1
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Catakli D, Erzurumlu Y, Asci H, Savran M, Sezer S. Evaluation of cytoprotective effects of cannabidiol on neuroinflammation and neurogenesis process in rat offsprings. Reprod Toxicol 2025; 132:108761. [PMID: 39615608 DOI: 10.1016/j.reprotox.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Natural compounds include complex chemical compounds that exist in plants, animals and microbes. Due to their broad spectrum of pharmacological and biochemical actions, they have been widely used to treat multifactorial diseases, including cancer. In addition, their demonstrated neuroprotective properties strongly support their use in the treatment of neurological diseases. The present study investigated the effect of cannabidiol (CBD), which can easily cross the placental barrier and is known to have anti-inflammatory effects, on fetal neuroinflammation and neurogenesis in a systemic inflammation model during pregnancy. Herein, 12 weeks adult pregnant rats (n = 30) were randomly divided into 5 groups with 6 rats in each group as follows: Control, LPS (lipopolysaccharide, i.p.), LPS+CBD 5 mg/kg (i.p.), LPS+CBD10 mg/kg (i.p.) and LPS+CBD30 mg/kg (i.p.). After the injections, blood samples of rats were collected, fetuses and placentas were taken by hysterectomy. Histopathological analysis, immunohistochemical staining, ELISA and immunoblotting analysis were performed to investigate neuroinflammatory and neurogenesis parameters in fetal brain and placenta tissues. Our findings indicated that CBD administration importantly suppressed the inflammatory process in the rat fetal brain by decreasing interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels and diminishing nuclear factor kappa B (NF-κB) activation. Moreover, CBD inhibited lipopolysaccharide (LPS)-induced increasing levels of neuroinflammation-associated proteins, including glial fibrillary acidic protein (GFAP), S100B and cAMP-response element binding protein (CREB). These results suggest that CBD usage in pregnancy with inflammation conditions may be an effective therapeutic option for preventing conditions that may cause neuroinflammation in the fetal brain and adversely affect neurogenesis.
Collapse
Affiliation(s)
- Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey; Department of Drug Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Serdar Sezer
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
3
|
Mahmoud R, Khajavinia A, Barzegar S, Purves RW, Laprairie RB, El-Aneed A. Establishment of a Mass Spectrometric Fingerprint of the Most Common Phytocannabinoids in Electrospray Ionization in Positive Ion Mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9952. [PMID: 39673267 DOI: 10.1002/rcm.9952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Analysis of the phytocannabinoids holds significant importance because of their various pharmacological properties and potential therapeutic applications. Tandem mass spectrometry (MS/MS) coupled with electrospray ionization in positive ion mode is employed in this study to describe the collision-induced dissociation (CID) behavior of a series of common phytocannabinoids with the aim of establishing a generalized MS/MS fingerprint. MATERIALS AND METHODS Eight phytocannabinoids, namely, ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabichromene (CBC), cannabigerol (CBG), tetrahydrocannabivarin (THCV), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 6-hydroxy-cannabidiol (6-OH-CBD), and 7-hydroxy-cannabidiol (7-OH-CBD), were studied. A Quadrupole-Orbitrap mass spectrometer equipped with a heated electrospray ionization (HESI-Q Orbitrap) is used to provide accurate mass measurement data for single-stage and MS/MS analysis. In addition, a triple quadrupole-linear ion trap mass spectrometer was used to perform MS/MS and second-generation MS/MS (MS3) analyses. RESULTS An abundant, singly charged [M + H]+ species during single-stage MS analysis was observed for all phytocannabinoids, with mass accuracies less than 5 ppm. Because of their structural similarities, all compounds showed some common fragmentation behavior in their MS/MS analysis. By comparing the fragmentation patterns and identifying diagnostic ions, a universal MS/MS fragmentation pattern was established. The structures of the various product ions proposed in the fragmentation pathway were confirmed with exact mass measurements and MS3 experiments. CONCLUSIONS The evaluated compounds contain varying functional groups, resulting in unique product ions, specific to each structure. The MS/MS fingerprints will be utilized in the future for the identification of new structures as well as the development of targeted quantification methods.
Collapse
Affiliation(s)
- Radwa Mahmoud
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amir Khajavinia
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sedigheh Barzegar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada
| | - Randy W Purves
- Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Tahsin K, Xu W, Watson D, Rizkalla A, Charpentier P. Antimicrobial Denture Material Synthesized from Poly(methyl methacrylate) Enriched with Cannabidiol Isolates. Molecules 2025; 30:943. [PMID: 40005253 PMCID: PMC11858198 DOI: 10.3390/molecules30040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Cannabidiol (CBD), derived from the Cannabis plant, has shown potential in dentistry for its antimicrobial properties, particularly against oral bacteria. Denture-associated infections, a common issue among denture wearers, present a challenge in antimicrobial enhancements to poly(methyl methacrylate) (PMMA), the primary material for dentures due to its favorable physical and aesthetic qualities. To address this, researchers developed PMMA denture coatings infused with CBD nanoparticles. The CBD coatings were synthesized using UV curing and characterized via 1H NMR, SEM, and FTIR spectroscopies. Antimicrobial activity was assessed against Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. CBD demonstrated significant bactericidal effects on Gram-positive bacteria with a minimum inhibitory concentration (MIC) of 2-2.5 µg/mL and a minimum bactericidal concentration (MBC) of 10-20 µg/mL but was ineffective against planktonic Gram-negative bacteria. However, biofilm studies revealed a 99% reduction in biofilm growth for both Gram-positive and Gram-negative bacteria on CBD-infused PMMA compared to standard PMMA. The CBD disrupted bacterial cell walls, causing lysis. Dissolution studies indicated effective release of CBD molecules, crucial for antimicrobial efficacy. This study highlights CBD's potential for antibiotic-free denture coatings, reducing dental biofilms and plaque formation, and improving oral health outcomes.
Collapse
Affiliation(s)
- Kazi Tahsin
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada;
| | - William Xu
- Chemical & Biochemical Engineering, Western University, London, ON N6A 5B9, Canada;
| | - David Watson
- Microbiology & Immunology, Western University, London, ON N6A 5C1, Canada;
| | - Amin Rizkalla
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada;
- Chemical & Biochemical Engineering, Western University, London, ON N6A 5B9, Canada;
| | - Paul Charpentier
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada;
- Chemical & Biochemical Engineering, Western University, London, ON N6A 5B9, Canada;
| |
Collapse
|
5
|
Echeverry C, Pazos M, Torres-Pérez M, Prunell G. Plant-derived compounds and neurodegenerative diseases: Different mechanisms of action with therapeutic potential. Neuroscience 2025; 566:149-160. [PMID: 39725267 DOI: 10.1016/j.neuroscience.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of discrete groups of neurons causing severe disability. The main risk factor is age, hence their incidence is rapidly increasing worldwide due to the rise in life expectancy. Although the causes of the disease are not identified in about 90% of the cases, in the last decades there has been great progress in understanding the basis for neurodegeneration. Different pathological mechanisms including oxidative stress, mitochondrial dysfunction, alteration in proteostasis and inflammation have been addressed as important contributors to neuronal death. Despite our better understanding of the pathophysiology of these diseases, there is still no cure and available therapies only provide symptomatic relief. In an effort to discover new therapeutic approaches, natural products have aroused interest among researchers given their structural diversity and wide range of biological activities. In this review, we focus on three plant-derived compounds with promising neuroprotective potential that have been traditionally used by folk medicine: the flavonoid quercetin (QCT), the phytocannabinoid cannabidiol (CBD)and the tryptamine N,N-dimethyltryptamine (DMT). These compounds exert neuroprotective effects through different mechanisms of action, some overlapping, but each demonstrating a principal biological activity: QCT as an antioxidant, CBD as an anti-inflammatory, and DMT as a promoter of neuroplasticity. This review summarizes current knowledge on these activities, potential therapeutic benefits of these compounds and their limitations as candidates for neuroprotective therapies. We envision that treatments with QCT, CBD, and DMT could be effective either when combined or when targeting different stages of these diseases.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maximiliano Torres-Pérez
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
6
|
Kay ER, Philbin CS, Richards LA, Forister ML, Jeffrey C, Dyer LA. Effects of Water and Wind Stress on Phytochemical Diversity, Cannabinoid Composition, and Arthropod Diversity in Hemp. PLANTS (BASEL, SWITZERLAND) 2025; 14:474. [PMID: 39943036 PMCID: PMC11819868 DOI: 10.3390/plants14030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Phytochemical diversity is increasingly appreciated as an important attribute of plants that affects their interactions with other organisms and can have substantial effects on arthropod communities, but this axis of diversity is less studied for agricultural plants. For both managed and natural systems, understanding how extreme weather events, such as droughts, floods, and extreme wind, affect phytochemical diversity is an important part of predicting responses of plant-arthropod interactions to climate change. In an outdoor field experiment with two distinct varieties of hemp (Cannabis sativa L., Cannabaceae), we investigated the effects of simulated water stress from reduced water availability and flooding, along with an unplanned extreme wind event on phytochemical diversity and cannabinoid profiles. We also examined how changes in chemistry affected the diversity of the associated arthropods. Our results indicate that both genetic variety and environmental stress have substantial effects on variation in hemp phytochemical diversity and cannabinoid composition, and these effects cascaded to alter the arthropod communities on flowers. The largest differences in chemistry were found between different varieties, which accounted for over 10% of the variation in phytochemical diversity. Stress from wind and floods reduced the phytochemical diversity of flowers, wind had negative effects on cannabidiol (CBD) concentrations, and both water deficit and flooding caused subtle shifts in cannabinoid composition. The subsequent cascading effects of chemistry depended on how it was characterized, with increases in CBD causing higher arthropod richness, while increased phytochemical diversity reduced arthropod diversity. These results provide insights into the potential effects of extreme weather on hemp chemistry, as well as the consequences of hemp phytochemical diversity on colonizing arthropods.
Collapse
Affiliation(s)
| | | | | | | | | | - Lee A. Dyer
- Department of Biology, University of Nevada Reno, 1664 N Virginia St., Reno, NV 89557, USA; (E.R.K.); (C.S.P.); (L.A.R.); (M.L.F.); (C.J.)
| |
Collapse
|
7
|
Najafi L, Moasses Z, Bahmanpour S. The marijuana, cannabinoids, and female reproductive system. J Appl Toxicol 2025; 45:47-60. [PMID: 38754862 DOI: 10.1002/jat.4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The marijuana is considered as widely used recreational illicit drug that has become popular among women of reproductive age. It is believed that the marijuana use may have negative impacts on the female fertility. However, the exact mechanisms of its reproductive toxicity remain unclear. The studies suggest that the exogenous cannabinoids may interfere with endocannabinoid system and disrupt hypothalamic-pituitary-ovary axis. Consequently, it impacts the female fertility by disruption of normal secretion of ovarian sex hormones and menstrual cycles. However, other studies have shown that medical marijuana is useful analgesic agent for pain management. But, given that the wide range of cannabinoids side effects are reported, it seems that caution should be taken in the recreational use of these substances. In summary, this article aimed to review the possible impacts of marijuana and its derivatives on the main female reproductive organs and embryonic growth and development.
