1
|
Upadhyay R, Ghosh P, Desavathu M. Advancement in the nose-to-brain drug delivery of FDA-approved drugs for the better management of depression and psychiatric disorders. Int J Pharm 2024:124866. [PMID: 39486490 DOI: 10.1016/j.ijpharm.2024.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The Prevalence of Depressive and Psychiatric disorders is increasing globally, and despite the availability of numerous FDA-approved drugs, treatment remains challenging. Many conventional antidepressants and antipsychotic formulations face issues such as low solubility, high first-pass metabolism, poor bioavailability, inadequate blood-brain barrier penetration, and systemic side effects. These challenges lead to reduced efficacy, slower onset of action, and decreased patient adherence to treatment. To address these problems, recent studies have explored the nose-to-brain route for drug delivery. This method offers several advantages, including non-invasive drug administration, direct access to the brain, rapid onset of action, reduced systemic exposure and side effects, avoidance of first-pass metabolism, enhanced bioavailability, precision dosing, and improved patient compliance. The formulations used for this approach include lipidic nanoparticles, polymeric nanoparticles, nasal gels, cubosomes, niosomes, polymeric micelles, nanosuspensions, nanoemulsions, nanocapsules, and elastosomes. This review analyzes and summarizes the published work on the nose-to-brain delivery of FDA-approved antidepressants and antipsychotic drugs, with a focus on the preparation, characterization, pharmacokinetics, pharmacodynamics, and toxicity profiling of these nanoformulations.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Pappu Ghosh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Madhuri Desavathu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
2
|
Bseiso EA, Sheta NM, Abdel-Haleem KM. Recent progress in nanoparticulate-based intranasal delivery for treating of different central nervous system diseases. Pharm Dev Technol 2024:1-17. [PMID: 39340392 DOI: 10.1080/10837450.2024.2409807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Drug administration to the central nervous system (CNS) has become a great obstacle because of several biological barriers, such as the blood-brain barrier, therefore, brain targeting insights are a light for scientists to move forward for treating neurogenerative diseases using advanced non-invasive methods. The current demand is to use a potential direct route as the nasal administration to transport drugs into the brain enhancing the BBB permeability and hence, increasing the bioavailability. Interestingly, recent techniques have been implanted in formulating nanocarriers-based therapeutics for targeting and treating ischemic stroke using lipid or polymeric-based materials. Nanoparticulate delivery systems are set as an effective platform for brain targeting as polymeric nanoparticles and polymeric micelles or nanocarriers based on lipids for preventing drug efflux to promote optimal therapeutic medication concentration in the brain-diseased site. In recent years, there has been a notable increase in research publications and ongoing investigations on the utilization of drug-loading nanocarriers for the treatment of diverse CNS diseases. This review comprehensively depicts these dangerous neurological disorders, drug targeting challenges to CNS, and potential contributions as novel intranasal nano-formulations are being used to treat and regulate a variety of neurological diseases.
Collapse
Affiliation(s)
- Eman A Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Nermin M Sheta
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Khaled M Abdel-Haleem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| |
Collapse
|
3
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
4
|
Chiarentin R, Pereira Bottcher D, Zeni B, Grave C, Neutzling Kaufmann F, Emmanoella Sebulsqui Saraiva T, da Costa Berna G, Aline Führ G, Saraiva Hermann B, Hoffmeister B, Dal Pont Morisso F, Feiffer Charão M, Gasparin Verza S, Deise Fleck J, Heemann Betti A, Bastos de Mattos C. Development and pharmacological evaluation of liposomes and nanocapsules containing paroxetine hydrochloride. Int J Pharm 2024; 660:124304. [PMID: 38848799 DOI: 10.1016/j.ijpharm.2024.124304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Depression is one of the most common psychiatric disorders. Nanotechnology has emerged to optimize the pharmacological response. Therefore, the aim of this work was to develop and characterize liposomes and nanocapsules containing paroxetine hydrochloride and evaluate their antidepressant-like effect using the open field and tail suspension tests in mice. Liposomes and nanocapsules were prepared using the reverse-phase evaporation and nanoprecipitation methods, respectively. The particle size of the formulation ranged from 121.81 to 310.73 nm, the polydispersity index from 0.096 to 0.303, the zeta potential from -11.94 to -34.50 mV, the pH from 5.31 to 7.38, the drug content from 80.82 to 94.36 %, and the association efficiency was 98 %. Paroxetine hydrochloride showed slower release when associated with liposomes (43.82 %) compared to nanocapsules (95.59 %) after 10 h. In Vero cells, in vitro toxicity showed a concentration-dependent effect for paroxetine hydrochloride nanostructures. Both nanostructures decreased the immobility time in the TST at 2.5 mg/kg without affecting the number of crossings in the open field test, suggesting the antidepressant-like effect of paroxetine. In addition, the nanocapsules decreased the number of groomings, reinforcing the anxiolytic effect of this drug. These results suggest that the nanostructures were effective in preserving the antidepressant-like effect of paroxetine hydrochloride even at low doses.
Collapse
Affiliation(s)
- Raquel Chiarentin
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | | | - Bruna Zeni
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Carolina Grave
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | | | - Thalia Emmanoella Sebulsqui Saraiva
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Gabriel da Costa Berna
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Giulia Aline Führ
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Bruna Saraiva Hermann
- Molecular Microbiology Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Bruna Hoffmeister
- Molecular Microbiology Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Fernando Dal Pont Morisso
- Advanced Materials Studies Laboratory, Creative and Technological Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Materials Technology and Industrial Processes, Feevale University, Novo Hamburgo, RS, Brazil
| | - Mariele Feiffer Charão
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Simone Gasparin Verza
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Juliane Deise Fleck
- Molecular Microbiology Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Cristiane Bastos de Mattos
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
5
|
Constantinou C, Meliou K, Skouras A, Siafaka P, Christodoulou P. Liposomes against Alzheimer's Disease: Current Research and Future Prospects. Biomedicines 2024; 12:1519. [PMID: 39062092 PMCID: PMC11275096 DOI: 10.3390/biomedicines12071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease, the most common neurodegenerative disease, affects more than 60 million people worldwide, a number that is estimated to double by 2050. Alzheimer's disease is characterized by progressive memory loss, the impairment of behavior, and mood changes, as well as the disturbed daily routine of the patient. Although there are some active molecules that can be beneficial by halting the progression of the disease, the blood-brain barrier and other physiological barriers hinder their delivery and, consequently, the appropriate management of the disease. Therefore, drug delivery systems that effectively target and overcome the blood-brain barrier to reach the targeted brain area would improve treatment effectiveness. Liposomes are lipophilic carriers that consist of a phospholipid bilayer structure, simulating the physiological lipidic layer of the blood-brain barrier and enabling better delivery of the drug to the brain. Given that pure liposomes may have less targeting affinity than functionalized liposomes, modification with groups such as lactoferrin, poly(ethylene glycol), and transferrin may improve specificity. In this mini-review, we summarize the literature on the use of liposomes for the treatment of Alzheimer's disease, focusing on the functionalization moieties of liposomes. In addition, challenges in brain delivery are also discussed.
