1
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
2
|
Li N, Hao L, Li S, Deng J, Yu F, Zhang J, Nie A, Hu X. The NRF-2/HO-1 Signaling Pathway: A Promising Therapeutic Target for Metabolic Dysfunction-Associated Steatotic Liver Disease. J Inflamm Res 2024; 17:8061-8083. [PMID: 39512865 PMCID: PMC11542495 DOI: 10.2147/jir.s490418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder with a rising prevalence. It begins with lipid accumulation in hepatocytes and gradually progresses to Metabolic-associated steatohepatitis (MASH), fibrosis, cirrhosis, and potentially hepatocellular carcinoma (HCC). The pathophysiology of MASLD is complex and involves multiple factors, with oxidative stress playing a crucial role. Oxidative stress drives the progression of MASLD by causing cellular damage, inflammatory responses, and fibrosis, making it a key pathogenic mechanism. The Nuclear Factor Erythroid 2-Related Factor 2 / Heme Oxygenase-1 (Nrf2/HO-1) signaling axis provides robust multi-organ protection against a spectrum of endogenous and exogenous insults, particularly oxidative stress. It plays a pivotal role in mediating antioxidant, anti-inflammatory, and anti-apoptotic responses. Many studies indicate that activating the Nrf2/HO-1 signaling pathway can significantly mitigate the progression of MASLD. This article examines the role of the Nrf2/HO-1 signaling pathway in MASLD and highlights natural compounds that protect against MASLD by targeting Nrf2/HO-1 activation. The findings indicate that the Nrf2/HO-1 signaling pathway holds great promise as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Aiyu Nie
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
4
|
Zhang YF, Qiao W, Zhuang J, Feng H, Zhang Z, Zhang Y. Association of ultra-processed food intake with severe non-alcoholic fatty liver disease: a prospective study of 143073 UK Biobank participants. J Nutr Health Aging 2024; 28:100352. [PMID: 39340900 DOI: 10.1016/j.jnha.2024.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Previous studies indicate a link between non-alcoholic fatty liver disease (NAFLD) and unhealthy dietary patterns or nutrient intake. However, it remains unclear whether ultra-processed foods (UPF) contribute to an increased risk of NAFLD. This study aimed to explore how ultra-processed food consumption correlates with severe NAFLD using the UK Biobank data. METHODS This prospective cohort study included 143,073 participants from the UK Biobank. UPF consumption levels were determined using the NOVA classification and quantified from 24-h dietary recall data. The association between UPF consumption and severe NAFLD (hospitalization or death) was initially examined using Cox proportional hazards models with intake quartiles. Nonlinear associations were investigated using penalized cubic splines fitted in the Cox proportional hazards models. Adjustments were made for general characteristics, sociodemographic factors, body mass index (BMI), and lifestyle. RESULTS Throughout the median follow-up period of 10.5 years, 1,445 participants developed severe NAFLD. The adjusted models indicated a significant increase in severe NAFLD risk in higher UPF intake groups compared to the lowest quartile (HR: 1.26 [95% CI: 1.11-1.43]). Subgroup analysis revealed that individuals with a BMI of 25 or higher were at greater risk in the highest quartile of UPF consumption. Sensitivity analyses yielded results consistent with these findings. CONCLUSION Higher consumption of UPF is associated with an increased risk of severe NAFLD. Reducing the intake of UPF can be a potential approach to lower the risk of NAFLD.
Collapse
Affiliation(s)
- Yi-Feng Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanning Qiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinhong Zhuang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hanxiao Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhilan Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Savari F, Mard SA. Nonalcoholic steatohepatitis: A comprehensive updated review of risk factors, symptoms, and treatment. Heliyon 2024; 10:e28468. [PMID: 38689985 PMCID: PMC11059522 DOI: 10.1016/j.heliyon.2024.e28468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a subtype of nonalcoholic fatty liver disease and a progressive and chronic liver disorder with a significant risk for the development of liver-related morbidity and mortality. The complex and multifaceted pathophysiology of NASH makes its management challenging. Early identification of symptoms and management of patients through lifestyle modification is essential to prevent the development of advanced liver disease. Despite the increasing prevalence of NASH, there is no FDA-approved treatment for this disease. Currently, medications targeting metabolic disease risk factors and some antifibrotic medications are used for NASH patients but are not sufficiently effective. The beneficial effects of different drugs and phytochemicals represent new avenues for the development of safer and more effective treatments for NASH. In this review, different risk factors, clinical symptoms, diagnostic methods of NASH, and current treatment strategies for the management of patients with NASH are reviewed.
Collapse
Affiliation(s)
- Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Seyed Ali Mard
- Clinical Sciences Research Institute, Alimentary Tract Research Center, Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Jin D, Jin S, Zhou T, Cui Z, Guo B, Li G, Zhang C. Regional variation in NAFLD prevalence and risk factors among people living with HIV in Europe: a meta-analysis. Front Public Health 2024; 11:1295165. [PMID: 38259755 PMCID: PMC10802187 DOI: 10.3389/fpubh.2023.1295165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Background and Aim Europe faces an elevated risk of nonalcoholic fatty liver disease (NAFLD) among people living with HIV (PLWH), contributing to the region's highest global burden of NAFLD. However, the prevalence of NAFLD across various European countries and regions remains unclear. This study aims to investigate the prevalence and risk factors associated with NAFLD among PLWH across European countries. Methods A systematic search was conducted across four databases: PubMed, Embase, Web of Science, and Cochrane Library. Data on the prevalence of NAFLD, nonalcoholic steatohepatitis (NASH), and fibrosis, as well as the associated risk factors, were collected among PLWH in Europe. Results Thirty-six studies from 13 European nations were included. The prevalence of NAFLD, NASH, and fibrosis were 42% (95%CI 37-48), 35% (95%CI 21-50) and 13% (95%CI 10-15), respectively. Male gender, BMI, waist circumference, Diabetes, hypertension, metabolic syndrome, dyslipidemia, triglycerides, HDL, LDL, ALT, AST, and years on antiretroviral therapy (ART) were found to be risk factors for NAFLD. High BMI and triglycerides were associated with NASH. Patients with high BMI and triglycerides are at increased risk of significant liver fibrosis. Conclusion The high prevalence of NAFLD, NASH, and fibrosis among PLWH in Europe highlights the need for early screening, intervention, and increased research focus on adolescents living with HIV. Furthermore, the significant variations observed between countries and regions underscore the influence of related risk factors.
