
Division of Hematology/Oncology, La Jolla, CA, USA
| | - Chanond A Nasamran
- University of California San Diego, Center for
Computational Biology and Bioinformatics, La Jolla, CA, USA
| | - Kathleen M Fisch
- University of California San Diego, Center for
Computational Biology and Bioinformatics, La Jolla, CA, USA
| | | | | | - Laurent O Mosnier
- The Scripps Research Institute, Department of Molecular
Medicine, La Jolla, CA, USA
| | - Annette von Drygalski
- University of California San Diego, Department of Medicine,
Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular
Medicine, La Jolla, CA, USA
| |
Collapse
|
8
|
Wang J, An F, Cao Y, Gao H, Sun M, Ma C, Wu H, Zhang B, Liu W, Wang J. Association of TIMP4 gene variants with steroid-induced osteonecrosis of the femoral head in the population of northern China. PeerJ 2019; 7:e6270. [PMID: 30697482 PMCID: PMC6348097 DOI: 10.7717/peerj.6270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
Background In clinical treatment, the use of steroid hormones is an important etiological factor of non-traumatic osteonecrosis of the femoral head (ONFH) risk. As an endogenous inhibitor of matrix metalloproteinases (MMPs) in the extracellular matrix, the expression of tissue inhibitors of metalloprotease-4 (TIMP4) plays an essential role in cartilage and bone tissue damage and remodeling, vasculitis formation, intravascular thrombosis, and lipid metabolism. Methods This study aimed to detect the association between TIMP4 polymorphism and steroid-induced ONFH. We genotyped seven single-nucleotide polymorphisms (SNPs) in TIMP4 genes and analyzed the association with steroid-induced ONFH from 286 steroid-induced ONFH patients and 309 normal individuals. Results We performed allelic model analysis and found that the minor alleles of five SNPs (rs99365, rs308952, rs3817004, rs2279750, and rs3755724) were associated with decreased steroid-induced ONFH (p = 0.02, p = 0.03, p = 0.04, p = 0.01, p = 0.04, respectively). rs2279750 showed a significant association with decreased risk of steroid-induced ONFH in the Dominant and Log-additive models (p = 0.042, p = 0.028, respectively), and rs9935, rs30892, and rs3817004 were associated with decreased risk in the Log-additive model (p = 0.038, p = 0.044, p = 0.042, respectively). In further stratification analysis, TIMP4 gene variants showed a significant association with steroid-induced ONFH in gender under the genotypes. Haplotype analysis also revealed that “TCAGAC” and “CCGGAA” sequences have protective effect on steroid-induced ONFH. Conclusion Our results indicate that five TIMP4 SNPs (rs99365, rs308952, rs3817004rs2279750, and rs3755724) are significantly associated with decreased risk of steroid-induced ONFH in the population of northern China.
Collapse
Affiliation(s)
- Jiaqi Wang
- Inner Mongolia Medical University, Hohhot, China
| | - Feimeng An
- Inner Mongolia Medical University, Hohhot, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine Traumatology Hospital, Zhengzhou, China
| | - Hongyan Gao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mingqi Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chao Ma
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hao Wu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wanlin Liu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianzhong Wang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
Sandrim VC, Diniz S, Eleuterio NM, Gomes KB, Dusse LMS, Cavalli RC. Higher levels of circulating TIMP-4 in preeclampsia is strongly associated with clinical parameters and microRNA. Clin Exp Hypertens 2017; 40:609-612. [PMID: 29231756 DOI: 10.1080/10641963.2017.1411499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Preeclampsia results in maternal and fetal complications and some studies have reported the role of MMPs and TIMPs in its pathophysiology. Therefore, the aim of this study was to compare plasma TIMP-4 levels in preeclampsia and healthy pregnant; and to correlate these levels with clinical parameters and expression of Let7a-5p (3´UTR post-transcriptionally regulation) Methods: TIMP-4 was measured by ELISA and miR-Let7a-5p expression by qPCR. RESULTS Elevated plasma TIMP-4 levels in preeclampsia compared to healthy pregnant was found 1450 ± 411 vs. 775 ± 210 pg/mL, respectively (p < 0.0001); these levels are correlated positively with serum liver enzymes (ALT, r = 0.84, p = 0.004; and AST, r = 0.51, p = 0.02); and negatively with newborn weight (r = -0.45, p = 0.04) in preeclampsia. Regarding Let7a-5p a negative but not significant correlation was found (r = -0.39, p = 0.06, including both healthy and preeclampsia). CONCLUSIONS Preeclampsia present elevated levels of circulating TIMP-4 compared to healthy pregnant and these levels are correlated with clinical parameters of disease.
Collapse
Affiliation(s)
- Valéria C Sandrim
- a Departamento de Farmacologia , Instituto de Biociências, Universidade Estadual Paulista (UNESP) , Botucatu , São Paulo , Brazil
| | - Solange Diniz
- b Nucleo de Pos-Graduação e Pesquisa-Santa Casa de Belo Horizonte , Belo Horizonte , MG , Brazil
| | - Nibia Mariana Eleuterio
- b Nucleo de Pos-Graduação e Pesquisa-Santa Casa de Belo Horizonte , Belo Horizonte , MG , Brazil
| | - Karina B Gomes
- c Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Luci Maria S Dusse
- c Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Ricardo C Cavalli
- d Departamento de G inecologia e Obstetricia, Faculdade de Medicina de Ribeirao Preto , Universidade de Sao Paulo (FMRP-USP) , Ribeirao Preto , Brazil
| |
Collapse
|
10
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Fan Z, Fu M, Xu Z, Zhang B, Li Z, Li H, Zhou X, Liu X, Duan Y, Lin PH, Duann P, Xie X, Ma J, Liu Z, Guan J. Sustained Release of a Peptide-Based Matrix Metalloproteinase-2 Inhibitor to Attenuate Adverse Cardiac Remodeling and Improve Cardiac Function Following Myocardial Infarction. Biomacromolecules 2017; 18:2820-2829. [PMID: 28731675 DOI: 10.1021/acs.biomac.7b00760] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Following myocardial infarction (MI), degradation of extracellular matrix (ECM) by upregulated matrix metalloproteinases (MMPs) especially MMP-2 decreases tissue mechanical properties, leading to cardiac function deterioration. Attenuation of cardiac ECM degradation at the early stage of MI has the potential to preserve tissue mechanical properties, resulting in cardiac function increase. Yet the strategy for efficiently preventing cardiac ECM degradation remains to be established. Current preclinical approaches have shown limited efficacy because of low drug dosage allocated to the heart tissue, dose-limiting side effects, and cardiac fibrosis. To address these limitations, we have developed a MMP-2 inhibitor delivery system that can be specifically delivered into infarcted hearts at early stage of MI to efficiently prevent MMP-2-mediated ECM degradation. The system was based on an injectable, degradable, fast gelation, and thermosensitive hydrogel, and a MMP-2 specific inhibitor, peptide CTTHWGFTLC (CTT). The use of fast gelation hydrogel allowed to completely retain CTT in the heart tissue. The system was able to release low molecular weight CTT over 4 weeks possibly due to the strong hydrogen bonding between the hydrogel and CTT. The release kinetics was modulated by amount of CTT loaded into the hydrogel, and using chondroitin sulfate and heparin that can interact with CTT and the hydrogel. Both glycosaminoglycans augmented CTT release, while heparin more greatly accelerated the release. After it was injected into the infarcted hearts for 4 weeks, the released CTT efficiently prevented cardiac ECM degradation as it not only increased tissue thickness but also preserved collagen composition similar to that in the normal heart tissue. In addition, the delivery system significantly improved cardiac function. Importantly, the delivery system did not induce cardiac fibrosis. These results demonstrate that the developed MMP-2 inhibitor delivery system has potential to efficiently reduce adverse myocardial remodeling and improve cardiac function.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States
| | - Minghuan Fu