Collapse
Affiliation(s)
- Christiana Constantinou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Katerina Meliou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Athanasios Skouras
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece;
| | - Panoraia Siafaka
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | | |
Collapse
|
6
|
Uner B, Baranauskaite Ortasoz J, Tas C. Development of thermosensitive liposome-containing in-situ gel systems for intranasal administration of thiocolchicoside and in vivo evaluation in a rabbit model. Pharm Dev Technol 2024; 29:582-595. [PMID: 38841795 DOI: 10.1080/10837450.2024.2364707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
AIM Thiocolchicoside (THC) is a drug under the category of BCS III. Due to its high molecular weight, it has poor oral bioavailability and low skin permeability. This study aims to find an alternative delivery method for THC that enhances its bioavailability through nasal application approach. In situ gels containing plain or liposomal THC with different combinations of Pluronic® F127 and PEG 400 were prepared. METHOD Liposome formulations were prepared using the thin film hydration method and tested for their characterization such as for drug content, particle size, and zeta potential. In vivo pharmacokinetic parameters of formulations such as Cmax, Tmax, and AUC were tested on the rabbit model. The formulations were also scrutinized for their cell viability properties. RESULT Formulation composition with 2% soybean phosphatidylcholine and 10 mg THC exhibited ∼94% entrapment efficiency, minimum particle size 101.32 nm, low polydispersity index 0.225 and +0.355 zeta potential. In situ liposomal dispersion containing 15% Pluronic® F127 turned into gel at nasal temperature. Cell lines were unharmed for 48 h. İn situ liposomal gels showed 1.5x higher blood concentration than the control formula. CONCLUSION In situ gels of liposomal THC formulations offer advantages over traditional nasal solutions, demonstrating comparable bioavailability to parenteral medication while also preserving the health of nasal mucosa cells.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
- Department of Pharmaceutical and Administrative Science, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Istanbul, Turkey
| | | | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
7
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
8
|
Sipos B, Katona G, Csóka I. Risperidone-Loaded Nasal Thermosensitive Polymeric Micelles: Quality by Design-Based Formulation Study. Pharmaceutics 2024; 16:703. [PMID: 38931827 PMCID: PMC11206254 DOI: 10.3390/pharmaceutics16060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (G.K.); (I.C.)
| | | | | |
Collapse
|
9
|
Faisal MM, Gomaa E, Ibrahim AE, El Deeb S, Al-Harrasi A, Ibrahim TM. Verapamil-Loaded Cubosomes for Enhancing Intranasal Drug Delivery: Development, Characterization, Ex Vivo Permeation, and Brain Biodistribution Studies. AAPS PharmSciTech 2024; 25:95. [PMID: 38710921 DOI: 10.1208/s12249-024-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.
Collapse
Affiliation(s)
- Mennatullah M Faisal
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman.
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Brunswick, Germany.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
10
|
Khot KB, D S S, Gopan G, Deshpande N S, Shastry P, Bandiwadekar A, Jose J. Enhancing selegiline hydrochloride efficacy: Box Behnken-optimized liposomal delivery via intranasal route for Parkinson's disease intervention. J Liposome Res 2024:1-18. [PMID: 38591935 DOI: 10.1080/08982104.2024.2336549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
The clinical use of selegiline hydrochloride in conventional dosage forms is to reduce the progression of Parkinson's disease (PD). However, its limited access to the brain, short half-life, and first-pass metabolism minimize brain uptake. Nano-based liposomes offer promising tools for brain-targeted delivery of therapeutics, especially intranasally administered cationic liposomes that target the brain region via the olfactory route and reduce biodistribution. In the present work, cationic liposomes encapsulated with selegiline hydrochloride were fabricated for intranasal administration against PD. The liposomes were initially optimized by Box Behnken design, and the selected run was coated with stearylamine to provide a cationic charge to the liposomes. The final coated liposomes, SH-LP3, demonstrated a minimum size of 173 ± 2.13 nm, an ideal zeta potential of +16 ± 1.98, and achieved a maximum entrapment efficiency of 40.14 ± 1.83%. Morphology analysis showed the spherical shape of liposomes in the size range of 100-200 nm. The in vitro cytotoxicity assay in SHSY5Y cell lines showed a significant decrease in toxicity, almost ten times less, compared to pure selegiline hydrochloride. Animal studies on rotenone-lesioned C57BL6 mice model for PD were performed to investigate the effect of intranasally administered liposomes. The SH-LP3 formulation exhibited remarkable effectiveness in relieving symptoms of PD. This extensive analysis emphasizes the possibility of intranasally administered SH-LP3 liposomes as a feasible treatment option for PD. The formulation not only delivers continuous drug release but also displays better safety and efficacy, providing a platform for additional studies and growth in the domain of PD treatment.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Sandeep D S
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Shridhar Deshpande N
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Prajna Shastry
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Akshay Bandiwadekar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| |
Collapse
|
11
|
Taha E, Shetta A, Nour SA, Naguib MJ, Mamdouh W. Versatile Nanoparticulate Systems as a Prosperous Platform for Targeted Nose-Brain Drug Delivery. Mol Pharm 2024; 21:999-1014. [PMID: 38329097 DOI: 10.1021/acs.molpharmaceut.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The intranasal route has proven to be a reliable and promising route for delivering therapeutics to the central nervous system (CNS), averting the blood-brain barrier (BBB) and avoiding extensive first-pass metabolism of some drugs, with minimal systemic exposure. This is considered to be the main problem associated with other routes of drug delivery such as oral, parenteral, and transdermal, among other administration methods. The intranasal route maximizes drug bioavailability, particularly those susceptible to enzymatic degradation such as peptides and proteins. This review will stipulate an overview of the intranasal route as a channel for drug delivery, including its benefits and drawbacks, as well as different mechanisms of CNS drug targeting using nanoparticulate drug delivery systems devices; it also focuses on pharmaceutical dosage forms such as drops, sprays, or gels via the nasal route comprising different polymers, absorption promoters, CNS ligands, and permeation enhancers.
Collapse
Affiliation(s)
- Esraa Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Samia A Nour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
12
|
Khute S, Jangde RK. In silico exploration of venlafaxine, a potential non-tricyclic antidepressant in a liposomal formulation for nose-to-brain drug delivery. Drug Dev Ind Pharm 2024; 50:55-67. [PMID: 38112520 DOI: 10.1080/03639045.2023.2297238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Non-tricyclic antidepressants (non-TCAs) work by preventing the intake of norepinephrine and serotonin. Therefore, the aim of this study was to identify a potent non-TCAs and to develop liposomal formulation, characterize and to determine the drug release study across model of dialysis membrane via in vitro and in silico techniques. METHODS The in silico docking analysis identified venlafaxine (VLF) as the best non-TCAs with the depressant targets (PDB ID: 3PBL and 4BVN). VLF-loaded liposomal formulation was prepared by the thin-film hydration technique and characterized by physicochemical properties, including entrapment efficacy, in vitro drug release, particle size analysis, and FTIR. Moreover, this article also compares VLF and VLF-loaded with liposome carriers (LPs) based on nose-to-brain drug delivery approaches to treating depression. RESULTS Drug release profiles of the optimal liposomal formulation of VLF-LPs were examined in the high entrapment efficiency 94.13 ± 1.20% was attained at 224 nm, composed of spherical particles having a mean particle size of 191 ± 2.0 nm, a polydispersity index of 0.281 ± 0.06 and zeta potential of -20.3 mV. The best formulation of VLF-LPs was more effective than oral VLF treatment, as shown by the in vitro drug release data. CONCLUSION The results show that the VLF-LPs formulation is a promising potential platform for application in nose-to-brain drug delivery. Thus, highlighting the robustness of the intranasal drug delivery system with enhanced pharmaceutical properties, efficacy, and bioavailability for the anti-depression effect.