Collapse
Affiliation(s)
- Dachuan Jin
- Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Shunqin Jin
- Department of Radiology, Hebei Medical University, Shijiazhuang, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Zhongfeng Cui
- Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Baoqiang Guo
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Guangming Li
- Department of Liver Disease, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Chunming Zhang
- Department of General Surgery, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
8
|
Rodrigues Albuquerque E, Ratti da Silva G, de Abreu Braga F, Pelegrini Silva E, Sposito Negrini K, Rodrigues Fracasso JA, Pires Guarnier L, Jacomassi E, Ribeiro-Paes JT, da Silva Gomes R, Gasparotto Junior A, Lívero FADR. Bridging the Gap: Exploring the Preclinical Potential of Pereskia grandifolia in Metabolic-Associated Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8840427. [PMID: 38026733 PMCID: PMC10653969 DOI: 10.1155/2023/8840427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a complex condition characterized by steatosis and metabolic disturbances. Risk factors such as diabetes, cigarette smoking, and dyslipidaemia contribute to its development and progression. Effective and safe therapies for MAFLD are urgently needed. Pereskia grandifolia has shown potential as an alternative treatment, but its effectiveness against liver disease remains unexplored. This research aims to determine the hepatoprotective properties of P. grandifolia using a model of MAFLD. The study was carried out through various phases to assess the safety and efficacy of the ethanol-soluble fraction of P. grandifolia. Initially, an in vitro assay was performed to assess cell viability. This was followed by an acute toxicity test conducted in rats to determine the safety profile of the extract. Subsequently, the anti-inflammatory properties of P. grandifolia were examined in macrophages. For the MAFLD study, diabetic Wistar rats were made diabetic and exposed to a high fat diet and cigarette smoke, for 4 weeks. During the last 2 weeks, the rats were orally given either the vehicle (negative control group; C-), P. grandifolia (30, 100, and 300 mg/kg), or insulin in addition to simvastatin. A basal group of rats not exposed to these risk factors was also assessed. Blood samples were collected to measure cholesterol, triglycerides, glucose, ALT, and AST levels. Liver was assessed for lipid and oxidative markers, and liver histopathology was examined. P. grandifolia showed no signs of toxicity. It demonstrated anti-inflammatory effects by inhibiting phagocytosis and macrophage spreading. The MAFLD model induced liver abnormalities, including increased AST, ALT, disrupted lipid profile, oxidative stress, and significant hepatic damage. However, P. grandifolia effectively reversed these changes, highlighting its potential as a therapeutic agent. These findings emphasize the significance of P. grandifolia in mitigating hepatic consequences associated with various risk factors.
Collapse
Affiliation(s)
- Edilson Rodrigues Albuquerque
- Laboratory of Preclinical Research of Natural Products, Post Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Post Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Fernanda de Abreu Braga
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Ester Pelegrini Silva
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Karina Sposito Negrini
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | | | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Post Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | | | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Francislaine Aparecida dos Reis Lívero
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
- Laboratory of Cardiometabolic Pharmacology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
9
|
Zhu N, Song Y, Zhang C, Wang K, Han J. Association between the peripheral neutrophil-to-lymphocyte ratio and metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes. Front Med (Lausanne) 2023; 10:1294425. [PMID: 38020132 PMCID: PMC10657835 DOI: 10.3389/fmed.2023.1294425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes frequently co-occur, imposing a tremendous medical burden. A convenient and effective MASLD indicator will be beneficial to the early diagnosis of disease. In the clinical laboratory, the neutrophil-to-lymphocyte ratio (NLR) is a readily accessible hematological marker. This study designed to determine the relation between the NLR and MASLD in type 2 diabetes patients. Methods Data from 1,151 type 2 diabetes inpatients without infections, malignancy or hematological diseases who were recruited from 2016 through 2022 were analyzed in the retrospective study. The patients were stratified into NLR tertiles (total population: high NLR level > 2.18; middle NLR level: 1.58-2.18; low NLR level < 1.58), with additional subgroup stratification by sex (men: high NLR level > 2.21; middle NLR level: 1.60-2.21; and low NLR level < 1.60; women: high NLR level > 2.12; middle NLR level: 1.53-2.12; and low NLR level < 1.53). After adjusting for confounders (age, sex, weight, Glu, ALT and TG) associated with MASLD, the odds ratio (OR) and the corresponding 95% confidence interval (CI) of the NLR were obtained by using a binary logistic regression analysis to verify the correlation between the NLR and MASLD. Results Compared to non-MASLD patients, MASLD patients had higher weight, blood glucose, insulin and C-peptide, worse liver function (higher ALT and GGT), lower HDL (all p < 0.05), and lower NLR (p < 0.001). The prevalence of MASLD was 43.75% (high NLR level), 55.21% (middle NLR level) and 52.22% (low NLR level) (p < 0.05). Compared to those of the high NLR level, the adjusted ORs and 95% CIs of the middle and low NLR levels were 1.624 (95% CI: 1.141-2.311) and 1.456 (95% CI: 1.025-2.068), for all subjects, while they were 1.640 (95% CI: 1.000-2.689) and 1.685 (95% CI: 1.026-2.766), for men. Conclusion A low NLR is associated with a greater risk of MASLD.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Kai Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junming Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
10
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
11
|
Yuan S, Zhang HM, Li JX, Li Y, Wang Q, Kong GY, Li AH, Nan JX, Chen YQ, Zhang QG. Gasotransmitters in non-alcoholic fatty liver disease: just the tip of the iceberg. Eur J Pharmacol 2023; 954:175834. [PMID: 37329970 DOI: 10.1016/j.ejphar.2023.175834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by fatty lesions and fat accumulation in hepatic parenchymal cells, which is in the absence of excessive alcohol consumption or definite liver damage factors. The exact pathogenesis of NAFLD is not fully understood, but it is now recognized that oxidative stress, insulin resistance, and inflammation are essential mechanisms involved in the development and treatment of NAFLD. NAFLD therapy aims to stop, delay or reverse disease progressions, as well as improve the quality of life and clinical outcomes of patients with NAFLD. Gasotransmitters are produced by enzymatic reactions, regulated through metabolic pathways in vivo, which can freely penetrate cell membranes with specific physiological functions and targets. Three gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide have been discovered. Gasotransmitters exhibit the effects of anti-inflammatory, anti-oxidant, vasodilatory, and cardioprotective agents. Gasotransmitters and their donors can be used as new gas-derived drugs and provide new approaches to the clinical treatment of NAFLD. Gasotransmitters can modulate inflammation, oxidative stress, and numerous signaling pathways to protect against NAFLD. In this paper, we mainly review the status of gasotransmitters research on NAFLD. It provides clinical applications for the future use of exogenous and endogenous gasotransmitters for the treatment of NAFLD.
Collapse
Affiliation(s)
- Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jia-Xin Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Guang-Yao Kong
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Ao-Han Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Ji-Xing Nan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ying-Qing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China.