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States.,Division of Cardiovascular Disease, Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu, Sichuan, 610072, China
| | - Zhaobin Xu
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States
| | - Bo Zhang
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, 430030, China
| | - Zhihong Li
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States.,Division of General Surgery, Shanghai Pudong New District Zhoupu Hospital , Shanghai, 201200, China
| | - Haichang Li
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xinyu Zhou
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xuanyou Liu
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Yunyan Duan
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Pu Duann
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University , Shanghai, China
| | - Jianjie Ma
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Cavusoglu E, Kassotis JT, Marmur JD, Banerji MA, Yanamadala S, Chopra V, Anwar A, Eng C. Usefulness of Plasma Tissue Inhibitor of Matrix Metalloproteinase-4 to Predict Death and Myocardial Infarction in Patients With Diabetes Mellitus Referred for Coronary Angiography. Am J Cardiol 2017; 120:1-7. [PMID: 28487036 DOI: 10.1016/j.amjcard.2017.03.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/24/2022]
Abstract
TIMP-4 is the newest member of a family of secreted proteins known as the tissue inhibitors of metalloproteases that selectively inhibit matrix metalloproteases. TIMP-4 is abundantly expressed in human cardiovascular structures and has been implicated in cardiovascular disease. Furthermore, it has also been shown to be a novel target of peroxisome proliferator-activated receptor gamma in rat smooth muscle cells, suggesting a potential role in diabetes mellitus as well. However, there have been no studies that have specifically examined the utility of baseline plasma TIMP-4 levels for the prediction of long-term adverse cardiovascular outcomes. In this study, baseline plasma TIMP-4 levels were measured in 162 male patients with diabetes mellitus who were referred for coronary angiography and followed prospectively for the development of all-cause mortality and enzymatically confirmed myocardial infarction (MI) out to 5 years. After adjustment for a variety of baseline clinical, angiographic and laboratory parameters, plasma TIMP-4 levels were an independent predictor of all-cause mortality (hazard ratio 1.60, 95% CI 1.13 to 2.26; p = 0.0082) and MI (hazard ratio 1.61, 95% CI 1.19 to 2.18; p = 0.0021) at 5 years. Furthermore, in additional multivariate models that adjusted for a variety of biomarkers with established prognostic efficacy, TIMP-4 remained an independent predictor of adverse outcomes. In conclusion, elevated levels of TIMP-4 are associated with an increased risk of long-term all-cause mortality and MI in patients with diabetes mellitus referred for coronary angiography. Moreover, this association is independent of a variety of clinical, angiographic, and laboratory variables, including biomarkers with established prognostic efficacy in the prediction of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Erdal Cavusoglu
- Division of Cardiology, Department of Medicine, Bronx Veterans Affairs Medical Center, Bronx, New York; Division of Cardiology, Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York.
| | - John T Kassotis
- Division of Cardiology, Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jonathan D Marmur
- Division of Cardiology, Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Mary Ann Banerji
- Division of Endocrinology, Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Sunitha Yanamadala
- Division of Cardiology, Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Vineet Chopra
- Division of Hospital Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ayesha Anwar
- Division of Cardiology, Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Calvin Eng
- Division of Cardiology, Department of Medicine, Bronx Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
13
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
14
|
Del Porto F, Cifani N, Proietta M, Toni D, Taurino M. MMP-12 and TIMP Behavior in Symptomatic and Asymptomatic Critical Carotid Artery Stenosis. J Stroke Cerebrovasc Dis 2017; 26:334-338. [PMID: 27746079 DOI: 10.1016/j.jstrokecerebrovasdis.2016.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the levels of matrix metalloproteinase-12 (MMP-12) and tissue inhibitors of metalloproteinases (TIMP)-1, TIMP-2, TIMP-3, and TIMP-4 in patients with symptomatic and asymptomatic critical carotid artery stenosis (CAS). METHODS We enrolled 10 patients affected by symptomatic CAS within 12 hours from onset of stroke (S group) and 30 patients with asymptomatic CAS (CAS group); 31 patients matched for age, sex, and traditional cardiovascular risk factors were used as controls (RF group). Serum levels of MMP-12, TIMP-1, TIMP-2, TIMP-3, and TIMP-4 were assessed by Luminex. RESULTS MMP-12 levels were significantly higher both in the S and CAS groups than in the RF group (P < .001). We found a significant decrease of all TIMPs in the CAS group compared with the RF group, whereas a significant increase was observed in the S group compared with the CAS group. A significant increase of TIMP-3 and TIMP-4 levels was observed in the S group compared with all other groups. CONCLUSION MMP-12 is related to critical CAS both symptomatic and asymptomatic, being mainly released in the late stage of plaque development. Moreover, we suggest that a specific pattern of matrix degrading enzyme inhibitors arises during the early phases of stroke.
Collapse
Affiliation(s)
- Flavia Del Porto
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma, Rome, Italy; UOC Medicina 3.
| | - Noemi Cifani
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma, Rome, Italy
| | - Maria Proietta
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma, Rome, Italy; UOC Medicina 3
| | - Danilo Toni
- Dipartimento di Neurologia e Psichiatria, Facoltà di Medicina e Odontoiatria, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Maurizio Taurino
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma, Rome, Italy; UOC di Chirurgia Vascolare, Ospedale Sant'Andrea, Rome, Italy
| |
Collapse
|
15
|
Ligi D, Mosti G, Croce L, Raffetto JD, Mannello F. Chronic venous disease - Part II: Proteolytic biomarkers in wound healing. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1900-8. [PMID: 27460704 DOI: 10.1016/j.bbadis.2016.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 12/14/2022]
Abstract
Venous leg ulcers (VLU) are characterized by sustained proteolytic microenvironment impairing the healing process. Wound fluid (WF) reflect the biomolecular activities occurring within the wound area; however, it is unclear if WF from different healing phases have different proteolytic profiles and how VLU microenvironment affects the wound healing mechanisms. We investigated the proteolytic network of WF from distinct VLU phases, and in WF- and LPS-stimulated THP-1 monocytes treated with glycosaminoglycan sulodexide, a well known therapeutic approach for VLU healing. WF were collected from patients with VLU during inflammatory (Infl) and granulating (Gran) phases. WF and THP-1 supernatants were analyzed for nine matrix metalloproteinases (MMP) and four tissue inhibitors of metalloproteinases (TIMP) by multiplex immunoassays. Our results demonstrated that: 1) WF from Infl VLU contained significantly increased concentrations of MMP-2, MMP-9, MMP-12, TIMP-1, and TIMP-2 compared to Gran WF; 2) WF from Gran VLU showed significantly increased levels of MMP-1, MMP-7, MMP-13, and TIMP-4 compared to Infl WF; 3) LPS- and WF-stimulation of THP-1 cells significantly increased the expression of several MMP compared to untreated cells; 4) Sulodexide treatment of both LPS- and WF-stimulated THP-1 significantly down-regulated the release of several MMPs. Our study provides evidence-based medicine during treatment of patients with VLU. WF from Infl and Gran VLU have different MMP and TIMP signatures, consistent with their clinical state. The modulation of proteolytic pathways in wound microenvironment by glycosaminoglycan sulodexide, provide insights for translating research into clinical practice during VLU therapy.