Collapse
Affiliation(s)
- Sulekha Khute
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rajendra K Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
13
|
Waghule T, Laxmi Swetha K, Roy A, Narayan Saha R, Singhvi G. Exploring temozolomide encapsulated PEGylated liposomes and lyotropic liquid crystals for effective treatment of glioblastoma: in-vitro, cell line, and pharmacokinetic studies. Eur J Pharm Biopharm 2023; 186:18-29. [PMID: 36924995 DOI: 10.1016/j.ejpb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Temozolomide (TMZ) is one of the best choices for treating glioblastoma. However, due to the short plasma half-life, only 20-30 % brain bioavailability can be achieved using traditional formulations. In the present study, PEGylated liposomes and lyotropic liquid crystals (LLCs) were developed and investigated to prolong the plasma circulation time of TMZ. Industrially feasible membrane extrusion and modified hot melt emulsification techniques were utilized during the formulation. Liposomes and LLCs in the particle size range of 80-120 nm were obtained with up to 50 % entrapment efficiency. The nanocarriers were found to show a prolonged release of up to 72 h. The cytotoxicity studies in glioblastoma cell lines revealed a ∼1.6-fold increased cytotoxicity compared to free TMZ. PEGylated liposomes and PEGylated LLCs were found to show a 3.47 and 3.18-fold less cell uptake in macrophage cell lines than uncoated liposomes and LLCs, respectively. A 1.25 and 2-fold increase in the plasma t1/2 was observed with PEGylated liposomes and PEGylated LLCs, respectively, compared to the TMZ when administered intravenously. Extending plasma circulation time of TMZ led to significant increase in brain bioavailability. Overall, the observed improved pharmacokinetics and biodistribution of TMZ revealed the potential of these PEGylated nanocarriers in the efficient treatment of glioblastoma.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - K Laxmi Swetha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Aniruddha Roy
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
14
|
Metkar SP, Fernandes G, Nikam AN, Soman S, Birangal S, Seetharam RN, Joshi MB, Mutalik S. Mannosylated-Chitosan-Coated Andrographolide Nanoliposomes for the Treatment of Hepatitis: In Vitro and In Vivo Evaluations. MEMBRANES 2023; 13:193. [PMID: 36837696 PMCID: PMC9965523 DOI: 10.3390/membranes13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A key diterpene lactone of Andrographis paniculata, i.e., andrographolide (AG), exhibits a variety of physiological properties, including hepatoprotection. The limited solubility, short half-life, and poor bioavailability limits the pharmacotherapeutic potential of AG. Therefore, in this study we aimed to formulate and optimize AG-loaded nanoliposomes (AGL) using the Design of Experiment (DOE) approach and further modify the surface of the liposomes with mannosylated chitosan to enhance its oral bioavailability. Physical, morphological, and solid-state characterization was performed to confirm the formation of AGL and Mannosylated chitosan-coated AGL (MCS-AGL). Molecular docking studies were conducted to understand the ligand (MCS) protein (1EGG) type of interaction. Further, in vitro release, ex vivo drug permeation, and in vivo pharmacokinetics studies were conducted. The morphological studies confirmed that AGL was spherical and a layer of MCS coating was observed on their surface, forming the MCS-AGL. Further increase in the particle size and change in the zeta potential of MCS-AGL confirms the coating on the surface of AGL (375.3 nm, 29.80 mV). The in vitro drug release data reflected a sustained drug release profile from MCS-AGL in the phosphate buffer (pH 7.4) with 89.9 ± 2.13% drug release in 8 h. Ex vivo permeation studies showed higher permeation of AG from MCS-AGL (1.78-fold) compared to plain AG and AGL (1.37-fold), indicating improved permeability profiles of MCS-AGL. In vivo pharmacokinetic studies inferred that MCS-AGL had a 1.56-fold enhancement in AUC values compared to plain AG, confirming that MCS-AGL improved the bioavailability of AG. Additionally, the 2.25-fold enhancement in the MRT proves that MCS coating also enhances the in vivo stability and retention of AG (stealth effect). MCS as a polymer therefore has a considerable potential for improving the intestinal permeability and bioavailability of poorly soluble and permeable drugs or phytoconstituents when coated over nanocarriers.
Collapse
Affiliation(s)
- Sayali Pravin Metkar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manjunath Bandu Joshi
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
15
|
Duong VA, Nguyen TTL, Maeng HJ. Recent Advances in Intranasal Liposomes for Drug, Gene, and Vaccine Delivery. Pharmaceutics 2023; 15:207. [PMID: 36678838 PMCID: PMC9865923 DOI: 10.3390/pharmaceutics15010207] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Liposomes are safe, biocompatible, and biodegradable spherical nanosized vesicles produced from cholesterol and phospholipids. Recently, liposomes have been widely administered intranasally for systemic and brain delivery. From the nasal cavity, liposome-encapsulated drugs and genes enter the systemic circulation primarily via absorption in the respiratory region, whereas they can be directly transported to the brain via the olfactory pathway. Liposomes can protect drugs and genes from enzymatic degradation, increase drug absorption across the nasal epithelium, and prolong the residence time in the nasal cavity. Intranasal liposomes are also a potential approach for vaccine delivery. Liposomes can be used as a platform to load antigens and as vaccine adjuvants to induce a robust immune response. With the recent interest in intranasal liposome formulations, this review discusses various aspects of liposomes that make them suitable for intranasal administration. We have summarized the latest advancements and applications of liposomes and evaluated their performance in the systemic and brain delivery of drugs and genes administered intranasally. We have also reviewed recent advances in intranasal liposome vaccine development and proposed perspectives on the future of intranasal liposomes.
Collapse
Affiliation(s)
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
16
|
Németh Z, Csóka I, Semnani Jazani R, Sipos B, Haspel H, Kozma G, Kónya Z, Dobó DG. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022; 14:1798. [PMID: 36145546 PMCID: PMC9503861 DOI: 10.3390/pharmaceutics14091798] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Liposomal formulations, as versatile nanocarrier systems suitable for targeted delivery, have a highly focused role in the therapy development of unmet clinical needs and diagnostic imaging techniques. Formulating nanomedicine with suitable zeta potential is an essential but challenging task. Formulations with a minimum ±30 mV zeta potential are considered stable. The charge of the phospholipid bilayer can be adjusted with membrane additives. The present Quality by Design-derived study aimed to optimise liposomal formulations prepared via the thin-film hydration technique by applying stearylamine (SA) or dicetyl phosphate (DCP) as charge imparting agents. This 32 fractional factorial design-based study determined phosphatidylcholine, cholesterol, and SA/DCP molar ratios for liposomes with characteristics meeting the formulation requirements. The polynomials describing the effects on the zeta potential were calculated. The optimal molar ratios of the lipids were given as 12.0:5.0:5.0 for the SA-PBS pH 5.6 (optimised sample containing stearylamine) and 8.5:4.5:6.5 for the DCP-PBS pH 5.6 (optimised sample containing dicetyl phosphate) particles hydrated with phosphate-buffered saline pH 5.6. The SA-PBS pH 5.6 liposomes had a vesicle size of 108 ± 15 nm, 0.20 ± 0.04 polydispersity index, and +30.1 ± 1.2 mV zeta potential, while these values were given as 88 ± 14 nm, 0.21 ± 0.02, and -36.7 ± 3.3 mV for the DCP-PBS pH 5.6 vesicles. The prepared liposomes acquired the requirements of the zeta potential for stable formulations.
Collapse
Affiliation(s)
- Zsófia Németh
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Reza Semnani Jazani
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Bence Sipos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla Sqare, H-6720 Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla Sqare, H-6720 Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla Sqare, H-6720 Szeged, Hungary
| | - Dorina Gabriella Dobó
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| |
Collapse
|
17
|
Aldawsari HM, Badr-Eldin SM, Assiri NY, Alhakamy NA, Privitera A, Caraci F, Caruso G. Surface-tailoring of emulsomes for boosting brain delivery of vinpocetine via intranasal route: in vitro optimization and in vivo pharmacokinetic assessment. Drug Deliv 2022; 29:2671-2684. [PMID: 35975309 PMCID: PMC9387308 DOI: 10.1080/10717544.2022.2110996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vinpocetine (VNP), a semisynthetic active pharmaceutical ingredient, is used for oral management of cerebrovascular diseases because of its ability to enhance the blood flow to the brain. However, despite that, the therapeutic application of VNP is restricted due to its reduced bioavailability and diminished brain levels that could be attributed to its low aqueous solubility, short half-life, and presystemic metabolism exposure. Accordingly, the goal of this work was to explore the ability of surface-tailored intranasal emulsomes to boost brain delivery of the drug. A 3221 factorial design was implemented to explore the impact of phospholipid (PL) to solid lipid weight ratio, PL to cholesterol molar ratio, and type of solid lipid on vesicle size, zeta potential, drug entrapment, and release efficiency of the new developed VNP emulsomes. Tailoring of the optimized emulsomal surface formulation was performed using either cationization or PEGylation approaches to boost blood–brain barrier penetration. The pharmacokinetic assessment in rats showed significantly improved bioavailability of VNP emulsomal formulations compared to the oral market product. Additionally, surface-tailored emulsomes exhibited significantly higher brain levels compared to the optimized emulsomes. Based on these findings, the proposed surface-tailored emulsomes could be considered as a promising platform for achieving high brain levels of VNP following intranasal administration.