Collapse
Affiliation(s)
- Leila Najafi
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zia Moasses
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Camuto C, De-Giorgio F, Corli G, Bilel S, Mazzarino M, Marti M, Botrè F. Metabolic profiling of the synthetic cannabinoid APP-CHMINACA (PX-3) as studied by in vitro and in vivo models. Forensic Toxicol 2025; 43:130-141. [PMID: 39576558 PMCID: PMC11782320 DOI: 10.1007/s11419-024-00705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025]
Abstract
PURPOSE The metabolic pathways of APP-CHMINACA were characterized to select the markers of intake for implementation into analytical assays used by the clinical and forensic communities. We have combined the evidences obtained by both in vitro experiments and administration studies on mice. METHODS APP-CHMINACA was incubated with either human or mouse liver microsomes. Urine and blood samples were collected at different time points from mice after injection of a 3 mg/kg dose of the test compound. Samples were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS The in vitro studies allowed to isolate eight different metabolic reactions, formed by two metabolic routes, with no differences between human and mouse liver microsomes. The main biotransformation route involved the hydrolysis of the distal amide group and the subsequent hydroxylation on the cyclohexyl-methyl ring. The second route involved multiple hydroxylation of the parent compound, followed by reduction to generate minor metabolites. In blood samples, the most abundant substances identified were APP-CHMINACA unchanged and the metabolites formed by the hydrolysis of the distal amide together with its hydroxylated products. In urine samples, four metabolites formed following the hydroxylation of the distal amide hydrolysis metabolite were detected as the most abundant and long-term metabolites. CONCLUSIONS The outcomes of our study showed that the most suitable markers to detect the intake of APP-CHMINACA in blood and urine samples in the framework of toxicological, clinical and forensic investigations were the metabolite formed by the hydrolysis of the distal amide and its hydroxylated products.
Collapse
Affiliation(s)
- Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197, Rome, Italy
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome, Italy
| | - Giorgia Corli
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara 70, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara 70, Ferrara, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197, Rome, Italy
- DoCoLab, University of Ghent, Block B, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Matteo Marti
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara 70, Ferrara, Italy
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197, Rome, Italy.
- REDs - Research and Expertise in antidoping Sciences, ISSUL - Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- DoCoLab, University of Ghent, Block B, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Shen Z, Bao N, Chen J, Tang M, Yang L, Yang Y, Zhang H, Han J, Yu P, Zhang S, Yang H, Jiang G. Neuromolecular and behavioral effects of cannabidiol on depressive-associated behaviors and neuropathic pain conditions in mice. Neuropharmacology 2024; 261:110153. [PMID: 39245142 DOI: 10.1016/j.neuropharm.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND AIMS Neuropathic pain (NP) has a high incidence in the general population, is closely related to anxiety disorders, and has a negative impact on the quality of life. Cannabidiol (CBD), as a natural product, has been extensively studied for its potential therapeutic effects on symptoms such as pain and depression (DP). However, the mechanism of CBD in improving NP with depression is not fully understood. METHODS First, we used bioinformatics tools to deeply mine the intersection genes associated with NP, DP, and CBD. Secondly, the core targets were screened by Protein-protein interaction network, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, molecular docking and molecular dynamics simulation. Next, the effects of CBD intervention on pain and depressive behaviors in the spinal nerve ligation (SNL) mouse model were evaluated using behavioral tests, and dose-response curves were plotted. After the optimal intervention dose was determined, the core targets were verified by Western blot (WB) and Quantitative Polymerase Chain Reaction (qPCR). Finally, we investigated the potential mechanism of CBD by Nissl staining, Immunofluorescence (IF) and Transmission Electron Microscopy (TEM). RESULTS A total of five core genes of CBD most associated with NP and DP were screened by bioinformatics analysis, including PTGS2, GPR55, SOD1, CYP1A2 and NQO1. Behavioral test results showed that CBD by intraperitoneal administration 5 mg/kg can significantly improve the pain behavior and depressive state of SNL mice. WB, qPCR, IF, and TEM experiments further confirmed the regulatory effects of CBD on key molecules. CONCLUSION In this study, we found five targets of CBD in the treatment of NP with DP. These findings provide further theoretical and experimental basis for CBD as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Nana Bao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Linfeng Yang
- Institute of Morphology, College of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Haoran Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingyu Han
- Institute of medical imaging, North Sichuan Medical College, Nanchong, China
| | - Peilu Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hanfeng Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
10
|
Wagner JK, Gambell E, Gibbons T, Martin TJ, Kaplan JS. Sex Differences in the Anxiolytic Properties of Common Cannabis Terpenes, Linalool and β-Myrcene, in Mice. NEUROSCI 2024; 5:635-649. [PMID: 39728677 DOI: 10.3390/neurosci5040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Volatile organic compounds, colloquially referred to as "terpenes", have been proposed to impact the therapeutic qualities that are traditionally ascribed to cannabis. However, the contribution of these terpenes in anxiety, at relevant levels and exposure methods common with cannabis use, is lacking empirical assessment. We tested the anxiolytic properties of two prominent cannabis terpenes, linalool and β-myrcene, in male and female mice using short duration vapor pulls to model human inhalation when combusting flower or vaping cannabis oil. We observed sex differences in the locomotor effects in the open field and anxiolytic properties in the elevated plus maze of these terpenes that depended on their exposure characteristics. Both linalool and β-myrcene had anxiolytic effects in female mice when delivered in discrete vapor pulls over the course of 30 min. In male mice, only a single vapor hit containing linalool or β-myrcene had anxiolytic effects. The combination of sub-effective levels of linalool and the phytocannabinoid, cannabidiol (CBD), had synergistic anxiolytic effects in females, but these entourage effects between CBD and terpenes were absent with β-myrcene for females and for either terpene in males. Together, our findings reveal sex differences in the anxiolytic properties of common cannabis terpenes and highlight the potential benefits of unique combinations of CBD and terpenes in expanding the therapeutic dose window.
Collapse
Affiliation(s)
- Jasmin K Wagner
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Ella Gambell
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Tucker Gibbons
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Thomas J Martin
- Department of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, CA 92780, USA
| | - Joshua S Kaplan
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| |
Collapse
|
11
|
Llorca-Bofí V, Mur M, Font M, Palacios-Garrán R, Sellart M, del Agua-Martínez E, Bioque M, Arteaga-Henríquez G. Differences in total and differential white blood cell counts and in inflammatory parameters between psychiatric inpatients with and without recent consumption of cannabinoids, opioids, or cocaine: A retrospective single-center study. Brain Behav Immun Health 2024; 42:100898. [PMID: 39634076 PMCID: PMC11615885 DOI: 10.1016/j.bbih.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/08/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
Several drugs of abuse may exert their action by modulating the immune system. Despite this, individuals using substances of abuse are often excluded from immunopsychiatry studies. We conducted a retrospective, single-center study to examine differences in circulating immune/inflammatory parameters (i.e., total and differential white blood cell (WBC) counts, neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte (MLR) ratio, platelet-to-lymphocyte ratio, and C-reactive protein) between psychiatric inpatients with a positive urine test to cannabinoids, opioids, or cocaine, and those with negative toxicology. A total of 927 inpatients were included. Patients with positive toxicology (n = 208) had significantly higher WBC counts (P < 0.001, η 2p = 0.02), as well as increased neutrophils (P = 0.002, η 2p = 0.01), monocytes (P < 0.001, η 2p = 0.02), lymphocytes (P < 0.001, η 2p = 0.02), and eosinophils (P = 0.01, η 2p = 0.01) compared to those with negative toxicology (n = 719). The increase in neutrophil counts was particularly evident in patients who tested positive for cannabinoids (n = 168; P < 0.001, η 2p = 0.02). In contrast, eosinophil counts were particularly increased in the cocaine-positive subgroup (n = 27; P = 0.004, η 2p = 0.01). Patients with a positive urine test to opioids (n = 13) were characterized by a significantly lower MLR (P = 0.03, η 2p = 0.005). The type of psychiatric diagnosis moderated the differences in neutrophil counts between patients with a positive and negative toxicology to cannabinoids. Notably, significantly higher neutrophil counts were found only in patients diagnosed with a psychotic disorder (P < 0.001, η 2p = 0.03). Taken together, our findings suggest that drugs of abuse may differently impact the immune/inflammatory response system in individuals diagnosed with psychiatric conditions. Specifically, recent cannabinoids use may be associated with an acute activation of the inflammatory response system, particularly in individuals with a psychotic disorder, while cocaine and opioid use may be associated with eosinophilia and a decrease in the MLR, respectively, regardless of the primary psychiatric diagnosis.
Collapse
Affiliation(s)
- Vicent Llorca-Bofí
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Department of Medicine, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine and Surgery, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Maria Mur
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Department of Medicine and Surgery, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Maria Font
- Laboratory Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Roberto Palacios-Garrán
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Mental Health Unit, Hospital Universitario Jerez de la Frontera, University of Cádiz, Cádiz, Spain
| | - Maite Sellart
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
| | | | - Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Department of Medicine, University of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Gara Arteaga-Henríquez
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- NCRR-National Center for Register-based Research, Aahrus University, Aahrus, Denmark
| |
Collapse
|
12
|
Gagalova KK, Yan Y, Wang S, Matzat T, Castellarin SD, Birol I, Edwards D, Schuetz M. Leaf pigmentation in Cannabis sativa: Characterization of anthocyanin biosynthesis in colorful Cannabis varieties. PLANT DIRECT 2024; 8:e70016. [PMID: 39600728 PMCID: PMC11588432 DOI: 10.1002/pld3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Cannabis plants produce a spectrum of secondary metabolites, encompassing cannabinoids and more than 300 non-cannabinoid compounds. Among these, anthocyanins have important functions in plants and also have well documented health benefits. Anthocyanins are largely responsible for the red/purple color phenotypes in plants. Although some well-known Cannabis varieties display a wide range of red/purple pigmentation, the genetic underpinnings of anthocyanin biosynthesis have not been well characterized in Cannabis. This study unveils the genetic diversity of anthocyanin biosynthesis genes found in Cannabis, and we characterize the diversity of anthocyanins and related phenolics found in four differently pigmented Cannabis varieties. Our investigation revealed that the genes 4CL, CHS, F3H, F3'H, FLS, DFR, ANS, and OMT exhibited the strongest correlation with anthocyanin accumulation in Cannabis leaves. The results of this study enhance our understanding of the anthocyanin biosynthetic pathway and shed light on the molecular mechanisms governing Cannabis leaf pigmentation.