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China; Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China.
| |
Collapse
|
12
|
Feng Q, Niu Z, Zhang S, Wang L, Dong L, Hou D, Zhou S. Protective Effects of White Kidney Bean ( Phaseolus vulgaris L.) against Diet-Induced Hepatic Steatosis in Mice Are Linked to Modification of Gut Microbiota and Its Metabolites. Nutrients 2023; 15:3033. [PMID: 37447359 PMCID: PMC10347063 DOI: 10.3390/nu15133033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Disturbances in the gut microbiota and its derived metabolites are closely related to the occurrence and development of hepatic steatosis. The white kidney bean (WKB), as an excellent source of protein, dietary fiber, and phytochemicals, has recently received widespread attention and might exhibit beneficial effects on a high-fat diet (HFD)-induced hepatic steatosis via targeting gut microbiota and its metabolites. The results indicated that HFD, when supplemented with WKB for 12 weeks, could potently reduce obesity symptoms, serum lipid profiles, and glucose, as well as improve the insulin resistance and liver function markers in mice, thereby alleviating hepatic steatosis. An integrated fecal microbiome and metabolomics analysis further demonstrated that WKB was able to normalize HFD-induced gut dysbiosis in mice, thereby mediating the alterations of a wide range of metabolites. Particularly, WKB remarkably increased the relative abundance of probiotics (Akkermansiaceae, Bifidobacteriaceae, and norank_f_Muribaculaceae) and inhibited the growth of hazardous bacteria (Mucispirillum, Enterorhabdus, and Dubosiella) in diet-induced hepatic steatosis mice. Moreover, the significant differential metabolites altered by WKB were annotated in lipid metabolism, which could ameliorate hepatic steatosis via regulating glycerophospholipid metabolism. This study elucidated the role of WKB from the perspective of microbiome and metabolomics in preventing nonalcoholic fatty liver disease, which provides new insights for its application in functional foods.
Collapse
Affiliation(s)
- Qiqian Feng
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Zhitao Niu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Siqi Zhang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lijun Dong
- Beijing Yushiyuan Food Co., Ltd., Beijing 101407, China
| | - Dianzhi Hou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
13
|
Ma Q, Wen L, Tian Y, Ma L, Wen Z, Kun Y, Xu M, Liu X. Sulfosuccinimidyl oleate ameliorates the high-fat diet-induced obesity syndrome by reducing intestinal and hepatic absorption. Front Pharmacol 2023; 14:1193006. [PMID: 37305546 PMCID: PMC10254412 DOI: 10.3389/fphar.2023.1193006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Background: A high-fat Western diet is a risk factor for obesity and steatosis. Reducing intestinal absorption of a high-fat diet (HFD) is a feasible strategy to control obesity. Sulfosuccinimidyl oleate (SSO) inhibits intestinal fatty acid transport. Therefore, the aim of this study was to investigate the effects of SSO on HFD-induced glucose and lipid metabolism in mice and its possible underlying mechanisms. Methods: Male C57/BL were fed a HFD (60% calories) for 12 weeks and were administered an oral dose of SSO (50 mg/kg/day). The expression of lipid absorption genes (CD36, MTTP, and DGAT1) and the serum levels of triglycerides (TGs), total cholesterol (TC), and free fatty acids (FFAs) were detected. Lipid distribution in the liver was detected by oil red and hematoxylin and eosin staining. In addition, serum levels of inflammatory factors, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were measured to detect side effects. Results: SSO was effective in the treatment of obesity and metabolic syndrome induced by HFD in mice. It attenuated the assembly of intestinal epithelial chylomicrons by inhibiting intestinal epithelial transport and absorption of fatty acids, thereby reducing the gene expression levels of MTTP and DGAT1, resulting in decreased plasma TG and FFA levels. At the same time, it inhibited the transport of fatty acids in the liver and improved the steatosis induced by a HFD. The results of oil red staining showed that SSO treatment can reduce lipid accumulation in the liver by 70%, with no drug-induced liver injury detected on the basis of interleukin-6, C-reactive protein, ALT, and AST levels. In addition, SSO treatment significantly improved insulin resistance, decreased fasting blood glucose levels, and improved glucose tolerance in HFD-fed mice. Conclusion: SSO is effective in the treatment of obesity and metabolic syndrome induced by a HFD in mice. SSO reduces intestinal fatty acid absorption by reducing the inhibition of intestinal CD36 expression, followed by decreased TG and FFA levels, which attenuates HFD-induced fatty liver.
Collapse
Affiliation(s)
- Qiming Ma
- The Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Wen
- Department of Neonatology, Ganzhou Maternal and Child Health Centre, Ganzhou, Jiangxi, China
| | - Yanxia Tian
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liqin Ma
- The Second Department of Surgery, People’s Hospital of Shicheng County, Ganzhou, Jiangxi, China
| | - Zhangsheng Wen
- The CT Room of the Imaging Department, People’s Hospital of Shicheng County, Ganzhou, Jiangxi, China
| | - Yang Kun
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mengping Xu
- The Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoping Liu
- The Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
14
|
Zhao Y, Sun N, Song X, Zhu J, Wang T, Wang Z, Yu Y, Ren J, Chen H, Zhan T, Tian J, Ma C, Huang J, Wang J, Zhang Y, Yang B. A novel small molecule AdipoR2 agonist ameliorates experimental hepatic steatosis in hamsters and mice. Free Radic Biol Med 2023; 203:69-85. [PMID: 37044149 DOI: 10.1016/j.freeradbiomed.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Adiponectin receptor 2 (AdipoR2) can be activated by its endogenous ligand adiponectin to reduce hepatic steatosis, and is regarded as a therapeutic target for metabolic associated fatty liver disease (MAFLD). This study proposes a novel anthraquinone compound, emodin succinate monoethyl ester (ESME), which activates AdipoR2, inhibits hepatic lipogenesis, promotes fatty acid oxidation, and alleviates experimental hepatic steatosis in hamsters and mice. Molecular docking shows that ESME has strong binding potential with AdipoR2 by forming a arene-arene interaction. AdipoR2 on the cytomembrane of HepG2 cells can be labeled by fluorescent ESME (Cy5-ESME). ESME activates AdipoR2, AMPK and PPARα, and reduces lipid deposition in palmitic acid or oleic acid-induced HepG2 and L02 cells. Suppression of AdipoR2 expression or AMPK activation completely eliminates the effect of ESME on reducing lipid accumulation in hepatocytes. Oral administration of ESME reduces liver lipid production and accumulation, and alleviates hepatic steatosis in hamsters and Apoe-/- mice induced by high-fat diet. Compared with statins and emodin, ESME showed prepotent efficacy and safety in reducing hepatic steatosis and protecting hepatocytes. Furthermore, ESME activates CaMKK2 and LKB1 in liver to activate AMPK and reduce lipogenesis through stimulating AdipoR2. Taken together, ESME reduces hepatic lipid accumulation and alleviates hepatic steatosis by agonizing AdipoR2. ESME is a promising new agent for clinical treatment of MAFLD.