Collapse
Affiliation(s)
- Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nourah Y Assiri
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
18
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
19
|
Utomo E, Domínguez-Robles J, Moreno-Castellanos N, Stewart SA, Picco CJ, Anjani QK, Simón JA, Peñuelas I, Donnelly RF, Larrañeta E. Development of intranasal implantable devices for schizophrenia treatment. Int J Pharm 2022; 624:122061. [PMID: 35908633 DOI: 10.1016/j.ijpharm.2022.122061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
Abstract
In this work the preparation and characterisation of intranasal implants for the delivery of risperidone (RIS) is described. The aim of this work is to develop better therapies to treat chronic conditions affecting the brain such as schizophrenia. This type of systems combines the advantages of intranasal drug delivery with sustained drug release. The resulting implants were prepared using biodegradable materials, including poly(caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). These polymers were combined with water-soluble compounds, such as poly(ethylene glycol) (PEG) 600, PEG 3000, and Tween® 80 using a solvent-casting method. The resulting implants contained RIS loadings ranging between 25 and 50%. The obtained implants were characterised using a range of techniques including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). Moreover, in vitro RIS release was evaluated showing that the addition of water-soluble compounds exhibited significant faster release profiles compared to pristine PCL and PLGA-based implants. Interestingly, PCL-based implants containing 25% of RIS and PLGA-based implants loaded with 50% of RIS showed sustained drug release profiles up to 90 days. The former showed faster release rates over the first 28 days but after this period PLGA implants presented higher release rates. The permeability of RIS released from the implants through a model membrane simulating nasal mucosa was subsequently evaluated showing desirable permeation rate of around 2 mg/day. Finally, following in vitro biocompatibility studies, PCL and PLGA-based implants showed acceptable biocompatibility. These results suggested that the resulting implants displayed potential of providing prolonged drug release for brain-targeting drugs.
Collapse
Affiliation(s)
- Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellanos
- CICTA, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya, No. 43, Makassar 90234, Indonesia
| | - Jon Ander Simón
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
20
|
Waghule T, Saha RN, Alexander A, Singhvi G. Tailoring the multi-functional properties of phospholipids for simple to complex self-assemblies. J Control Release 2022; 349:460-474. [PMID: 35841998 DOI: 10.1016/j.jconrel.2022.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
The unique interfacial properties, huge diversity, and biocompatible nature of phospholipids make them an attractive pharmaceutical excipient. The amphiphilic nature of these molecules offers them the property to self-assemble into distinct structures. The solubility, chemical and structural properties, surface charge, and critical packing parameters of phospholipids play an essential role during formulation design. This review focuses on the relationship between the structural features of a phospholipid molecule and the formation of different lipid-based nanocarrier drug delivery systems. This provides a rationale and guideline for the selection of appropriate phospholipids while designing a drug delivery system. Finally, we refer to relevant recent case studies covering different types of phospholipid-based systems including simple to complex assemblies. Different carriers in the size range of 50 nm to a few microns can be prepared using phospholipids. The carriers can be delivered through oral, intravenous, nasal, dermal, transmucosal, and subcutaneous routes. A wide range of applicability can be achieved by incorporating various hydrophilic and lipophilic additives in the phospholipid bilayer. Advanced research has led to the discovery of phospholipid complexes and cell membrane mimicking lipids. Overall, phospholipids remain a versatile pharmaceutical excipient for drug delivery. They play multiple roles as solubilizer, emulsifier, surfactant, permeation enhancer, coating agent, release modifier, and liposome former.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
21
|
Alghurabi H, Tagami T, Ogawa K, Ozeki T. Preparation, Characterization and In Vitro Evaluation of Eudragit S100-Coated Bile Salt-Containing Liposomes for Oral Colonic Delivery of Budesonide. Polymers (Basel) 2022; 14:2693. [PMID: 35808738 PMCID: PMC9268925 DOI: 10.3390/polym14132693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to prepare a liposomal formulation of a model drug (budesonide) for colonic delivery by incorporating a bile salt (sodium glycocholate, SGC) into liposomes followed by coating with a pH-responsive polymer (Eudragit S100, ES100). The role of the SGC is to protect the liposome from the emulsifying effect of physiological bile salts, while that of ES100 is to protect the liposomes from regions of high acidity and enzymatic activity in the stomach and small intestine. Vesicles containing SGC were prepared by two preparation methods (sonication and extrusion), and then coated by ES100 (ES100-SGC-Lip). ES100-SGC-Lip showed a high entrapment efficiency (>90%) and a narrow size distribution (particle size = 275 nm, polydispersity index < 0.130). The characteristics of liposomes were highly influenced by the concentration of incorporated SGC. The lipid/polymer weight ratio, liposome charge, liposome addition, and mixing rate were critical factors for efficient and uniform coating. In vitro drug release studies in various simulated fluids indicate a pH-dependent dissolution of the coating layer, and the disintegration process of ES100-SGC-Lip was evaluated. In conclusion, the bile salt-containing ES100-coated liposomal formulation has potential for effective oral colonic drug delivery.
Collapse
Affiliation(s)
- Hamid Alghurabi
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (H.A.); (T.T.); (K.O.)
- Department of Pharmaceutics, College of Pharmacy, University of Kerbala, Kerbala 56001, Iraq
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (H.A.); (T.T.); (K.O.)
| | - Koki Ogawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (H.A.); (T.T.); (K.O.)
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (H.A.); (T.T.); (K.O.)