Collapse
Affiliation(s)
- Kristina K. Gagalova
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
- Canada's Michael Smith Genome Sciences CentreBC CancerVancouverBCCanada
| | - Yifan Yan
- Wine Research CentreUniversity of British ColumbiaVancouverBCCanada
| | - Shumin Wang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Till Matzat
- Wine Research CentreUniversity of British ColumbiaVancouverBCCanada
| | | | - Inanc Birol
- Canada's Michael Smith Genome Sciences CentreBC CancerVancouverBCCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Mathias Schuetz
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
- Department of BiologyKwantlen Polytechnic UniversitySurreyBCCanada
| |
Collapse
|
13
|
Barbosa-Xavier K, Pedrosa-Silva F, Almeida-Silva F, Venancio TM. Cannabis Expression Atlas: a comprehensive resource for integrative analysis of Cannabis sativa L. gene expression. PHYSIOLOGIA PLANTARUM 2024; 176:e70010. [PMID: 39686909 DOI: 10.1111/ppl.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Cannabis sativa L., a plant originating from Central Asia, is a versatile crop with applications spanning textiles, construction, pharmaceuticals, and food products. This study aimed to compile and analyze publicly available Cannabis RNA-Seq data and develop an integrated database tool to help advance Cannabis research in various topics such as fiber production, cannabinoid biosynthesis, sex determination, and plant development. We identified 515 publicly available RNA-Seq samples that, after stringent quality control, resulted in a high-quality dataset of 394 samples. Utilizing the Jamaican Lion genome as reference, we constructed a comprehensive database and developed the Cannabis Expression Atlas (https://cannatlas.venanciogroup.uenf.br/), a web application for visualization of gene expression, annotation, and functional classification. Key findings include the quantification of 27,640 Cannabis genes and their classification into seven expression categories: not-expressed, low-expressed, housekeeping, tissue-specific, group-enriched, mixed, and expressed-in-all tissues. The study revealed substantial variability and coherence in gene expression across different tissues and chemotypes. We found 2,382 tissue-specific genes, including 177 transcription factors. The Cannabis Expression Atlas constitutes a valuable tool for exploring gene expression patterns and offers insights into Cannabis biology, supporting research in plant breeding, genetic engineering, biochemistry, and functional genomics.
Collapse
Affiliation(s)
- Kevelin Barbosa-Xavier
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
14
|
Rotolo MC, Graziano S, Minutillo A, Varì MR, Pichini S, Marchei E. OILVEQ: an Italian external quality control scheme for cannabinoids analysis in galenic preparations of cannabis oil. Clin Chem Lab Med 2024; 62:2198-2204. [PMID: 38727000 DOI: 10.1515/cclm-2024-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES Italy legalized cannabis oil for specific medical conditions (neuropathic pain, refractory epilepsy and other established pathologies) in 2015, but mandates titration of principal cannabinoids before marketing each batch using iphenated techniques coupled with mass spectrometry. To assess reliability of laboratories from the Italian National Health Service in charge of titrating the batches, the Italian National Institute of Health set up an quality control program on determination of Δ9-tetrahydrocannabinol l (THC), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid A (THCA-A) and cannabidiolic acid (CBDA) in cannabis oil preparations. METHODS Two rounds of exercises have been carried out since 2019, involving sixteen Italian laboratories. Five different cannabis oil samples (19-1A and 19-1B for the first round and 22-1A, 22-1B and 22-1C for the second one were prepared and 1 mL amount of each sample was sent to the laboratories. The quantitative performance of each laboratory was assessed calculating the Z-score value, a statistical measurement for value's relationship to the mean of a group of values. RESULTS In the first round, eight out of fourteen laboratories employed an LC-MS while the remaining six used GC-MS. Differently, in the second round, six out of eleven laboratories employed a GC-MS while the remaining five used LC-MS. In the first round, only 28.6 % laboratories achieved an acceptable performance (Z-score±2), and all of them used LC-MS as analytical method. In the second round, none of the laboratories achieved an acceptable performance. Satisfactory results, based on Z-scores, were generally low (0.0-75.0 %), with only one exception of 100 % for THCA-A determination in sample 22-1B. In the second round, three false negatives (two THC and one CBD by GC-MS determination) were reported while no false positives were described in the blank sample. The two rounds yielded a mean ERR% of 42 % approximately and a mean CV% around 70 % in GC-MS determination. When applying LC-MS determination, the two rounds yielded a mean ERR% of 36 % approximately and a mean CV% around 33 %. CONCLUSIONS The obtained results underline the need for a clear and consistent protocol to be adopted by all laboratories intending to include the titration of oily cannabis-based products into their routinely analytical techniques. This emphasis on methodology standardization and participation to quality control schemes is essential for ensuring reliable and accurate measurements, ultimately enhancing the overall effectiveness and reliability of medical cannabis treatments.
Collapse
Affiliation(s)
- Maria Concetta Rotolo
- National Centre on Addiction and Doping, Italian National Institute of Health, Rome, Italy
| | - Silvia Graziano
- National Centre on Addiction and Doping, Italian National Institute of Health, Rome, Italy
| | - Adele Minutillo
- National Centre on Addiction and Doping, Italian National Institute of Health, Rome, Italy
| | - Maria Rosaria Varì
- National Centre on Addiction and Doping, Italian National Institute of Health, Rome, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Italian National Institute of Health, Rome, Italy
| | - Emilia Marchei
- National Centre on Addiction and Doping, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
15
|
Gurley BJ, Chittiboyina AG, ElSohly MA, Yates CR, Avula B, Walker LA, Khan SI, Khan IA. The National Center for Natural Products Research (NCNPR) at 30: A Legacy of Pioneering Research in Natural Products and Dietary Supplements. J Diet Suppl 2024; 22:193-218. [PMID: 39381905 DOI: 10.1080/19390211.2024.2410758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Since its establishment in 1994, the National Center for Natural Products Research (NCNPR) at the University of Mississippi has made notable contributions to the field of natural product research, coinciding with the passage of the Dietary Supplement Health and Education Act. Over the past three decades, the Center has focused on studying plants, herbs, and other natural materials for applications in medicine, agriculture, and nutraceuticals, particularly in the area of botanical dietary supplements. NCNPR scientists have been actively engaged in developing and improving quality control measures to help ensure the safety of dietary supplements in response to a growing market. The Center's research efforts have led to its designation as a U.S. Food and Drug Administration Center of Excellence, reflecting its role in advancing scientific understanding of natural products. Through collaborations with various stakeholders and regulators, NCNPR has contributed to shaping the regulatory landscape for botanical dietary supplements, highlighting both their potential health benefits and associated risks, such as product adulteration. The Center's influence is also evident internationally, as demonstrated by its annual International Conference on the Science of Botanicals, which will mark its 26th year in April 2025. This overview outlines NCNPR's role in supporting research, regulation, and safety in the natural products field.
Collapse
Affiliation(s)
- Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - C Ryan Yates
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
16
|
Striz A, Zhao Y, Sepehr E, Vaught C, Eckstrum K, Headrick K, Yourick J, Sprando R. Examining the hepatotoxic potential of cannabidiol, cannabidiol-containing hemp extract, and cannabinol at consumer-relevant exposure concentrations in primary human hepatocytes. J Appl Toxicol 2024; 44:1595-1605. [PMID: 38924151 DOI: 10.1002/jat.4646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024]
Abstract
Hemp extracts and consumer products containing cannabidiol (CBD) and/or other phytocannabinoids derived from hemp have entered the marketplace in recent years. CBD is an approved drug in the United States for the treatment of certain seizure disorders. While effects of CBD in the liver have been well characterized, data on the effects of other cannabinoids and hemp extracts in the liver and methods for studying these effects in vitro are limited. This study examined the hepatotoxic potential of CBD, CBD concentration-matched hemp extract, and cannabinol (CBN), at consumer-relevant concentrations determined by in silico modeling, in vitro using primary human hepatocytes. Primary human hepatocytes exposed to between 10-nM and 25-μM CBD, CBN, or hemp extract for 24 and 48 h were evaluated by measuring lactate dehydrogenase release, apoptosis, albumin secretion, urea secretion, and mitochondrial membrane potential. Cell viability was not significantly affected by CBD, CBN, or the hemp extract at any of the concentrations tested. Exposure to hemp extract induced a modest but statistically significant decrease in albumin secretion, urea secretion, and mitochondrial membrane potential at the highest concentration tested whereas CBD only induced a modest but statistically significant decrease in albumin secretion compared with vehicle control. Although this study addresses data gaps in the understanding of cannabinoid hepatoxicity in vitro, additional studies will be needed to determine how these results correlate with relevant consumer exposure and the biological effects of cannabinoids in human liver.
Collapse
Affiliation(s)
- Anneliese Striz
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| | - Yang Zhao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| | - Estatira Sepehr
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| | - Cory Vaught
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| | - Kirsten Eckstrum
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| | - Kyra Headrick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| | - Jeffrey Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| | - Robert Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
17
|
Nair VS, Heybroek M, Boyle E, Rogers M, Campbell T, Eichner D, Hill K. Prevalence of carboxy-Δ 8-tetrahydrocannabiniol in antidoping samples. Drug Test Anal 2024; 16:1122-1126. [PMID: 38176407 DOI: 10.1002/dta.3631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Δ9-Tetrahydrocannabinol (Δ9-THC) is usually the primary psychoactive agent in cannabis preparations. Recently, products containing another isomer, Δ8-tetrahydrocannabinol (Δ8-THC), have become available for sale. Δ8-THC exists naturally in the cannabis plant at very low concentrations; hence, the Δ8-THC present in most of the above-mentioned products is likely to be manufactured synthetically. A surge in popularity of these products, coupled with little oversight to ensure purity and potency, has led to reports of adverse events. Workplace drug testing programs as well as many sporting organizations prohibit the use of cannabinoids. Carboxy-Δ9-THC (Δ9-THC-COOH) is the targeted urinary metabolite for detection of cannabis use. The proliferation of products containing Δ8-THC, which metabolizes to Δ8-THC-COOH, presents analytical complexity with respect to separation and quantification of the individual isomers as well as legal complexity with respect to lack of clarity around the legal status of Δ8-THC. This study aims to estimate the prevalence of Δ8-THC use in the athlete community by monitoring for Δ8-THC-COOH in samples collected for antidoping. A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) method was utilized to resolve Δ8 and Δ9-THC-COOH. One thousand samples with a presumptive Δ9-THC-COOH finding in routine screening were analyzed by the above LC-MS/MS method. Approximately 12% of samples contained Δ8-THC-COOH at relative abundances between 5% and 100% of total carboxy-THC content.