Collapse
Affiliation(s)
- Yixiu Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Na Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xia Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tianshuo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhiqi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuanyuan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huan Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Zhan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaying Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunyue Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
Altalebi RR, Al-Hussaniy HA, Al-Tameemi ZS, Al-Zobaidy MAH, Albu-Rghaif AH, Alkuraishy HM, Hedeab GM, Azam F, Al-Samydai AM, Naji MA. Non-alcoholic fatty liver disease: relation to juvenile obesity, lipid profile, and hepatic enzymes. J Med Life 2023; 16:42-47. [PMID: 36873135 PMCID: PMC9979179 DOI: 10.25122/jml-2022-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 03/07/2023] Open
Abstract
The prevalence of juvenile obesity is increasing, reaching epidemic proportions, presenting a link not only to NAFLD (non-alcoholic fatty liver disease) but to abnormal lipid profiles and liver enzyme abnormalities. Liver ultrasonography is a sensitive and specific tool for the recognition of NAFLD. This study aims to assess the association between NAFLD and juvenile obesity and to determine the other related changes in a set of indicators, including lipid profile abnormalities and serum transaminases. The sample included 470 obese and 210 non-obese individuals aged 6-16. Anthropometric measures were assessed, with the serum lipid profile and liver transaminases, and abdominal ultrasonography was used to detect NAFLD. Fatty liver was found in 38% of the obese subjects and none of the non-obese subjects. Within obese subjects, mean body mass index (BMI) and waist circumference increased significantly in patients with NAFLD compared to those without fatty liver. Moreover, LDL (low-density lipoprotein), CHOL (cholesterol), and serum liver enzymes were significantly higher in the presence of NAFLD. In conclusion, NAFLD commonly associates with juvenile obesity, relating to obesity and the abnormal lipid profile (including elevated CHOL and LDL) among obese people, reflecting elevated liver transaminases, which increase the risk of cirrhosis.
Collapse
Affiliation(s)
| | - Hany Akeel Al-Hussaniy
- Department of Pharmacy, Bilad Alrafidain University College, Diyala, Iraq.,Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| | - Zahraa Salam Al-Tameemi
- Department of Pharmacy, Bilad Alrafidain University College, Diyala, Iraq.,Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| | | | | | - Hayder Mutter Alkuraishy
- Department of Clinical Pharmacology, College of Medicine, Almustansria University, Baghdad, Iraq
| | - Gomaa Mostafa Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Saudi Arabia
| | - Ali Mahmoud Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Meena Akeel Naji
- Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| |
Collapse
|
16
|
Liu L, Geng Y, Xiong C. Impact of Porphyromonas gingivalis-odontogenic infection on the pathogenesis of non-alcoholic fatty liver disease. Ann Med 2023; 55:2255825. [PMID: 37708866 PMCID: PMC10503456 DOI: 10.1080/07853890.2023.2255825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Aim: Non-alcoholic fatty liver disease is characterized by diffuse hepatic steatosis and has quickly risen to become the most prevalent chronic liver disease. Its incidence is increasing yearly, but the pathogenesis is still not fully understood. Porphyromonas gingivalis (P. gingivalis) is a major pathogen widely prevalent in periodontitis patients. Its infection has been reported to be a risk factor for developing insulin resistance, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and metabolic syndrome. The aim of this review is to evaluate the association between P. gingivalis infection and NAFLD, identify the possible etiopathogenetic mechanisms, and raise public awareness of oral health to prevent and improve NAFLD.Methods: After searching in PubMed and Web of Science databases using 'Porphyromonas gingivalis', 'non-alcoholic fatty liver disease', and 'hepatic steatosis' as keywords, studies related were compiled and examined.Results: P. gingivalis infection is a direct risk factor for NAFLD based on clinical and basic research. Moreover, it induces systematic changes and systemic abnormalities by disrupting metabolic, inflammatory, and immunologic homeostasis.Conclusion: P. gingivalis-odontogenic infection promotes the occurrence and development of NAFLD. Further concerns are needed to emphasize oral health and maintain good oral hygiene for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Linbo Liu
- Department of Clinical Laboratory, Yulin No.2 Hospital, Yulin, Shaanxi, China
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
17
|
Pengnet S, Sumarithum P, Phongnu N, Prommaouan S, Kantip N, Phoungpetchara I, Malakul W. Naringin attenuates fructose-induced NAFLD progression in rats through reducing endogenous triglyceride synthesis and activating the Nrf2/HO-1 pathway. Front Pharmacol 2022; 13:1049818. [PMID: 36588703 PMCID: PMC9797507 DOI: 10.3389/fphar.2022.1049818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Excessive fructose consumption causes hepatic lipid accumulation via increased triglyceride (TG) synthesis, leading to the development and progression of non-alcoholic fatty liver disease (NALFD). Naringin, a flavanone glycoside found in citrus fruit, has antioxidant and hypolipidemic properties. Therefore, the aim of this study was to investigate the effect of naringin on fructose-induced NAFLD in rats and the possible underlying mechanism. Methods: Male Sprague Dawley rats were given 10% (w/v) fructose in drinking water for 12 weeks. Naringin (100 mg/kg/day) was administered orally to rats for the last 4 weeks of fructose overload. After 12 weeks of treatment, the hepatic lipid content was determined. In addition, the expression of proteins involved in de novo lipogenesis (DNL) and TG synthesis as well as antioxidant and inflammatory mediators in the liver were examined by western blot analysis. Results: Treatment of fructose-fed rats with naringin significantly decreased the hepatic TG and cholesterol content as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. Naringin treatment also decreased the hepatic expression of carbohydrate response element binding protein (ChREBP), sterol regulatory element-binding protein-1c (SREBP-1c) and nuclear SREBP-1c (nSREBP-1c) as well as enzymes involved in DNL (acetyl CoA carboxylase [ACC] and fatty acid synthase [FAS]) and an enzyme involved in TG synthesis (glycerol-3-phosphate acyltransferase 1 [GPAT-1] and diacylglycerol acyltransferase2 [DGAT2]) in fructose-fed rats. In addition, naringin induced a significant decrease in the hepatic expression of nuclear factor kappa B (NF-κB) and tumor necrosis factor α (TNF-α). Furthermore, naringin administration restored the expression of the antioxidant mediators nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the liver of fructose-fed rats. Conclusion: These results demonstrate that oral administration of naringin protects against fructose-induced hepatic steatosis by decreasing DNL and TG synthesis. In addition, naringin could prevent NAFLD progression via targeting the Nrf2/HO-1 and the NF-κB/TNF-α pathways.