Collapse
Affiliation(s)
- Daniela Ligi
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University "Carlo Bo", Urbino, Italy
| | - Giovanni Mosti
- Department of Angiology, Barbantini's Clinic, via del Calcio 2, 55100 Lucca, Italy
| | - Lidia Croce
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University "Carlo Bo", Urbino, Italy
| | - Joseph D Raffetto
- Vascular Surgery Division, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University "Carlo Bo", Urbino, Italy.
| |
Collapse
|
16
|
Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016; 53:1-16. [PMID: 27327039 PMCID: PMC7196926 DOI: 10.1159/000446703] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of atherosclerotic disease continues to increase, and despite significant reductions in major cardiovascular events with current medical interventions, an additional therapeutic window exists. Atherosclerotic plaque growth is a complex integration of cholesterol penetration, inflammatory cell infiltration, vascular smooth muscle cell (VSMC) migration, and neovascular invasion. A family of matrix-degrading proteases, the matrix metalloproteinases (MMPs), contributes to all phases of vascular remodeling. The contribution of specific MMPs to endothelial cell integrity and VSMC migration in atherosclerotic lesion initiation and progression has been confirmed by the increased expression of these proteases in plasma and plaque specimens. Endogenous blockade of MMPs by the tissue inhibitors of metalloproteinases (TIMPs) may attenuate proteolysis in some regions, but the progression of matrix degeneration suggests that MMPs predominate in atherosclerotic plaque, precipitating vulnerability. Plaque neovascularization also contributes to instability and, coupling the known role of MMPs in angiogenesis to that of atherosclerotic plaque growth, interest in targeting MMPs to facilitate plaque stabilization continues to accumulate. This article aims to review the contributions of MMPs and TIMPs to atherosclerotic plaque expansion, neovascularization, and rupture vulnerability with an interest in promoting targeted therapies to improve plaque stabilization and decrease the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, S.C., USA
| | | | | |
Collapse
|
17
|
Ketsawatsomkron P, Keen HL, Davis DR, Lu KT, Stump M, De Silva TM, Hilzendeger AM, Grobe JL, Faraci FM, Sigmund CD. Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator-Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate-Salt Hypertension. Hypertension 2016; 67:214-22. [PMID: 26597823 PMCID: PMC4679422 DOI: 10.1161/hypertensionaha.115.06391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/18/2015] [Indexed: 11/16/2022]
Abstract
Loss of peroxisome proliferator-activated receptor-γ (PPARγ) function causes hypertension, whereas its activation lowers blood pressure. Evidence suggests that these effects may be attributable to PPARγ activity in the vasculature. However, the specific transcriptional targets of PPARγ in vessels remain largely unidentified. In this study, we examined the role of smooth muscle PPARγ during salt-sensitive hypertension and investigated its transcriptional targets and functional effect. Transgenic mice expressing dominant-negative PPARγ (S-P467L) in smooth muscle cells were more prone to deoxycorticosterone acetate-salt-induced hypertension and mesenteric arterial dysfunction compared with nontransgenic controls. Despite similar morphometry at baseline, vascular remodeling in conduit and small arteries was enhanced in S-P467L after deoxycorticosterone acetate-salt treatment. Gene expression profiling in aorta and mesenteric arteries revealed significantly decreased expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in S-P467L. Expression of TIMP-4 was increased by deoxycorticosterone acetate-salt treatment, but this increase was ablated in S-P467L. Interference with PPARγ activity either by treatment with a PPARγ inhibitor, GW9662, or by expressing P467L PPARγ markedly suppressed TIMP-4 in primary smooth muscle cells. PPARγ binds to a PPAR response element (PPRE) in chromatin close to the TIMP-4 gene in smooth muscle cells, suggesting that TIMP-4 is a novel target of PPARγ. The interference with PPARγ and decrease in TIMP-4 were accompanied by an increase in total matrix metalloproteinase activity. PPARγ-mediated loss of TIMP-4 increased, whereas overexpression of TIMP-4 decreased smooth muscle cell migration in a scratch assay. Our findings highlight a protective mechanism induced by PPARγ in deoxycorticosterone acetate-salt treatment, establishing a novel mechanistic link between PPARγ and TIMP-4.
Collapse
Affiliation(s)
- Pimonrat Ketsawatsomkron
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Henry L Keen
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Deborah R Davis
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Ko-Ting Lu
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Madeliene Stump
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - T Michael De Silva
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Aline M Hilzendeger
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Justin L Grobe
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Frank M Faraci
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Curt D Sigmund
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA.
| |
Collapse
|
18
|
TIMP-1 Inhibits Apoptosis in Lung Adenocarcinoma Cells via Interaction with Bcl-2. PLoS One 2015; 10:e0137673. [PMID: 26366732 PMCID: PMC4569297 DOI: 10.1371/journal.pone.0137673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/20/2015] [Indexed: 01/06/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are multifaceted molecules that exhibit properties beyond their classical proteinase inhibitory function. Although TIMP-1 is a known inhibitor of apoptosis in mammalian cells, the mechanisms by which it exerts its effects are not well-established. Our earlier studies using H2009 lung adenocarcinoma cells, implanted in the CNS, showed that TIMP-1 overexpressing H2009 cells (HB-1), resulted in more aggressive tumor kinetics and increased vasculature. The present study was undertaken to elucidate the role of TIMP-1 in the context of apoptosis, using the same lung cancer cell lines. Overexpressing TIMP-1 in a lung adenocarcinoma cell line H2009 resulted in an approximately 3-fold increased expression of Bcl-2, with a marked reduction in apoptosis upon staurosporine treatment. This was an MMP-independent function as a clone expressing TIMP-1 mutant T2G, lacking MMP inhibition activity, inhibited apoptosis as strongly as TIMP1 overexpressing clones, as determined by inhibition of PARP cleavage. Immunoprecipitation of Bcl-2 from cell lysates also co-immunoprecipitated TIMP-1, indicative of an interaction between these two proteins. This interaction was specific for TIMP-1 as TIMP-2 was not present in the Bcl-2 pull-down. Additionally, we show a co-dependency of TIMP-1 and Bcl-2 RNA and protein levels, such that abrogating Bcl-2 causes a downregulation of TIMP-1 but not TIMP-2. Finally, we demonstrate that TIMP-1 dependent inhibition of apoptosis occurs through p90RSK, with phosphorylation of the pro-apoptotic protein BAD at serine 112, ultimately reducing Bax levels and increasing mitochondrial permeability. Together, these studies define TIMP-1 as an important cancer biomarker and demonstrate the potential TIMP-1 as a crucial therapeutic target.
Collapse
|
19
|
Lizarraga F, Ceballos-Cancino G, Espinosa M, Vazquez-Santillan K, Maldonado V, Melendez-Zajgla J. Tissue Inhibitor of Metalloproteinase-4 Triggers Apoptosis in Cervical Cancer Cells. PLoS One 2015; 10:e0135929. [PMID: 26291714 PMCID: PMC4546159 DOI: 10.1371/journal.pone.0135929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-4 (TIMP-4) is a member of extracellular matrix (ECM) metalloproteinases inhibitors that has pleiotropic functions. However, TIMP-4 roles in carcinogenesis are not well understood. Cell viability and flow cytometer assays were employed to evaluate cell death differences between H-Vector and H-TIMP-4 cell lines. Immunobloting and semi-quantitative RT-PCR were used to evaluate the expression of apoptosis regulators. We showed that TIMP-4 has apoptosis-sensitizing effects towards several death stimuli. Consistent with these findings, regulators of apoptosis from Inhibitors of Apoptosis Proteins (IAP), FLICE-like inhibitor proteins (FLIP) and Bcl-2 family members were modulated by TIMP-4. In addition, TIMP-4 knockdown resulted in cell survival increase after serum deprivation, as assessed by clonogenic cell analyses. This report shows that TIMP-4 regulates carcinogenesis through apoptosis activation in cervical cancer cells. Understanding TIMP-4 effects in tumorigenesis may provide clues for future therapies.