Collapse
Affiliation(s)
- Vinod S Nair
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Mari Heybroek
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Emily Boyle
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Mason Rogers
- University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Thane Campbell
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Kevin Hill
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Paduch R, Szwaczko K, Dziuba K, Wiater A. Exploring the Potential of Synthetic Cannabinoids: Modulation of Biological Activity of Normal and Cancerous Human Colon Epithelial Cells. Cells 2024; 13:1616. [PMID: 39404380 PMCID: PMC11475369 DOI: 10.3390/cells13191616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Colorectal cancer (CRC) is a global problem. Oncology currently practices conventional methods of treating this carcinoma, including surgery, chemotherapy, and radiotherapy. Unfortunately, their efficacy is low; hence, the exploration of new therapies is critical. Recently, many efforts have focused on developing safe and effective anticancer compounds. Some of them include cannabinoids. In the present study, we obtained cannabinoids, such as cannabidiol (CBD), abnormal cannabigerol (abn-CBG), cannabichromene (CBC), and cannabicitran (CBT), by chemical synthesis and performed the biological evaluation of their activity on colon cancer cells. In this study, we analyzed the effects of selected cannabinoids on the lifespan and metabolic activity of normal colonic epithelial cells and cancer colon cells. This study demonstrated that cannabinoids can induce apoptosis in cancer cells by modulating mitochondrial dehydrogenase activity and cellular membrane integrity. The tested cannabinoids also influenced cell cycle progression. We also investigated the antioxidant activity of cannabinoids and established a relationship between the type of cannabinoid and nitric oxide (NO) production in normal and cancerous colon cells. To conclude, it seems that, due to their interesting properties, the cannabinoids studied may constitute an interesting target for further research aimed at their use in alternative or combined therapies for human colon cancer.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University, Chmielna 1, 20-079 Lublin, Poland
| | - Katarzyna Szwaczko
- Department of Organic Chemistry and Crystallochemistry, Institute of Chemical Sciences, Faculty of Chemistry, Marie Curie-Skłodowska University, Gliniana 33, 20-614 Lublin, Poland;
| | - Kamil Dziuba
- Department of Organic Chemistry and Crystallochemistry, Institute of Chemical Sciences, Faculty of Chemistry, Marie Curie-Skłodowska University, Gliniana 33, 20-614 Lublin, Poland;
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
19
|
Maly M, Benes F, Binova Z, Hajslova J. Tea Prepared from Dried Cannabis: What Do We Drink? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21254-21265. [PMID: 39264724 PMCID: PMC11440496 DOI: 10.1021/acs.jafc.4c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Besides many other uses, dried Cannabis may be used for "tea" preparation. This study focused on a comprehensive characterization of an aqueous infusion prepared according to a common practice from three fairly different Cannabis cultivars. The transfer of 42 phytocannabinoids and 12 major bioactive compounds (flavonoids) into the infusion was investigated using UHPLC-HRMS/MS. Phytocannabinoid acids were transferred generally in a higher extent compared to their counterparts; in the case of Δ9-THC, it was only in the range of 0.4-1.9% of content in the Cannabis used. A dramatic increase of phytocannabinoids, mainly of the neutral species, occurred when cream was added during steeping, and the transfer of Δ9-THC into "tea" achieved a range of 53-64%. Under such conditions, drinking a 250 mL cup of such tea by a 70 kg person might lead to multiple exceedance of the Acute Reference Dose (ARfD), 1 μg/kg b.w., even in the case when using hemp with a Δ9-THC content below 1% in dry weight for preparation.
Collapse
Affiliation(s)
- Matej Maly
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| | - Frantisek Benes
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
20
|
Štern A, Novak M, Kološa K, Trontelj J, Žabkar S, Šentjurc T, Filipič M, Žegura B. Exploring the safety of cannabidiol (CBD): A comprehensive in vitro evaluation of the genotoxic and mutagenic potential of a CBD isolate and extract from Cannabis sativa L. Biomed Pharmacother 2024; 177:116969. [PMID: 38908200 DOI: 10.1016/j.biopha.2024.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Cannabidiol (CBD), a naturally occurring cyclic terpenoid found in Cannabis sativa L., is renowned for its diverse pharmacological benefits. Marketed as a remedy for various health issues, CBD products are utilized by patients as a supplementary therapy or post-treatment failure, as well as by healthy individuals seeking promised advantages. Despite its widespread use, information regarding potential adverse effects, especially genotoxic properties, is limited. The present study is focused on the mutagenic and genotoxic activity of a CBD isolate (99.4 % CBD content) and CBD-rich Cannabis sativa L extract (63.6 % CBD content) in vitro. Both CBD samples were non-mutagenic, as determined by the AMES test (OECD 471) but exhibited cytotoxicity for HepG2 cells (∼IC50(4 h) 26 µg/ml, ∼IC50(24 h) 6-8 µg/ml, MTT assay). Noncytotoxic concentrations induced upregulation of genes encoding metabolic enzymes involved in CBD metabolism, and CBD oxidative as well as glucuronide metabolites were found in cell culture media, demonstrating the ability of HepG2 cells to metabolize CBD. In this study, the CBD samples were found non-genotoxic. No DNA damage was observed with the comet assay, and no influence on genomic instability was observed with the cytokinesis block micronucleus and the γH2AX and p-H3 assays. Furthermore, no changes in the expression of genes involved in genotoxic stress response were detected in the toxicogenomic analysis, after 4 and 24 h of exposure. Our comprehensive study contributes valuable insights into CBD's safety profile, paving the way for further exploration of CBD's therapeutic applications and potential adverse effects.
Collapse
Affiliation(s)
- Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana 1000, Slovenia.
| | - Matjaž Novak
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Katja Kološa
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Jurij Trontelj
- Faculty of Pharmacy, Department of Biopharmaceutics and Pharmacokinetics, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Sonja Žabkar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Tjaša Šentjurc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana 1000, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana 1000, Slovenia
| |
Collapse
|
21
|
Pauvert Y, Charette AB. Asymmetric Synthesis of (-)-Cannabidiol (CBD), (-)-Δ 9-Tetrahydrocannabinol (Δ 9-THC) and Their cis Analogs Using an Enantioselective Organocatalyzed Diels-Alder Reaction. Org Lett 2024; 26:6081-6085. [PMID: 38990710 DOI: 10.1021/acs.orglett.4c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Herein we describe an asymmetric synthesis of the pharmacologically relevant natural (-)-trans-CBD and psychoactive (-)-trans-Δ9-THC, as well as their synthetic cis diastereomers. The key step is an enantioselective Diels-Alder reaction catalyzed by a prolinol-based catalyst, which provides the cyclohexene carbaldehyde intermediate in good yield and high enantiomeric excess. Optimization of the substituted resorcinol protecting groups to avoid harsh and low-yield deprotection of the acid sensitive resorcinol moiety is also described.
Collapse
Affiliation(s)
- Yann Pauvert
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - André B Charette
- FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Département de Chimie, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
22
|
Li K, Ge X, Lv X, Huang L, Zeng J, Cheng P. Synthesis and antiproliferative activity of CBD aromatic ester derivatives. Nat Prod Res 2024:1-7. [PMID: 39004890 DOI: 10.1080/14786419.2024.2369914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
This study involved the synthesis of a series of novel cannabidiol (CBD) aromatic ester derivatives, including CBD-8,12-diaromaticester derivatives (compounds 2a-2t) and CBD-8,12-diacetyl-21-aromaticester derivatives (compound 5a-5c). The antiproliferative activities of these compounds against human liver cancer cell lines HePG2 and HeP3B as well as human pancreatic cancer cell lines ASPC-1 and BXPC-3 were evaluated in vitro using the CCK-8 assay. The results indicated that compound 2f exhibited an IC50 value of 2.75 µM against HePG2, which is 5.32-fold higher than that of CBD. Additionally, compounds 2b and 5b demonstrated varying degrees of improved anticancer activity (IC50 5.95-9.21 µM) against HePG2.
Collapse
Affiliation(s)
- Kang Li
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaomei Ge
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinye Lv
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
23
|
Rana S, Shaw R, Pratap R. Influence of steric hindrance on the 1,4- versus 1,6-Michael addition: synthesis of furans and pentasubstituted benzenes. Org Biomol Chem 2024; 22:5361-5373. [PMID: 38869426 DOI: 10.1039/d4ob00686k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
We described the influence of steric hindrance on the 1,4- versus 1,6-Michael addition reaction on 2-(3,3-bis(methylthio)-1-arylallylidene)malononitriles. An efficient and direct synthesis of trisubstituted furans was achieved through the reaction of 2-(3,3-bis(methylthio)-1-arylallylidene)malononitriles and acetone under mild conditions in good to moderate yield by the 1,4-Michael addition. Further exploration of the reaction with a sterically hindered aryl group containing 2-(3,3-bis(methylthio)-1-arylallylidene)malononitriles afforded biaryls by an in situ generated nucleophile through the 1,6-Michael addition. The synthetic utility of furan is further explored. These precursors are easily accessible from aryl methyl ketones. Various functional groups like alkyl, aryl, nitrile, amine, aroyl, and thiomethyl can be directly installed in the benzene and furan rings. A one-pot approach for the construction of a benzene nucleus was also developed. The structure of two compounds was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Shally Rana
- Department of Chemistry, University of Delhi, North Campus, Delhi-110007, India.
- Department of Chemistry, School of Science Indrashil University, Rajpur, Kadi, Ahmedabad-Mehsana Highway, Gujarat, 382740, India
| | - Ranjay Shaw
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi, North Campus, Delhi-110007, India.
| |
Collapse
|
24
|
Paryani T, Sosa ME, Page MFZ, Martin TJ, Hearvy MV, Ojeda MA, Koby KA, Grandy JJ, Melshenker BG, Skelly I, Oswald IWH. Nonterpenoid Chemical Diversity of Cannabis Phenotypes Predicts Differentiated Aroma Characteristics. ACS OMEGA 2024; 9:28806-28815. [PMID: 38973868 PMCID: PMC11223244 DOI: 10.1021/acsomega.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
The recent increase in legality of Cannabis Sativa L. has led to interest in developing new varieties with unique aromatic or effect-driven traits. Selectively breeding plants for the genetic stability and consistency of their secondary metabolite profiles is one application of phenotyping. While this horticultural process is used extensively in the cannabis industry, few studies exist examining the chemical data that may differentiate phenotypes aromatically. To gain insight into the diversity of secondary metabolite profiles between progeny, we analyzed five ice water hash rosin extracts created from five different phenotypes of the same crossing using comprehensive 2-dimensional gas chromatography coupled to time-of-flight mass spectrometry, flame ionization detection, and sulfur chemiluminescence detection. These results were then correlated to results from a human sensory panel, which revealed specific low-concentration compounds that strongly influence sensory perception. We found aroma differences between certain phenotypes that are driven by key minor, nonterpenoid compounds, including the newly reported 3-mercaptohexyl hexanoate. We further report the identification of octanoic and decanoic acids, which are implicated in the production of cheese-like aromas in cannabis. These results establish that even genetically similar phenotypes can possess diverse and distinct aromas arising not from the dominant terpenes, but rather from key minor volatile compounds. Moreover, our study underscores the value of detailed chemical analyses in enhancing cannabis selective breeding practices, offering insights into the chemical basis of aroma and sensory differences.