Collapse
Affiliation(s)
- Sirinat Pengnet
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Phinsuda Sumarithum
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nuttaphong Phongnu
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sakdina Prommaouan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Napapas Kantip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand,*Correspondence: Wachirawadee Malakul,
| |
Collapse
|
18
|
The Synergic Effect of a Nutraceutical Supplementation Associated to a Mediterranean Hypocaloric Diet in a Population of Overweight/Obese Adults with NAFLD. Nutrients 2022; 14:nu14224750. [PMID: 36432436 PMCID: PMC9694188 DOI: 10.3390/nu14224750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Overweight/obesity is often associated with a non-alcoholic fatty liver disease (NAFLD). The study aim was to investigate the effects of a nutraceutical supplementation associated to a Mediterranean-hypocaloric-diet (MHD) on ultrasound-liver-steatosis (ULS) grade improvement in overweight/obese patients with NAFLD. A total of 68 subjects (BMI ≥ 25 kg/m2) with NAFLD were recruited, randomized into 2 groups and treated for 3 months: the Nutraceutical group was treated with MHD plus nutraceutical supplementation (Vitamin E, L-glutathione, silymarin and hepato-active compounds); the Control-group only with a MHD. Anthropometric measurements, body composition, biochemical parameters and Hepatic steatosis index (HSI) were evaluated at baseline and after 3 months; patients with HSI >36 underwent a liver ultrasound to determine liver steatosis grade (3 severe, 2 moderate, 1 mild). In all patients, a significant improvement in nutritional and biochemical parameters was observed after treatment. After treatment, the nutraceutical group showed a significant improvement in hepatic steatosis, either according to ULS-grade (11.1% and 5.6% of patients with mild and moderate liver steatosis, respectively, showed a complete NAFLD regression; 33.3% and 22.2% of patients with moderate and severe liver steatosis, respectively showed a regression to mild liver steatosis), or according to HSI (49.3 ± 10.1 vs. 43.3 ± 9.0, p = 0.01), suggesting that a healthy diet is still the best choice, although the use of specific supplements can enhance the efficacy of dietary intervention in overweight/obese patients with NAFLD.
Collapse
|
19
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
20
|
Lee SW, Baek SM, Lee YJ, Kim TU, Yim JH, Son JH, Kim HY, Kang KK, Kim JH, Rhee MH, Park SJ, Choi SK, Park JK. Ginsenoside Rg3-enriched Korean red ginseng extract attenuates Non-Alcoholic Fatty Liver Disease by way of suppressed VCAM-1 expression in liver sinusoidal endothelium. J Ginseng Res 2022; 47:429-439. [DOI: 10.1016/j.jgr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
|
21
|
Weikart DK, Indukuri VV, Racine KC, Coleman KM, Kovac J, Cockburn DW, Hopfer H, Neilson AP, Lambert JD. Effect of processing on the anti-inflammatory efficacy of cocoa in a high fat diet-induced mouse model of obesity. J Nutr Biochem 2022; 109:109117. [DOI: 10.1016/j.jnutbio.2022.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
22
|
Mechanical Study of Jian-Gan-Xiao-Zhi Decoction on Nonalcoholic Fatty Liver Disease Based on Integrated Network Pharmacology and Untargeted Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2264394. [PMID: 35845577 PMCID: PMC9286980 DOI: 10.1155/2022/2264394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Jian-Gan-Xiao-Zhi decoction (JGXZ) has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms by which JGXZ improve NAFLD are still unclear. Methods. In this study, we first used a high-fat diet (HFD) to establish a NAFLD rat model to clarify the therapeutic effect of JGXZ on NAFLD. Secondly, we used network pharmacology to predict the potential targets of JGXZ on NAFLD, and then the key targets obtained from network pharmacology were verified. Finally, we used untargeted metabolomics to study the metabolic regulatory mechanism of JGXZ. Results. JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and oil red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. In addition, network pharmacology research found that the potential targets of JGXZ on NAFLD pathway were mainly associated with improving oxidative stress, apoptosis, inflammation, lipid metabolism disorders, and insulin resistance. Further experimental verification confirmed that JGXZ could inhibit inflammation and improve oxidative stress, insulin resistance, and lipid metabolism disorders. Serum untargeted metabolomics analyses indicated that the JGXZ in the treatment of NAFLD may work through the linoleic acid metabolism, alpha-linolenic acid metabolism, tryptophan metabolism, and glycerophospholipid metabolism pathways. Conclusions. In conclusion, this study found that JGXZ has an ameliorative effect on NAFLD, and JGXZ alleviates the inflammatory response and oxidative stress and lipid metabolism disorders in NAFLD rats. The mechanism of action of JGXZ in the treatment of NAFLD may be related to the regulation of linoleic acid metabolism, tryptophan metabolism, alpha-linolenic acid metabolism, and glycerophospholipid metabolism.
Collapse
|
23
|
Liu Y, Huang W, Dai K, Liu N, Wang J, Lu X, Ma J, Zhang M, Xu M, Long X, Liu J, Kou Y. Inflammatory response of gut, spleen, and liver in mice induced by orally administered Porphyromonas gingivalis. J Oral Microbiol 2022; 14:2088936. [PMID: 35756539 PMCID: PMC9225697 DOI: 10.1080/20002297.2022.2088936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Periodontitis is a chronic multifactorial inflammatory disease. Porphyromonas gingivalis is a primary periopathogen in the initiation and development of periodontal disease. Evidence has shown that P. gingivalis is associated with systemic diseases, including IBD and fatty liver disease. Inflammatory response is a key feature of diseases related to this species. Methods C57BL/6 mice were administered either PBS, or P. gingivalis. After 9 weeks, the inflammatory response in gut, spleen, and liver was analyzed. Results The findings revealed significant disturbance of the intestinal microbiota and increased inflammatory factors in the gut of P. gingivalis-administered mice. Administrated P. gingivalis remarkably promoted the secretion of IRF-1 and activated the inflammatory pathway IFN-γ/STAT1 in the spleen. Histologically, mice treated with P. gingivalis exhibited hepatocyte damage and lipid deposition. The inflammatory factors IL-17a, IL-6, and ROR-γt were also upregulated in the liver of mice fed with P. gingivalis. Lee’s index, spleen index, and liver index were also increased. Conclusion These results suggest that administrated P. gingivalis evokes inflammation in gut, spleen, and liver, which might promote the progression of various systemic diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Wenkai Huang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Ke Dai
- Department of Stomatology, Lishui University School of Medicine, Lishui, Zhejing, China
| | - Ni Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Mengqi Xu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Xu Long
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jie Liu
- Department of Stomatology, Science Experiment Center, China Medical University, Shenyang, Liaoning, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China.,Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Kuang M, Lu S, Xie Q, Peng N, He S, Yu C, Qiu J, Sheng G, Zou Y. Abdominal obesity phenotypes are associated with the risk of developing non-alcoholic fatty liver disease: insights from the general population. BMC Gastroenterol 2022; 22:311. [PMID: 35752753 PMCID: PMC9233393 DOI: 10.1186/s12876-022-02393-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background The diversity of obesity-related metabolic characteristics generates different obesity phenotypes and corresponding metabolic diseases. This study aims to explore the correlation of different abdominal obesity phenotypes with non-alcoholic fatty liver disease (NAFLD). Methods The current study included 14,251 subjects, 7411 males and 6840 females. Abdominal obesity was defined as waist circumference ≥ 85 cm in males and ≥ 80 cm in females; according to the diagnostic criteria for metabolic syndrome recommended by the National Cholesterol Education Program Adult Treatment Panel III, having more than one metabolic abnormality (except waist circumference criteria) was defined as metabolically unhealthy. All subjects were divided into 4 abdominal obesity phenotypes based on the presence ( +) or absence (− ) of metabolically healthy/unhealthy (MH) and abdominal obesity (AO) at baseline: metabolically healthy + non-abdominal obesity (MH−AO−); metabolically healthy + abdominal obesity (MH−AO+); metabolically unhealthy + non-abdominal obesity (MH+AO−); metabolically unhealthy + abdominal obesity (MH+AO+). The relationship between each phenotype and NAFLD was analyzed using multivariate logistic regression. Results A total of 2507 (17.59%) subjects in this study were diagnosed with NAFLD. The prevalence rates of NAFLD in female subjects with MH−AO−, MH−AO+, MH+AO−, and MH+AO+ phenotypes were 1.73%, 24.42%, 7.60%, and 59.35%, respectively. Among male subjects with MH−AO−, MH−AO+, MH+AO−, and MH+AO+ phenotypes, the prevalence rates were 9.93%, 50.54%, 25.49%, and 73.22%, respectively. After fully adjusting for confounding factors, with the MH−AO− phenotype as the reference phenotype, male MH−AO+ and MH+AO+ phenotypes increased the risk of NAFLD by 42% and 47%, respectively (MH−AO+: OR 1.42, 95%CI 1.13,1.78; MH+AO+: OR 1.47, 95%CI 1.08,2.01); the corresponding risks of MH−AO+ and MH+AO+ in females increased by 113% and 134%, respectively (MH−AO+: OR 2.13, 95%CI 1.47,3.09; MH+AO+: OR 2.34, 95%CI 1.32,4.17); by contrast, there was no significant increase in the risk of NAFLD in the MH+AO− phenotype in both sexes. Conclusions This first report on the relationship of abdominal obesity phenotypes with NAFLD showed that both MH−AO+ and MH+AO+ phenotypes were associated with a higher risk of NAFLD, especially in the female population. These data provided a new reference for the screening and prevention of NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02393-9.