Collapse
Affiliation(s)
- Floria Lizarraga
- Basic Research Subdivision, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan. Mexico, D.F. C.P.14610, Mexico
| | - Gisela Ceballos-Cancino
- Basic Research Subdivision, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan. Mexico, D.F. C.P.14610, Mexico
| | - Magali Espinosa
- Basic Research Subdivision, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan. Mexico, D.F. C.P.14610, Mexico
| | - Karla Vazquez-Santillan
- Basic Research Subdivision, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan. Mexico, D.F. C.P.14610, Mexico
| | - Vilma Maldonado
- Basic Research Subdivision, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan. Mexico, D.F. C.P.14610, Mexico
| | - Jorge Melendez-Zajgla
- Basic Research Subdivision, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan. Mexico, D.F. C.P.14610, Mexico
| |
Collapse
|
20
|
Montani C, Steimberg N, Boniotti J, Biasiotto G, Zanella I, Diafera G, Biunno I, Caimi L, Mazzoleni G, Di Lorenzo D. Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens. Toxicol Appl Pharmacol 2014; 280:421-33. [DOI: 10.1016/j.taap.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
|
21
|
Yarbrough WM, Baicu C, Mukherjee R, Van Laer A, Rivers WT, McKinney RA, Prescott CB, Stroud RE, Freels PD, Zellars KN, Zile MR, Spinale FG. Cardiac-restricted overexpression or deletion of tissue inhibitor of matrix metalloproteinase-4: differential effects on left ventricular structure and function following pressure overload-induced hypertrophy. Am J Physiol Heart Circ Physiol 2014; 307:H752-61. [PMID: 24993046 PMCID: PMC4187400 DOI: 10.1152/ajpheart.00063.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/16/2014] [Indexed: 11/22/2022]
Abstract
Historically, the tissue inhibitors of matrix metalloproteinases (TIMPs) were considered monochromatic in function. However, differential TIMP profiles more recently observed with left ventricular (LV) dysfunction and matrix remodeling suggest more diverse biological roles for individual TIMPs. This study tested the hypothesis that cardiac-specific overexpression (TIMP-4OE) or deletion (knockout; TIMP-4KO) would differentially affect LV function and structure following pressure overload (LVPO). LVPO (transverse aortic constriction) was induced in mice (3.5 ± 0.1 mo of age, equal sex distribution) with TIMP-4OE (n = 38), TIMP-4KO (n = 24), as well as age/strain-matched wild type (WT, n = 25), whereby indexes of LV remodeling and function such as LV mass and ejection fraction (LVEF) were determined at 28 days following LVPO. Following LVPO, both early (7 days) and late (28 days) survival was ~25% lower in the TIMP-4KO group (P < 0.05). While LVPO increased LV mass in all groups, the relative hypertrophic response was attenuated with TIMP-4OE. With LVPO, LVEF was similar between WT and TIMP-4KO (48 ± 2% and 45 ± 3%, respectively) but was higher with TIMP-4OE (57 ± 2%, P < 0.05). With LVPO, LV myocardial collagen expression (type I, III) increased by threefold in all groups (P < 0.05), but surprisingly this response was most robust in the TIMP-4KO group. These unique findings suggest that increased myocardial TIMP-4 in the context of a LVPO stimulus may actually provide protective effects with respect to survival, LV function, and extracellular matrix (ECM) remodeling. These findings challenge the canonical belief that increased levels of specific myocardial TIMPs, such as TIMP-4 in and of themselves, contribute to adverse ECM accumulation following a pathological stimulus, such as LVPO.
Collapse
Affiliation(s)
| | - Catalin Baicu
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - An Van Laer
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - William T Rivers
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Richard A McKinney
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Corey B Prescott
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Robert E Stroud
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Parker D Freels
- University of South Carolina School of Medicine, WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Kia N Zellars
- University of South Carolina School of Medicine, WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Michael R Zile
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Francis G Spinale
- University of South Carolina School of Medicine, WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina;
| |
Collapse
|
22
|
Spinale FG, Villarreal F. Targeting matrix metalloproteinases in heart disease: lessons from endogenous inhibitors. Biochem Pharmacol 2014; 90:7-15. [PMID: 24780447 DOI: 10.1016/j.bcp.2014.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/13/2023]
Abstract
Basic pharmacological/transgenic studies have clearly demonstrated a cause-effect relationship between the induction and activation of matrix metalloproteinases (MMPs) and adverse changes in the structure and function of the left ventricle (LV). Thus, regulation of MMP induction and/or activation would appear to be a potential therapeutic target in the context of cardiovascular disease, such as following myocardial infarction (MI). However, pharmacological approaches to inhibit MMPs have yet to be realized for clinical applications. The endogenous inhibitors of the MMPs (TIMPs) constitute a set of 4 small molecules with unique functionality and specificity. Thus, improved understanding on the function and roles of individual TIMPs may provide important insight into the design and targets for pharmacological applications in LV remodeling processes, such as MI. Therefore, the purpose of this review will be to briefly examine biological functions and relevance of the individual TIMPs in terms of adverse LV remodeling post-MI. Second is to examine the past outcomes and issues surrounding clinical trials targeting MMPs in the post MI context and how new insights into TIMP biology may provide new pharmacological targets. This review will put forward the case that initial pharmacological attempts at MMP inhibition were over-simplistic and that future strategies must recognize the diversity of this matrix proteolytic system and that lessons from TIMP biology may lead to future therapeutic strategies.
Collapse
Affiliation(s)
- Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veteran Affairs Medical Center, Columbia, SC, USA.
| | - Francisco Villarreal
- Division of Cardiology, University of California-San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
23
|
Zavadzkas JA, Stroud RE, Bouges S, Mukherjee R, Jones JR, Patel RK, McDermott PJ, Spinale FG. Targeted overexpression of tissue inhibitor of matrix metalloproteinase-4 modifies post-myocardial infarction remodeling in mice. Circ Res 2014; 114:1435-45. [PMID: 24637197 PMCID: PMC4040980 DOI: 10.1161/circresaha.114.303634] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial infarction (MI) causes an imbalance between matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases (TIMPs) and is associated with adverse left ventricular (LV) remodeling. A uniform reduction in TIMP-4 post-MI has been observed. OBJECTIVE To examine post-MI remodeling with cardiac-restricted overexpression of TIMP-4, either through a transgenic or viral delivery approach. METHODS AND RESULTS MI was induced in mice and then randomized to targeted injection of an adenoviral construct (10 μL; 8×10(9) plaque forming units/mL) encoding green fluorescent protein (GFP) and the full-length human TIMP-4 (Ad-GFP-TIMP4) or GFP. A transgenic construct with cardiac-restricted overexpression TIMP-4 (hTIMP-4exp) was used in a parallel set of studies. LV end-diastolic volume, an index of LV remodeling, increased by >60% from baseline at 5 days post-MI and by >100% at 21 days post-MI in the Ad-GFP only group. However, LV dilation was reduced by ≈50% in both the Ad-GFP-TIMP4 and hTIMP-4exp groups at these post-MI time points. LV ejection fraction was improved with either Ad-GFP-TIMP-4 or hTIMP-4exp. Fibrillar collagen expression and content were increased within the MI region with both TIMP-4 interventions, suggestive of matrix stabilization. CONCLUSIONS This study is the first to demonstrate that selective myocardial targeting for TIMP-4 induction through either a viral or transgenic approach favorably altered the course of adverse LV remodeling post-MI. Thus, localized induction of endogenous matrix metalloproteinase inhibitors, such as TIMP-4, holds promise as a means to interrupt the progression of post-MI remodeling.