| |
Collapse
|
22
|
Pandian SRK, Vijayakumar KK, Murugesan S, Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer's and Parkinson's diseases. Heliyon 2022; 8:e09575. [PMID: 35706935 PMCID: PMC9189891 DOI: 10.1016/j.heliyon.2022.e09575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
The function of the brain can be affected by various factors that include infection, tumor, and stroke. The major disorders reported with altered brain function are Alzheimer's disease (AD), Parkinson's disease (PD), dementia, brain cancer, seizures, mental disorders, and other movement disorders. The major barrier in treating CNS disease is the blood-brain barrier (BBB), which protects the brain from toxic molecules, and the cerebrospinal fluid (CSF) barrier, which separates blood from CSF. Brain endothelial cells and perivascular elements provide an integrated cellular barrier, the BBB, which hamper the invasion of molecules from the blood to the brain. Even though many drugs are available to treat neurological disorders, it fails to reach the desired site with the required concentration. In this purview, liposomes can carry required concentrations of molecules intracellular by diverse routes such as carrier-mediated transport and receptor-mediated transcytosis. Surface modification of liposomes enables them to deliver drugs to various brain cells, including neurons, astrocytes, oligodendrocytes, and microglia. The research studies supported the role of liposomes in delivering drugs across BBB and in reducing the pathogenesis of AD and PD. The liposomes were surface-functionalized with various molecules to reach the cells intricated with the AD or PD pathogenesis. The targeted and sustained delivery of drugs by liposomes is disturbed due to the antibody formation, renal clearance, accelerated blood clearance, and complement activation-related pseudoallergy (CARPA). Hence, this review will focus on the characteristics, surface functionalization, drug loading, and biodistribution of liposomes respective to AD and PD. In addition, the alternative strategies to overcome immunogenicity are discussed briefly.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| | - Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| |
Collapse
|
23
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
24
|
Yuwanda A, Surini S, Harahap Y, Jufri M. Study of Valproic Acid Liposomes for Delivery into the Brain through an Intranasal Route. Heliyon 2022; 8:e09030. [PMID: 35284670 PMCID: PMC8914119 DOI: 10.1016/j.heliyon.2022.e09030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Intranasal drug transport through the olfactory route to the brain is an effective drug route for increased absorption and bioavailability of the drug. The objective of this study was to increase the penetration of valproic acid as an anticonvulsant into a delivery system comprising liposomes. Valproic acid liposomes were prepared by a thin-layer hydration technique using soybean phosphatidylcholine and cholesterol as the main ingredients. The formulations were evaluated for diameter size, entrapment efficiency (EE), zeta potential, polydispersity index, and morphology. ex vivo permeation using sheep nasal mucosa and in vivo efficacy were assessed by performing a pharmacokinetic study in Wistar albino rats following intranasal administration of the formulations in comparison with pure drug. The mean size particle of optimized liposomes ranged from 90 to 210 nm with a low polydispersity index (<0.5). The EE of optimized liposomes was between 60% and 85%, increasing the concentration of phosphatidylcholine added to the formula. Transmission electron microscopy observations (40,000×) showed that valproic acid liposomes have a spherical molecular shape and a particle size of below 250 nm. The ex vivo and in vivo results showed that liposomal formulations provided enhanced brain exposure. Among the formulations studied, Formula 4 (F4) showed greater uptake of valproic acid into the brain than plasma. The high brain targeting efficiency index for F4 indicated the preferential transport of the drug to the brain. The study demonstrated the successful formulation of surface-modified valproic acid liposomes for nasal delivery with brain targeting potential.
Collapse
|
25
|
Rajput A, Butani S. Donepezil HCl Liposomes: Development, Characterization, Cytotoxicity, and Pharmacokinetic Study. AAPS PharmSciTech 2022; 23:74. [PMID: 35149912 DOI: 10.1208/s12249-022-02209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/04/2022] [Indexed: 01/24/2023] Open
Abstract
The current research work aims to study the pharmacokinetic and nasal ciliotoxicity of donepezil liposome-based in situ gel to treat Alzheimer's disease. The physicochemical properties and first-pass metabolism of donepezil HCl result in low concentrations reaching the brain post oral administration. To overcome this problem, donepezil HCl-loaded liposomes were formulated using the ethanol injection method. The donepezil HCl-loaded liposomes were spherical with a size of 103 ± 6.2 nm, polydispersity index of 0.108 ± 0.008, and entrapment efficiency of 93 ± 5.33 %. The optimized in situ gel with donepezil HCl-loaded liposomes showed 80.11 ± 7.77 % drug permeation than donepezil HCl solution-based in situ gel (13.12 ± 4.84 %) across sheep nasal mucosa. The nasal ciliotoxicity study indicated the safety of developed formulation for administration via nasal route. The pharmacokinetics and biodistribution study of developed formulation showed higher drug concentration (1239.61 ± 123.60 pg/g) in the brain after nasal administration indicating its better potential via the nasal pathway. To treat Alzheimer's disease, the administration of liposome-based in situ gel through the nasal pathway can therefore be considered as an effective and promising mode of drug delivery.
Collapse
|
26
|
Alhakamy NA, Fahmy UA, Eldin SMB, Ahmed OAA, Aldawsari HM, Okbazghi SZ, Alfaleh MA, Abdulaal WH, Alamoudi AJ, Mady FM. Scorpion Venom-Functionalized Quercetin Phytosomes for Breast Cancer Management: In Vitro Response Surface Optimization and Anticancer Activity against MCF-7 Cells. Polymers (Basel) 2021; 14:93. [PMID: 35012116 PMCID: PMC8747200 DOI: 10.3390/polym14010093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a dangerous type of cancer in women. Quercetin (QRT), a naturally occurring flavonoid, has wide biological effects including antioxidant, anticarcinogenic, anti-inflammatory, antiallergic, and antiviral activities. The anticancer activity is considered the most valuable effect of QRT against several types of cancer, including prostate, liver, lung, colon, and breast cancer. Scorpion venom peptides (SV) has been found to induce apoptosis and aggravate cancer cells, making it a promising anticancer agent. QRT, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess QRT's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human breast cancer cells MCF-7. Several nanovesicles were prepared and optimized, using four-factor Box-Behnken, in an experimental design. The optimized phytosomes showed vesicle size and zeta potential values of 116.9 nm and 31.5 mV, respectively. The IC50 values revealed that MCF-7 cells were significantly more sensitive to the optimized QRT formula than the plain formula and raw QRT. Cell cycle analysis revealed that optimized QRT formula treatment resulted in significant cell cycle arrest at the S phase. The results also indicated that treatment with QRT formula significantly increased caspase-9, Bax, Bcl-2, and p53 mRNA expression, compared with the plain formula and QRT. In terms of the inflammatory markers, the QRT formula significantly reduced the activity of TNF-α and NF-κB, in comparison with the plain formula and QRT only. Overall, the findings from the study proved that a QRT formulation could be a promising therapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.E.); (O.A.A.A.); (H.M.A.); (M.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.E.); (O.A.A.A.); (H.M.A.); (M.A.A.)
| | - Shaimaa M. Badr Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.E.); (O.A.A.A.); (H.M.A.); (M.A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.E.); (O.A.A.A.); (H.M.A.); (M.A.A.)
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.E.); (O.A.A.A.); (H.M.A.); (M.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Solomon Z. Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, CT 06510, USA;
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.E.); (O.A.A.A.); (H.M.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fatma M. Mady
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| |
Collapse
|
27
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
28
|
Nano-ivabradine averts behavioral anomalies in Huntington's disease rat model via modulating Rhes/m-tor pathway. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110368. [PMID: 34087391 DOI: 10.1016/j.pnpbp.2021.110368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 01/24/2023]
Abstract
Huntington's disease (HD) is characterized by abnormal involuntary movements together with cognitive impairment and disrupted mood changes. 3-nitropropionic acid (3-NP) is one of the chemo-toxic models used to address the striatal neurotoxicity pattern encountered in HD. This study aims to explain the neuroprotective effect of nano-formulated ivabradine (nano IVA) in enhancing behavioral changes related to 3-NP model and to identify the involvement of ras homolog enriched striatum (Rhes)/mammalian target of rapamycin (m-Tor) mediated autophagy pathway. Rats were divided into 6 groups, the first 3 groups received saline (control), ivabradine (IVA), nano IVA respectively, the fourth received a daily dose of 3-NP (20 mg/kg, s.c) for 2 weeks, the fifth received 3-NP + IVA (1 mg/kg, into the tail vein, every other day for 1 week) and the last group received 3-NP + nano IVA (1 mg/kg, i.v, every other day for 1 week). Interestingly, nano IVA reversed motor disabilities, improved memory function and overcame the psychiatric changes. It boosted expression of autophagy markers combined with down regulation of Rhes, m-Tor and b-cell lymphoma 2 protein levels. Also, it restored the normal level of neurotransmitters and myocardial function related-proteins. Histopathological examination revealed a preserved striatal structure with decreased number of darkly-degenerated neurons. In conclusion, the outcomes of this study provide a well-recognized clue for the promising neuroprotective effect of IVA and the implication of autophagy and Rhes/m-Tor pathways in the 3-NP induced HD and highlight the fact that nano formulations of IVA would be an auspicious approach in HD therapy.