Collapse
Affiliation(s)
- Twinkle
R. Paryani
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Manuel E. Sosa
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Michael F. Z. Page
- Science,
Engineering, and Mathematics Division, Cerritos
College, 11110 Alondra
Blvd, Norwalk, California 90650, United States
| | - Thomas J. Martin
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Melissa V. Hearvy
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Marcos A. Ojeda
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Kevin A. Koby
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Jonathan J. Grandy
- Sepsolve
Analytical, Schauenburg Analytics, Waterloo, Ontario N2J
4G8, Canada
| | - Bradley G. Melshenker
- 710
Laboratories, 8149 Santa
Monica Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Ian Skelly
- 710
Laboratories, 8149 Santa
Monica Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Iain W. H. Oswald
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| |
Collapse
|
25
|
Hu Z, Qin Z, Xie J, Qu Y, Yin L. Cannabidiol and its application in the treatment of oral diseases: therapeutic potentials, routes of administration and prospects. Biomed Pharmacother 2024; 176:116271. [PMID: 38788594 DOI: 10.1016/j.biopha.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cannabidiol (CBD), one of the most important active ingredients in cannabis, has been reported to have some pharmacological effects such as antibacterial and analgesic effects, and to have therapeutic potential in the treatment of oral diseases such as oral cancer, gingivitis and periodontal diseases. However, there is a lack of relevant systematic research and reviews. Therefore, based on the etiology and clinical symptoms of several common oral diseases, this paper focuses on the therapeutic potential of CBD in periodontal diseases, pulp diseases, oral mucosal diseases, oral cancer and temporomandibular joint diseases. The pharmacological effects of CBD and the distribution and function of its receptors in the oral cavity are also summarized. In order to provide reference for future research and further clinical application of CBD, we also summarize several possible routes of administration and corresponding characteristics. Finally, the challenges faced while applying CBD clinically and possible solutions are discussed, and we also look to the future.
Collapse
Affiliation(s)
- Zonghao Hu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zishun Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Xie
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yue Qu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lihua Yin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
26
|
Wishart DS, Hiebert-Giesbrecht M, Inchehborouni G, Cao X, Guo AC, LeVatte MA, Torres-Calzada C, Gautam V, Johnson M, Liigand J, Wang F, Zahraei S, Bhumireddy S, Wang Y, Zheng J, Mandal R, Dyck JRB. Chemical Composition of Commercial Cannabis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14099-14113. [PMID: 38181219 PMCID: PMC11212042 DOI: 10.1021/acs.jafc.3c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Cannabis is widely used for medicinal and recreational purposes. As a result, there is increased interest in its chemical components and their physiological effects. However, current information on cannabis chemistry is often outdated or scattered across many books and journals. To address this issue, we used modern metabolomics techniques and modern bioinformatics techniques to compile a comprehensive list of >6000 chemical constituents in commercial cannabis. The metabolomics methods included a combination of high- and low-resolution liquid chromatography-mass spectrometry (MS), gas chromatography-MS, and inductively coupled plasma-MS. The bioinformatics methods included computer-aided text mining and computational genome-scale metabolic inference. This information, along with detailed compound descriptions, physicochemical data, known physiological effects, protein targets, and referential compound spectra, has been made available through a publicly accessible database called the Cannabis Compound Database (https://cannabisdatabase.ca). Such a centralized, open-access resource should prove to be quite useful for the cannabis community.
Collapse
Affiliation(s)
- David S. Wishart
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | | - Gozal Inchehborouni
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Xuan Cao
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - An Chi Guo
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Marcia A. LeVatte
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Claudia Torres-Calzada
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Vasuk Gautam
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mathew Johnson
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jaanus Liigand
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Fei Wang
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Shirin Zahraei
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Sudarshana Bhumireddy
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yilin Wang
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jiamin Zheng
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rupasri Mandal
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jason R. B. Dyck
- Department
of Pediatrics, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
27
|
Ward AM, Shokati T, Klawitter J, Klawitter J, Nguyen V, Kozell L, Abbas AI, Jones D, Christians U. Identification and Characterization of Cannabichromene's Major Metabolite Following Incubation with Human Liver Microsomes. Metabolites 2024; 14:329. [PMID: 38921465 PMCID: PMC11206029 DOI: 10.3390/metabo14060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2'-hydroxycannabicitran using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2'-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.
Collapse
Affiliation(s)
- Alexandra M. Ward
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.M.W.); (V.N.)
| | - Touraj Shokati
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Vu Nguyen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.M.W.); (V.N.)
| | - Laura Kozell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (L.K.); (A.I.A.)
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Atheir I. Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (L.K.); (A.I.A.)
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - David Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| |
Collapse
|
28
|
Fitzpatrick JMK, O'Riordan D, Downer EJ. Cannflavin A inhibits TLR4-induced chemokine and cytokine expression in human macrophages. Nat Prod Res 2024:1-7. [PMID: 38780010 DOI: 10.1080/14786419.2024.2358382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Cannflavin A (CFL-A), a flavonoid present in the hemp plant Cannabis sativa L. (C. sativa), has anti-inflammatory and neuroprotective capacity. Research continues to elucidate the anti-inflammatory effects of components of C. sativa, with evidence that plant-derived cannabinoids and terpenes can mediate anti-inflammatory activity by targeting toll-like receptor (TLR) signalling, the sensors of pathogen-associated molecules. This study set out to determine if TLR-mediated inflammatory signalling is a CFL-A target using the endotoxin lipopolysaccharide (LPS) to induce TLR4 signalling in human THP-1-derived macrophages. TLR4 activation promoted the production of the chemokine CXCL10 and cytokines IL-1β and TNFα. Treatment with CFL-A dose-dependently attenuated TLR4-induced CXCL10 and IL-1β secretion, with our findings also indicating that the inhibitory effects of CFL-A on chemokine/cytokine secretion are in line with an NF-κB inhibitor. This study highlights TLR4 signalling as a cannflavin target in macrophages.
Collapse
Affiliation(s)
- John-Mark K Fitzpatrick
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | | | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Durydivka O, Palivec P, Gazdarica M, Mackie K, Blahos J, Kuchar M. Hexahydrocannabinol (HHC) and Δ 9-tetrahydrocannabinol (Δ 9-THC) driven activation of cannabinoid receptor 1 results in biased intracellular signaling. Sci Rep 2024; 14:9181. [PMID: 38649680 PMCID: PMC11035541 DOI: 10.1038/s41598-024-58845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
The Cannabis sativa plant has been used for centuries as a recreational drug and more recently in the treatment of patients with neurological or psychiatric disorders. In many instances, treatment goals include relief from posttraumatic disorders, anxiety, or to support treatment of chronic pain. Ligands acting on cannabinoid receptor 1 (CB1R) are also potential targets for the treatment of other health conditions. Using an evidence-based approach, pharmacological investigation of CB1R agonists is timely, with the aim to provide chronically ill patients relief using well-defined and characterized compounds from cannabis. Hexahydrocannabinol (HHC), currently available over the counter in many countries to adults and even children, is of great interests to policy makers, legal administrators, and healthcare regulators, as well as pharmacologists. Herein, we studied the pharmacodynamics of HHC epimers, which activate CB1R. We compared their key CB1R-mediated signaling pathway activities and compared them to the pathways activated by Δ9-tetrahydrocannabinol (Δ9-THC). We provide evidence that activation of CB1R by HHC ligands is only broadly comparable to those mediated by Δ9-THC, and that both HHC epimers have unique properties. Together with the greater chemical stability of HHC compared to Δ9-THC, these molecules have a potential to become a part of modern medicine.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technicka 3, Prague, Czech Republic.
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technicka 3, Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, 1101 E. 10th St., Bloomington, IN, 47405, USA
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technicka 3, Prague, Czech Republic.
- Psychedelic Research Center, National Institute of Mental Health, Topolová 748, Klecany, Czech Republic.
| |
Collapse
|
30
|
Caruso SJ, Acquaviva A, Müller JL, Castells CB. Simultaneous analysis of cannabinoids and terpenes in Cannabis sativa inflorescence using full comprehensive two-dimensional liquid chromatography coupled to smart active modulation. J Chromatogr A 2024; 1720:464810. [PMID: 38471299 DOI: 10.1016/j.chroma.2024.464810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Nowadays, the higher peak capacity achievable by comprehensive two-dimensional liquid chromatography (LC×LC) for the analysis of vegetal samples is well-recognized. In addition, numerous compounds may be present in very different amounts. Cannabinoids and terpenes represent the main components of Cannabis sativa inflorescence samples, whose quantities are relevant for many application purposes. The analyses of both families are performed by different methods, at least two different separation methodologies, mainly according to their chemical characteristics and concentration levels. In this work, concentration differences and sample complexity issues were addressed using an LC×LC method that incorporates an optimized modulation strategy, namely smart active modulation, for the simultaneous analysis of cannabinoids and terpenes. The system was built by interposing an active flow splitter pump between both dimensions. This set up aimed to exploit the known advantages of LC×LC. In addition, here we proposed to use the splitter pump for online control over the splitting ratio to facilitate the selective dilution of different eluted fractions containing compounds with highly different concentrations. This work represents the first application and demonstration of smart active modulation (SAM) in LC×LC to simultaneously determine analytes with significant differences in concentration levels present in complex samples. The proposed method was tested with eight different strains, from which fingerprints were taken, and numerous cannabinoids and terpenes were identified in these samples. With this strategy, between 49 and 54 peaks were obtained in the LC×LC chromatograms corresponding to different strains. THCA-A was the main component in six strains, while CBDA was the main component in the other two strains. The main terpenes found were myrcene (in five strains), limonene (in two strains), and humulene (in one strain). Additionally, numerous other cannabinoids and terpenes were identified in these samples, providing valuable compositional information for growers, as well as medical and recreational users. The SAM strategy here proposed is simple and it can be extended to other complex matrices.