Collapse
Affiliation(s)
- Juozas A. Zavadzkas
- Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran’s Affairs Medical Center, Charleston
| | - Robert E. Stroud
- Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran’s Affairs Medical Center, Charleston
| | - Shenikqua Bouges
- Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran’s Affairs Medical Center, Charleston
| | - Rupak Mukherjee
- Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran’s Affairs Medical Center, Charleston
| | - Jeffrey R. Jones
- Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran’s Affairs Medical Center, Charleston
| | - Risha K. Patel
- Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran’s Affairs Medical Center, Charleston
| | - Paul J. McDermott
- Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran’s Affairs Medical Center, Charleston
| | | |
Collapse
|
24
|
Fountoulakis N, Labiris G, Aristeidou A, Katsanos A, Tentes I, Kortsaris A, Kozobolis VP. Tissue inhibitor of metalloproteinase 4 in aqueous humor of patients with primary open angle glaucoma, pseudoexfoliation syndrome and pseudoexfoliative glaucoma and its role in proteolysis imbalance. BMC Ophthalmol 2013; 13:69. [PMID: 24498922 PMCID: PMC3828421 DOI: 10.1186/1471-2415-13-69] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND To quantify the levels of tissue inhibitor of metalloproteinase 4 (TIMP4) and its ratios with free metalloproteinases (MMP) in the aqueous humor of patients with primary open angle glaucoma (POAG), pseudoexfoliation syndrome (PXS) and pseudoexfoliative glaucoma (PXG) and to evaluate a possible imbalance between MMPs and TIMPs in these samples. METHODS Free MMP2, MMP3, MMP9, TIMP1, TIMP2, TIMP4 concentrations and active levels of MMP2 and MMP3 were determined with immunoassay ELISA and activity assay kits in 168 aqueous samples. RESULTS TIMP4 was elevated in glaucoma patients(POAG: 0.95 ± 0.49 PXG: 1.28 ± 1.38 pg/ml. p < 0.001). POAG, PXS and PXG samples demonstrated higher MMP2, TIMP1 and TIMP2 concentrations (p < 0.001). Samples from the PXS and PXG groups had a lower total/active MMP2 ratio (p < 0.004 and p < 0.008 respectively). Stoichiometric analysis showed an overbalance of TIMPsover MMPs in both POAG & PXG groups,especially of TIMP4. CONCLUSION TIMP4 elevation is a novel finding in glaucomatous eyes. A disregulation of extracellular matrix homeostasis is suggested in POAG, PXS and PXG.
Collapse
Affiliation(s)
- Nikitas Fountoulakis
- Department of Ophthalmology, Democritus University of Thrace, Alexandroupolis, Greece
- Eye Institute of Thrace, Alexandroupolis, Greece
| | - Georgios Labiris
- Department of Ophthalmology, Democritus University of Thrace, Alexandroupolis, Greece
- Eye Institute of Thrace, Alexandroupolis, Greece
| | - Antonios Aristeidou
- Department of Ophthalmology, Democritus University of Thrace, Alexandroupolis, Greece
- Eye Institute of Thrace, Alexandroupolis, Greece
| | - Andreas Katsanos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | - Ioannis Tentes
- Department of Biochemistry, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Kortsaris
- Department of Biochemistry, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vassilios P Kozobolis
- Department of Ophthalmology, Democritus University of Thrace, Alexandroupolis, Greece
- Eye Institute of Thrace, Alexandroupolis, Greece
| |
Collapse
|
25
|
Patterson NL, Iyer RP, de Castro Brás LE, Li Y, Andrews TG, Aune GJ, Lange RA, Lindsey ML. Using proteomics to uncover extracellular matrix interactions during cardiac remodeling. Proteomics Clin Appl 2013; 7:516-27. [PMID: 23532927 DOI: 10.1002/prca.201200100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 01/13/2023]
Abstract
The left ventricle (LV) responds to a myocardial infarction with an orchestrated sequence of events that result in fundamental changes to both the structure and function of the myocardium. This collection of responses is termed as LV remodeling. Myocardial ischemia resulting in necrosis is the initiating event that culminates in the formation of an extracellular matrix (ECM) rich infarct scar that replaces necrotic myocytes. While the cardiomyocyte is the major cell type that responds to ischemia, infiltrating leukocytes and cardiac fibroblasts coordinate the subsequent wound healing response. The matrix metalloproteinase family of enzymes regulates the inflammatory and ECM responses that modulate scar formation. Matridomics is the proteomic evaluation focused on ECM, while degradomics is the proteomic evaluation of proteases as well as their inhibitors and substrates. This review will summarize the use of proteomics to better understand matrix metalloproteinase roles in post myocardial infarction LV remodeling.
Collapse
Affiliation(s)
- Nicolle L Patterson
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Oikonen M, Wendelin-Saarenhovi M, Siitonen N, Sainio A, Juonala M, Kähönen M, Lyytikäinen LP, Seppälä I, Lehtimäki T, Viikari JSA, Järveläinen H, Raitakari OT. Tissue inhibitor of matrix metalloproteinases 4 (TIMP4) in a population of young adults: relations to cardiovascular risk markers and carotid artery intima-media thickness. The Cardiovascular Risk in Young Finns Study. Scand J Clin Lab Invest 2012; 72:540-6. [PMID: 22978719 DOI: 10.3109/00365513.2012.704065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The tissue inhibitor of metalloproteinases 4 (TIMP4) is present in significant amounts in human atherosclerotic coronary artery lesions, but its relations with the early pathogenesis of atherosclerotic changes have not been clarified. We studied the associations of circulating TIMP4 with pre-clinical markers of atherosclerosis and traditional cardiovascular risk factors by using longitudinal data on carotid artery intima-media (cIMT) thickness in a population-based cohort of asymptomatic young adult Finns. METHODS Data on cIMT, plasma TIMP4, lipids, CRP, blood pressure, BMI, smoking status and daily alcohol intake were obtained from 980 24-39 year-old participants in 2001. The 6-year follow-up in cIMT measurements were performed in 2007 for 769 participants. RESULTS Plasma TIMP4 concentrations (mean ± SD) were 2.3 ± 1.7 ng/mL in men and 2.5 ± 1.8 ng/mL in women. Age, LDL-cholesterol, BMI and systolic blood pressure were directly associated with TIMP4 concentration. In a multivariable model, the independent determinants of TIMP4 included systolic blood pressure (p = 0.008) and daily smoking (p = 0.009), both being inversely associated with TIMP4. These two baseline variables explained 1.5% of the variation in TIMP4. TIMP4 was significantly and inversely associated with cIMT measured 6 years later (beta =- 0.0135, p = 0.01) explaining 0.7% of the variability of cIMT. CONCLUSION In young apparently healthy adults, circulating TIMP4 concentration was independently and inversely associated with cIMT, a marker of vascular structure and function.