Collapse
Affiliation(s)
- Maobin Kuang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.,Medical College of Nanchang University, Nanchang, 330006, China
| | - Song Lu
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.,Medical College of Nanchang University, Nanchang, 330006, China
| | - Qiyang Xie
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.,Medical College of Nanchang University, Nanchang, 330006, China
| | - Nan Peng
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.,Medical College of Nanchang University, Nanchang, 330006, China
| | - Shiming He
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.,Medical College of Nanchang University, Nanchang, 330006, China
| | - Changhui Yu
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.,Medical College of Nanchang University, Nanchang, 330006, China
| | - Jiajun Qiu
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.,Medical College of Nanchang University, Nanchang, 330006, China
| | - Guotai Sheng
- Cardiology Department, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
| |
Collapse
|
25
|
Sun J, Zhang D, Li Y. Extracellular Vesicles in Pathogenesis and Treatment of Metabolic Associated Fatty Liver Disease. Front Physiol 2022; 13:909518. [PMID: 35770186 PMCID: PMC9234305 DOI: 10.3389/fphys.2022.909518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide due to the sedentary and overeating lifestyle. Yet, the pathophysiology of MAFLD is still unclear and no drug has been approved for MAFLD treatment. Extracellular vesicles (EVs) are heterogenous membrane-bound particles released from almost all types of cells. These nano-sized particles mediate intercellular communication through their bioactive cargos including nucleic acids, proteins, and lipids. The EVs modulate metabolic homeostasis via communication between adipose tissue and liver. The dysregulation of lipid metabolism leads to inflammation in liver and the number and compounds of EVs are changed during MAFLD. The injured hepatocytes secrete EVs to induce the migration of bone marrow-derived monocytes and the activation of macrophages in liver. The EVs secreted by different cells regulate the alteration of hepatic stellate cell (HSC) phenotypes and HSC activation gives rise to liver fibrosis. Based on the participation of EVs in MAFLD progression, we discuss the prospects of EVs as a therapeutic target and their application in drug delivery.
Collapse
Affiliation(s)
- Ji Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
- *Correspondence: Yiling Li, ; Dianbao Zhang,
| | - Yiling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yiling Li, ; Dianbao Zhang,
| |
Collapse
|
26
|
Galatou E, Mourelatou E, Hatziantoniou S, Vizirianakis IS. Nonalcoholic Steatohepatitis (NASH) and Atherosclerosis: Explaining Their Pathophysiology, Association and the Role of Incretin-Based Drugs. Antioxidants (Basel) 2022; 11:1060. [PMID: 35739957 PMCID: PMC9220192 DOI: 10.3390/antiox11061060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the most severe manifestation of nonalcoholic fatty liver disease (NAFLD), a common complication of type 2 diabetes, and may lead to cirrhosis and hepatocellular carcinoma. Oxidative stress and liver cell damage are the major triggers of the severe hepatic inflammation that characterizes NASH, which is highly correlated with atherosclerosis and coronary artery disease. Regarding drug therapy, research on the role of GLP-1 analogues and DPP4 inhibitors, novel classes of antidiabetic drugs, is growing. In this review, we outline the association between NASH and atherosclerosis, the underlying molecular mechanisms, and the effects of incretin-based drugs, especially GLP-1 RAs, for the therapeutic management of these conditions.
Collapse
Affiliation(s)
- Eleftheria Galatou
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
| | - Elena Mourelatou
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Ioannis S. Vizirianakis
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
27
|
Ajah AA, Lembede BW, Nkomozepi P, Erlwanger KH, Nyakudya TT. Neonatal Oral Administration of Chrysin Prevents Long-Term Development of Non-Alcoholic Fatty Liver Disease in a Sexually Dimorphic Manner in Fructose Nurtured Sprague Dawley Rats. Life (Basel) 2022; 12:life12060790. [PMID: 35743821 PMCID: PMC9225280 DOI: 10.3390/life12060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
High-fructose diets are linked with the development of non-alcoholic fatty liver disease (NAFLD), the management of which is a burden to society. Interventions with phytochemicals in the early postnatal period may prevent fructose-induced NAFLD later in adulthood. We investigated the protective potential of chrysin against fructose-induced NAFLD. Four-day-old male and female suckling Sprague Dawley rats (N = 112) were randomly grouped and orally gavaged daily with distilled water (negative Control-Cn + W), chrysin(Chr-100 mg/kg), fructose-solution (Fr-20% w/v), and Chr + Fr between postnatal day (PND) 4 and 21 and then weaned onto normal rat chow and plain drinking water to PND 55. From PND 56 to 130, half of the rats continued on plain water, and the rest had Fr as drinking fluid. Terminally, the liver tissue was collected, and the lipid content was determined and histologically assessed for NAFLD. Dietary Fr induced an increased hepatic lipid content (p = 0.0001 vs. Cn + W) both sexes, and it was only attenuated by neonatal Chr in female rats (p < 0.05). Histologically, there was increased microvesicular steatosis (p = 0.0001 vs. Cn + W) in both sexes, and it was prevented by neonatal Chr (p > 0.05). Fr caused macrovesicular steatosis (p = 0.01 vs. Cn + W) in females only, and chrysin did not prevent it (p > 0.05). Fr induced hepatocellular hypertrophy, and inflammation was observed in females only (p = 0.01 vs. Cn + W), and this was prevented by Chr (p > 0.05). The collagen area fraction was increased by Fr (p = 0.02 (males) and p = 0.04 (females) vs. Cn + W, respectively; however, chrysin did not prevent this (p > 0.05). Neonatal chrysin prevented some of the deleterious effects of the high-fructose diet on the liver, suggesting that chrysin should be further explored as a strategic prophylactic neonatal intervention against high-fructose-diet-induced NAFLD.