Collapse
|
29
|
Asfour HZ, Fahmy UA, Alharbi WS, Almehmady AM, Alamoudi AJ, Tima S, Mansouri RA, Omar UM, Ahmed OAA, Zakai SA, Aldarmahi AA, Bagalagel A, Diri R, Alhakamy NA. Phyto-Phospholipid Conjugated Scorpion Venom Nanovesicles as Promising Carrier That Improves Efficacy of Thymoquinone against Adenocarcinoma Human Alveolar Basal Epithelial Cells. Pharmaceutics 2021; 13:2144. [PMID: 34959424 PMCID: PMC8709205 DOI: 10.3390/pharmaceutics13122144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess THQ's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadi A. Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Ahmed A. Aldarmahi
- College of Sciences and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
31
|
Tripathi S, Gupta U, Ujjwal RR, Yadav AK. Nano-lipidic formulation and therapeutic strategies for Alzheimer's disease via intranasal route. J Microencapsul 2021; 38:572-593. [PMID: 34591731 DOI: 10.1080/02652048.2021.1986585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The inability of drug molecules to cross the 'Blood-Brain Barrier' restrict the effective treatment of Alzheimer's disease. Lipid nanocarriers have proven to be a novel paradigm in brain targeting of bioactive by facilitating suitable therapeutic concentrations to be attained in the brain. METHODS The relevant information regarding the title of this review article was collected from the peer-reviewed published articles. Also, the physicochemical properties, and their in vitro and in vivo evaluations were presented in this review article. RESULTS Administration of lipid-based nano-carriers have abilities to target the brain, improve the pharmacokinetic and pharmacodynamics properties of drugs, and mitigate the side effects of encapsulated therapeutic active agents. CONCLUSION Unlike oral and other routes, the Intranasal route promises high bioavailability, low first-pass effect, better pharmacokinetic properties, bypass of the systemic circulation, fewer incidences of unwanted side effects, and direct delivery of anti-AD drugs to the brain via circumventing 'Blood-Brain Barrier'.
Collapse
Affiliation(s)
- Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| |
Collapse
|
32
|
Applications of innovative technologies to the delivery of antipsychotics. Drug Discov Today 2021; 27:401-421. [PMID: 34601123 DOI: 10.1016/j.drudis.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Psychosis is a high-incidence pathology associated with a profound alteration in the perception of reality. The limitations of drugs available on the market have stimulated the search for alternative solutions to achieve effective antipsychotic therapies. In this review, we evaluate innovative formulations of antipsychotic drugs developed through the application of modern pharmaceutical technologies, including classes of micro and nanocarriers, such as lipid formulations, polymeric nanoparticles (NPs), solid dispersions, and cyclodextrins (CDs). We also consider alternative routes of administration to the oral and parenteral ones currently used. Improved solubility, stability of preparations, and pharmacokinetic (PK) and pharmacodynamic (PD) parameters confirm the potential of these new formulations in the treatment of psychotic disorders.
Collapse
|
33
|
Waghule T, Narayan Saha R, Singhvi G. UV spectroscopic method for estimation of temozolomide: Application in stability studies in simulated plasma pH, degradation rate kinetics, formulation design, and selection of dissolution media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119848. [PMID: 33933945 DOI: 10.1016/j.saa.2021.119848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Temozolomide (TMZ) is a broad spectrum alkylating agent found effective in the treatment of glioblastoma multiforme, refractory anaplastic astrocytoma, and metastatic melanoma. The major drawback associated with TMZ is pH-dependent stability and short half-life. At physiological pH, it undergoes conversion to MTIC (methyltriazine imidazole carboxamide) and AIC (amino imidazole carboxamide), resulting in only 20-30% brain bioavailability. There is a need for an analytical method for the estimation of TMZ in stability samples and nanoformulations. In this research study, analytical methods were developed for the estimation of TMZ using two media pH 1.2 (0.1 N HCl) and pH 4.5 acetate buffer, which were validated for linearity, range, precision, accuracy, limit of detection, limit of quantification, and specificity as per ICH guidelines. The % RSD was found to be <2% indicating the reliability of the method. Further, the application of the developed methods was explored. The stability of TMZ in three pH conditions (1.2, 4.5, and 7.4) and the respective degradation rate kinetics was studied. Conversion of TMZ was found to follow first order kinetics with the conversion rate of 0.0011, 0.0011, and 0.0453 h-1 in pH 1.2, 4.5, and 7.4 respectively. The developed methods accurately estimated the TMZ concentration in lipid nanoformulation (liposomes) indicated by ~100% recovery. Acetate buffer (pH 4.5) was found to be an appropriate dissolution media for TMZ loaded lipid nanoformulations. The developed methods were found to be suitable for routine analysis, for the determination of drug stability and estimation of temozolomide in lipid nanoformulations.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India; Birla Institute of Technology and Science, Pilani, Dubai Campus, United Arab Emirates
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
34
|
Progress in nasal drug delivery systems. Int J Pharm 2021; 607:120994. [PMID: 34390810 DOI: 10.1016/j.ijpharm.2021.120994] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/02/2023]
Abstract
Most of the available drugs are usually administered orally (e.g. in tablets or capsules) or by parenteral injection in the case of substances being destroyed in the gastric environment or not being absorbed. However, this bears disadvantages as many people have trouble swallowing tablets and parenteral injection requires trained personnel and/or a reasonably sterile environment to minimize the possibility of contamination. Thus, as an easy to use alternative nasal drug delivery was developed. Drug delivery systems are used to achieve a reproducible high drug concentration. These systems overcome various disadvantages leading to stabilization of the drug, advanced drug transport, improvement of the physicochemical properties of the drug like water solubility, and increase of drug uptake and bioavailability. In addition, properties such as bad taste or smell of the drug are masked. Nasal drug delivery systems are suitable for use both locally and systemically. In the last five years, the development and progression of nasal drug delivery systems has gained importance due to their numerous advantages. This work gives an overview of the basics, such as structure and function of the nose, as well as a short introduction to local and systemic application of drugs. Furthermore, selected drug delivery systems are explained with examples of active ingredients, as well as additional possibilities to increase nasal drug uptake and factors influencing the absorption.
Collapse
|
35
|
Hassan TH, Salman SS, Elkhoudary MM, Gad S. Refinement of Simvastatin and Nifedipine combined delivery through multivariate conceptualization and optimization of the nanostructured lipid carriers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Antimisiaris S, Marazioti A, Kannavou M, Natsaridis E, Gkartziou F, Kogkos G, Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174:53-86. [PMID: 33539852 DOI: 10.1016/j.addr.2021.01.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Localized or topical administration of drugs may be considered as a potential approach for overcoming the problems caused by the various biological barriers encountered in drug delivery. The combination of using localized administration routes and delivering drugs in nanoparticulate formulations, such as liposomes, may have additional advantages. Such advantages include prolonged retention of high drug loads at the site of action and controlled release of the drug, ensuring prolonged therapeutic effect; decreased potential for side-effects and toxicity (due to the high topical concentrations of drugs); and increased protection of drugs from possible harsh environments at the site of action. The use of targeted liposomal formulations may further potentiate any acquired therapeutic advantages. In this review we present the most advanced cases of localized delivery of liposomal formulations of drugs, which have been investigated pre-clinically and clinically in the last ten years, together with the reported therapeutic advantages, in each case.