Collapse
Affiliation(s)
- Mervi Oikonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
28
|
Guo H, Li M, Chen P, Blake DJ, Kong X, Hao X, Niu R, Zhang N. 4-Methyl-3-nitro-benzoic acid, a migration inhibitor, prevents breast cancer metastasis in SCID mice. Cancer Lett 2011; 305:69-75. [PMID: 21429660 DOI: 10.1016/j.canlet.2011.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Metastasis remains a formidable problem in malignant tumors. In this study, MTT assay revealed that 4-methyl-3-nitro-benzoic acid (MNBA) had no effect on cell viability and did not interfere with cell cycle in any breast cancer cell lines tested. However, treatment with MNBA on breast cancer cells can inhibit EGF-induced migration and chemotaxis in vitro. In vivo assay demonstrated that MNBA and Paclitaxel synergistically inhibited tumor growth and metastasis in breast cancer SCID mice xenografts. These results suggest that MNBA is a potent inhibitor cancer cell chemotaxis and may be developed into a novel anti-metastasis drug.
Collapse
Affiliation(s)
- Hua Guo
- Tianjin Medical University, Cancer Institute and Hospital, Research Center of Basic Medical Sciences, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Binger T, Stich S, Andreas K, Kaps C, Sezer O, Notter M, Sittinger M, Ringe J. Migration potential and gene expression profile of human mesenchymal stem cells induced by CCL25. Exp Cell Res 2009; 315:1468-79. [PMID: 19168060 DOI: 10.1016/j.yexcr.2008.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/22/2008] [Accepted: 12/27/2008] [Indexed: 01/16/2023]
Abstract
Recruitment of mesenchymal stem cells (MSC) to tissue damages is a promising approach for in situ tissue regeneration. The physiological mechanisms and regulatory processes of MSC trafficking to injured tissue remain poorly understood. However, the pivotal role of chemokines in MSC recruitment has already been shown. The aim of this study was to determine the migratory potential and the gene expression profile of MSC stimulated with the CC chemokine CCL25 (TECK). Bone marrow derived human MSC were exposed to different doses of CCL25 in a standardized chemotaxis assay. Microarray gene expression profiling and pathway analysis were performed for CCL25 stimulated MSC. Maximum migration of MSC towards CCL25 was observed at 10(3) nM. Microarray analysis revealed an induction of molecules directly involved in chemotaxis and homing of bone marrow cells (CXCL1-3, CXCL8, PDE4B), cytoskeletal and membrane reorganisation (CXCL8, PLD1, IGFBP1), cellular polarity (PLD1), and cell movement (CXCL1-3, CXCL6, CXCL8, PTGS2, PDE4B, TGM2). Respective chemokine secretion was confirmed by protein membrane-array analysis. The activation of CXCR2 ligands (CXCL1-3, CXCL5-6, CXCL8) and a LIF-receptor/gp130 ligand (LIF) indicated an involvement of the respective signaling pathways during initiation of chemotaxis and migration. These results suggest CCL25 as a new potential candidate for further in situ regeneration approaches.
Collapse
Affiliation(s)
- Tabea Binger
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, CCM, Tucholskystr. 2, 10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Diet-induced hyperhomocysteinemia exacerbates vascular reverse remodeling of balloon-injured arteries in rat. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007; 5:265-82. [PMID: 17338671 DOI: 10.1586/14779072.5.2.265] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerotic plaque rupture, with subsequent occlusive thrombosis, is the underlying cause of most cases of sudden cardiac death. Matrix metalloproteinases (MMPs) are thought to mediate the progression of stable atherosclerotic lesions to an unstable phenotype that is prone to rupture through the destruction of strength-giving extracellular matrix (ECM) proteins. Smooth muscle cells secrete and deposit ECM proteins and are, therefore, considered protective against atherosclerotic plaque destabilization. However, similar to inflammatory cells (e.g., macrophages), smooth muscle cells release numerous MMPs that are capable of digesting ECM proteins. Thus, the interaction of smooth muscle cells and MMPs in atherosclerotic plaques is complex and not fully understood. Recently, research into the roles of MMPs and their endogenous inhibitors (tissue inhibitors of metalloproteinases), and their effects on smooth muscle behavior during plaque destabilization has been aided by the development of reproducible animal models of plaque instability. A plethora of studies has demonstrated that MMPs directly modulate smooth muscle behavior with both beneficial and deleterious effects on atherosclerotic plaque stability, in addition to their canonical effects on ECM remodeling. Consequently, broad-spectrum MMP inhibition may inhibit plaque-stabilizing mechanisms, such as smooth muscle cell growth, while conversely retarding ECM destruction and subsequent rupture. Hence the development of selective MMP inhibitors, that spare inhibitory effects on smooth muscle cell function, may be useful therapies to prevent plaque rupture and in this regard MMP-12 appears to be a particularly attractive target.
Collapse
Affiliation(s)
- Jason Lee Johnson
- University of Bristol, Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
32
|
Bogaczewicz J, Jasielski P, Mosiewicz A, Trojanowski T, Suchozebrska-Jesionek D, Stryjecka-Zimmer M. [The role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in invasion of tumours of neuroepithelial tissue]. Neurol Neurochir Pol 2007; 45:291-338. [PMID: 17103354 DOI: 10.1080/10408360801973244] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumour invasion requires degradation of extracellular matrix components and migration of cells through degraded structures into surrounding tissues. Matrix metalloproteinases (MMP) constitute a family of zinc and calcium-dependent endopeptidases that play a key role in the breakdown of extracellular matrix, and in processing of cytokines, growth factors, chemokines and cell surface receptors. Their activity is regulated at the levels of transcription, activation and inhibition by tissue inhibitors of metalloproteinases (TIMP). Changes in expression of MMP and TIMP are implicated in tumour invasion, because they may contribute to both migration of tumour cells and angiogenesis. Alterations of MMP expression observed in brain tumours arouse interest in the development and evaluation of synthetic matrix metalloproteinase inhibitors as antitumour agents.
Collapse
Affiliation(s)
- Jarosław Bogaczewicz
- Katedra i Klinika Neurochirurgii i Neurochirurgii Dzieciêcej, Akademia Medyczna im. prof. Feliksa Skubiszewskiego, ul. Jaczewskiego 8, 20-954 Lublin.
| | | | | | | | | | | |
Collapse
|
33
|
Verstappen J, Von den Hoff JW. Tissue inhibitors of metalloproteinases (TIMPs): their biological functions and involvement in oral disease. J Dent Res 2007; 85:1074-84. [PMID: 17122157 DOI: 10.1177/154405910608501202] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several families of enzymes are responsible for the degradation of extracellular matrix (ECM) proteins during the remodeling of tissues. An important family of such enzymes is that of the matrix metalloproteinases (MMPs). To control MMP-mediated ECM breakdown, tissue inhibitors of metalloproteinases (TIMPs) are able to inhibit MMP activity. A disturbed balance of MMPs and TIMPs is found in various pathologic conditions, such as cancer, rheumatoid arthritis, and periodontitis. The role of MMPs in pathology has been extensively described in the literature. The main focus of this review lies in the biological functions of TIMPs and their occurrence in disease, especially in the head and neck area. Their biological functions and their role in diseases like oral cancers and periodontitis, and in the development of cleft palate, will be discussed. Finally, the diagnostic and therapeutical opportunities of TIMPs will be evaluated.