Collapse
Affiliation(s)
- Sebastián J Caruso
- LIDMA (Laboratorio de Investigación y Desarrollo de Métodos Analíticos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 49 y 115, (1900), La Plata, Argentina
| | - Agustín Acquaviva
- LIDMA (Laboratorio de Investigación y Desarrollo de Métodos Analíticos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 49 y 115, (1900), La Plata, Argentina.
| | | | - Cecilia B Castells
- LIDMA (Laboratorio de Investigación y Desarrollo de Métodos Analíticos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 49 y 115, (1900), La Plata, Argentina.
| |
Collapse
|
31
|
Gul W, Shahzadi I, Sarma N, Kim NC, ElSohly MA. Development and Validation of a GC-FID Method for the Quantitation of Δ 8-Tetrahydrocannabinol and Impurities Found in Synthetic Δ 8-Tetrahydrocannabinol and Vaping Products. PLANTA MEDICA 2024; 90:316-332. [PMID: 38387478 PMCID: PMC11057961 DOI: 10.1055/a-2249-7824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/14/2024] [Indexed: 02/24/2024]
Abstract
Concerns about health hazards associated with the consumption of trans-delta-8-tetrahydrocannabinol products were highlighted in public health advisories from the U. S. Food and Drug Administration and U. S. Centers for Disease Control and Prevention. Simple and rapid quantitative methods to determine trans-delta-8-tetrahydrocannabinol impurities are vital to analyze such products. In this study, a gas chromatography-flame ionization detection method was developed and validated for the determination of delta-8-tetrahydrocannabinol and some of its impurities (recently published) found in synthesized trans-delta-8-tetrahydrocannabinol raw material and included olivetol, cannabicitran, Δ 8-cis-iso-tetrahydrocannabinol, Δ 4-iso-tetrahydrocannabinol, iso-tetrahydrocannabifuran, cannabidiol, Δ 4,8-iso-tetrahydrocannabinol, Δ 8-iso-tetrahydrocannabinol, 4,8-epoxy-iso-tetrahydrocannabinol, trans-Δ 9-tetrahydrocannabinol, 8-hydroxy-iso-THC, 9α-hydroxyhexahydrocannabinol, and 9β-hydroxyhexahydrocannabinol. Validation of the method was assessed according to the International Council for Harmonization guidelines and confirmed linearity with R2 ≥ 0.99 for all the target analytes. The limit of detection and limit of quantitation were 1.5 and 5 µg/mL, respectively, except for olivetol, which had a limit of detection of 3 µg/mL and a limit of quantitation of 10 µg/mL. Method precision was calculated as % relative standard deviation and the values were less than 8.4 and 9.9% for the intraday precision and inter-day precision, respectively. The accuracy ranged from 85 to 118%. The method was then applied to the analysis of 21 commercially marketed vaping products claiming to contain delta-8-tetrahydrocannabinol. The products analyzed by this method have various levels of these impurities, with all products far exceeding the 0.3% of trans-Δ 9-tetrahydrocannabinol limit for hemp under the Agriculture Improvement Act of 2018. The developed gas chromatography-flame ionization detection method can be an important tool for monitoring delta-8-tetrahydrocannabinol impurities in commercial products.
Collapse
Affiliation(s)
- Waseem Gul
- ElSohly Laboratories, Inc., Oxford, MS, USA
| | | | - Nandakumara Sarma
- Dietary Supplements and Herbal Medicines, United States Pharmacopeia, Rockville, MD, USA
| | - Nam-Cheol Kim
- Dietary Supplements and Herbal Medicines, United States Pharmacopeia, Rockville, MD, USA
| | | |
Collapse
|
32
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
33
|
Martinena CB, Corleto M, Martínez MMB, Amiano NO, García VE, Maffia PC, Tateosian NL. Antimicrobial Effect of Cannabidiol on Intracellular Mycobacterium tuberculosis. Cannabis Cannabinoid Res 2024; 9:464-469. [PMID: 38252548 DOI: 10.1089/can.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Introduction: Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB), has killed nearly one billion people during the last two centuries. Nowadays, TB remains a major global health problem ranked among the top 10 causes of death worldwide. One of the main challenges in developing new strategies to fight TB is focused on reducing the duration and complexity of drug regimens. Cannabidiol (CBD) is the main nonpsychoactive ingredient extracted from the Cannabis sativa L. plant, which has been shown to be biologically active against bacteria. The purpose of this work was to investigate the antimicrobial effect of CBD on M. tuberculosis intracellular infection. Materials and Methods: To assess the minimum inhibitory concentration (MIC) of CBD on mycobacterial strains, the MTT assay was performed on Mycobacterium smegmatis, and the Colony-Forming Unit (CFU) assay was conducted on MtbH37Rv. Additionally, the cytotoxic effect of CBD on THP-1 cells was assessed by MTT assay. Moreover, macrophages derived from the THP-1 cell were infected with MtbH37Rv (multiplicity of infection 1:10) to evaluate the intracellular activity of CBD by determining the CFU/mL. Results: Antimicrobial activity against M. smegmatis (MIC=100 μM) and MtbH37Rv (MIC=25 μM) cultures was exhibited by CBD. Furthermore, the effect of CBD was also evaluated on MtbH37Rv infected macrophage cells. Interestingly, a reduction in viable intracellular MtbH37Rv bacteria was observed after 24 h of treatment. Moreover, CBD exhibited a safe profile toward human THP-1 cells, since it showed no toxicity (CC50=1075 μM) at a concentration of antibacterial effect (selectivity index 43). Conclusion: These results extend the knowledge regarding the antimicrobial activity of CBD and demonstrate its ability to kill the human intracellular pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Camila Belen Martinena
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Merlina Corleto
- Laboratorio de Aplicaciones Biotecnológicas y Microbiologia, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Melina María Belén Martínez
- Laboratorio de Aplicaciones Biotecnológicas y Microbiologia, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Nicolás Oscar Amiano
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Paulo Cesar Maffia
- Laboratorio de Aplicaciones Biotecnológicas y Microbiologia, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
34
|
Lee S, Lee Y, Kim Y, Kim H, Rhyu H, Yoon K, Lee CD, Lee S. Beneficial effects of cannabidiol from Cannabis. APPLIED BIOLOGICAL CHEMISTRY 2024; 67:32. [DOI: 10.1186/s13765-024-00867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/26/2024] [Indexed: 01/05/2025]
Abstract
AbstractCannabis, traditionally used for recreation due to psychoactive compounds in its leaves, flowers, and seeds, has not been thoroughly explored for potential therapeutic benefits. Δ9-trans-Tetrahydrocannabinol, a key cannabinoid in cannabis, causes hallucinogenic effects and delirium symptoms. In contrast, cannabidiol (CBD) does not induce hallucinations and has shown effectiveness in treating symptoms of various rare, incurable diseases. Cannabis exhibits neuroprotective, anti-inflammatory, anti-thrombotic, anti-bacterial, analgesic, and antiepileptic properties, recently attracting more attention. This review aims to summarize comprehensively the impact of cannabis on human health, focusing on endocannabinoids and their receptors. It also delves into recent CBD research advancements, highlighting the compound’s potential medical applications. Overall, this paper provides valuable insights into the prospective development of medical cannabis, with a particular emphasis on CBD.
Collapse
|
35
|
Omotayo OP, Lemmer Y, Mason S. A narrative review of the therapeutic and remedial prospects of cannabidiol with emphasis on neurological and neuropsychiatric disorders. J Cannabis Res 2024; 6:14. [PMID: 38494488 PMCID: PMC10946130 DOI: 10.1186/s42238-024-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The treatment of diverse diseases using plant-derived products is actively encouraged. In the past few years, cannabidiol (CBD) has emerged as a potent cannabis-derived drug capable of managing various debilitating neurological infections, diseases, and their associated complications. CBD has demonstrated anti-inflammatory and curative effects in neuropathological conditions, and it exhibits therapeutic, apoptotic, anxiolytic, and neuroprotective properties. However, more information on the reactions and ability of CBD to alleviate brain-related disorders and the neuroinflammation that accompanies them is needed. MAIN BODY This narrative review deliberates on the therapeutic and remedial prospects of CBD with an emphasis on neurological and neuropsychiatric disorders. An extensive literature search followed several scoping searches on available online databases such as PubMed, Web of Science, and Scopus with the main keywords: CBD, pro-inflammatory cytokines, and cannabinoids. After a purposive screening of the retrieved papers, 170 (41%) of the articles (published in English) aligned with the objective of this study and retained for inclusion. CONCLUSION CBD is an antagonist against pro-inflammatory cytokines and the cytokine storm associated with neurological infections/disorders. CBD regulates adenosine/oxidative stress and aids the downregulation of TNF-α, restoration of BDNF mRNA expression, and recovery of serotonin levels. Thus, CBD is involved in immune suppression and anti-inflammation. Understanding the metabolites associated with response to CBD is imperative to understand the phenotype. We propose that metabolomics will be the next scientific frontier that will reveal novel information on CBD's therapeutic tendencies in neurological/neuropsychiatric disorders.
Collapse
Affiliation(s)
- Oluwadara Pelumi Omotayo
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Yolandy Lemmer
- Council for Scientific and Industrial Research (CSIR), Next Generation Health, Pretoria, South Africa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
36
|
Anand R, Painuli R, Kumar V, Singh PP. Chemistry and pharmacological aspects of furanoid cannabinoids and related compounds: Is furanoid cannabinoids open a new dimension towards the non-psychoactive cannabinoids? Eur J Med Chem 2024; 268:116164. [PMID: 38417219 DOI: 10.1016/j.ejmech.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/01/2024]
Abstract
Cannabinoids have emerged as compelling candidates for medicinal applications, notably following the recent approval of non-psychoactive cannabidiol (CBD) as a medicine. This endorsement has stimulated a growing interest in this class of compounds for drug discovery. Within the cannabis plant, a rich reservoir of over 125 compounds exists. Tetrahydrocannabinol (THC), a member of the dibenzopyran class, is widely recognized for its psychoactive effects. Conversely, the furanoid class, represented by cannabielsoin-type (CBE) and cannabifuran-type (CBF) compounds, has not been reported with psychoactivity and demonstrates a spectrum of pharmacological potential. The transition from the pyran structure of THC to the furan structure of CBE seems to mark a shift from psychoactive to non-psychoactive properties, but a comprehensive examination of other members in this class is essential for a complete understanding. Building on these observations, our thorough review delves into the subject, offering a comprehensive exploration of furanoid cannabinoids, covering aspects such as their biosynthesis, classification, synthesis, and medicinal potential. The aim of this review is to encourage and catalyze increased research focus in this promising area of cannabinoid exploration.