Collapse
|
37
|
Aldawsari HM, Ahmed OAA, Alhakamy NA, Neamatallah T, Fahmy UA, Badr-Eldin SM. Lipidic Nano-Sized Emulsomes Potentiates the Cytotoxic and Apoptotic Effects of Raloxifene Hydrochloride in MCF-7 Human Breast Cancer Cells: Factorial Analysis and In Vitro Anti-Tumor Activity Assessment. Pharmaceutics 2021; 13:783. [PMID: 34073780 PMCID: PMC8225169 DOI: 10.3390/pharmaceutics13060783] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Raloxifene hydrochloride (RLX), an antiosteoporotic agent, has been utilized for guarding against breast cancer and recently, for the disease management owing to its estrogen antagonist activity. Nevertheless, RLX exhibits poor bioavailability that could be attributed to reduced water solubility and first pass metabolism. To overcome these challenges, this study aimed at formulating and optimizing RLX emulsomes (RLX-EMLs) to enhance the drug antitumor activity. A 4131 factorial design was employed for assessing the effect of lipoid: solid lipid ratio and solid lipid type on the emulsomes characteristics. The anticancer potential of the optimized formulation and apoptotic parameters were assessed. Vesicle size, entrapment, and release efficiency were significantly influenced by both variables, while zeta potential was influenced by lipoid: solid lipid at p < 0.05. The optimal formulation exhibited vesicle size of 236 ± 8.6 nm, zeta potential of -18.6 ± 0.7 mV, drug entrapment of 98.9 ± 4.9%, and release efficiency of 42.7 ± 1.8%. MTT assay showed concentration-dependent inhibition of MCF-7 cells viability. In addition, cells treated with RLX-EMLs showed significant arrest at G2/M phase associated with significant increase in apoptotic and necrotic cells. The enhanced cytotoxic and anti-proliferative effect of RLX-EMLs relative to raw drug was authenticated through increased Bax/Bcl-2 ratio, caspase-9 activation and depletion of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (O.A.A.A.); (N.A.A.); (S.M.B.-E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (O.A.A.A.); (N.A.A.); (S.M.B.-E.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (O.A.A.A.); (N.A.A.); (S.M.B.-E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (O.A.A.A.); (N.A.A.); (S.M.B.-E.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (O.A.A.A.); (N.A.A.); (S.M.B.-E.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
38
|
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Shukr MH, Farid OAA. Brain targeting of agomelatine egg lecithin based chitosan coated nanoemulsion. Pharm Dev Technol 2021; 26:464-475. [PMID: 33586593 DOI: 10.1080/10837450.2021.1888980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intranasal drug delivery system has been proposed as an alternative delivery system to target agomelatine (AGO) to the brain and improving its bioavailability. Mucoadhesive egg lecithin nanoemulsions were optimized using D-optimal design and by investigating the effect of four independent variables: oil concentration (A), chitosan concentration (B), type of oil (C) and egg lecithin: oil (D). The responses of globule size, polydispersity index, zeta potential and drug content were evaluated. The optimized agomelatine mucoadhesive nanoemulsion (AGO MNE) with a desirability value of 0.856 was subjected to further investigations for mucoadhesion, in vitro diffusion, transmission electron microscopy and in vivo biodistribution. It showed significantly successful distribution to the brain, the optimized AGO MNE intranasal gave a brain targeting efficiency (BTE) of 278.71% indicating increased drug brain targeting by the nasal route compared with the intravenous route. Additionally, the optimized AGO MNE by intranasal had a direct transport percentage (DTP) of 64.109%, which indicates a significant contribution of the direct nose-to-brain pathway in the brain drug delivery. The study proposed egg lecithin mucoadhesive nanoemulsion as a successful and promising strategy to directly and efficiently deliver drug to the brain.
Collapse
Affiliation(s)
- Marwa Hassan Shukr
- Department of Pharmaceutics, Egyptian Drug Authority Formerly Known As National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar A Ahmed Farid
- Department of Physiology, Egyptian Drug Authority Formerly Known As National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
40
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
41
|
Bülbül EÖ, Karantas ID, Okur ME, Siafaka PI, Okur NÜ. Schizophrenia; A Review on Promising Drug Delivery Systems. Curr Pharm Des 2020; 26:3871-3883. [DOI: 10.2174/1381612826666200523173102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
Background:
Schizophrenia belongs to mental illnesses affecting 1% of the worldwide population. Its
therapy is still unmet; thus, researchers aimed to develop new pharmacological molecules which can improve its
management.
Methods:
Moreover, the current typical and atypical antipsychotics should be formulated in more efficacious
systems that can deliver the drug in the brain with as few side effects as possible. Further, the development of
long-acting efficient drug delivery systems could be significant in minimizing frequent dosing which is nonpreferred
to schizophrenics.
Results:
Herein, authors focused on current developments of antipsychotic medications used in schizophrenia
management. Various studies, which include the use of first and second-generation antipsychotics, were analyzed
according to their efficacy. In fact, in this review, oral, injectable, transdermal and intranasal formulations entrapped
antipsychotics are presented to be valuable guidance for scientists to formulate more effective drug delivery
systems for schizophrenic patients.
Conclusions:
This review aimed to assist researchers working on schizophrenia management by summarizing
current medications and newly synthesized drug delivery systems recently found in the literature.
Collapse
Affiliation(s)
- Ece Ö. Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki, Greece
| | - Mehmet E. Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Ü. Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
42
|
Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102222. [DOI: 10.1016/j.nano.2020.102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
43
|
Burilova EA, Pashirova TN, Zueva IV, Gibadullina EM, Lushchekina SV, Sapunova AS, Kayumova RM, Rogov AM, Evtjugin VG, Sudakov IA, Vyshtakalyuk AB, Voloshina AD, Bukharov SV, Burilov AR, Petrov KA, Zakharova LY, Sinyashin OG. Bi-functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer's disease via an intranasal route. NANOSCALE 2020; 12:13757-13770. [PMID: 32573587 DOI: 10.1039/d0nr04037a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length. The compound SHP-2-16 showed the best IC50 for human AChE and the highest selectivity, being 30-fold more potent than for human BChE. Molecular modeling of SHP-2-16 binding to human AChE suggests that this compound is a dual binding site inhibitor that interacts with both the peripheral anionic site and catalytic active site. The relationship between self-assembly parameters (CMC, solubilization capacity, aggregation number), antioxidant activity and a toxicological parameter (hemolytic action on human red blood cells) was investigated. Two sterically hindered phenols (SHP-2-Bn and SHP-2-R) were loaded into L-α-phosphatidylcholine (PC) nanoparticles by varying the SHP alkyl chain length. For the brain AChE inhibition assay, PC/SHP-2-Bn/SHP-2-16 nanoparticles were administered to rats intranasally at a dose of 8 mg kg-1. The Morris water maze experiment showed that scopolamine-induced AD-like dementia in rats treated with PC/SHP-2-Bn/SHP-2-16 nanoparticles was significantly reduced. This is the first example of cationic SHP-phospholipid nanoparticles for inhibition of brain cholinesterases realized by the use of intranasal administration. This route has promising potential for the treatment of AD.
Collapse
Affiliation(s)
- Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res Bull 2020; 160:121-140. [PMID: 32315731 DOI: 10.1016/j.brainresbull.2020.03.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Barriers are the hallmark of a healthy physiology, blood-brain barrier (BBB) being a tough nut to crack for most of the antigens and chemical substances. The presence of tight junctions plays a remarkable role in defending the brain from antigenic and pathogenic attacks. BBB constitutes a diverse assemblage of multiple physical and chemical barriers that judiciously restrict the flux of blood solutes into and out of the brain. Restrictions through the paracellular pathway and the tight junctions between intercellular clefts, together create well regulated metabolic and transport barricades, critical to brain pathophysiology. The brain being impermeable to many essential metabolites and nutrients regulates transportation via specialized transport systems across the endothelial abluminal and luminal membranes. The epithelial cells enveloping capillaries of the choroid plexus regulates the transport of complement, growth factors, hormones, microelements, peptides and trace elements into ventricles. Nerve terminals, microglia, and pericytes associated with the endothelium support barrier induction and function, ensuring an optimally stable ionic microenvironment that facilitates neurotransmission, orchestrated by multiple ion channels (Na+, K+ Mg2+, Ca2+) and transporters. Brain pathology which can develop due to genetic mutations or secondary to other cerebrovascular, neurodegenerative diseases can cause aberration in the microvasculature of CNS which is the uniqueness of BBB. This can also alter BBB permeation and result in BBB breakdown and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The concluding section outlines contemporary trends in drug discovery, focusing on molecular determinants of BBB permeation and novel drug-delivery systems, such as dendrimers, liposomes, nanoparticles, nanogels, etc.