Collapse
Affiliation(s)
- J Verstappen
- Department of Orthodontics and Oral Biology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Mitra AK, Agrawal DK. Gene therapy of fibroproliferative vasculopathies: current ideas in molecular mechanisms and biomedical technology. Pharmacogenomics 2007; 7:1185-98. [PMID: 17184206 DOI: 10.2217/14622416.7.8.1185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intimal hyperplasia occurs primarily as a part of the pathogenesis of coronary artery disease or secondary to therapeutic intervention in relieving vascular occlusion. Intimal hyperplasia involving vascular smooth muscle cells is found in atherosclerosis, post-balloon angioplasty restenosis, in-stent restenosis and vein graft disease, predominantly involving the use of saphenous vein conduits in coronary artery bypass grafting procedures. One potentially exciting area is that of gene therapy. Gene and protein expression patterns at the site of vasculoproliferative lesions have been widely studied and several target areas have been identified on the basis of whether the gene has an antiproliferative, proapoptotic, matrix degrading or endothelial protective action. Blood vessels are easily accessible for the delivery of the gene product, and experimental studies using animal models have used catheter-delivered gene products at the site of vascular injury. Currently, the application of antisense technology and adenoviral vector-mediated delivery has shown significant promise, albeit in in vitro or animal model settings. In this review, we discuss the current knowledge in the application of gene therapy in fibroproliferative vasculopathies. We examine some of the cellular mechanisms and intermediaries which could be potential candidates for gene targeting. We also present some of the advances in biomedical technology that might provide useful vehicles for pinpoint delivery of the gene product. Could the future of restenosis treatment be in gene therapy or is it misplaced enthusiasm?
Collapse
Affiliation(s)
- Amit K Mitra
- Creighton University School of Medicine, Omaha, NE 68178, USA
| | | |
Collapse
|
35
|
Henderson N, Markwick LJ, Elshaw SR, Freyer AM, Knox AJ, Johnson SR. Collagen I and thrombin activate MMP-2 by MMP-14-dependent and -independent pathways: implications for airway smooth muscle migration. Am J Physiol Lung Cell Mol Physiol 2006; 292:L1030-8. [PMID: 17189319 DOI: 10.1152/ajplung.00317.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased proinflammatory mediators and ECM deposition are key features of the airways in asthma. Matrix metalloproteinases (MMPs) are produced by airway smooth muscle (ASM) cells and have multiple roles in inflammation and tissue remodeling. We hypothesized that components of the asthmatic airway would stimulate MMP production and activation by ASM and contribute to airway remodeling. We measured human ASM-derived MMP mRNA, protein, and activity by real-time RT-PCR, zymography, Western blotting, and MMP activity assay. Collagen I and thrombin caused a synergistic increase in MMP-2 protein and total MMP activity but paradoxically decreased MMP-2 mRNA. Additionally, collagen I activated MMP-2 in culture supernatants independent of the cell surface. Together, collagen I and thrombin strongly enhanced MMP-14 mRNA and protein but had no effect individually, suggesting increased MMP-14, the activating protease for MMP-2, may be partially responsible for MMP-2 activation. Furthermore, collagen I reduced tissue inhibitor of metalloproteinase-2 protein (TIMP-2). We examined the role of MMPs in functions of ASM related to airway remodeling and found migration and proliferation were MMP dependent, whereas adhesion and apoptosis were not. Ilomastat inhibited migration by 25%, which was also inhibited by TIMPs 1-4 and increased by the MMP-2 activator thrombin. These in vitro findings suggest that the environment within the airways of patients with asthma enhances MMP-2 and -14 protein and activity by a complex interaction of transcriptional and posttranscriptional mechanisms, which may contribute to ASM migration.
Collapse
Affiliation(s)
- Neil Henderson
- Division of Therapeutics and Molecular Medicine, University Hospital, Queens Medical Centre, Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Koskivirta I, Rahkonen O, Mäyränpää M, Pakkanen S, Husheem M, Sainio A, Hakovirta H, Laine J, Jokinen E, Vuorio E, Kovanen P, Järveläinen H. Tissue inhibitor of metalloproteinases 4 (TIMP4) is involved in inflammatory processes of human cardiovascular pathology. Histochem Cell Biol 2006; 126:335-42. [PMID: 16521002 DOI: 10.1007/s00418-006-0163-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
Tissue inhibitors of matrix metalloproteinases (TIMPs) comprise a family of four members, of which TIMP4 is characterized by being primarily restricted to cardiovascular structures. We demonstrate with immunohistochemical analysis of healthy human tissue that TIMP4 is present in medial smooth muscle cells and adventitial capillaries of arteries as well as in cardiomyocytes. Animal studies have suggested a role for TIMP4 in several inflammatory diseases and cardiovascular pathologies. We therefore examined whether TIMP4 is involved in human inflammatory cardiovascular disorders, specifically atherosclerosis, giant cell arteritis and chronic rejection of heart allografts. TIMP4 was most clearly visible in cardiovascular tissue areas populated by abundant inflammatory cells, mainly macrophages and CD3+ T cells. Using western blotting and immunocytochemistry, human blood derived lymphocytes, monocytes/macrophages and mast cells were shown to produce TIMP4. In advanced atherosclerotic lesions, TIMP4 was detected around necrotic lipid cores, whereas TIMP3 and caspase 3 resided within and around the core regions, indicating different roles for TIMP3 and TIMP4 in inflammation-induced apoptosis and in matrix turnover. In conclusion, the data demonstrate upregulation of TIMP4 in human cardiovascular disorders exhibiting inflammation, suggesting its future use as a novel systemic marker for vascular inflammation.
Collapse
Affiliation(s)
- Ilpo Koskivirta
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Wound healing describes the host mechanisms involved in the process of restoring the continuity of tissues after injury. Wound healing progresses through a continuum of overlapping stages characterized by macroscopic, microscopic, and biochemical events. An understanding of the relation between these events can enhance clinicians' skills in wound management.
Collapse
Affiliation(s)
- Giselle Hosgood
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, South Stadium Drive, Baton Rouge, LA 70803, USA
| |
Collapse
|
38
|
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases (MMPs) and the balance between MMPs/TIMPs regulates the extracellular matrix (ECM) turnover and remodeling during normal development and pathogenesis. Increasing evidence indicates a much more complex role for TIMPs during tumor progression and angiogenesis, in addition to their regulation of MMP-mediated ECM degradation. In this article, we review both the MMP-dependent and -independent actions of TIMPs for the regulation of cell death, cell proliferation, and angiogenesis, with a particular emphasis on TIMP-1 in the regulation of tetraspanin/integrin-mediated cell survival signal transduction pathways.
Collapse
Affiliation(s)
- Rosemarie Chirco
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
39
|
Kang HS, Kim SK, Cho BK, Kim YY, Hwang YS, Wang KC. Single Nucleotide Polymorphisms of Tissue Inhibitor of Metalloproteinase Genes in Familial Moyamoya Disease. Neurosurgery 2006; 58:1074-80; discussion 1074-80. [PMID: 16723886 DOI: 10.1227/01.neu.0000215854.66011.4f] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The genes encoding tissue inhibitor of metalloproteinase (TIMP) 4 and TIMP2 span chromosomes 3p24.2-p26 and 17q25, respectively, which are the locations of familial moyamoya disease (FMMD) genes. We investigated single nucleotide polymorphisms of the TIMP2 and TIMP4 genes in FMMD patients to determine genetic predispositions. METHODS Eleven blood samples from FMMD patients were recruited. Controls included 50 blood samples from patients with nonfamilial moyamoya disease (MMD) and another 50 blood samples from non-MMD persons. We evaluated the promoter regions, exon-intron junctions, and the exons of the TIMP2 and TIMP4 genes by direct sequencing, and compared single nucleotide polymorphisms frequencies among the study groups. RESULTS A significantly higher frequency of a heterozygous genotype was found in the TIMP2 promoter region at position -418 in FMMD; that is, the G/C heterozygous genotype at position -418 was observed in nine of 11 patients with FMMD, in 16 out of 50 nonfamilial MMD control participants, and in 14 out of 50 non-MMD control participants (FMMD versus nonfamilial MMD: odds ratio, 9.56; 95% confidence interval, 1.85-49.48; P = 0.005; and FMMD versus non-MMD: odds ratio, 10.50; 95% confidence interval, 2.02-54.55; P = 0.001). This base at position -418 corresponds to the third base of the GAGGCTGGG sequence, an Sp1 binding site. Thus, changes in this position may influence Sp1 binding and subsequent transcription of the gene. CONCLUSION Our findings suggest that the presence of a G/C heterozygous genotype at position -418 in TIMP2 promoter could be a genetic predisposing factor for FMMD.