Collapse
Affiliation(s)
- Radhika Anand
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ritu Painuli
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, India
| | - Vijay Kumar
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
37
|
Malikova L, Malik M, Pavlik J, Ulman M, Pechouckova E, Skrivan M, Kokoska L, Tlustos P. Anti-staphylococcal activity of soilless cultivated cannabis across the whole vegetation cycle under various nutritional treatments in relation to cannabinoid content. Sci Rep 2024; 14:4343. [PMID: 38383569 PMCID: PMC10881570 DOI: 10.1038/s41598-024-54805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Antibiotic resistance in staphylococcal strains and its impact on public health and agriculture are global problems. The development of new anti-staphylococcal agents is an effective strategy for addressing the increasing incidence of bacterial resistance. In this study, ethanolic extracts of Cannabis sativa L. made from plant parts harvested during the whole vegetation cycle under various nutritional treatments were assessed for in vitro anti-staphylococcal effects. The results showed that all the cannabis extracts tested exhibited a certain degree of growth inhibition against bacterial strains of Staphylococcus aureus, including antibiotic-resistant and antibiotic-sensitive forms. The highest antibacterial activity of the extracts was observed from the 5th to the 13th week of plant growth across all the nutritional treatments tested, with minimum inhibitory concentrations ranging from 32 to 64 µg/mL. Using HPLC, Δ9-tetrahydrocannabinolic acid (THCA) was identified as the most abundant cannabinoid in the ethanolic extracts. A homolog of THCA, tetrahydrocannabivarinic acid (THCVA), reduced bacterial growth by 74%. These findings suggest that the cannabis extracts tested in this study can be used for the development of new anti-staphylococcal compounds with improved efficacy.
Collapse
Affiliation(s)
- Lucie Malikova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic.
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, 104 00, Prague-Uhrineves, Czech Republic.
| | - Matej Malik
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Jan Pavlik
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Milos Ulman
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Eva Pechouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, 104 00, Prague-Uhrineves, Czech Republic
| | - Milos Skrivan
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, 104 00, Prague-Uhrineves, Czech Republic
| | - Ladislav Kokoska
- Department of Crop Science and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| | - Pavel Tlustos
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague-Suchdol, Czech Republic
| |
Collapse
|
38
|
Torres J, Miller C, Apostol M, Gross J, Maxwell JR. The impact of recreational cannabinoid legalization on utilization in a pregnant population. Front Public Health 2024; 12:1278834. [PMID: 38444440 PMCID: PMC10912290 DOI: 10.3389/fpubh.2024.1278834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Background Marijuana potency and utilization both continue to increase across the United States. While the overall prevalence of cannabinoid utilization during pregnancy has been surveyed in various studies, the direct impact of changing governmental policies on pregnancy use is less characterized. Thus, we aimed to investigate how the legalization of recreational cannabinoid products impacted use during pregnancy in the state of New Mexico. Methods Participants who had a live birth during two study epochs were included: pre-legalization (Epoch 1: 1 January 2019-31 March 2021) and post-legalization (Epoch 2: 1 November 2021-30 November 2022). Participants were further divided into case group [prenatal cannabinoid exposure (PCE)] vs. control (no PCE), with cases being identified by documented self-report or a positive laboratory toxicology test for cannabinoid use during pregnancy. Results A total of 1,191 maternal/infant dyads were included in Epoch 1, and 378 maternal/infant dyads were included in Epoch 2. In Epoch 1, 788 dyads were controls with 403 cases, while Epoch 2 had 292 controls and 86 cases. Interestingly there was a significant decrease in self-report or positive laboratory toxicology tests in Epoch 2 compared to Epoch 1. Infants born following PCE in both Epoch groups were more commonly born via Cesarean section, had significantly smaller birth weight, length, and head circumference as well as significantly lower Apgar scores at 1 and 5 min. Conclusion The finding of decreased reported cannabinoid use in the post-legalization group is contradictory to previous studies which have shown increased rates of cannabinoid use after legalization. This could be due to multiple factors including changes in screening practices, the COVID-19 pandemic, and lack of commercialization of THC products. Additional studies are needed to further characterize how changing governmental policies impacts utilization during pregnancy.
Collapse
Affiliation(s)
- Jacob Torres
- School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Colton Miller
- School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Michael Apostol
- School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Jessica Gross
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM, United States
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
39
|
Lindsay CM, Bernard KK, Hammond AM, Beckford S, Abel WD, Brown PD, Young LE. Potency trends of cannabis in Jamaica during the period of 2014 to 2020. Drug Test Anal 2024; 16:174-186. [PMID: 37309060 DOI: 10.1002/dta.3527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Reports suggest that cannabis potency has dramatically increased over the last decade in the USA and Europe. Cannabinoids are the terpeno-phenolic compounds found in the cannabis plant and are responsible for its pharmacological activity. The two most prominent cannabinoids are delta-9-tetrahydrocannabinol (Δ9 THC) and cannabidiol (CBD). Cannabis potency is measured not only by the Δ9 THC levels but also by the ratio of Δ9 THC to other non-psychoactive cannabinoids, namely, CBD. Cannabis use was decriminalized in Jamaica in 2015, which opened the gates for the creation of a regulated medical cannabis industry in the country. To date, there is no information available on the potency of cannabis in Jamaica. In this study, the cannabinoid content of Jamaican-grown cannabis was examined over the period 2014-2020. Two hundred ninety-nine herbal cannabis samples were received from 12 parishes across the island, and the levels of the major cannabinoids were determined using gas chromatography-mass spectrometry. There was a significant increase (p < 0.05) in the median total THC levels of cannabis samples tested between 2014 (1.1%) and 2020 (10.2%). The highest median THC was detected in the central parish of Manchester (21.1%). During the period, THC/CBD ratios increased from 2.1 (2014) to 194.1 (2020), and there was a corresponding increase in the percent freshness of samples (CBN/THC ratios <0.013). The data show that a significant increase in the potency of locally grown cannabis has occurred in Jamaica during the last decade.
Collapse
Affiliation(s)
- Carole M Lindsay
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Khalia K Bernard
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Amanda M Hammond
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Sheldon Beckford
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Wendel D Abel
- Department of Community Health and Psychiatry, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Lauriann E Young
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| |
Collapse
|
40
|
Uziel A, Milay L, Procaccia S, Cohen R, Burstein A, Sulimani L, Shreiber-Livne I, Lewitus D, Meiri D. Solid-State Microwave Drying for Medical Cannabis Inflorescences: A Rapid and Controlled Alternative to Traditional Drying. Cannabis Cannabinoid Res 2024; 9:397-408. [PMID: 35944268 PMCID: PMC10874826 DOI: 10.1089/can.2022.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: As the medical use of Cannabis is evolving there is a greater demand for high-quality products for patients. One of the main steps in the manufacturing process of medical Cannabis is drying. Most current drying methods in the Cannabis industry are relatively slow and inefficient processes. Materials and Methods: This article presents a drying method based on solid-state microwave (MW) that provides fast and uniform drying, and examines its efficiency for drying Cannabis inflorescences compared with the traditional drying method. We assessed 67 cannabinoids and 36 terpenoids in the plant in a range of drying temperatures (40°C, 50°C, 60°C, and 80°C). The identification and quantification of these secondary metabolites were done by chromatography methods. Results: This method resulted in a considerable reduction of drying time, from several days to a few hours. The multiple frequency-phase combination states of the system allowed control and prediction of moisture levels during drying, thus preventing overdrying. A drying temperature of 50°C provided the most effective results in terms of both short drying time and preservation of the composition of the secondary metabolites compared with traditional drying. At 50°C, the chemical profile of phytocannabinoids and terpenoids was best kept to that of the original plant before drying, suggesting less degradation by chemical reactions such as decarboxylation. The fast-drying time also reduced the susceptibility of the plant to microbial contamination. Conclusion: Our results support solid-state MW drying as an effective postharvest step to quickly dry the plant material for improved downstream processing with a minimal negative impact on product quality.
Collapse
Affiliation(s)
- Almog Uziel
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Shiri Procaccia
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | - Inbar Shreiber-Livne
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dan Lewitus
- Department of Polymer Materials Engineering, Shenkar College of Engineering, Design and Art, Ramat Gan, Israel
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
41
|
Wong-Salgado P, Soares F, Moya-Salazar J, Ramírez-Méndez JF, Moya-Salazar MM, Apesteguía A, Castro A. Therapeutic Potential of Cannabinoid Profiles Identified in Cannabis L. Crops in Peru. Biomedicines 2024; 12:306. [PMID: 38397908 PMCID: PMC10886879 DOI: 10.3390/biomedicines12020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 02/25/2024] Open
Abstract
Cannabis is a plant that is cultivated worldwide, and its use is internationally regulated, but some countries have been regulating its medicinal, social, and industrial uses. This plant must have arrived in Peru during the Spanish conquest and remains widely cultivated illicitly or informally to this day. However, new regulations are currently being proposed to allow its legal commercialization for medicinal purposes. Cannabis contains specific metabolites known as cannabinoids, some of which have clinically demonstrated therapeutic effects. It is now possible to quantitatively measure the presence of these cannabinoids in dried inflorescences, thus allowing for description of the chemical profile or "chemotype" of cannabinoids in each sample. This study analyzed the chemotypes of eight samples of dried inflorescences from cannabis cultivars in four different regions of Peru, and based on the significant variation in the cannabinoid profiles, we suggest their therapeutic potential. The most important medical areas in which they could be used include the following: they can help manage chronic pain, they have antiemetic, anti-inflammatory, and antipruritic properties, are beneficial in treating duodenal ulcers, can be used in bronchodilators, in muscle relaxants, and in treating refractory epilepsy, have anxiolytic properties, reduce sebum, are effective on Methicillin-resistant Staphylococcus aureus, are proapoptotic in breast cancer, can be used to treat addiction and psychosis, and are effective on MRSA, in controlling psoriasis, and in treating glioblastoma, according to the properties of their concentrations of cannabidiol, cannabigerol, and Δ9-tetrahydrocannabinol, as reviewed in the literature. On the other hand, having obtained concentrations of THC, we were able to suggest the psychotropic capacity of said samples, one of which even fits within the legal category of "non-psychoactive cannabis" according to Peruvian regulations.
Collapse
Affiliation(s)
- Pedro Wong-Salgado
- CANNAVITAL, Clínica Especializada en Terapias con Cannabinoides, Lima 15022, Peru;
- RENATU Research Group, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15039, Peru; (F.S.); (A.C.)
- Centro de Estudios del Cannabis del Perú, Lima 15022, Peru;
| | - Fabiano Soares
- RENATU Research Group, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15039, Peru; (F.S.); (A.C.)