Collapse
Affiliation(s)
- Austin A. Ajah
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (B.W.L.); (K.H.E.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, P.M.B. 5323, Choba, Port Harcourt 500102, Nigeria
- Correspondence:
| | - Busisani W. Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (B.W.L.); (K.H.E.)
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Corner Beit and Siemert Street, Doornfontein, Johannesburg 2094, South Africa; (P.N.); (T.T.N.)
| | - Kennedy H. Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (B.W.L.); (K.H.E.)
| | - Trevor T. Nyakudya
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Corner Beit and Siemert Street, Doornfontein, Johannesburg 2094, South Africa; (P.N.); (T.T.N.)
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| |
Collapse
|
28
|
Dong Z, Yang X, Qiu T, an Y, Zhang G, Li Q, Jiang L, Yang G, Cao J, Sun X, Liu X, Liu D, Yao X. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem Biol Interact 2022; 358:109899. [DOI: 10.1016/j.cbi.2022.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
|
29
|
Hasin-Brumshtein Y, Sakaram S, Khatri P, He YD, Sweeney TE. A robust gene expression signature for NASH in liver expression data. Sci Rep 2022; 12:2571. [PMID: 35173224 PMCID: PMC8850484 DOI: 10.1038/s41598-022-06512-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a progressive liver disease that affects up to 30% of worldwide population, of which up to 25% progress to Non-Alcoholic SteatoHepatitis (NASH), a severe form of the disease that involves inflammation and predisposes the patient to liver cirrhosis. Despite its epidemic proportions, there is no reliable diagnostics that generalizes to global patient population for distinguishing NASH from NAFLD. We performed a comprehensive multicohort analysis of publicly available transcriptome data of liver biopsies from Healthy Controls (HC), NAFLD and NASH patients. Altogether we analyzed 812 samples from 12 different datasets across 7 countries, encompassing real world patient heterogeneity. We used 7 datasets for discovery and 5 datasets were held-out for independent validation. Altogether we identified 130 genes significantly differentially expressed in NASH versus a mixed group of NAFLD and HC. We show that our signature is not driven by one particular group (NAFLD or HC) and reflects true biological signal. Using a forward search we were able to downselect to a parsimonious set of 19 mRNA signature with mean AUROC of 0.98 in discovery and 0.79 in independent validation. Methods for consistent diagnosis of NASH relative to NAFLD are urgently needed. We showed that gene expression data combined with advanced statistical methodology holds the potential to serve basis for development of such diagnostic tests for the unmet clinical need.
Collapse
Affiliation(s)
| | - Suraj Sakaram
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA.,Department of Medicine, Center for Biomedical Informatics Research, Stanford University, Stanford, CA, 94305, USA
| | - Yudong D He
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.
| | - Timothy E Sweeney
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.
| |
Collapse
|
30
|
Zhou M, Li F, Tang H, Wu S, Meng L, Dong Y, Wang F, Quach B, Yang Y, Ma J, Baker JS. The hypertriglyceridemic waist phenotype is associated with fatty liver and glycometabolic profiles in overweight and obese adults: a cross-sectional study. Sci Rep 2022; 12:2410. [PMID: 35165286 PMCID: PMC8844035 DOI: 10.1038/s41598-021-00825-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
AbstractThe present study aimed to distinguish different hypertriglyceridemic waist phenotypes and relevant risks of developing fatty liver and abnormal glycometabolic profiles in overweight/obese adults. A total of 1221 Chinese adults with mean (standard deviation [SD]) age of 37 (9) years, 37.3% males and 62.7% females, body mass index (BMI) of 29.0 (4.0) kg/m2, triglyceride (TG) 2.04 (1.45) mmol/L, and waist circumference (WC) 95.8 (10.7) cm were included and classified into four phenotypes: normal TG & normal WC (N-N); normal TG & high WC (N-WC); high TG & normal WC (TG-N); high TG & high WC (TG-WC). Participants in TG-WC group had the highest BMI, WC, blood pressure (BP), insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), glycosylated hemoglobin (HbA1c), low-density lipoprotein cholesterol (LDL), and fatty liver. Participants within N-WC group had a significantly higher risk of fatty liver (adjusted OR 3.50 [95% CI 2.05–5.97]), as well as TG-N (adjusted OR 2.59 [95% CI 1.61–4.16]) and TG-WC (adjusted OR 4.12 [95% CI 2.28–7.46]). The risk of elevated HOMA-IR was significantly higher in TG-N (adjusted OR 2.16 [95% CI 1.33–3.50]) and TG-WC (adjusted OR 2.04 [95% CI 1.22–3.40]). The risk of elevated HbA1c was significantly higher in the TG-WC (adjusted OR 2.79 [95% CI 1.47–5.31]). Hypertriglyceridemic waist phenotype can be a potential and cost-effective method to identify individuals with a high risk of fatty liver and glycometabolic disorders.
Collapse
|
31
|
Wang L, Wang X, Kong L, Li Y, Huang K, Wu J, Wang C, Sun H, Sun P, Gu J, Luo H, Liu K, Meng Q. Activation of PGC-1α via isoliquiritigenin-induced downregulation of miR-138-5p alleviates nonalcoholic fatty liver disease. Phytother Res 2022; 36:899-913. [PMID: 35041255 DOI: 10.1002/ptr.7334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a metabolic disease, has received wide attention worldwide. However, there is no approved effective drug for NAFLD treatment. In the study, H&E and Oil Red O staining were employed to detect liver histopathological changes and the accumulation of lipid droplets. Quantitative real-time PCR, Western blot, bioinformatics, luciferase assay, immunofluorescence staining, reactive oxygen species (ROS), and siRNA were used to further elucidate the mechanism of isoliquiritigenin (ISL) against NAFLD. The results showed that ISL significantly reduced the liver-to-body weight ratios and biochemical index. And the staining results showed that ISL remarkedly ameliorated liver histopathological changes of NAFLD. Furthermore, ISL significantly increased the levels of PPARα, CPT1α, and ACADS, which were involved in lipid metabolism, and inhibited the ROS, TNF-α, IL-1β, and IL-6 expression by activating PGC-1α. Bioinformatics and luciferase assay analysis confirmed that miR-138-5p might bind to PGC-1α mRNA in NAFLD. Importantly, the expression of miR-138-5p was increased in the NAFLD, which was significantly decreased by ISL. In addition, the miR-138-5p inhibitor also promoted lipid metabolism and inhibited inflammatory response in NAFLD via PGC-1α activation. The above results demonstrate that ISL alleviates NAFLD through modulating miR-138-5p/PGC-1α-mediated lipid metabolism and inflammatory reaction in vivo and in vitro.