Collapse
Affiliation(s)
- Hyun-Seung Kang
- Department of Neurosurgery, Konkuk University Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Bu S, Cao C, Yang Y, Miao C, Hu Z, Cao Y, Sang QA, Duan E. Localization and temporal regulation of tissue inhibitor of metalloproteinases-4 in mouse ovary. Reproduction 2006; 131:1099-107. [PMID: 16735549 DOI: 10.1530/rep.1.00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are potential regulators of tissue remodeling in the ovary. The aim of the present study was to examine the localization and temporal regulation of TIMP-4 protein in the mouse ovary. An induced superovulation model (eCG/hCG) was employed in immature mice to evaluate TIMP-4 protein expression profiles in ovaries collected during the follicular phase, the pre ovulatory period, and the luteal lifespan. Immunofluorescence results indicated that TIMP-4 protein was localized to theca of both antral and preovulatory follicles and adjacent ovarian stroma. After the initiation of luteinization with hCG, TIMP-4 was observed within the luteinizing granulosa cells and persisted throughout the lifespan of the corpus luteum. In the cycling ovary, TIMP-4 signaling localized to corpus luteum from previous estrous cycles, the theca of preovulatory follicles, and appeared to be lower in newly forming corpus luteum. Western analysis further showed that the levels of TIMP-4 increased significantly during the luteinization process of granulosa cells, but no significant change was found among all corpus luteum stages. A putative regulatory mechanism of TIMP-4 expression was identified utilizing an in vitro model. Treatment of cultured granulosa cells with hCG significantly augmented TIMP-4 protein expression levels. Together our data indicate that the luteinization process of granulosa cells is associated with up-regulation of TIMP-4 and that TIMP-4 might play an essential role in maintenance of the luteal function during the whole lifespan of corpus luteum.
Collapse
Affiliation(s)
- Shumin Bu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Murray MM, Forsythe B, Chen F, Lee SJ, Yoo JJ, Atala A, Steinert A. The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res 2006; 24:508-15. [PMID: 16453341 DOI: 10.1002/jor.20054] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Premature loss of provisional scaffold formation has been identified as one of the factors responsible for poor healing of intraarticular tissues. To address this deficiency, substitute provisional scaffolds are being developed. The function of these scaffolds can be enhanced by the addition of specific extracellular matrix proteins. In this study, it was hypothesized that the addition of thrombin to a provisional scaffold material would result in increases in cell proliferation, collagen production, and cell migration within the scaffold. These three parameters are thought to be critical components of wound healing. Gels containing fibrin and collagen supplemented with either 0, 10.5, 21, or 42 U/mL of thrombin were placed in contact with explants of tissue from the anterior cruciate ligament. The addition of thrombin stimulated cell migration at low concentrations and impaired migration at higher concentrations, and had no significant effect on cell proliferation or collagen production. The use of all concentrations of thrombin resulted in mechanically weaker gels. Thus, the use of thrombin to optimize a collagen-platelet rich plasma (PRP) provisional scaffold must be done with caution, and use of high concentrations of thrombin (>42 IU/mL) should be avoided specifically in situations where gel strength or cell ingrowth is important. Use of low concentrations of thrombin (10.5 IU/mL) may be beneficial in applications where a faster set time and enhanced cell migration are desirable and the gel mechanical strength is of secondary importance.
Collapse
Affiliation(s)
- M M Murray
- Department of Orthopaedic Surgery, Children's Hospital of Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ulrich R, Gerhauser I, Seeliger F, Baumgärtner W, Alldinger S. Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord: a reverse transcription quantitative polymerase chain reaction study. Dev Neurosci 2006; 27:408-18. [PMID: 16280637 DOI: 10.1159/000088455] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/05/2005] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are essential for coordinated extracellular matrix turnover during central nervous system development. Reverse transcription quantitative polymerase chain reaction was employed to evaluate the mRNA expression of MMP-2, -3, -7, -9, -10, -11, -12, -13, -14, -15, and -24, and TIMP-1, -2, -3, and -4 in the prosencephalon, rhombencephalon, and spinal cord of 1- to 40-week-old mice. The molecular data were interpreted in the context of morphological observations. Significantly higher expression levels of MMP-2, -11, -13, -14, -15, and -24, and TIMP-1 and -3 were found in the brain and spinal cord 1 week after birth compared to later time points, while MMP-9 and TIMP-2 upregulation was restricted to the brain. This upregulation coincided with the maximal extension of the transient cerebellar external granular layer, a marker of neuronal progenitor proliferation and migration. MMP-12 was significantly upregulated at later time points and found to be positively correlated with myelination in the rhombencephalon and spinal cord. MMP-3, -7, and -10 mRNA expressions remained unchanged or were negligible. In summary, while most of the MMPs and TIMPs studied seem to be involved in cell proliferation and migration, MMP-12 might be decisive for myelination.
Collapse
Affiliation(s)
- Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | |
Collapse
|
43
|
Chantrain CF, Henriet P, Jodele S, Emonard H, Feron O, Courtoy PJ, DeClerck YA, Marbaix E. Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur J Cancer 2006; 42:310-8. [PMID: 16406506 DOI: 10.1016/j.ejca.2005.11.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 11/01/2005] [Accepted: 11/04/2005] [Indexed: 12/01/2022]
Abstract
Pericytes occur in tumour blood vessels and are critical for the development of a functional vascular network. Targeting tumour pericytes is a promising anti-angiogenic therapy but requires identifying the mechanisms of their recruitment in tumour and addressing whether these mechanisms can be selectively harnessed. Among the pathways involved in pericyte recruitment during embryonic development, the contribution of platelet-derived growth factor B and sphingosine 1-phosphate is confirmed in tumour angiogenesis. The effect of angiopoietin 1 depends on the tumour model. Transforming growth factor-beta1 enhances tumour vascularization and microvessel maturation. Recent reports suggest a participation of matrix metalloproteinases (MMP) in tumour pericyte recruitment that is consistent with the effect of certain MMPs in the development of microvasculature in embryonic development and in in vitro models of vascular remodelling. Here, we discuss the possibility for MMPs to contribute to pericyte recruitment at six levels: (1) direct promotion of pericyte invasion by extracellular matrix degradation; (2) stimulation of pericyte proliferation and protection against apoptosis by modification of the ECM; (3) activation of pericytes through the release of growth factor bound to the ECM; (4) transactivation of angiogenic cell surface receptor; (5) propagation of angiogenic signalling as cofactor; and (6) recruitment of bone marrow-derived stem cells.
Collapse
Affiliation(s)
- Christophe F Chantrain
- Department of Paediatrics, Division of Haematology-Oncology, School of Medicine, Catholic University of Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|