- Centro de Estudios del Cannabis del Perú, Lima 15022, Peru;
- REAJA Laboratory, Curitiba 80045-180, Brazil
| | - Jeel Moya-Salazar
- Faculties of Health Science, Universidad Privada del Norte, Lima 15001, Peru
| | - José F. Ramírez-Méndez
- CANNAVITAL, Clínica Especializada en Terapias con Cannabinoides, Lima 15022, Peru;
- Centro de Estudios del Cannabis del Perú, Lima 15022, Peru;
| | - Marcia M. Moya-Salazar
- Centro de Estudios del Cannabis del Perú, Lima 15022, Peru;
- Cannabis and Stone Unit, Nesh Hubbs, Lima 15001, Peru
| | - Alfonso Apesteguía
- Centro de Información, Control Toxicológico y Apoyo a la Gestión Ambiental CICOTOX, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15039, Peru;
| | - Americo Castro
- RENATU Research Group, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15039, Peru; (F.S.); (A.C.)
| |
Collapse
|
42
|
Martinez Naya N, Kelly J, Corna G, Golino M, Polizio AH, Abbate A, Toldo S, Mezzaroma E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024; 29:473. [PMID: 38257386 PMCID: PMC10818442 DOI: 10.3390/molecules29020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Giuliana Corna
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina;
| | - Michele Golino
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Eleonora Mezzaroma
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
43
|
Russo F, Ferri E, Pinetti D, Vandelli MA, Laganà A, Capriotti AL, Cavazzini A, Gigli G, Citti C, Cannazza G. Bidimensional heart-cut achiral-chiral liquid chromatography coupled to high-resolution mass spectrometry for the separation of the main chiral phytocannabinoids and enantiomerization studies of cannabichromene and cannabichromenic acid. Talanta 2024; 267:125161. [PMID: 37708768 DOI: 10.1016/j.talanta.2023.125161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In this work, a heart-cut bidimensional achiral-chiral liquid chromatography method coupled to high-resolution mass spectrometry was developed for the separation of the main carboxylated phytocannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabichromenic acid (CBCA), and cannabicyclolic acid (CBLA), and decarboxylated derivatives, namely cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC), and cannabicyclol (CBL), and the evaluation of their enantiomeric composition in extracts of different Cannabis sativa L. varieties. Optimal conditions for the chiral analysis of CBC- and CBL-type compounds were found with methanol and water (95:5, v/v, with 0.1% formic acid, 1.5 mL/min) on an amylose-based chiral stationary phase. These settings also allowed to evaluate the parameters responsible for CBC and CBCA racemization.
Collapse
Affiliation(s)
- Fabiana Russo
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125, Modena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Elena Ferri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, Modena, 41125, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy; Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy.
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy; Institute of Nanotechnology - CNR NANOTEC, Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
44
|
Vozza Berardo ME, Mendieta JR, Villamonte MD, Colman SL, Nercessian D. Antifungal and antibacterial activities of Cannabis sativa L. resins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116839. [PMID: 37400009 DOI: 10.1016/j.jep.2023.116839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. AIMS OF THE STUDY Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. METHODS Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (-) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. RESULTS Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (-)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (-) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. CONCLUSION All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.
Collapse
Affiliation(s)
- María Eugenia Vozza Berardo
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - María Daniela Villamonte
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Silvana Lorena Colman
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Débora Nercessian
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| |
Collapse
|
45
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
46
|
Wolfe TJ, Kruse NA, Radwan MM, Wanas AS, Sigworth KN, ElSohly MA, Hammer NI. A study of major cannabinoids via Raman spectroscopy and density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123133. [PMID: 37473664 DOI: 10.1016/j.saa.2023.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Cannabinoids, a class of molecules specific to the cannabis plant, are some of the most relevant molecules under study today due to their widespread use and varying legal status. Here, we present Raman spectra of a series of eleven cannabinoids and compare them to simulated spectra from density functional theory computations. The studied cannabinoids include three cannabinoid acids (Δ9-THC acid, CBD acid, and CBG acid) and eight neutral ones (Δ9-THC, CBD, CBG, CBDVA, CBDV, Δ8-THC, CBN and CBC). All cannabinoids have been isolated from cannabis plant gown at the University of Mississippi. The data presented in this work represents the most resolved experimental and highest-level simulated spectra available to date for each cannabinoid. All cannabinoids displayed higher peak separation in the experimental spectra than CBGA, which is most likely attributable to physical composition of the samples. The overall agreement between the experimental and simulated spectra is good, however for certain vibrational modes, especially those in the -OH stretching region, deviations are observed due to hydrogen bonding, suggesting that the OH stretching region is a good probe for decarboxylation reactions in these and related species.
Collapse
Affiliation(s)
- Trevor J Wolfe
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA
| | - Nicholas A Kruse
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Amira S Wanas
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Kalee N Sigworth
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, MS 38677, USA.
| |
Collapse
|
47
|
Bartončíková M, Lapčíková B, Lapčík L, Valenta T. Hemp-Derived CBD Used in Food and Food Supplements. Molecules 2023; 28:8047. [PMID: 38138537 PMCID: PMC10745805 DOI: 10.3390/molecules28248047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cannabis sativa L., a plant historically utilized for textile fibers, oil, and animal feed, is progressively being recognized as a potential food source. This review elucidates the nutritional and functional attributes of hemp and cannabidiol (CBD) within the context of food science. Hemp is characterized by the presence of approximately 545 secondary metabolites, among which around 144 are bioactive cannabinoids of primary importance. The study looks in detail at the nutritional components of cannabis and the potential health benefits of CBD, encompassing anti-inflammatory, anxiolytic, and antipsychotic effects. The review deals with the legislation and potential applications of hemp in the food industry and with the future directions of cannabis applications as well. The paper emphasizes the need for more scientific investigation to validate the safety and efficacy of hemp components in food products, as current research suggests that CBD may have great benefits for a wide range of consumers.
Collapse
Affiliation(s)
- Michaela Bartončíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| | - Barbora Lapčíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Tomáš Valenta
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| |
Collapse
|
48
|
Shamsi E, Parvin P, Ahmadinouri F, Khazai S. Laser-induced fluorescence spectroscopy of plant-based drugs: Opium and hashish provoking at 405 nm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123055. [PMID: 37390713 DOI: 10.1016/j.saa.2023.123055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Here, the fluorescence properties of some plant-based drug samples are characterized using a coherent excitation source at 405 nm. The laser-induced fluorescence (LIF) spectroscopy is examined to analyze opium and hashish. In order to improve traditional fluorescence methods for better analysis of optically dense materials, we have proposed five characteristic parameters based on solvent densitometry assay as the fingerprints of drugs of interest. The signal emissions are recorded in terms of various drug concentrations, such that the best fitting over experimental data determines the fluorescence extinction (α) and self-quenching (k) coefficients according to the modified Beer-Lambert formalism. The typical α value is determined to be 0.30 and 0.15 mL/(cm∙mg) for opium and hashish, respectively. Similarly, typical k is obtained 0.390 and 1.25 mL/(cm∙mg), respectively. Furthermore, the concentration at max fluorescence intensity (Cp) is determined for opium and hashish to be 1.8 and 1.3 mg/mL, respectively. Results reveal that opium and hashish benefit their own characteristic fluorescence parameters to discriminate those illicit substances promptly using the present method.
Collapse
Affiliation(s)
- Ehsan Shamsi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Fatemeh Ahmadinouri
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Samaneh Khazai
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
49
|
Tang Q, Xu Y, Gao F, Xu Y, Cheng C, Deng C, Chen J, Yuan X, Zhang X, Su J. Transcriptomic and metabolomic analyses reveal the differential accumulation of phenylpropanoids and terpenoids in hemp autotetraploid and its diploid progenitor. BMC PLANT BIOLOGY 2023; 23:616. [PMID: 38049730 PMCID: PMC10696708 DOI: 10.1186/s12870-023-04630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Cannabis sativa, a dioecious plant that has been cultivated worldwide for thousands of years, is known for its secondary metabolites, especially cannabinoids, which possess several medicinal effects. In this study, we investigated the autopolyploidization effects on the biosynthesis and accumulation of these metabolites, transcriptomic and metabolomic analyses were performed to explore the gene expression and metabolic variations in industrial hemp autotetraploids and their diploid progenitors. RESULTS Through these analyses, we obtained 1,663 differentially expressed metabolites and 1,103 differentially expressed genes. Integrative analysis revealed that phenylpropanoid and terpenoid biosynthesis were regulated by polyploidization. No substantial differences were found in the cannabidiol or tetrahydrocannabinol content between tetraploids and diploids. Following polyploidization, some transcription factors, including nine bHLH and eight MYB transcription factors, affected the metabolic biosynthesis as regulators. Additionally, several pivotal catalytic genes, such as flavonol synthase/flavanone 3-hydroxylase, related to the phenylpropanoid metabolic pathway, were identified as being modulated by polyploidization. CONCLUSIONS This study enhances the overall understanding of the impact of autopolyploidization in C. sativa and the findings may encourage the application of polyploid breeding for increasing the content of important secondary metabolites in industrial hemp.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Feng Gao
- Yunnan Academy of Industrial Hemp, Kunming, 650214, Yunnan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoge Yuan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| |
Collapse
|
50
|
Abdel-Kader MS, Radwan MM, Metwaly AM, Eissa IH, Hazekamp A, ElSohly MA. Chemistry and Biological Activities of Cannflavins of the Cannabis Plant. Cannabis Cannabinoid Res 2023; 8:974-985. [PMID: 37756221 PMCID: PMC10714118 DOI: 10.1089/can.2023.0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Background: Throughout history, Cannabis has had a significant influence on human life as one of the earliest plants cultivated by humans. The plant was a source of fibers used by the oldest known civilizations. Cannabis was also used medicinally in China, India, and ancient Egypt. Delta-9-tetrahydrocannabinol (Δ9-THC), the main psychoactive compound in the plant was identified in 1964 followed by more than 125 cannabinoids. More than 30 flavonoids were isolated from the plant including the characteristic flavonoids called cannflavins, which are prenylated or geranylated flavones. Material and Methods: In this review, the methods of extraction, isolation, identification, biosynthesis, chemical synthesis, analysis and pharmacological activity of these flavonoids are described. Results: The biosynthetic routes of the cannflavins from phenylalanine and malonyl CoA as well as the microbial biotransformation are also discussed. Details of the chemical synthesis are illustrated as an alternative to the isolation from the plant materials along with other possible sources of obtaining cannflavins. Detailed methods discussing the analysis of flavonoids in cannabis are presented, including the techniques used for separation and detection. Finally, the various biological activities of cannflavins are reviewed along with the available molecular docking studies. Conclusion: Despite the low level of cannflavins in cannabis hamper their development as naturally derived products, efforts need to be put in place to develop high yield synthetic or biosynthetic protocols for their production in order for their development as pharmaceutical products.
Collapse
Affiliation(s)
- Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed M. Radwan
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Ahmed M. Metwaly
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Department of Pharmaceutical Medicinal Chemistry & Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|