Collapse
Affiliation(s)
- Lu Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohui Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yingying Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kai Huang
- Department of Pharmacology, Drug Clinical Trial Institution, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Hidalgo I, Fonseca-Coronado S, Ceballos G, Meaney E, Nájera N. Dislipidemias, hígado graso y enfermedad cardiovascular. CARDIOVASCULAR AND METABOLIC SCIENCE 2022; 33:134-139. [DOI: 10.35366/107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Li X, Chen XX, Xu Y, Xu XB, Wu WF, Zhao Q, Hu JN. Construction of Glycogen-Based Nanoparticles Loaded with Resveratrol for the Alleviation of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease. Biomacromolecules 2021; 23:409-423. [PMID: 34964604 DOI: 10.1021/acs.biomac.1c01360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to construct a glycogen (Gly)-based nanoparticle (NP) with liver-targeted and redox response to effectively deliver resveratrol (Res) for improving nonalcoholic fatty liver disease (NAFLD). Herein, Gly was modified using α-lipoic acid (α-LA) and lactobionic acid (Lac) to obtain an amphiphilic polymer (Gly-LA-Lac), which was self-assembled in water and then encapsulated in Res to form Res NPs with excellent stability. As expected, the Res NPs exhibited liver-targeted and redox response release behavior. In vitro cell studies demonstrated that the nanocarrier treatment enhanced the cellular uptake of Res and reduced oxidative stress and inflammatory factor levels. Meanwhile, the in vivo tests proved that the nanocarriers effectively reduced hepatic lipid accumulation and oxidative stress levels via regulating the TLR4/NF-κB signal pathway to improve liver damage in NAFLD mice. In conclusion, this study provides a promising strategy through the construction of Gly-based nanocarriers for the encapsulation of Res to effectively alleviate the process of NAFLD.
Collapse
Affiliation(s)
- Xiang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xian-Xin Chen
- Jiangxi Health Vocational College, Nanchang 330052, China
| | - Yu Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.,College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xian-Bing Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Wen-Fei Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang-Ning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
34
|
Koga T, Peters JM. Targeting Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) for the Treatment or Prevention of Alcoholic Liver Disease. Biol Pharm Bull 2021; 44:1598-1606. [PMID: 34719638 DOI: 10.1248/bpb.b21-00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive, chronic alcohol consumption can lead to alcoholic liver disease. The etiology of alcoholic liver disease is multifactorial and is influenced by alterations in gene expression and changes in fatty acid metabolism, oxidative stress, and insulin resistance. These events can lead to steatosis, fibrosis, and eventually to cirrhosis and liver cancer. Many of these functions are regulated by peroxisome proliferator-activated receptors (PPARs). Thus, it is not surprising that PPARs can modulate the mechanisms that cause alcoholic liver disease. While the roles of PPARα and PPARγ are clearer, the role of PPARβ/δ in alcoholic liver disease requires further clarification. This review summarizes the current understanding based on recent studies that indicate that PPARβ/δ can likely be targeted for the treatment and/or the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Takayuki Koga
- Laboratory of Hygienic Chemistry, Department of Health Science and Hygiene, Daiichi University of Pharmacy
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University
| |
Collapse
|
35
|
Davis TME. Diabetes and metabolic dysfunction-associated fatty liver disease. Metabolism 2021; 123:154868. [PMID: 34400217 DOI: 10.1016/j.metabol.2021.154868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a relatively novel classification which downplays the importance of alcohol in the definition of non-alcoholic fatty liver disease (NAFLD) and emphasizes the metabolic risk factors that underlie progression of NAFLD-associated pathology. All people with type 2 diabetes (T2D) and hepatic fat content >5% by biomarkers, imaging or biopsy are considered to have MAFLD. Since there have been very few published studies of MAFLD in diabetes, the present review assesses contemporary methods for quantifying liver fat and fibrosis (including those based on magnetic resonance imaging) with special reference to T2D, their prognostic implications for people with T2D and MAFLD, and the factors and interventions that modify disease progression and outcomes. The changing epidemiology of obesity and cardiovascular disease and new therapies for MAFLD on the horizon with potential implications for T2D are discussed.
Collapse
Affiliation(s)
- Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, PO Box 480, Fremantle, Western Australia 6959, Australia.
| |
Collapse
|
36
|
Aguiar AJFC, de Queiroz JLC, Santos PPA, Camillo CS, Serquiz AC, Costa IS, Oliveira GS, Gomes AFT, Matias LLR, Costa ROA, Passos TS, Morais AHA. Beneficial Effects of Tamarind Trypsin Inhibitor in Chitosan-Whey Protein Nanoparticles on Hepatic Injury Induced High Glycemic Index Diet: A Preclinical Study. Int J Mol Sci 2021; 22:9968. [PMID: 34576130 PMCID: PMC8470918 DOI: 10.3390/ijms22189968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Several studies have sought new therapies for obesity and liver diseases. This study investigated the effect of the trypsin inhibitor isolated from tamarind seeds (TTI), nanoencapsulated in chitosan and whey protein isolate (ECW), on the liver health status of the Wistar rats fed with a high glycemic index (HGLI) diet. The nanoformulations without TTI (CW) and ECW were obtained by nanoprecipitation technique, physically and chemically characterized, and then administered to the animals. The adult male Wistar rats (n = 20) were allocated to four groups: HGLI diet + water; standard diet + water; HGLI diet + ECW (12.5 mg/kg); and HGLI diet + CW (10.0 mg/kg), 1 mL per gagave, for ten days. They were evaluated using biochemical and hematological parameters, Fibrosis-4 Index for Liver Fibrosis (FIB-4), AST to Platelet Ratio Index (APRI) scores, and liver morphology. Both nanoparticles presented spherical shape, smooth surface, and nanometric size [120.7 nm (ECW) and 136.4 nm (CW)]. In animals, ECW reduced (p < 0.05) blood glucose (17%), glutamic oxalacetic transaminase (39%), and alkaline phosphatase (24%). Besides, ECW reduced (p < 0.05) APRI and FIB-4 scores and presented a better aspect of hepatic morphology. ECW promoted benefits over a liver injury caused by the HGLI diet.
Collapse
Affiliation(s)
- Ana J. F. C. Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Jaluza L. C. de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Pedro P. A. Santos
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Christina S. Camillo
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Alexandre C. Serquiz
- Nutrition Course, University Center of Rio Grande do Norte, Natal 59.014-545, RN, Brazil;
| | - Izael S. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Course, Potiguar University, Natal 59.056-000, RN, Brazil
| | - Gerciane S. Oliveira
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Ana F. T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Lídia L. R. Matias
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Rafael O. A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Thaís S. Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| | - Ana H. A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| |
Collapse
|
37
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|