Collapse
|
45
|
Bakr MM, Shukr MH, ElMeshad AN. In Situ Hexosomal Gel as a Promising Tool to Ameliorate the Transnasal Brain Delivery of Vinpocetine: Central Composite Optimization and In Vivo Biodistribution. J Pharm Sci 2020; 109:2213-2223. [PMID: 32259532 DOI: 10.1016/j.xphs.2020.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Vascular dementia is a condition characterized by a wretched cerebral circulation which can lead to memory loss. Vinpocetine showed ability to promote the cerebral circulation and depict neuroprotective impacts. However, it suffers from poor bioavailability and requires frequent daily dosing which is not suitable for dementia patients. In our study, these limitations were overcome by the prolonged direct delivery of vinpocetine to the brain utilizing an intranasal in situ hexosomal gel. A central composite design was utilized and the optimum dispersion (consisting of 15% w/w of oleic acid and 5% w/w of pluronic F127) was loaded in an in situ gel system using gellan gum with 1% w/v. The optimized Formulae achieved a controlled drug release over 24 h and the pharmacokinetic data revealed that the Cmax and AUC0-24 in the rats' brain after the intranasal application of the dispersion and in situ gel were significantly higher relative to the vinpocetine solution applied intravenously at the same dose. The potential of both formulae to deliver vinpocetine to the brain directly through the intranasal route was confirmed by the high BTE% of 370.97% and 480.70% and the high DTP% of 73.04% and 79.19% for the dispersion and in situ gel, respectively.
Collapse
Affiliation(s)
- Mohamed Mofreh Bakr
- Department of Pharmaceutics, National Organization for Drug Control and Research, Giza, 12654, Egypt
| | - Marwa Hassan Shukr
- Department of Pharmaceutics, National Organization for Drug Control and Research, Giza, 12654, Egypt
| | - Aliaa Nabil ElMeshad
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
46
|
Touitou E, Duchi S, Natsheh H. A new nanovesicular system for nasal drug administration. Int J Pharm 2020; 580:119243. [PMID: 32209370 DOI: 10.1016/j.ijpharm.2020.119243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
The goal of this work was to study the characteristics of a new phospholipid nanovesicular carrier for nasal administration of drugs. Multilamellar vesicles were visualized by electron microscopy, and their mean distribution size of 200 nm was evaluated by DLS. Measured pH and viscosity values were found adequate for a nasal delivery carrier. CLS micrographs of the nasal mucosa of rats following administration of the carrier incorporating probes with various properties show delivery into the nasal mucosa layers. Tramadol containing systems were characterized and tested for their analgesic effect in two pain animal models. In mice, a significantly higher antinociceptive effect and a rapid onset of action were obtained as compared to other nasal delivery carriers and to oral treatment. This enhanced analgesic effect was further confirmed in rat pain model and sustained by drug plasma and brain levels. To test the systems behavior in a larger animal, a pharmacokinetic crossover study was carried out in sheep after administrating Tramadol nasally in the nanocarrier and IV. The plasma and CSF absolute bioavailability values were 1.09 and 0.87, respectively. HPLC and LC-MS/MS methods for quantification of Tramadol in plasma, brain and CSF were developed and are presented here. It is noteworthy that no pathological alterations or inflammation signs were observed in rat nasal mucosa following sub-chronic treatment. The results obtained in this work encourage further investigation of using the new carrier for nasal delivery of drugs in humans.
Collapse
Affiliation(s)
- Elka Touitou
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, P.O.Box 12065, Jerusalem 9112102, Israel.
| | - Shaher Duchi
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, P.O.Box 12065, Jerusalem 9112102, Israel
| | - Hiba Natsheh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, P.O.Box 12065, Jerusalem 9112102, Israel
| |
Collapse
|
47
|
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020; 277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour-Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niayesh Shakeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC Cancer Center, Rotterdam, the Netherlands.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Investigation of the Absorption of Nanosized lamotrigine Containing Nasal Powder via the Nasal Cavity. Molecules 2020; 25:molecules25051065. [PMID: 32120992 PMCID: PMC7179229 DOI: 10.3390/molecules25051065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nasal drug delivery has become a popular research field in the last years. This is not surprising since the nose possesses unique anatomical and physical properties. Via the nasal mucosa local, systemic, and directly central nerve systemic (CNS) effect is achievable. Powders have favorable physicochemical properties over liquid formulations. Lamotrigine (LAM) is an antiepileptic agent with a relatively mild side effect spectrum, but only available in tablet form on market. Reducing the particle size to the nano range can affect the bioavailability of pharmaceutical products. The aim of this article was to continue the work started, compare the in vitro properties of a nanonized lamotrigine containing nasal powder (nanoLAMpowder) and its physical mixture (PM) that were prepared by dry milling. Moreover, to study their trans-epithelial absorption to reach the blood and target the brain by axonal transport. Due to the dry milling technique, the particle size of LAM, their surface and also their structure changed that led to higher in vitro dissolution and permeability rate. The results of the in vivo tests showed that the axonal transport of the drug was assumable by both intranasal formulations because the drug was present in the brain within a really short time, but the LAM from the nanoLAMpowder liberated even faster.
Collapse
|
49
|
Chen F, Liu H, Wang B, Yang L, Cai W, Jiao Z, Yang Z, Chen Y, Quan Y, Xiang X, Wang H. Physiologically Based Pharmacokinetic Modeling to Understand the Absorption of Risperidone Orodispersible Film. Front Pharmacol 2020; 10:1692. [PMID: 32116683 PMCID: PMC7008171 DOI: 10.3389/fphar.2019.01692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/26/2019] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of the present study was to investigate the absorption routes as well as the potential application of the oral transmucosal delivery of risperidone orodispersible film (ODF) using physiologically based pharmacokinetic modeling. Methods The pharmacokinetic study after intragastric (i.g.), supralingual, and sublingual administration of risperidone ODF was conducted in Beagle dogs. Then a mechanic absorption model which combined Oral Cavity Compartment Absorption and Transit (OCCAT) model with Advanced Compartment Absorption and Transit (ACAT) model for predicting the absorption routes of risperidone ODF in vivo was constructed using GastroPlus™. A sensitivity analysis was performed to investigate the impact of oral residence time on the in vivo absorption of risperidone ODF. Based on the fraction of intraoral absorption, the potential of the oral transmucosal delivery of risperidone were predicted. Results There were no statistical differences in the AUC0-t (P = 0.4327), AUC0-∞ (P = 0.3278), Cmax (P = 0.0531), and Tmax (P = 0.2775) values among i.g., supralingual, and sublingual administration of risperidone ODF in Beagle dogs. The predicted absorption percentage via oral mucosa at oral residence time of 2 min, 5 min, and 10 min was 7.0%, 11.4%, and 19.5%, respectively. No obvious difference was observed for the bioavailability of risperidone ODF within 10 min of oral residence time. The PBPK absorption model for risperidone could be simplified to include ACAT model solely. Conclusion The main absorption route for risperidone ODF was the gastrointestine. The absorption percentage via oral mucosa was almost negligible due to the physicochemical properties of risperidone although ODF dissolved completely in the oral cavity of Beagle dogs within 2 min.
Collapse
Affiliation(s)
- Fang Chen
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Hongrui Liu
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Bing Wang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Liuliu Yang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Zheng Jiao
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yusheng Chen
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yingjun Quan
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
50
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Teixeira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - C M Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P C Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|